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n
n
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R

Shell surface area.

Coefficients in the Fourier series expansion of deflections.
Constants associated with generalized Hooke's law.
Orthotropic elastic constants.

Orthotropic elastic constants.

Coefficients appearing in the linear algebraic equations for
a, and b,.

n

Shell thickness.
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Geometric quantities associated with bending.
Coefficients used in predicting cord load.

Shell moments, moment per unit length of shell.
Shell membrane forces, per unit length of shell.
End count, also any integer.

Unit vector normal to shell surface.

Cord load, 1b.

Internal pressure, psi.

Principal radii of curvature, and twist, respectively, of the
midplane of the shell.

Shell radii of curvature.
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Elastic strain energy.

Vector of shell displacement.
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Membrane contribution to vector of shell displacement.
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Denoting meridianal direction.
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Geometric quantity associated with shear.
Geometric quantity associated with twist.
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Denoting meridian direction.

Strain energy density.

Membrane stress.

Radius of curvature.
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I. FORWORD

A detailed study of the loading of a pneumatic tire by inflation is of in-
terest since the inflation loads provide tensile forces in the cords which en-
able them to carry the usual running loads imposed on the tire. In addition,
stresses between plies are generated by the internal pressure. In many designs
the cord loads and interply stresses so generated are not negligible, but pro-
vide a major portion of the total loading of the tire and as such are of con-
siderable technical interest.

A second reason for a study of the process of inflating a pneumatic tire
is that elastic shape changes take place during inflation. In certain in-
stances this can be of great importance, such as in the design of wheel wells,
where generally space is at a premium. There, it is desired to make the clear-
ances between the wheel well and tire as small as practically possible, which
necessitates a knowledge of the tire inflated shape.

Third, this analysis of the results of inflation in a pneumatic tire
serves as a starting point which may be used for the development of techniques
which can be carried over to the more difficult problems of the tire loaded
against the flat surface and the running tire against the roadway.

For all these reasons, it was thought desirable to develop methods for
analyzing the problem of inflation of a pneumatic tire, and at the same time
attempt to produce a workable design method for the tire engineer, so that

inflation effects could be readily studied.






IT. ©SUMMARY

The principle of potential energy is applied to toroidal shell problems
with particular application to internal pressure in pneumatic tires. By use
of this principle, the orthotropic nature of tire materials may easily be in-
cluded in the equations governing the solution. While it may be argued that
integration of the differential equations of shell equilibrium represents a
more direct method of solving this problem, it is nevertheless true that en-
ergy principles do provide an alternate approach which is less susceptible to
difficulties involving singularities than is direct integration. These meth-
ods of solution are perhaps not the fastest in terms of computer time, but
much of this disadvantage can be overcome by programming. Past work on the
elastic characteristics of orthotropic laminates, such as that of Clark,l
is brought together and correlated in such a way that the elastic response
of a pneumatic tire tc inflation pressure may be determined, provided that
one starts with the basic characteristics which a designer must know in
order to build a tire: cord properties, rubber modulus, the geometry of
individual plies, number of plies in the tire carcass, and the geometry of
the tire. This means that analysis of a tire due to inflation may proceed
directly from the conceptual stage without lengthy intermediate calcula-
tions or experiments.

A digital computer program has been constructed which accepts the in-
put data discussed previously and provides as output the elastic displace-
ments of the tire in the form of the displacements of its carcass midline.
From such displacements one may calculate loads in the tire cords, interply
stresses between different plies of the tire, and bead forces. These cord

loads and interply stresses may be calculated on a membrane basis, on a bend-



ing basis, or by utilizing both effects. Due to the well-known difficulties
in obtaining significantly accurate higher derivatives from such truncated
series as are used here, no attempt will be made to calculate anything other
than the membrane induced cord loads and interply stresses. This is not felt
to be seriously in error since in most tires bending deformations during in-
flation are quite small.

An example analysis is presented for a typical 32 x 8.8 Type VII aircraft
tire mounted on a standard wheel and inflated to a rated pressure of 95 psi.
Comparisons between calculated deflections of this tire and deflections meas-
ured from actually inflating it are quite good, and it is believed that in
general it may be possible to use such an approach as this to determine the

final inflated characteristics of aircraft tires.



III. REVIEW OF TOROIDAL SHELL LITERATURE

It is of considerable interest to review the history of attempts to cal-
culate the stress state and inflated shape of pneumatic tires. References
2-7 give most of the important contributions and ideas currently being used.
In general, these schemes seem to fall into two categories. In the first,
as exemplified by the work of Hofferberth,5 the entire inflation load in a
tire is assumed to be carried by the cords so that the shell stresses are
proportioned in such a way that their vector resultant must lie in the direc-
tion of the cord at each local point on the tire. This results in the exist-
ence of a relationship between the two shell stresses or shell forces, Ng in
the circumferential direction and Ny in the meridianal direction. A second
relationship is obtained, usually, from the well-known shell equilibrium equa-
tion normal to the surface of the tire. This results in a set of two equa-
tions which allow the two shell forces to be determined at any point on the
surface of the tire. This determination is possible only when the shape of
the tire is given, so that radii of curvature may be obtained, and when the
cord angle is known at every point.

The assumption that the cords carry all the load in the tire is cer-
tainly correct during the process of expanding or forming, when the surround-
ing rubber is essentially plastic; however, we believe there is some question
concerning the assumption that the cords carry all the loads throughout the
body of the cured tire, particularly at regions of relatively high cord angle
with respect to a meridianal plane. Also this type of analysis does not re-
cognize the existance of stresses set up in the vicinity of the rim due to

the concentrated loads which must be applied there, nor of the presence of

interply stresses. In general, it is felt that this type of approach to the



cord load problem is a simple approximation of some validity, but one that does
not reflect all factors inherent in the problem.

A second general class of approach to the tire stress problem has been to
utilize, in one form or another, the equations developed for stresses in to-
roidal shells made from isotropic materials. Almost invariably, only the mem-
brane solutions have been chosen for this purpose, and, of these, only the one
for the complete circular torus has had much publicity. ©Several rather severe
approximations have to be made to consider that a pneumatic tire resembles the
type of structure for which this well-known she€ll solution is valid. For ex-
ample, Ref. 8 shows that this solution, while derived in part from basic equi-
librium phenomena, does not account‘for the fact that the deflections at the
rim of the tire must vanish, nor for the fact that the pneumatic tire is a
partial torus and not a complete one. For these reasons, and for a major rea-
son to be discussed subsequently, it is felt that the membrane shell expres-
sions, as derived for a complete isotropic torus, are not satisfactory approx-
imations to the stresses in a pneumatic tire.

Perhaps the most complete, thorough discussion of stresses in isotropic
toroidal shells available at this time is that of Ref. 9. Here, isotropic
toroidal shells of circular cross section are treated from the point of view
of both membrane and bending theory. It is shown there, and is well known
from previous studies, that when edge forces are applied to a partial toroi-
dal shell, as in a pneumatic tire, the influence of these edge forces may
pr@pagateosome distance into the body of the tire, particularly from regions
of negative Gaussian curvature. It is certain that the form of this propa-
gation of effects of edge loads depends on the elastic nature of the materials.
For example, it would be expected that this propagation would be quite differ-
ent for anisotropic materials or for orthotropic materials than for isotropic

@]

materials. It has always been maintained that it would not be possible to
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understand stresses and deformations in a real pneumatic tire without first
understanding thoroughly the materials going into the construction of such a
tire. Somehow any solution must take cognizance of the type of elastic mater-
ial comprising the pneumatic tire or toroidal shell, and this is fundamentally
the primary fault of pure membrane solutions.

In connection with the propagation of edge loads into the body of the tire,
Clark and Field6 attempt to approximate cord loads and interply stresses in the
vicinity of the crown by assuming that for most constructions the propagation

of edge loads is such that their effect has become negligible at the crown lo-
cation. To the extent that this is true, Clark and Field's paper6 provides a
satigsfactory preliminary design tool. In view of the many possible geometries
of construction, it is concelvable that orthotropic structures could be designed
with elastic constants proportioned so that edge loads were indeed propagated
into the vicinity of the crown. In those particular cases, the expressions pro-
posed in Ref. 6 will be inaccurate and it will be necessary for those who use
this program to compare carefully its results with those obtained from the ex-
pressions of Ref. 6 in order to fully understand the types of situations for
which it may be used with accuracy.

A number of attempts have been made to obtain accurate and meaningful
solutions to the problem of the isotropic toroidal shell. A brief history of
these may be obtained from_Timoshenko8 and Novishilovll, in which the early

work of Wisslerlg

is cited. A modern analysis of the problem of the partial
toroidal shell is given by R. A. Clarko9

All these writers use as their base isotropic materials uniform through-
out the shell. While results from these analyses are useful in gaining general
ideas concerning the response of orthotropic shells, they are not in themselves

answers to the orthotropic shell problem. The basic difficulty with all these,

as well as with the orthotropic shell problem, is that, in a torcidal shell in
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which the angle tangent to the meridianal cross section becomes horizontal or
parallel to the circumferential plane of the torus, a discontinuity arises in
attempting to define the deflection of the shell surface. This discontinuity
is a mathematical one in the sense that it is not possible to determine shell
stresses from membrane equilibrium equations and then to work backward through
the stress-strain relations and the strain displacement relations to obtain the
displacements of the shell., There is thus, at present, no easy solution to the
displacements of a toroidal shell considered only as a membrane. References
9, 11, and 12 all include the effects of bending so as to remove the difficulty
caused by the singular nature of the deflection of the shell as a membrane. In
Ref. 9, this is accomplished by asymptotic integration of the governing differ-
ential equations of equilibrium. An approximate technique yielding rather ac-
curate results for this same problem has recently been developed and published
by Dahlo15 This approach utilized the principle of minimum complementary
energy, which was extremely convenient for the situation being treated there,
namely, the toroidal pipe expansion joint in which axial loads were applied.

None of the references mentioned in this section contemplated anything
other than isotropic materials, and for that reason they are not particularly
applicable to the tire problem. For the most part, this is due to the dif-
ficulty of transforming any of these approaches to an approach capable of
handling an orthotropic shell of noncircular cross section.

In summary, an excellent and complete background on toroidal shell prob-
lems is available for those cases in which the shell is made from isotropic
materials and is of circular cross section. These solutions are useful for
indicating the general form of real solutions to inflated pneumatic tires,
and also useful in indicating techniques on which one might base an approach

to the orthotropic problem. None of them, however, is directly applicable

as it stands.



IV. GEOMETRY OF AXISYMMETRIC DEFORMATION OF A TOROIDAL SHELL

In this section, an attempt will be made to outline the geometry of the
complete sequence of operations from the construction of the tire on the drum
up to its most general deformation due to inflation. First, consider forma-
tion of the uncured tire lying flat on a drum, such as shown in Fig. 1, where
O-A-6'represents the uncured tire. Here, the cords all lie at some initial

angle N to one another. After the required number

Al

Drum

Al

Fig. 1. Geometry of tire forming from a drum.



of plies is put on, the tire is expanded into its toroidal shape against a
mould such as is also shown in Fig. 1, as the shape 0'-A'-0'. In the origi-
nal, or unexpanded, state, all cord angles are given by A. After expansion,
various points on the drum are caused to increase in diameter so that the
local cord angle, when measured from a circumferential line such as A'A'

in Fig. 1, is given by the symbol B where B may be approximately determined

from the expression

r
cos B = ;9— cos A (1)

°B

where ry is the radial dimension to a point on the midline of the tire carcass.
Equation (1) is exact only if the cords are inextensible. For real textile
cords a slight correction must be added. From Eq. (1), and from the symmetry
of the deformation, it may be seen that the local cord angle B is a symmetric
function about the crown and results in cord angles B smaller than A at all
points except at the rim. The cord angle B is a minimum at the crown, or at
the position of maximum radius o

Equation (1) has appeared in various versions throughout the tire liter-
ature for many years. It represents the fundamental equation used to deter-
mine the final cord angle after forming the tire. For the present, the in-
fluence of cord extensibility is neglected in this expression, as is the pos-
sibility of the cord sliding sideways during the curing process. Equation
(1) thus is an approximation to the true distribution of cord angles in the
moulded tire.

Attention is next directed to geometry of deformation of the formed or
expanded tire. It must be recognized at the beginning that this will be a
partial torus whose cross-sectional shape is not necessarily circular. The

notation here will be based on the work of Reissner and Knowleslu’ls’16

B
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This is convenient since Ref. 16 will be used as a basis for constructing the
elastic energy of the inflated shell or tire. 1In Fig. 2, a meridianal cross

section of a tire is

Fig. 2. Toroidal shell nomenclature.

shown giving the three fundamental dimensions used throughout the body of this
report in characterizing the shape of the tire. These dimensions are rg, the

radial dimension of any point, ri, the radius of curvature in the meridianal

11



plane at that point, and the angle between the normal to the point in question
and a circumferential or vertical line passing through the crown of the tire.
This latter angle is denoted by the symbol & and is related to the angle ¢

shown in Fig. 2 by means of Eq. (2)
a+ = = o (2)

The angle ¢ will occasionally be used in this report as an alternate to the
angle &, since many conventional shell expressions and equations are derived
on the basis of the angle ¢ rather than &. Such equations may, of course, be
readily transformed into statements involving Q.

A rectangular Cartesian coordinate system (Fig. 3) is now erected with the
Xy-plane lying in the circumferential midplane of the tire, passing through the
crown. The coordinate z will be coincident with the axis of rotation 00 of
Fig. 2. Unit vectors E, 3, and k are associated with the X, ¥y, 2 axes, respec-
tively. The position vector to any point on the middle surface of the carcass
may now be defined as

¢

r(¢,0) = (ro cos 6)1 + (r, sin 0)j +_J- r1 sin ¢d¢‘ k (3)

e}

ml:\l\\\3

-

provided that the & = ﬁ/2 point is taken as coincident with the xy-plane.
Forming derivatives, unit tangent vectors and unit normal wvectors, as in Ref.

4, the principal radii of curvature can be formed as

R11=%§g_2 ' % - % I:COS% cos®@ + cos®¢ sin@ + sin2<bJ = 11"_1
(&)
1 _ 1 M OF _ Ty |o:on ox o i 1 1
Rzg—%B_O”E—;%l}m@mnq’ﬂ“cosesmw = 7= =
sin ¢
where the twist is
1 _ 1 %Q . gﬂ _ _To {} sin © cos © cos ¢ + sin © cos O cos ¢] - 0
Ri2 rirg ¢ 1e) rirg -

12



Fig. 3. Coordinates for tire geometry.

These expressions now allow the geometry of the undeformed and uninflated
toroidal shell to be expressed accurately and concisely.

Consideration is now given to the geometry of deformation which may take
place under axisymmetric conditions, that is, under conditions in which each
meridianal cross section will deform in exactly the same way independent of
its circumferential position around the tire. It is now necessary to define
the general vector of displacement of points on the middle surface of the car-
cass of the tire. This middle surface of the carcass represents a surface to

which all subsequent geometry is referred and represents the surface which will

13



be used for calculations of shell geometry and deformation. Axisymmetric de-
formations may be defined in several ways, but it is convenient to presume that
any point on a meridianal cross section, such as point A in Fig. 4, can undergo
displacements w normal to the shell middle surface and u tangential to that
surface. For generality, needed in later work, we will include the displace-
ment v, also tangent to the shell midsurface, but now lying parallel to the

xy-plane of Fig. 4. In total, then, u, v, w represent displacements as shown

Fig. 4. Tire displacements.
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in Fig. 4. In the meridianal plane are u and w, v is tangent to the circle

ro = constant. The vector of displacement will be called u, so that

u = (ucos ® cos © - v sin® + wsin ¢ cos 0)1
+ (ucos ¢ sin @ + v cos © + w sin ¢ sin ©)j (6)

+ (-u sin ¢ + w cos ®)k

where, of course, u is a displacement due to membrane effects only.

From Ref. 1k,

1 1 or ou 1 /[du . (
= —_— = —— —  — =3 — — 7
T ETe T PN Ty oo Qb 9 :

omitting the formation of the derivatives and the intermediate algebra. Sim-

ilarly

N [+

6 = 00 T 90

(e}

or ,du _ 1 ucos ¢ + wsin ¢ + é%) (8)
o0

again omitting the algebra.
It is now necessary to express as a vector the bending portion of the dis-
placement of a point some distance z from the middle surface. Consider the

total displacement (membrane plus bending) to be of the form
5(,0,2) = (0,0) + 2z [a(9,0)] (9)

The membrane portion u(?,0) has previously been written. The u' (¢,0) por-

tion is more difficult. Reference 14 shows that this quantity may be written

-— 1 | —

u'o= u, ty, + ug ta (10)
where
u! = l— u_-alr—
¢ ry a¢
1 Jw
W = . 9v 11
4] ra Ty 00 (11)
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so that, by use of Egs. (6), u' may be written as

—' Y 1—-
u = 1 -ﬁ) cos ¢ cos 6 - Y—-l—éz)sine i
ry L) T2 To J9,
_i ow\ . < 1 dw FT
+ Lrl (1 - BQ/COS ¢ sin © +K—E - E$>cos e |J (12)

1 -
- - é} - éz\)sin ¢ k
1 dd,

The derivatives of u' with respect to ¢ and © are needed. Due to their length,
they will not be written out here since in the general case of asymmetric load-
ing, u, v and w are functions of both ¢ and 6. Using these derivatives, one

may obtain certain geometric quantities defined in Ref. 15 as

*
kg

]

1 |or ou' 1 or  du
r3? [0® 3% T r; o6 3¢

2
1 [u or 1 Or; ow ., O w
= 'E[HB_EL+W'HBTB—¢+W] (13)

T o' 1 oF aa]

Q/

0 "3 T rp 0 3@

Q/

o - L
o T8
109 1 ¥

S — -I1)cos ¢ + Hg + ¥ cos ¢ + —= ——g—
rora rs rs rori oé rg 00

Similarly, the geometric quantity 7¢O’ defined in Ref. 15, is obtained as

! or du ., Oor du) _ 1 du vecos ¢ 1 Ov s
Yoo - & %, 0r ) L% ves®, Ll o,
e rir, 00 036 26 o r, 06 r ri o¢

e}

again omitting the intermediate algebra. From the same reference, the geo-

metric quantity 7% may be obtained as

W . 1 (& w1 /o dm
rix, L 3% 36 0 ¢ r; \06 9%
N |
1 (6% au]

- 28 % (15)
1 [du ry ) r, or 1 1\ ov
T rarg i;@ L - FE/" v Fg EEQ t Io (%; - r,/) %

2 Ow Fw
+ aa—g— Ql COS¢>—26¢69:|
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These geometric quantities are sufficient to describe the possible
axisymmetric deformations of the shell both from the point of view of mem-

brane and bending effects.

17






V. PRINCIPLE OF POTENTIAL ENERGY APPLIED TO
AN ORTHOTROPIC TOROIDAL SHELL

In view of the general interest in deformations and shape changes of a
tire upon inflation, it was felt desirable to utilize some technique from
which displacement could be obtained directly. Recent work in formulating
strain energy expressions for shells of revolution indicated that such ex-
pressions could be reformulated for orthotropic bodies with relatively
little difficulty. For these reasons and because it seemed to lend itself
conveniently to digital programming, an attempt was made to obtain solutions
by means of energy techniques for the axisymmetric, partial toroidal shell
under internal pressure.

Reference 16 is an attempt to utilize a rigorous geometry of deforma-
tion to construct a strain energy expression for thin elastic shells on a
rational basis. This strain energy function includes certain terms not
commonly used in such strain energy functions, and, as a consequence, should
be somewhat more accurate for those cases where displacements are highly
sensitive to secondary factors. Equation (17) of Ref. 16 will be used as
the fundamental strain energy function for the tire treated as an elastic
shell.

Utilizing membrane forces, membrane strains, bending moments and
bending deformations as employed by Reissner and Knowles,16 the expression
for strain energy density per unit area is given by Eq. (16) for the case

of a shell of revolution with -axisymmetric loading.

T = Llmgge, + Nosen + Mygfkx + =2 )+ m fi0x + =2 (16)
5 [Nooo * NogSo * Moo ry )" Moo ra

It is now necessary to write Noo» Ngg: Mpo, and Mgg in terms of the shell

19



displacements u, v, and w and the orthotropic elastic constants. For the two-
dimensional case, Egs. (3) and (4) of Ref. 19 give the fundamental stress-
strain relations for an orthotropic body in the principal directions of elas-

ticity. These expressions will be given here as Egs. (17) and (18).

[0} g
€¢ = _._3 + _g
E¢ F
- % , %2
€ = + 1
o - PR (a7)
Op = E@€¢+ fég
oy = Fe, + Byeg (18)

From Ref. 17, the shell forces are defined as

h
_ 2 otz
N¢¢ = ‘Zﬁh 0¢ <jT2j> dz
2
b +
> ri1+2
fh ofa) <l"1> dz
-2 (19)
2
Lo s
[i o4 27z ) 44z
o o= Iro
2
h
2 r,1+2
Mg = L/ﬂh g I'1> zdz (20)
2

It is seen that, if the results of Egs. (17) and (18) are substituted into

=
=S
=S

I

Egs. (19) and (20), a definition of the shell-membrane forces and moments per
unit length may be obtained in terms of the orthotropic elastic constants and

the strains in the form

20



= _ 3
Noo = (Ep-h)ey + (Feh)eg + E%g— <%; - %é) k¥
Nog = (E “h)e +(f-h) +—Q—< >k*
(21)
6D 6D
Mgg = ﬁg® é* +FQ>Q*+¢

Substituting the results of Egs. (21) into Eq. (16) gives an expression for
the strain-energy density in terms of the orthotropic elastic constants and

strains:

T

1]

h, h° B2 + Boco + 2F
2 " 2hrirs ¢=0 [aNle) €¢€0

3
+ B [%¢k¢ + 2Fk*k* + E kX2 (22)
2k

2
+ ;—; éq,kq,eq, + Fk*e> < k*e + Fkge:)“]

Next, Egs. (7), (8), (10) and (11), may be substituted into Eq. (22) to
obtain the strain energy in terms of the shell displacements u, v, and w.
Because the number of terms involved in the strain-energy expression would
become very large, the final algebraic form of this expression will not be
written out here.

We turn next to the so-called work term, that is, the term involving
the work done or change in potential energy of the external forces as they
move through the displacements which they cause on the shell. The principal
of minimum potential energy requires the variation of the work term about the
equilibrium position, or deflected position. For problems in elasticity in
which deflections are truly small, and for those problems which have solutions
not particularly sensitive to their geometry, it has been common practice to

Perform the variation of the work term about the original geometry, not the

21



final geometry. This is, of course, much easier. In this particular cacse,
comparison of calculated results with experiments indicate that it is not suf-
ficient to use the original geometry for the work term. Before proceeding to
that development it might be noted that strain energy should also properly be
written about the final geometry. However, in all these equations, no deflec-
tion terms higher than order two are retained in order to keep the resulting
algebraic equations linear. Examination of the strain energy shows that it is
already of order two, based on the original geometry, and that writing it in
terms of final geometry will only add higher-order terms which would be elim-
inated by truncation anyway. This is not the situation with the work term,
which is or order one in displacements based on original geometry. It is now
necessary to treat the work term on the basis of final geometry and retain

in it all terms of order two or less. Figure 5 shows that Ty and r; are or-
iginal radii, w and u are displacements of point O to O' by means of normal
and tangential directions. O has coordinates x and y, while O' has coordin-
ates xp and yp.

The work term is

W o= f p . w . dA (23)
"AREA
where
dA = 2T[I‘of rlfda
Now
rop = To * W COS Q - u sin @ (2k)

Calculation of Tip is somewhat more complicated since it requires first the

22
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X

Fig. 5. Tire geometry before and after inflation.
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calculation of the Cartesian coordinates of points O and O'. For O,

(07
X = [rlcosada

(25a)
[0
y = Trig - [ r; sinad o
For O',
07
Xp = éﬁ ry cos @dd a +wsin @ + u cos &
‘ (25b)
(07
Y¢ = Tig - Zﬂ r; sinadda + wcos & - u sinQ

Reference 18, pp. 320-322, derives the expression for radius of curva-

ture as

d®xp/dy% 7

l; de\ 3/2 (26)
de 2:|

Since x¢ and yp are linked by the parameter @, one must write

dxs dxf 4 &
d T da
Yy £ d dy £

Working out these various terms gives

dx
e = rjcos d+wecos@-usin@ +w' sin @ + u' cos &
da o
!
dxg _ ry sin @ + r; cos @ - w sin @ - u cos & + 2w' cos O
a @
- 2u' sin ¢ + w" sin @ + u" cos &
(0% (04
dyr =l=-rlslnaL-w51naM—ucosaL
d d
Ve Ie Ve Ie
+ w'g‘—acosa—u'd—a-sinoz
Ve dys
from which
d o 1
dys -r; sin @ - w sin @ - ucos & + w' cos @ - u' sin «

2k



where primes now denote differentiation with respect to &. In addition

a 2
a_(f = 0 = - rysin @ —5 =~ rycos d__a>
dye\dye dy2 dyr

2
o d2a

-wsinQ a4 - W cos
dyr> dye 0<de
2
w'sin O<}——{>
8 w'sin a + w'cos Q e
u'‘co dy‘ ES%?
i« d o d%a
w'cos of — - u'cos —) - u'sin @ —=
anyf > QQYf dy2

2
u"sin o d o

[ ]

l"

m

-

=)

Q
/"E}

/Q\

2 2
Solving for 4 a/dyf, one gets
2 '
d=a = - lg[rl cos O + r; sin @ + w cos @ + 2w'sin &
A\

- w'cos & - u sin O + 2u'cos & + u''sin ?}

where
A = risinag+wsin+ucos @ - w'cos @+ u' sin
Now the radius of curvature can be formed to give

((r1#W)2 - w"(ri+w+u') + 3u'(r1+w) + u(u-ri-3w'-u") + w'(r;+2w'+u") + 2u'2)

((ry+w)® + u2 + w'2 + 2(rqu'+wu ' -uw' )3/2

(27)

2

|-

+ u

after considerable algebraic simplification.

In this expression, we need retain only first powers of w and u, since
one w already exists in the work term. Factoring ri from both numerator and
denominator and assuming small displacements and small derivatives of dis-

placements, one may expand quantities in brackets as power series and finally
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obtain

w w'  ury  w'ri
= rq |1 + — 4 — + =% - + - - = 28
N e (28)
Thus the final radius of curvature Tip is given by
1 ! !
rlf = ry + w - Y_I'_l_ + W" + & (29)

ra ry

Equations (24) and (29) may now be used in Eq. (23) to compute the work term

in the form

1 1
w'ry
r

W

~Qr
2np./ w(ro+w cos & - u sin a)[:rl + W -

uw(%lsin a -

rirg aQ
ry

+ W

-Qr
omp [ b VP [rg + rycosa] + " ke ]
np rorav [ro + rjcos ww'ry - ro %
-Qar

" + —

1

This represents the work done by an internal pressure p acting inside the

toroidal shell of revolution whose boundaries are at the normal angles + Q.

and - (&) as measured from the crown.

This expression cannot be simplified

further until some decision is reached concerning the form which the dis-

placements u and w must take.

section.
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VI. THE RITZ METHOD AS AN APPROXIMATION TO
THE PRINCIPIE OF POTENTIAL ENERGY

Before proceeding to the algebraic formulation of the Rayleigh-Ritz method,
it might be well to point out a relationship between the real tire and the as-
sumed toroidal shell. The real tire has finite thickness made up of the carcass
and tread regions. Practically all the membrane stiffness of the tire comes
about due to the stiffness of the carcass, because the presence of internal pres-
sure generally tends to load all cords into a state of tension where their mod-
ulus is high and the surrounding rubber is soft by comparison. Further, this
means that essentially all membrane loads are carried by the carcass itself.

One might very logically, then, assume that insofar as membrane forces are con-
cerned, the tread is not important to the process of inflation of the tire.

Bending characteristics of the carcass of the tire are reasonably well
known from previous work on bending by this group, but it is not possible to
make any blanket statements concerning the influence of the tread rubber on
bending stiffness since many geometries of design are possible. However, with
pure inflation of the tire there will be little circumferential bending. This
means that any stiffness of the tread in the circumferential, or tread, direc-
tions will not be important to the problem. However, there will be bending in
the meridianal direction, and this should be taken into account in determin-
ing the stiffness of the structure in that direction. It appears that almost
all aircraft tires now in manufacture utilize tread cuts in the circumferen-
tial direction. This means that the meridianal stiffness due to the tread is
essentially destroyed since the number of these cuts is generally quite large.
Simple experiments with cross sections of tires seem to confirm this line of

reasoning. Thus it will be presumed in this study that the carcass of the
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tire is the element which carries membrane loads and also provides all the
bending stiffness. Furthermore, it is necessary to choose some geometric
line as representing the shape of the tire so that the various radii of
curvature may be computed from this line; thin shell theory is based on the
assumption that the thickness of the shell is very small compared to the
dimensions in any other direction, and that this thickness is neglected in
determining radii of curvature and other dimensional characteristics. In
effect, the shell is treated as a surface with finite membrane and bending
rigidity. TFor the calculations which follow} the midline of the tire car-
cass will be considered as the geometric line defining the shape of the tire.
On this geometric line will be based all the radii of curvature and all the
measurements of the various tires treated as shells which follow.

To return to the problem of adapting Egs. (22) and (30) for solution by
the Rayleigh-Ritz method, it is necessary to assume displacement functions u
and w which form a complete set and which at the same time automatically sat-
isfy the boundary conditions of the problem. The boundary conditions for a

tire under inflation may be listed below.

u = u(a) w = wla)
(6) = o ow(o) - o
) o (31)
u(ar) = 0 w(a,) = o
u(-a.) = o w(-0.) = o

If one assumes that u and v may be represented by Fourier series, and if
one applies the boundary conditions of (31) to the general Fourier series rep-

resentation of both of the functions u and w, it may be shown that these func-
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tions reduce to the following form:

u = Y a_ sin ona au ¥
nol B a nn
’ (32)
w o= b, [%os Eﬂ%)-—(-l)#} = bn;n
n=1 S

Equations (32) may be substituted into the various expressions for strain and

for changes in curvature such as given by Egs. (7), (8) and (13). These give

1 —1 —

€6 = Ty (aqly + bpwy) *¥
. -
Ty —- b wn
= . U +
e Tor1 #ntn T2 (35)
53
1 s
-— ry ry — —_11 —

-ky = = 8pUn * 7, T T bWy + bpwp, + bnw%}

— —_— -1
anu bpwn  bpWp cos &
-kg -2 (1 Ti)cos ¢ + = +
Trora To r5 rora

One must now form the following products and squares:

() €
(b) eg
(c)  eoeq
(@) ke,
(e) kyeq
(£) kge,
(8) kgeg
(h) x5
(1) x5
() kgke

*A repeated subscript will be used as the summation convention.
*¥A prime denotes é— = é— .

3 dx
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Working these out is a rather lengthy algebraic job. It will not be repeated
here since it is not necessary for the argument being put forth. ©Now it will
be possible to form the strain-energy function as given by Eq. (22) in terms

of the displacements u and w. The integral of this function over the surface

of the axisymmetric toroidal shell will be designated as U,

U = far"ﬂ' + 2nrir da (34)

- ar

where the coordinates and angles are defined by Fig. 2. Turning now to Eq.
(30), the work done during inflation of the tire by the internal pressure may
also be expressed in terms of u and w, and hence in terms of the unknown co-

efficients ap and b,. Upon substitution of Egs. (32) into Egs. (30), the work

done becomes

Or ~ - -
W = 2rp ToTibpWn + bpwpbywy | ry + ricos Q
o

'
- -1 —_ -— . rr
+ bnwnbjwjro - apupbpwi(risin a - rlé> (35)

Forming the potential energy
Uu-Ww
it may be seen that this function depends now on the unknown coefficients an
and by. A set of simultaneous linear equations is obtained by minimizing the
value of this function with respect to a, and b,. For this purpose, the follow-

ing equations are needed.

O (W) = o s =1,2,...n (36)
aas

9O (U=W) = 0 s =1,2,...n

ob

S

The actual algebraic manipulations of these equations is a lengthy process
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which, for conciseness, will not be repeated here. However, after doing it,
it becomes clear that the general type of equation obtained from the system

given in Egs. (43%) takes the following form:

z anf (F1),dA + 2 bnf (F2), dA = O

Area Area (57>
2 ay, f (F2) aA + 2. by f (F4) dA = f (F5) aA
Area Area Area

where the functions F1, F2, F4, and F5 are reasonably lengthy algebraic ex-
pressions which will be given shortly. The meaning of Egs. (37) is simply that,
having decided upon the number of coefficients n to be retained in expressing
u and w, the simultaneous set of Egs. (37) may be generated by using that num-
ber to truncate the series forming the various quadrants of the matrix of sim-
ultaneous algebraic equations. The upper half of the right-hand side of this
matrix is always zero while the lower half takes on the wvalue f(F5)dAe For
purposes of various studies made on the influence of these F functions on the
solutions, they were originally decomposed into portions arising from various
sources. For convenience, they are listed here in that fashion. The mem-
brane contribution to the various F functions arises due to strain energy
stored in the membrane itself due to change in area. The bending contribu-
tion to strain energy comes about due to bending in both the meridianal and
circumferential directions during inflation of the tire. The various por-
tions of these F functions are given in Table I so that they may be identi-
fied as to source. The contributions labeled "non-linear" arise due to the
inclusion in this analysis of second-order terms in the work expression given
by Eq. (35), where the final geometry is used as described in Eq. (29). Fi-
nally, F5 represents the lower half of the right-hand side of the matrix of

simultaneous equations.
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TABLE I

'F' FUNCTIONS FOR SIMULTANEOUS EQUATIONS IN COEFFICIENTS an AND b,

Membrane

—r— rs \2 Fr.
2xrgry (h) | B 2K3S 4 Ee( ) Tyl + —= (G,;i + Ekﬁ')
© T O\rory ® g\ *® 5

F1

Bending

i 2 !
n3 - o - To - Fro /_,- -
2n (E>cou a [E. u_:gl + E<r°r1> upug + R(uiu. + uku.>]
n3 Egsin®a r)\2 , 2Frjeina ( )
+ 2nrgry [12] Eku. [ ( ) + pw 1 - ) «+ rort 1l-7p

L N

2Frgri - 2rgstn @ R Fetna ( n) o
. - 1-3) . (a o o+ ma,) |- 1- - £

rorxrz ® 7__ ] X' X ;) rorg T2, rira

Non-Linear

Membrane

2nrory (b) kais (r—:‘x;i 2 rl‘)’ et (rb(_ * __ jI

F2
Bending

3 - = 3\ (Eo ey F
2x [E] cos {"k“a (m)(l‘ )0 (rlX E)}
oo B} [5G - 2) - 226 -2 G2 )
w [ BB (on) R g (8)
o l: ( r_orf sin c} - W, <r;rz\) (E‘ + F—rf“)
‘-,;(i, (—b(zo Ft sin a\> - Wl (xg;)}

+

+

+

Non-Linear

- = r;ro
2xp ¢ Wxug (risin @ - 1

Membrane

3 _
2nrory (h) W (E 2 :52)

Fh
Bending

2 (12) cos & ["k"a <& + i)]
22 e
+ 2nrory [-;g;' {;ﬁs [f—; of—; -;%;; f% % rfu):‘
*Vkag'(l - f‘%) (Ee %‘:—2 Ee r.,) + vkv,<—;) (1 - E
Wl oE) (o ng) (3@ = #_1_,, J
s [ () -2oee] osm ()5 -2 9
s (ﬂ’) (E, L . F r,ain a> - (

4'

2]
o
2 - - = -
el - 2np {2vkv’ ["o + rycos a] + 1, vkv + qv) T | YkVs + vk'v.)}
&
o
=
. -
= 2nprorivg
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VII. SUMMARY OF STUDIES ON THE ELASTIC
NATURE OF CORD-RUBBER LAMINATES

Equations (17) and (18) indicate that the strain energy at any point on
the surface of the tire can be written only if the orthotropic elastic con-
stants E@, Eé and F are known at that point. This means that some mechanism
must be found for determining these elastic constants at any position on the
meridian of the tire, since they are, due to the method of manufacturing, axi-
symmetric. Using the angle O as a variable, one might say that each of these
three elastic constants are functions of the angle &, as shown in Fig. 2.

The author has shown that the elastic constants of a sheet made up of
laminated plies could be calculated quite easily in the directions of the
bisectors of the angles of the cords, these directions being the principal
directions of elasticity. The methods presented in these references required
a knowledge of the basic constants of a single sheet of the laminate, these
latter constants being denoted by E,, Ey, ny, and ny° Using these refer-
ences, it is seen that all necessary elastic constants may be determined pro-
vided that the basic constants are known and provided that the cord angle is
known. A technical report recently issued by this groupgo shows that approx-

imate expressions may be developed for calculating E,, E ny, and ny if

y5
the materials and geometry making up each individual ply are known. When
this information is given, then all elastic constants may be calculated if the
local cord angle is known.

Consider any point on the carcass centerline of the meridianal cross
section of the tire as defined by the angle which the normal makes with a ver-
tical, called in this report &. At this angle & there exists some local cord

angle which, if the materials and geometry of each ply are known as well as

the number of plies, determines completely the elastic constants at that point.
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A straightforward method of determining the local cord angle at this point was
given earlier in this report as Eq. (1) under conditions of inextensibility of
the cords. During forming of the tire, extension of the cords is known to take
place and for that reason different types of correction expressions have often
been applied to Eq. (1). An alternate approach to this process is to use Eq.
(1) in a slightly different form in which extensibility of the cords is much
less important. Evidence on this point has been furnished and will be used
here to Jjustify the process. Figure 2 illustrates the notation that the maxi-

mum radius to the crown of the tire may be denoted by r and calling the cord

oc?
angle at the crown of the formed tire B,, an expression may be derived similar
to Eq. (1) but now involving the crown as a base point rather than the rim.
This gives

cos B = X0 cos Be (38)
Toe

where B represents, as before, the local cord angle. Table II represents data
taken from measurements on X-ray photographs of an actual tire at various
radii ry. Calculated values of the angle B using Eq. (%38) are also presented.
Over most of the tire the agreement is quite good, although Eq. (38) uses no
correction factors for cord extension. By use of Eq. (38) it should be pos-
sible to calculate accurately the cord angle at most places on the meridian of
the cross section of the tire, once the crown cord angle and crown radius,
measured to the midline of the carcass, are given. The complete nature of the
distribution of elastic constants around the meridian of the tire may then
be determined if the properties of the materials and geometry of construction
in a single ply are given.

The concepts outlined here allow complete specification of the elastic
constants and do so in a fashion capable of being programmed digitally as part

of the larger, over-all tire program.
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TABLE IT

COMPARISON BETWEEN MEASURED AND CALCULATED CORD ANGIES

. Cord angle measured Cord angle calculated
Radius r, from X-ray photographs from Eq. (38)
Toe = 23.57 Crown cord angle = 38.5 -
22.43 41 41.75
19.43 50 49.65
16.93 (rim) 52 55.65
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VIII. INTERNAL STRESS ANALYSIS OF THE TOROIDAL SHELL
UNDER INTERNAL PRESSURE

The tire under internal pressure poses a particularly appropriate problem
with which to begin this series of efforts to analyze tires under various load-
ing conditions using digital computation techniques. This is because, as men-
tioned previously, the primary consideration in this problem is that of mem-
brane effects, and further, that these result in tensile cord loads throughout
the structure. This means that it will not be necessary to account for the
sudden change in modulus as the cord load goes from tension to compression.

Discussions with research sponsors indicate that present practice is to
design tires so that, upon inflation, bending effects are either small or
negligible. For this reason, it is anticipated that in most problems of in-
terest cord loads contributed by bending effects during the inflation process
alone will be negligible compared to cord loads generated by membrane forces.
Using this simplification, it it possible to calculate the deformation state
of the tire using both membrane and bending effects, and to use those effects
in a very simple and straightforward way to obtain the two quantities of struc-
tural interest here, the cord loads and interply stresses.

Turning first to cord loads, it may be seen from work done by the authore?
that cord loads may be determined completely if the thickness of each ply, the

end count, and the stress distributions all are known, from the equation

P = % [(L) gg + (M) c{] (39)

where

jny
1]

thickness of a single ply

end count

B
]
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B
=
i

coefficients given from Ref. 23

Q
1]

membrane stresses as given from shell analysis

Equation (39) is adapted to the axisymmetric case of loading by internal pres-
sure where no shearing stresses are present in the structure.

The calculation of interply stresses is a relatively straightforward pro-
cess throughout the tire if one considers only the effect of membrane forces.
The previous discussion indicated that these would be predominant and, for pur-
poses of this program, will be the only ones considered here. From Refs. 2k
and 25, it may be seen that the interply stresses for cases of membrane forces

induced in the carcass are given by

O‘;Q = 1 [_ a13(+0t) G = 8,23("‘05) Gq] (14.0)

ass(+) © aza(+Q)

where the functions ais (+Q)/azs (+) and aps (+)/ass (+) are given in Ref.
24 as functions of the elastic characteristics of the system and of the cord
angle &. The stresses 99 and 04 may be determined from the deformation anal-
ysis of the tire. With these, and with a knowledge of the elastic character-
istics around the meridian, interply stresses as given by Egs. (40) may be
obtained at once.

The digital computer program presented in this report utilizes cord loads
and interply stresses determined only from membrane effects, as discussed in
this section of the report. More complete analyses, including the effect of
bending on cord loads and interply stresses, can be included by revision of
only a small portion of the total digital computer program. This will not be

attempted here since it is rather lengthy and would not be of wide interest.
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IX. DIGITAL COMPUTER PROGRAM FOR CORD LOADS, INTERPLY STRESSES,
AND DEFORMATIONS DUE TO INFLATION

The computer program was written to perform the task of producing the
system of Egs. (37), solving them, and consequently obtaining the desired re-
sults as output. The details of the program will not help to understand the
problem, but a few words about its broad structure will allow a potential user
a view of the procedure and will show how it can be adapted to his particular
needs.

The program consists of a "main" or controlling program, which is very
short, and calls upon a number of subprograms or subroutines. Such a proce-
dure has been followed throughout this project inasmuch as it permits check-
ing discrete parts easily or even altering them as situations dictate. The
bprogram required reading in data of basic material properties and certain con-
trol parameters, such as the number of terms of the Fourier expansion which
are to be used in the Ritz procedure. The radii of curvature may be imbedded,
as a table, in the program, or alternately this informatior may also be read
in as data at the discretion of the programmer.

The list of subroutines which are used will give an approximate outline
of the computing sequence. These are in turn controlled by the main program.

Subroutines

1. Data reading.

2. Raw material properties preparation.

5. Preparation of a table of material properties as a function of
position on the tire.

L, A utility routine which prepares certain parameters appearing

frequently in the subsequent computation.
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5. Ritz procedure, which in turn requires
(a) Simpson's rule procedure, which further needs
(i) a procedure for evaluating the arguments of the
integrals for the evaluation of the augmented co-
efficient matrix of Egqs. (37);
(ii) tables for radii of curvature and material prop-
erties;
(iii) Subroutine for displacements and their derivatives.
(b) Simultaneous equation solver.
6. Final results are produced after the computation of the coeffi-
cients of the Fourier expansion for the displacements.

Depending on the nature of the input parameters, it is possible, for a
given set of material properties, to compute the results repeatedly using an
increasing number of terms in the Fourier expansion. This is accomplished
by cycling over subroutines 5 and 6 repeatedly.

The computations in subroutine 5 are very extensive, and efforts have
been made to make this part of the computation as economical as possible. It
is anticipated that in future programs even greater efforts will have to be
exerted in this direction; however, much of what can be done here depends on

the size of the machine memory available.
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X. EXAMPLE ANALYSIS

The principal obJjective of this report is to i1llustrate a typical

1s

48]

Strength analysis of an aircraft tire under internal pressure. Thi
considerably more important in aircraft tires than in other tires due to

the fact that their pressure loadings are generally much greater. For pur-
poses of this analysis, a 32 x 8.8, Type VII, aircraft tire was obtained on
loan from one of the major aircraft tire manufacturers, along with a stand-
ard wheel for this tire. Here the particular tire obtained waz a nominal
twelve ply rating tire manufactured for a special use and hence was slightly
lighter than the usual 32 x 8.8 design. It actually contained six plies of
carcass material. As an anti-skid device., its tread stock was loaded with
wire in a random dispersion but that factor did not influence the subsequent
inflation calculations.

Plaster casts were made of both the inner and outer surfaces of the tire
and from these casts, along with complete information on the carcass thick-
ness furnished by the manufacturer, it was possible to produce a drawing of
the carcass midline of the tire. It was then necessary to use this carcass
midline to determine the radii of curvature at various points around the me-
ridian, or crosssection, of the tire.

In connection with tire analysis work during the past two years., a prob-
lem has arisen several timeg in determining radii of curvature of an irregular
shape which is drawn out on a piece of paper. At various +imes different
schemes have been used for actually calculating these radii of curvature, and
such schemes have embraced ideas involving:

(a) the use of mechanical systems such as dial gauges to produce numer-

ical data which in turn could be differentiated and treated numerically by a
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digital computer program.

(b) drawing out the cross-section on a piece of graph paper from whicn
hand calculations on a desk computer can give radii of curvature.

(c) fitting a polynomial to the shape of the tire and from this poly-
nominal determining radii of curvature, curve fitting being done by a least
SQuares approach on a digital computer.

(d) an optical method which determines the normal to the curve at any
Point, and from which radii of curvature may be obtained by one graphical
differentiation.

None of these systems appears to be completely satisfactory, and our
Current impression is that a great deal of the difficulty lies in the absence
of a good smoothing routine which can be used with the digital computer. The
Problem is one which is annoying but not serious, and, for this particular
€xample analysis, the first and last of these methods were used separately
and reworked carefully until the results seemed to agree.

Through the kindness of the B. F. Goodrich Research Laboratories, which
furnished this particular aircraft tire, complete data was obtained on the
characteristics of the material used in the tire, as well as information on
tire geometry and construction details. This enabled all necessary input
data for the analysis to be obtained directly. Fig. 6 shows reproductions
of the digital printout pages; the first page illustrates the input data and
shows the values of rubber modulus, the various cord properties, the number
of plies, cord count, and crown angle. For this particular 12 ply rated tire
the recommended inflation pressure is 95 psi and this value is used as input.
The maximum number of Ritz terms in the solution is taken to be eight and
from this the digital computations may proceed.

The second page of Fig. 6 illustrates elastic constants whicn are cal-

Culated at various stations I, where I = 1 refers to an angle @ = O, this
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being the crown of the tire. The location associated with the point I = 32
is an angle @ = 120.5 degrees, which is the rim of the tire. The intermediate
points are obtained by using increments of 4,50 of the normal angle &. In
general these will be slightly unequal arc lengths due to the fact that the
radius of curvature ri is continuously changing.

The next three columns on the second page of Fig. 6 represent elastic
constants in the ©, or circumferential direction of the tire and in the ¢,
Or meridianal direction of the tire. It is interesting to note the extremely
wide variation in elastic constants demonstrated between the crown and the
rim of the tire The column labeled F is approximately constant, nowever, from
crown to rim.

In the next two columns the x and y coordinates of the carcass midline
are calculated and listed. Finally, the last three columns give the radiil

%gl, which is labeled here R1P. These radil of curvature are nec-

essary for the construction of the strain energy functions described pre-

o, ri, and

viously.

On the third page of Fig. 6 a portion of the output from this program
is given. The first column again indicates the number of the station to
which the data pertains, the second column gives the angle of the normal with
respect to the vertical center line, the third column gives the calculated
cord angle B at each of these positions; the next two columns give the x and
Yy coordinates of the inflated tire, and the columns labeled y displacement
and x displacement give the actual displacements of these points, Finally,
the displacements normal and tangential to the carcass midline are denoted
by the usual notation w and u, and these are listed. This information is
sufficient to draw out the final, or inflated, shape of the tire. In the
final page, one finds again a station location column followed by a calcula-

tion of the membrane strains labeled EPSPHI and EPSTH. Using these values

v



of membrane strain one may calculate membrane stresses, and these are listed
as SIGPHI and SIGTH, standing for o4 and oy respectively. The next column,
labeled INTPLY, gives the interply stresses between plies calculated on a
membrane basis. The last column 1lists the cord loads induced by membrane
stresses; from this column it may be seen that the maximum cord load occurs
at the crown of the tire. At this point the load is approximately L pounds
per cord, which appears not unreasonable in light of the known strengths of
the typical textile cords used in such tire manufacture.

As a final item, the bead of the tire may be treated as a ring subjected
to outwardly directed tensile forces. If this is done, then the total bead
force generated by these tensile forces may easily be calculated. In this
particular case, the tensile forces arise due to the presence of the stress
Og in the tire and the bead forces are worked out as an integral part of
this program. In this particular case they turn out to be approximately 1250
pounds, which is well within their strength capabilitie=s.

In viewing the overall results of this computer program, one sees that
the maximum cord loads apparently occur in the crown of the tire. This
seems to agree with what is generally known about the faillure of tires under
pure internal pressure, such as a high pressure hydrostatic testing. 1In
those cases it appears, from what evidence is available, that failures initi-
ate at the crown of the tire due to internal pressure alone.

To check the validity of these calculations, the particular aircraft
tire used here was inflated to 95 pounds of internal pressure and a complete
Ccasting made of the outer surface. By comparing this casting with one pre-
Viously made of the uninflated tire, one could immediately obtain information
on the growth of the tire due to inflation at different positions . This
information can be compared with the final configuration of the tire as given

from the calculations, and is done =0 in Figs. 7a and 7b. From the comparizon
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of calculated and measured deflections it can be seen that the calculations
seem to agree quite well in the crown and sidewall areas of the tire. Some
discrepancy exists between measurement and calculations in the shoulder area
for which there is no reasonable explanation, at the moment. However, it
should be noted that past experience with such calculations indicates that
the resulting deflections are quite sensitive to the quality of the radii of
curvature which are measured in any particular shell. In view of the fact
that the radii of curvature obtained here were compromises, in certain re-
spects, between two different methods of obtaining such data, it might be
expected that the use of radii of curvature which were completely correct
would perhaps improve the deflection data obtained. It will be necessary to
examine this point in some detail at a later time.

A photograph of the tire mounted on the wheel is shown in Figs. 8a and

8b.
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Estimated ¢ of Carcass before Inflation

Calculated ¢ of Carcass after Inflation

Fig. 7. Comparison of calculated and measured inflated shapes
for a 32x8.8 aircraft tire.
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Outside Contour before Inflation (from Casting)

Outside Contour after Inflation -
Estimated from Calculations of the
Deformation of the q:_ of the Carcass.

—

Estimated ¢_ of Carcass

after Inflation

]
Outside Contour '
(from Casting)

Fig. 7 (Concluded).
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Photographs of a tire.

Fig. 8.
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