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Abstract. LetD ≡ 7mod 8 be a positive squarefree integer, and lethD be the ideal class number
of ED = Q(

√−D). Let d ≡ 1 mod 4 be a squarefree integer relatively prime toD. Then for
any integerk > 0 there is a constantM = M(k), independent of the pair(D, d), such that if
(−1)k = sign(d), (2k+1, hD) = 1, and

√
D > (12/π)d2(log |d|+M(k)), then the centralL-value

L(k + 1, χ2k+1
D,d

) > 0. Furthermore, fork 6 1, we can takeM(k) = 0. Finally, ifD = p is a prime,

andd > 0, then the associated elliptic curveA(p)d has Mordell–Weil rank 0 (over its definition
field) when

√
D > (12/π)d2 logd.

Mathematics Subject Classifications (1991):11G05, 11M20, 14H52.
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0. Introduction

Let D ≡ 3 mod 4 be a positive squarefree integer, and letd ≡ 1 mod 4 be a
squarefree integer relatively prime toD. We consider Hecke charactersχ of ED =
Q(
√−D) of conductord

√−DO satisfying

(1) χ(Ā) = χ(A) for every ideal ofED relatively prime to the conductor, and
(2) χ(αO) = ±α for every principal ideal relatively prime to the conductor.

Here O is the ring of integers ofED. There arehD such Hecke characters for
each pair(D, d), differing from each other by an ideal class character ofED,
wherehD is the ideal class number ofED. We denote such a Hecke character
by χD,d . These Hecke characters were studied by Rohrlich ([Roh2-3]), who also
allowedD or d to be even. In particular, he proved, that for almost all pairs(D, d)

such thatD > |d|39+ε and the root number ofχD,d is one, the centralL-value
L(1, χD,d) 6= 0. Hereε is any positive number. Rohrlich and Montgomery ([MR])
also proved a more definite result asserting thatL(1, χD,1) 6= 0 if and only if
the root number ofχD,1 is one. Rodriguez Villegas further gave a nice formula in
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338 TONGHAI YANG

[RV1-2] for the centralL-valueL(1, χD,1) for D ≡ 7 mod 8. From this formula
the nonvanishing of the centralL-value becomes obvious. A formula for the central
L-valueL(k + 1, χ2k+1

D,1 ) was obtained by similar technique in [RVZ]. Using a
different method developed in [Ya1], Rodriguez Villegas and the author discovered
that similar formula is valid for Hecke charactersχ2k+1

D,d , where every prime divisor
of d splits inED. In fact, such a formula exists for a whole class of Hecke characters
of a CM number field of any degree ([RVY]). In this paper, we use the same method
to derive a formula forL(k+ 1, χ2k+1

D,d ) without any condition ond (Theorem 2.1),
which enables us to prove the following nonvanishing result in Section 3.

MAIN THEOREM. LetD ≡ 7 mod 8be a positive squarefree integer, and lethD
be the ideal class number ofED = Q(

√−D). Let d ≡ 1 mod 4be a squarefree
integer relatively prime toD. Then for any integerk > 0 there is a constant
M = M(k), independent of the pair(D, d), such that if(−1)k = sign(d), (2k +
1, hD) = 1, and

√
D > (12/π)d2(log |d| + M(k)), then the centralL-value

L(k + 1, χ2k+1
D,d ) > 0. Furthermore, for06 k 6 1 we can takeM(k) = 0.

Refinements and comments will also be given in Section 3. The Hecke charac-
ters considered here are arithmetic in nature; each such character has an associated
CM motive (see, for example, [Sha]). In particular, whenk = 0 andD = p is a
prime, the characterχp,d is very closely related to the elliptic curveA(p)d over a
number fieldF studied by Gross ([Gro]), using Shimura’s theory on CM Abelian
varieties ([Sh1-2]). He proved, in particular, by means of descent theory thatA(p)

has Mordell–Weil rank 0 overF . Combining a theorem of Rubin ([Ru, Corollary
2.2]) with the main theorem, one has

COROLLARY. Letp ≡ 7 mod 8be a prime, and letd ≡ 1 mod 4be a positive
squarefree integer not divisible byp such that

√
p > (12/π)d2 logd. Then the

elliptic curveA(p)d has Modell–Weil rank0 overQ(j). Herej = j (1+√−p/2)
is thej -invariant ofA(p).

1. Eigenfunctions of Weil Representations

In this section, we will explicitly construct eigenfunctions of the local Weil repres-
entation of the unitary group of one variable in terms of a Schrödinger model. They
are needed in the next section to derive an explicit formula for the central Hecke
L-valueL(k + 1, χ2k+1

D,d ) from the main formula in [Ya1]. We consider general
local fields instead of justQp, since it is not much harder. In the real case, the
eigenfunctions are essentially classical Hermite functions as we will see in Lemma
1.1. For thep-adic case (p 6= 2), eigenfunctions were explicitly constructed in
[Ya2] by means of a lattice model. So we only need to transfer the results to the
Schrödinger model. We will state the results in this section and give the proof,
which is quite technical and lengthy in the appendix.
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NONVANISHING OF CENTRAL HECKEL-VALUES 339

Let F be a local field and letE = F(δ) be a quadratic extension ofF . Assume
that δ̄ = −δ and1 = δ2 ∈ F . Let ψ be a fixed nontrivial character ofF and
let ψE = ψ ◦ trE/F . Givenα ∈ F ∗, and a characterχ of E∗ such thatχ |F ∗ = ε

is the quadratic character ofF ∗ associated toE/F , there is a well-defined Weil
representationωα,χ of G = U(1) = E1 on the spaceS(F ) of Schwartz functions
on F (also depending onδ andψ) ([Ku], see also the appendix). By the epsilon
dichotomy ([HKS, Corollary 8.5]), one has

S(F ) = ⊕C φη̄, (1.1)

where the sum runs over all charactersη of E1 satisfying

ε(1
2, χη̃,

1
2ψE)χη̃(δ) = ε(α) (1.2)

andφη is an eigenfunction of(G,ωα,χ )with eigencharacterη. Hereη̃(z) = η(z/z̄).
The task is to give an explicit formula forφη. First we consider the caseF = R.
Recall that every character ofC∗ is of the formχn(z) = (z/|z|)n, and that every
character ofC1 is of the formηl(z) = zl.

LEMMA 1.1 ([Ya1, Thm. 2.18]).LetF = R andψ(x) = e2πix . Assumeχη̃(z) =
(|z|/z)2m+1 and δ ∈ iR>0. Thenη̄ occurs inωα,χ if and only ifk = m sign(α) −
1− sign(α)/2 > 0. Whenk > 0, φk|δ|,|α|(x) = φk(

√|δ3α|x) is an eigenfunction of
ωα,χ with eigencharacter̄η. Here

φ0 = e−πx
2
, and φk(x) = 1

2k

(
x − 1

2π

d

dx

)k
φ0(x).

Moreover〈
φk|δ|,|α|, φ

k
|δ|,|α|

〉 = 1√
2|δ3α|

k!
(4π)k

.

Notice that there is a unique polynomialHk(x) of degreek (the kth Hermite
polynomial) such that

φk(x) = Hk(x)φ0(x). (1.3)

It is easy to check thatH0 = 1 andH1 = x. In general,Hk has the same parity as
k.

For the rest of this section, we assume thatF is ap-adic local field withp 6= 2
and thatδ is a uniformizer or a unit ofE depending on whetherE/F is ramified or
not. Letψ ′ = (αδ/4)ψE, and letn(ψ ′) be the conductor ofψ ′. Let

L =
{
πnEOE if n(ψ ′) = 2n,

πnδOF ⊕ πn−1OF if n(ψ ′) = 2n − 1.
(1.4)
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340 TONGHAI YANG

Then the Weil representation ofG has a lattice model realizationω on

S(L,ψ) = {φ ∈ S(E): φ(z + l) = ψ ′(zl̄)f (z) for all l ∈ L}. (1.5)

Decomposition ofS(L,ψ) is well-understood in [Ya2]. Define

ρ: S(L,ψ)→ S(F ), ρ(f )(x) =
∫
F/F∩L

f (xδ + y)ψ ′(−δxy)dy. (1.6)

Then there is a constantc > 0 such that〈ρ(f ), ρ(f )〉 = c〈f, f 〉, for any f ∈
S(L,ψ). Throughρ, ω gives a Weil representation ofG on S(F ). So there is a
unique characterξ of G such that such that

ωα,χ(g) ◦ ρ = ξ(g)ρ ◦ ω(g), g ∈ G. (1.7)

PROPOSITION 1.2.Write g = x + yδ ∈ G. LetG′ = {x + yδ ∈ G : y ∈ πO}
andGk = {g ∈ G : g ≡ 1 modπk}, whereπ is a uniformizer ofF .

(1) If E/F is ramified. Then

ξ(g) =
{
χ(δ(g − 1))(1,−y)F if g ∈ G1,

χ(δα)ε(1
2, εE/F , ψ) if g ∈ G−G1.

(1.8)

In particular, when the conductorn(χ) of χ is equal to1, one has

ξ =
{

trivial if ε(1
2, χ,

1
2ψE)χ(δ) = ε(α),

sign otherwise,
(1.9)

wheresign is the nontrivial character ofG/G1 = {±1}.
(2) If E/F is unramified andn(ψ ′) = n(ψ)− ordF (α) = 2n is even. Then

ξ(g) =
{
χ(δ(g − 1))(1,−y)F if g ∈ G1,

χ(δ(g − 1)) otherwise.
(1.10)

In particular, if χ is unramified, thenξ is trivial.
(3) If E/F is unramified andn(ψ ′) = n(ψ)− ordF (α) = 2n− 1 is odd. Then

ξ(g) =



χ(δ(g − 1))(1,−y)F if g ∈ G1,

χ(δ(g − 1))

(−1
F̄

)
if g ∈ G′ −G1,

χ(δ(g − 1))

(
21(x − 1)

F̄

)
if g ∈ G−G′.

(1.11)

In particular, if χ is unramified, thenξ = η0, whereη0(z/z̄) = η̃0(z) = (π, zz̄)F .
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NONVANISHING OF CENTRAL HECKEL-VALUES 341

(4) If n(χ) 6 1, thenξ is trivial onG1.

COROLLARY 1.3.Letφη′ ∈ S(L,ψ) be an eigenfunction ofω with eigencharac-
ter η′. Thenρ(φη′) is an eigenfunction ofωα,χ with eigencharacterξη′, whereξ is
given in Proposition1.2.

Applying this to [Ya2, Cor. 2.5], one gets

COROLLARY 1.4. (1) AssumeE/F is ramified and letn(ψ ′) = 2n. Then
char(π [n/2]OF ) is an eigenfunction of(G,ωα,χ) with eigencharacterξ , where[x]
denotes the largest integer less than or equal tox.

(2) Assume thatE/F is unramified and thatn(ψ ′) = 2n is even. Then
char(πnOF ) is an eigenfunction of(G,ωα,χ) with eigencharacterξ .

Given a characterη of G = E1 satisfying (1.2), we denoteη′ = ηξ−1.

PROPOSITION 1.5.Assume thatE/F is unramified and thatn(ψ ′) = 2n − 1 is
odd. Assume further thatn(η′) 6 1. Thenη occurs inωα,χ if and only ifη′ 6= η0.
Write ψ ′′ = (1α/2)π2n−2ψ and view it as a character of the residue fieldF̄ =
OF/π .

(1) If η′(−1) = (−1/F̄ ), let

φ′η(u) = char(πOF )(u)+ 1

2G(ψ ′′)
×

×
∑

A2−B2≡1 mod π

η′
(
A+ δ
B

)(
B

F̄

)
ψ ′′
(
1α

2
Au2

)
char(OF )(u).

Thenφη(u) = φ′η(π1−nu) is an eigenfunction of(G,ωα,χ ) with eigencharacterη.
HereG(ψ ′′) is the Gauss sum of the characterψ ′′ of F̄ .

(2) If η′(−1) = −(−1/F̄ ) andη′ 6= η0, let a ∈ O∗F , and

φ′η,a(u) = char(a + πOF )(u)− char(−a + πOF )(u)+

+ 1

G(ψ ′′)

∑
η′
(
A+ δ
B

)(
B

F̄

)
×

×ψ ′′(Au2− 2Bau + Aa2) char(OF )(u).

Here the sum runs over(A,B) ∈ F̄ 2 with A2− B2 ≡ 1 modπ . Thenφη,a(u) =
φ′η,a(π1−nu) 6= 0 is an eigenfunction of(G,ωα,χ) with eigencharacterη.

The following two propositions will not be needed in this paper. However, we
include them here without proof for completeness and for their own rights. For
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342 TONGHAI YANG

z ∈ E, we writez = R(z)+ I (z)δ with R(z) andI (z) ∈ F .

PROPOSITION 1.6.Assume thatn(ψ ′) = 2n is even. Thenη occurs inωα,χ if and
only if there isw ∈ π−k+nE O∗E such thatη′(g) = ψ ′(−ww̄g) for everyg ∈ Gk. In
such a case

φη(u) =
∑

g∈G/Gk
η′(g)ψ

(
1α

2
R(wg)I (wg)

)
ψ(−1αR(wg)u)×

×
{

char(I (wg)+ πnOF )(u) if E/F is unramified,

char(I (wg)+1[n/2]OF )(u) if E/F is ramified.

is an eigenfunction of(G,ωα,χ ) with eigencharacterη. In particular, Suppφη ⊂
π−k+nOF if E/F is unramified, andSuppφη ⊂ π [−k+n/2]OF if E/F is ramified.
HereSuppφ denotes the support of the functionφ.

PROPOSITION 1.7.Assume thatE/F is unramified,n(ψ ′) = 2n − 1 is odd, and
thatn(η′) > 1. Thenη occurs inωα,χ if and only ifn(η′) = 2k−1 is odd. In such a
case, there isw ∈ π−k+nO∗E − π−k+n(δOF + πOF ) such thatη′(g) = ψ ′(−ww̄g)
for g ∈ Gk. Moreover

φη,w(u) =
∑

g∈G′/Gk
(η′(g)λ(g))−1ψ

(
1α

2
I (wg−1)R(wg−1)

)
×

×ψ(−1αR(wg−1)u) char(I (wg−1)+ πnOF )(u)+
+ 1√

q

∑
g∈(G−G′)/Gk

(η′(g)λ(g))−1ψ(−1αR(w)I (w))×

×ψ
(
1α

2y
(xI (w)2− 2I (w)u+ xu2)

)
×

×char(I (wg−1)+ πn−1OF )(u)

is an eigenfunction of(G,ωα,χ) with eigencharacterη.

2. The Central L-value

LetD ≡ 7 mod 8 be a squarefree positive integer and letd ≡ 1 mod 4 be a square-
free integer relatively prime toD. Then there is unique decompositiond = d1d2

such thatdi are fundamental discriminants and that every prime divisor ofd1 (d2) is
split (inert) inE = Q(√−D). It is allowedd or di = 1. We viewE as a subfield of
C, and fixδ = √−D = i√D ∈ iR>0. LetχD,d be a Hecke character ofE defined
in the introduction. Then there is a decompositionχD,d = χD,1η̃ whereχD,1 is a
canonical character ofE and η̃ = ( d ) ◦ NE/Q ([Roh2-3]). Sinceη̃|Q∗A is trivial,

there is a characterη of E1\E1
A such thatη̃(z) = η(z/z̄). Let χ = χcan||1/2A , then
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NONVANISHING OF CENTRAL HECKEL-VALUES 343

χ |Q∗A = ε = 5εl is the quadratic Hecke character ofQ associated to the Dirichlet
character(−D). For every integerk > 0, let ηk = ηχk|E1

A
, then η̃k = χ2kη̃. We

assume that the global root number ofχ2k+1η̃ is ONE, i.e.,(−1)k = sign(d). Then
there is unique decomposition (up to order)D = D1D2 with Di > 0 and

ε(1
2, (χη̃k)l,

1
2ψEl )(χη̃k)l(δ) = εl

(
2d2

D2

)
= εl

(
2d1

D1

)
, (2.1)

for every primel 6∞ (see [RVY, Lem. 3.1]). HereψEl = ψl ◦ trEl/Ql andψl is a
‘canonical’ additive character ofQ l given by

ψl(x) =
{

e2πix if l∞,
e−2πiλ0(x) if l -∞,

whereλ0: Ql → Ql/Zl ↪→ Q/Z. For a primel|d2 with l ≡ 1mod 4, we define
φl ∈ S(Zl) ⊂ S(Q l) via

φl(u) = char(lZl)(u)+ 1

2G(ψ ′′)
×

×
∑

A2−B2≡−D mod l

(
B

l

)
ψ ′′l (Au2) char(Zl)(u). (2.2)

Hereψ ′′l = −(2D1/d2D2)ψl. For a primel|d2 with l ≡ −1 mod 4, we define
φl ∈ S(Zl) ⊂ S(Ql) via

φl(u) = char(1+ lZl)(u)− char(−1+ lZl)(u)+ 1

G(ψ ′′)
×

×
∑

A2−B2≡−D mod l

(
B

l

)
ψ ′′l (Au2− 2Bu+ A) char(Zl)(u). (2.3)

For an integera > 0, we also define a theta function

θd,k,a(z) = (Im z)−(k/2)
∑

(x,d1)=1

(
d1

x

)
×

×
∏
l|d2

φl

(
x

4d1D1a

)
Hk(x
√

Im z)eπix
2z. (2.4)

HereHk is kth Hermite polynomial defined by(1.3). Notice thatθd,k,a is very
simple and independent ofa whend2 = 1.

THEOREM 2.1.Let CL(E) be the ideal class group ofE, and lets = s(d) be the
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344 TONGHAI YANG

number of prime factors ofd. For every ideal classC ∈ CL(E), choose a primitive
idealA ∈ C−1 relatively prime to2d, and write

A2 =
[
a2,
−b +√−D

2

]
, a > 0,

withb ≡ r mod 8d2
1, b ≡ 0 modD1d2,wherer is a fixed square root of−Dmod 16d2

1 .
Then

L(k + 1, χ2k+1
D,d ) = κ

∣∣∣∣∣∣
∑

C∈CL(E)

( d1
a
)

(χD,d)2k+1(Ā)
θd,k,a(τA,D1)

∣∣∣∣∣∣
2

. (2.5)

Here

κ = 2(1/2)−sπk+1
∏
l|d2
(1+ l−1)

k!√D∏l|d2
〈φl, φl〉

( √
D2

d2
1d2
√
D1

)2k+1/2

and

τA,D1 =
b +√−D
4d2

1d2D1a2
∈ E.

Proof (sketch). The proof is similar to that of [RVY, Thm. 3.2] and is based on
the main formula in [Ya1]. Applying [Ya1, Thm. 2.15] to the datum(χ, ηk, δ, ψ,
α = 4/d2D2), one has

L(k + 1, χ2k+1
D,d )

L(1, (−D))
= L(1

2, χη̃k)

L(1, (−D ))
= c|θφ(ηk)(1)|2.

Herec is an explicit constant,φ = 5φl ∈ S(QA) is a Schwartz function onQA
given below, andθφ(ηk)(1) is an integral overE1\E1

A given by theta lifting from
unitary group of one variable to itself. Whenl is split,φl is given by [Ya1, (2.29)–
(2.30)]. Whenl = ∞, φl = φk is given by Lemma 1.1. Whenl is finite and nonsplit
(so l 6= 2), φl is given by Corollary 1.4 and Proposition 1.5. More precisely, when
l|D, φl = (1/

√
l) charl−1Zl, and whenl|d2, φl is given by (2.2) or (2.3). Finally,

if l - d2∞ is inert inE, φl = char(Zl). In [RVY, Sect. 1], we gave a method to
computeθφ(ηk)(1) in terms ofφ ([RVY, Cor. 1.4 and Prop. 1.7]). Applying the
method to this situation, we obtain the desired formula (after some computation).
The cased2 = 1 was computed in [RVY].

Combining this with a theorem of Shimura and a trick of Rohrlich (see [Roh2]
for detail), one has

THEOREM 2.2 (Notation as in Theorem 2.1).Assume that(2k+1, hD) = 1. Then
the following are equivalent.

(1) The centralL-valueL(k + 1, (χD,d)2k+1) = 0.
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NONVANISHING OF CENTRAL HECKEL-VALUES 345

(2) For every ideal classC ∈ CL(E), and a (and any) primitive idealA ∈ C−1,
relatively prime to2d, τA,1 is a root of the theta functionθd,k,a, a = NA.

(3) The global theta liftingθα(ηk) (with respect to(α = 2/d2D2, χ,ψ, δ)) van-
ishes.

We remark thatτA,1 does not depend on the decompositionD = D1D2 associ-
ated to formula(2.1). This is because if the centralL-value for one choice of the
canonical Hecke character vanishes, it will vanish for any choice of the canonical
Hecke character by a theorem of Rohrlich ([Roh2]).

3. The Proof of the Main Theorem

First we notice that the functionsφl defined via(2.2) and(2.3) can be viewed as
functions onFl. Indeed, one has

φl(u) = δ0,u + 1

2G(ψ ′′)

∑
A2−B2=−D

(
B

l

)
ψ ′′(Au2)

= δ0,u + 1

2G(1
2ψ
′′)

∑
x∈F∗l

(
x + D

x

l

)
ψ ′′

(
1

2

(
x − D

x

)
u2

)
, (3.1)

for l ≡ 1 mod 4, and

φl(u) = δ1,u − δ−1,u + 1

G(ψ ′′)

∑
A2−B2=−D

(
B

l

)
ψ ′′(Au2− 2Bu+ A)

= δ1,u − δ−1,u + 1

G(1
2ψ
′′)

∑
x∈F∗l

(
x + D

x

l

)
×

×ψ ′′
(

1

2

(
x(u− 1)2 − D(u+ 1)2

x

))
, (3.2)

for l ≡ −1 mod 4. Hereu ∈ Fl andδa,u is the Kronecker symbol. Also the equality
A2−B2 = −D is inFl. Recallψ ′′ = −(2/d2D)ψl (we takeD1 = 1 by the remark
in the end of Section 2).

LEMMA 3.1. Assumel ≡ 1 mod 4and writel = a2 + b2 with b being a positive
even integer. Thenφl(0) = 1± b/√l. For u ∈ F∗l , one hasφl(u) 6= 0.

Proof. By (3.1), one has

φl(0) = 1± 1

2
√
l

∑
x∈F∗l

(
x3 +Dx

l

)
.
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346 TONGHAI YANG

LetAD be the elliptic curve defined byy2 = x3 +Dx. Then

#AD(Fl) = l + 1+
∑
x∈F∗l

(
x3+Dx

l

)
.

On the other hand, it is well known ([Sil, page 185]) that

#AD(Fl) =
{
l + 1± 2a if (−D/l) = 1,

l + 1± 2b if (−D/l) = −1.

Thereforeφl(0) = 1 ± b/√l in our case. Foru ∈ F∗l , ψ ′′((x − D/x)u2) ≡
1 mod(1− ζl). So

±2G(ψ ′′)φl(u) ≡
∑
x∈F∗l

(
x + D

x

l

)
≡ ±2b 6≡ 0 mod(1− ζl).

In particular,φl(0) 6= 0.

LEMMA 3.2. Assumel ≡ −1 mod 4. Thenφl(0) = 0 andφl(u) 6= 0 for every
u ∈ F∗l . Moreover, there is a mapj : F∗l → C∗ such that

j (ab) = j (a)j (b)σa2 , (3.3)

and

φl(u) = j (a)φl
(u
a

)σ
a2
, (3.4)

for everya, u ∈ F∗l . Hereσa ∈ Gal(Q(ζl)/Q) is given viaζ σal = ζ al .
Proof. Obviously

φl(0) = 1

G(ψ ′′)

∑
A2−B2=−D

(
B

l

)
ψ ′′(A) = 0,

since(−1/ l) = −1. For everya ∈ F∗l , define

φl,a(u) = δa,u − δ−a,u + 1

G(ψ ′′)

∑
A2−B2=−D

(
B

l

)
ψ ′′(Au2− 2Bau+ Aa2), (3.5)

for u ∈ Fl. One hasφl,1 = φl. One can viewφl,a ∈ S(Zl) ⊂ S(Ql) via φl,a(u) =
φl,a(u mod l) for u ∈ Zl. By Proposition 1.7, φl,a 6= 0 is also an eigenfunc-
tion of ωα,χ,l with eigencharacter(ηk)l, whereα = 4/d2D2 is as in the proof of
Theorem 2.1. By the multiplicity one theorem, there is a unique nonzero complex
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numberj (a) such thatφl(u) = j (a)φl,a(u), for everyu ∈ Fl. On the other hand,
one hasφl,a(u) = φl(u/a)

σ
a2 . This proves (3.4). It follows easily from (3.4) that

φl(u) 6= 0 for everyu ∈ F∗l . Applying (3.4) twice, one gets(3.3) (sinceφl(u) 6= 0).
The following lemma can be checked by standard method in exponential sums

(see [Li, Chap. 6] for example) and is left to the reader.

LEMMA 3.3. Letai ∈ Fp, i = 1,2,3, anda1 ∈ F∗p. Letψ be a nontrivial additive
character ofFp. Then∣∣∣∣∣∣

∑
x∈F∗p

(
x + a1/x

l

)
ψ(a2x + a3/x)

∣∣∣∣∣∣ < b√p. (3.6)

Here

b =


4 if a2a3 6= 0,

2 if a2 = a3 = 0,

3 otherwise.

Now we proceed to prove the main theorem in the introduction. We divide it
into two theorems.

THEOREM 3.4.Assume thatD ≡ 7 mod 8and d ≡ 1 mod 4are two positive
squarefree integers such that every positive factor ofd is inert inED and is congru-
ent to1modulo4. Letk > 0be an even integer, and lethD be the ideal class number
of ED = Q(

√−D). Then there exists a constantM = M(k), independent of the
pair (D, d), such that if(hD,2k + 1) = 1, and

√
D > (12/π)d(logd +M(k)),

then the centralL-valueL(k + 1, χ2k+1
D,d ) > 0. One can takeM(0) = 0.

Proof. By Theorem 2.2 and the assumption, it suffices to show thatτ = b +√−D/4d is not a root of the theta function

θd,k,1(z) = (Im z)−(k/2)
∑
x∈Z

φ(x)Hk(x
√

Im z)eπix
2z.

Here we denoteφ(x) = ∏l|d φl(x/4). By Lemma 3.3, one has

|φ(x)| 6
∏
l|d

26
√
d. (3.7)

By Lemma 3.1, one has

|φ(0)| >
∏
l|d

1

2l
> d−(3/2). (3.8)
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Setc = e−(π
√
D/4d)d3 and assumec < 1. SinceHk is a polynomial ofx of degree

k, there is a constantC1 = C1(k) > 0 such that|Hk(x)| > C1|x|k for |x| > π−1.

So

|Hk(n
√

Im τ )| > C1n
kπ−(k/2)(− logc + 3 logd)k/2, (3.9)

when c 6 1/e and n is a positive integer. SetC2 = |Hk(0)| > 0 (k is even).
Combining (3.7)–(3.9), one has

(Im τ)(k/2)|θd,k,1(τ )|

> C2d
−(3/2) − 2C1π

−(k/2)d1/2(− logc + 3 logd)k/2
∞∑
n=1

nkd−3n2
cn

2

> d−(3/2)f (c),

where

f (x) = C2− 2C1π
−(k/2)x(C3− logx)k/2

∞∑
n=1

nkxn
2−1,

andC3 > 1 is chosen such that 3 logx < x2/k for x > C3. Here we have used the
inequality

− logc + 3 logd

d2/k
< C3− logc.

Notice thatf (x) is independent ofD or d. Sincef (0) = C2 > 0, there is a
constant 0< C4 < 1/e such thatf (x) > 0 for 0 < x < C4. Therefore, when
c < C4, i.e.,

√
D > (12/π)d(logd − 1

3 logC4), one hasθd,k,1(τ ) 6= 0, and so
L(k + 1, χ2k+1

D,d ) > 0. TakingM(k) = −1
3 logC4, we have proved the general

statement of the theorem. Whenk = 0, Hk = 1, similar but simpler argument
gives

|θd,0,1(τ )| > d−(3/2) − 2d1/2
∞∑
n=1

cn
2

> d−(3/2)
(

1− 2d2 c

1− c
)
,

for c = e−(π
√
D/4d) < 1 (different from thec used above). So forc < 1/d3 <

1/2d2 + 1 (we may assumed > 1, the cased = 1 is trivial) or, equivalently,√
D > (12/π)d logd, one has

θd,0,1(τ ) 6= 0.
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So we can takeM(0) = 0. This proves the theorem

THEOREM 3.5.LetD ≡ 7 mod 8be a positive squarefree integer, and letd ≡
1 mod 4be a squarefree integer not satisfying the special condition in Theorem3.4.
Let k > 0 be an integer. Then there is a constantM(k), independent of the
pair (D, d), such that ifsign(d) = (−1)k, (2k + 1, hD) = 1, and

√
D >

(4/π)d2(log |d| + M(k)), then the centralL-valueL(k + 1, χ2k+1
D,d ) > 0. One

can takeM(k) = 0 for k 6 1.
Proof. Whend does not satisfy the special condition in Theorem 3.4, the theta

function θd,k,1 does not have a constant term. As in Section 2, we writed = d1d2

such that every prime factor ofd1 is split inED and every prime factor ofd2 is inert
in ED. As before, it is sufficient to prove thatτ = b + √−D/4d2

1d2 is not a root
of the theta functionθd,k,1 given by(2.4) with D1 = 1. Setφ(x) = 5l|dφl(x/4d1).
By Lemma 3.3, one has|φl(x)| 6 4 and so

|φ(x)| 6 4|d2| (3.10)

(4 < l except forl = 3). Notice that
√
lφl(x) is an algebraic integer in thelth

cyclotomic fieldQ(ζl). It is not difficult to see from this fact and Lemmas 3.2 and
3.3 that

|√lφl(x)| >
∏

16=σ∈Gal(Q(ζl)/Q)

|(√lφl(x))σ |−1 > (4
√
l)1−l ,

for x ∈ Z∗p. So

|φ(x)| > 4|d2|−(3/2)|d2|, (3.11)

for x ∈ Z∗p. Setc = e−(π
√
D/4d2)|d|. As in the proof of Theorem 3.4, there is a

constantC1 = C1(k), independent of(D, d), such that

|Hk(n
√

Im τ)| 6 C1n
kπ−(k/2)|d2|k/2(− logc + log |d|)k/2, (3.12)

whenn is a positive integer and 0< c < 1. On the other hand, sinceHk has only
finite many roots, there are positive constantsC2 andC3 < 1 such that

|Hk(x)| > C2 for |x| >
√
− 1

π
logC3.

So

|Hk(
√

Im τ)| > C2 for c 6 C3. (3.13)
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Combining (3.10)–(3.13), one has then

(Im τ)k/2

2
|θd,k,1(τ )|

> 4C2|d2|−(3/2)|d2|c − 4C1π
−(k/2)|d2|k/2+1×

× (− logc + log |d|)k/2
∞∑
n=2

nk|d|−n2|d2|c|d2|n2

> 4|d2|−(3/2)|d2|cf1(c, d)),

where

f1(c, d) = C2− π−(k/2)C1
|d2|k/2+1

|d|(5/2)|d2|−1

(− logc + log |d|
|d|2/k

)k/2 ∞∑
n=2

nkcn
2−1.

ChooseC4 > 1 so that logx < x2/k for x > C4. Then

− logc + log |d|
|d|2/k > C4− logc.

Notice that|d2|k/2+1/|d|(5/2)|d2|−1 is bounded above as a function ofd. So there is
a constantC5 = C5(k), independent of the pair(D, d), such thatf1(c, d) > f (c)
where

f (x) = C2− C5x
3(C4− logx)k/2

∞∑
n=2

nkxn
2−4.

Now the same argument as in the proof of Theorem 3.4 gives the general statement
of this theorem. Similar argument to the last part in the proof of Theorem 3.4
(together with slightly better lower bound for|φl(x)|) shows that one can take
M(k) = 0 for k 6 1. We leave the detail to the reader.

Remark3.6. Whenk = 0, the main theorem claims that for all the pairs(
√
D, d)

in the region above
√
D > (12/π)d2 logd with D ≡ 7 mod 8 andd ≡ 1 mod 4

squarefree, the centralL-valueL(1, χD,d) > 0. This is strong considering the
general belief that whether anL-function vanishes at its center is tricky and hard
to tell.

When every prime factor ofd is split inED one can drop logd from the condi-
tion ([RVY, Thm. ]), and when every factor ofD is congruent to 1 modulo 4 and
is inert inED one can replaced2 by d (Theorem 3.4). A natural question is what,
if any, is the ultimate inequality to guarantee the nonvanishing ofL(1, χD,d). Can
that be

√
D > M logd for some constantM?
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Remark3.7. Recall thatχD,d = χD,1η̃d whereη̃d = ( d ) ◦ NED/Q, andχD,1 is
a canonical Hecke character ofED. AlthoughχD,d can be viewed as a quadratic
twist of χD,1, it might be better to view it as a ‘quadratic’ twist of( d ) by the
imaginary quadratic fieldED (see [Lie] and [RVY] for similar ideas). The result
of Montgomery and Rohrlich ([MR]) mentioned in the introduction is then that
the centralL-value of a ‘quadratic’ twistχD,1 of the trivial character byED does
not vanish unless it is forced to by its functional equation. Is the same true for
other ‘small’d? The following proposition gives a partial affirmative answer to the
question ford = 5 (we don’t consider the case whenD is even).

PROPOSITION 3.8.LetD ≡ 7 mod 8be a squarefree positive integer relative
prime to5. Then the centralL-valueL(1, χD,5) 6= 0.

Proof. First we assume that(D/5) = 1, i.e.,D ≡ ±1 mod 5. By Theorem 2.2
it is sufficient to prove thatτ = b +√−D/200 is not a root of

θd(z) =
∑
(x,5)=1

(
5

x

)
e2πx2z.

Hereb is some integer. Setc = e−π
√
D/100. SinceD ≡ 7 mod 8 andD ≡ ±1 mod 5,

one hasD > 31. This impliesc < 0.84, which is enough to guarantee

1
2|θ(τ)| > c −

∑
n>1

cn
2
> c − c4− c9

∞∑
n=0

c7n > 0.

SoL(1, χD,5) 6= 0 in this case. Now we turn to the case(D/5) = −1, i.e.,D ≡
a mod 5 witha = ±2. one can show by(3.1) that

φ5(u) =


1+ a√

5
if u ≡ 0 mod 5,

− a√
5

cos
π√
5

if u 6≡ 0 mod 5.
(3.14)

By Theorem 2.2, it is sufficient to prove thatτ = b + √−D/20 is not a root of
the theta functionθ5,0,1(z) =∑x∈Z φ5(x/4)eπix

2z. Hereb is any integer satisfying
b ≡ 0 mod 5 andb2 ≡ −D mod 16.

Setc = e−(π
√
D/20) 6 e−(π

√
7/20) < 0.66, andb′ = b/5 ∈ Z. Write Imz for

the imaginary part of the complex numberz. By (3.14),φ5(x) depends only on
whetherx ≡ 0 mod 5, and|φ5(0)| < 3|φ5(1)|. So

Im(θ5,0,1(τ ))

= 2φ5(1)
∑

(n,5)=1,n>0

Im(eπin
2b′/4)cn

2 + 2φ5(0)
∑

5|n,n>0

Im(eπin
2b′/4)cn

2
.
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Notice that Im(eπin
2b′/4) = 0 or±√2/2 depending on whether 2 dividesn or not.

Therefore(c > 0.66)

1√
2|φ5(1)|

| Im(θ5,0,1(τ ))| > c − 3
∞∑
n=3

cn
2
> c − 3c9

∞∑
n=0

c7n > 0.

In particular,θ5,0,1(τ ) 6= 0, and thusL(1, χD,5) 6= 0.

Appendix. Proof of Propositions 1.2 and 1.5

Let the notation be as in Section 1. We first recall some basic facts on the Weil
representationωα,χ of G = U(1) onS(F ). First, there is an embedding

ıα: G→ Sp(1) = SL2(F ), g = x + yδ 7→
 x 12αy

y

1α
x

 . (A1)

Let rS be Rao’s standard section of Sp(1) on S(F ) and letc be the corresponding
standard 2-cocycle ([Rao]). For

gi =
(
ai bi

ci di

)
∈ Sp(1),

with g1g2 = g3, one has ([Rao, Cor. 4.3])

c(g1, g2) =
{

1 if c1c2c3 = 0,

γF (
1
2c1c2c3ψ) otherwise.

(A2)

HereγF is the local Weil index ([Wei], [Rao, App.]). Forg = x + yδ ∈ G, define

µ(g) = χ(δ(g − 1))γF (αy(1− x)ψ)(1,−2y(1− x))F . (A3)

Thenωα,χ(g) = µ(g)rS(ıα(g)) defines a Weil representation ofG ([Ku, Prop. 4.8]).
Finally, whenn(ψ ′) = 2n− 1 is odd, let ([Ya2, Thm. 3.5])

λ(g) =


(
x

F̄

)
if g ∈ G′,

γF

(
1αy

2
ψ

)
if g /∈ G′.

(A4)

Thenω(g) = λ(g)−1rL(g) is a Weil representation ofG on S(L,ψ), whererL is
the action ofG onS(L,ψ) defined via [Ya2, (3.2)]. Whenn(ψ ′) = 2n is even, the
Weil representationω of G onS(L,ψ) is just the right translation.

LEMMA A1.

(a) If E/F is ramified, thenξ(g) = µ(g)c(ıα(g),w).
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(b) If E/F is unramified andn(ψ ′) is even, then

ξ(g) =
{
µ(g)c(ıα(g),w) if g ∈ G′,
µ(g) if g /∈ G′.

(c) If E/F is unramified andn(ψ ′) is odd, then

ξ(g) =
{
λ(g)µ(g)c(ıα(g),w) if g ∈ G′,
λ(g)µ(g) if g /∈ G′.

Proof. We only prove Claim (c). The proof of Claims (a) and (b) is similar
(simpler) and is left to the reader. First noteL ∩ F = πn−1OF . Let f0 be the char-
acteristic function ofL. An easy calculation shows thatρ(f0) is the characteristic
function ofπnOF .

Assume first thatg = x + yδ ∈ G′. Theny ∈ πOF andx ∈ O∗F . Let

w =
(

0 −1

1 0

)
and write

ıα(g)w =
(
x−1 12xy

0 x

)
w

 1 − y

1αx

0 1

 = AwB, (A5)

whereA andB have the obvious meanings. Set

f1(u) = rS(w)ρ(f0)(u) =
∫
πnOF

ψ(−uv)dv,

where dv is the self-dual Haar measure onF with respect toψ . Straightforward
calculation using [Rao, Thm. 3.6] givesrS(AwB)f1(u) = ρ(f0)(u). Therefore

ωα,χ(g)ρ(f0)(u) = µ(g)c(ıα(g),w)rS(ıα(g)w)f1(u)

= µ(g)c(ıα(g),w)rS(AwB)f1(u)

= µ(g)c(ıα(g),w)ρ(f0)(u)

= µ(g)c(ıα(g),w)λ(g)
−1ρ(ω(g)f0)(u).

Combining this with(1.7), one hasξ(g) = λ(g)µ(g)c(ıα(g),w).
Next, assume thatg = x + yδ /∈ G′, soy ∈ O∗F . In this case

ıα(g) =


1α

y
x

0
y

1α

w
 1

1αx

y

0 1

 . (A6)
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Direct calculation using [Rao, Thm. 3.6] and (A6) gives

ωα,χ(g)ρ(f0)(u) = µ(g)√
q
ψ

(
1αx

2y
u2

)
char(πn−1OF ). (A7)

On the other hand, By [Ya2, Lem. 3.2 and Thm. 3.5], one has

ω(g)f0(z) =


0 if z /∈ Ln−1,

λ−1(g)√
q
ψ ′(δuv)ψ ′(δu2xy−1) if z = uδ + v ∈ Ln−1.

So one has by (1.6)

ρ(ω(g)f0)(u) = 1

λ(g)
√
q
ψ

(
1αx

2y
u2

)
char(πn−1OF )(u). (A8)

Combining (1.7) with (A7) and (A8), one hasξ(g) = λ(g)µ(g). Claim (c) is
proved.

Proof of Proposition1.2. First, we assumeg ∈ G1, so x ≡ 1 modπ , y ≡
0 modπ , andx − 1= 1y2/(x + 1). So

ξ(g) = χ(δ(g − 1))γF (−2αxy1ψ)γF (2αxy1ψ)(1,1y)

= χ(δ(g − 1))(1,−y).
In particular, ifn(χ) 6 1, theng − 1= δy(1+ δy/x + 1). So

χ(δ(g − 1)) = χ(1y) = (1,1y) = (1,−y).

Thereforeξ(g) = 1. This proves (4) and the first part of the first three claims.
Next, we assumeg ∈ G′ − G1, i.e., g ≡ −1 modπE or, equivalently,x ≡

−1 modπ , y ≡ 0 modπ . In such a case, one has

µ(g)c(ıα(g),w) = χ(δ(g − 1))γF (2αyψ)γ (−2αy1ψ)(1,−y)F . (A9)

WhenE/F is ramified, we may assumeπ = 1. One has by (A9) and Lemma A1

ξ(g) = χ(δ(g − 1))γF (−1ψ)γF (ψ)(1,−2α).

Given a characterψ of F of conductorn, one defines a character

ψ̄ : OF /πOF → C∗, x modπOF 7→ ψ(πn−1x).
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Write G(ψ̄) for the Gauss sum of̄ψ . If n is odd, thenn(1ψ) is even. By [Rao,
A11, A2] one has

γF (−1ψ)γF (ψ) = (ε(−1))1−n
G(ψ̄)

|G(ψ̄)| = ε(
1
2, εE/F , ψ).

This proves (1.8). Whenn(χ) 6 1,χ(δ(g − 1)) = χ(−2δ), and so

ξ(g) = χ(δα)ε(1
2, εE/F , ψ).

Applying [Roh1, Props 3 and 8], one has (1.9). The unramified case is similar and
is left to the reader.

Finally, we assume thatg ∈ G − G′. Sox ± 1 ∈ O∗F andy ∈ O∗F . AlsoE/F
must be unramified in this case by [Ya2, Lem. 1.1].

If n(ψ ′) = n(αψ) is even, then one has by [Rao, App.]

ξ(g) = µ(g) = χ(δ(g − 1))γF (y(1− x)αψ)(1,−2y(1− x))F
= χ(δ(g − 1)).

If n(ψ ′) = n(αψ) is odd, then one has by [Rao, App.]

ξ(g) = χ(δ(g − 1))γF (y(1− x)αψ)γF (2y1αψ)(1,−2y(1− x))F
= χ(δ(g − 1))γF̄ (y(1− x)αψ)γF̄ (2y1αψ)

= χ(δ(g − 1))

(
21(x − 1)

F̄

)
.

This completes the proof of Proposition 1.2.

Proof of Proposition1.5. Forz ∈ E, we write z = R(z) + I (z)δ with R(z)
andI (z) ∈ F . Givenw ∈ E, let fw be the unique function inS(L,ψ) such that
Supp(fw) = w + L andfw(w) = 1. Integrating (1.6) forfw, one has

ρ(fw)(u) = ψ

(
1α

2
R(w)I (w)

)
ψ(−1αR(w)u)×

×
{

char(I (w)+ πnOF )(u) if E/F is unramified,

char(I (w)+1[n/2]OF )(u) if E/F is ramified.
(A10)

By [Ya2, Thm. 0.4] and Corollary 1.3

ρ(φ′) = ρ(fw)+ η′(−1)

(−1

F̄

)
ρ(f−w)+

+
∑

g∈G/G′,g 6=1

η(g)−1ωα,χ(g)ρ

(
fw + η′(−1)

(−1

F̄

)
f−w

)
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is an eigenfunction of(G,ωα,χ) with eigencharacterη if it is nonzero, wherew ∈
Ln−1. Wheng = x + yδ ∈ G−G′, one has by (A6), (A11), and [Rao, Thm. 3.6]

ωα,χ(g)ρ(fw)(u)

= µ(g)ψ(−1α
2 R(w)I (w))√
q

ψ

(
1α

2y
(xI (w)2 − 2I (w)u+ xu2)

)
×

× char(πn−1OF )(u).

Putting things together, and applying Lemma A1, one has proved that

φη,w(u)

= η′(−1)

(−1

F̄

)
ψ(1αR(w)u)char(−I (w)+ πnOF )(u)+

+ψ(−1αR(w)u) char(I (w)+ πnOF )(u)+ ψ(−1αR(w)I (w))√
q

×

×
∑

g∈G/G′,g 6=1

(η′(g)λ(g))−1

{
ψ

(
1α

2y
(xu2 − 2I (w)u+ xI (w)2)

)
+

+ η′(−1)

(−1

F̄

)
ψ×

×
(
1α

2y
(xu2 + 2I (w)u+ xI (w)2)

)}
×

× char(πn−1OF )(u)

is an eigenfunction of(G,ωα,χ) with eigencharacterη if it is nonzero.
Whenη′(−1) = (−1/F̄ ), setw = 0, and applying [Ya2, Thm. 3.5] forλ, one

gets

1
2φη,0(u) = char(πnOF )(u)+ 1

2G(ψ ′′)
×

×
∑

g∈G/G1,g 6=±1

η′(g)−1

(
I (g)

F̄

)
ψ

(
1αR(g)

2I (g)
u2

)
×

× char(πn−1OF )(u).
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It is not difficult to see thata 7→ g(a) = δ+ a/δ− a gives a bijection between the
projective lineP 1(F̄ ) andG/G1. SetA = R(g)/I (g), andB = 1/I (g). Then for
g = g(a)

A = 1

2

(
a + 1

a

)
and B = 1

2

(
−a + 1

a

)
.

It is easy to check thata 7→ (A,B) is a bijection between̄F ∗ and(A,B) ∈ F̄ 2

with A2− B2 = 1. Therefore

1
2φη,0(u) = char(πnOF )(u)+ 1

2G(ψ ′′)
×

×
∑

A2−B2≡1 mod π

η′
(
A+ δ
B

)(
B

F̄

)
ψ

(
1α

2
Au2

)
×

× char(πn−1OF )(u)

= φ′η(π
1−nu) = φη(u)

is the function sought in Proposition 1.5(1). It remains to prove that it is nonzero.
But

φη(0) = 1+ 1

2G(ψ ′′)

∑
A2−B2≡1 mod π

η′
(
A+ δ
B

)(
B

F̄

)
6= 0,

sinceG(ψ ′′) /∈ Q(e2πi/q+1) and the sum is inQ(e2πi/q+1). This proves (1).
When η′(−1) = −(−1/F̄ ), andη′ 6= η0, φη,w = 0 for everyw ∈ L. So

there isw = πn−1a ∈ Ln−1 − L with a ∈ O∗F such thatφη,w 6= 0. A simple
manipulation shows thatφη,w(u) = φ′η,a(πn−1u) is the function sought in Propos-
ition 1.5(2). It remains to prove thatφ′η,a 6= 0 for everya ∈ O∗F . We can identify
Gal(Q(ζq, ζq+1)/Q(ζq+1)) with F̄ ∗ via b 7→ σb. Hereζ σbq = ζ bq for anth primitive
root ζq of 1. It is easy to check thatφ′η,a can be viewed as a function on̄F with
values inQ(ζq, ζq+1), and that

φ′η,a(u) = φη,1(u/a)σa2 . (A11)

So oneφ′η,a 6= 0 implies everyφ′η,a 6= 0. This proves Claim(2).
Proposition 1.6 follows easily from Corollary 1.3 and [Ya2, Thm. 1.1]. The

proof of Proposition 1.7 is similar to that of Proposition 1.5.
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