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NOMENCLATURE

English Letters

a Special case of v.

A,B,C,D Constants of integration in the general solutlion of the dif-
ferential equation of deflection of a beam on an elastic founda-
tion,

8 3 Constants associated with generalized Hooke's law using proper-

tles based on complete cord tension or compression.
Dg,fn,ﬁ Effective plate stiffnesses in bending.

EE’FH’E Elastic constants resulting from inversion of Hooke's law when
shear strain is zero.

Eg,En;F Elastic constgnts for orthotropic laminates with cords completely
in tension or compression when shear strain is zero.

h Ply thickness of each lamination in an orthotropic laminate.

k Negative inverse of the radius of curvature.
ks Stiffness constant for an elastic foundation.,

m Bending moments per unit length applied to a specimen,

M Total bending moment exerted on a specimen,

n Half the total number of plies in é laminate,

N Axial load per unit of circumference.

P Total distributed load acting on the inside of a tubular specimen.
Py Internal pressure in the tubular cylinders.

P Radial load per unit of circumference.

Q Shear force exerted in the direction of the thickness of the

wall of a tubular specimen.
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NOMENCLATURE (Concluded)

Roots of the characteristic equation given by a beam on an
elastic foundation,

Plate thickness of an orthotropic laminate,
Displacement in the { direction.

Orthogonal coordinates aligned along and normal to the cord
direction,

Greek Letters

a

B,V

£,m,8

One-half the included angle between cords in adjoining plies
in a two-ply laminate,

Real and imaginary parts of the roots of the characteristic
equation.

Strain.

Circumferential angle included between two different radii of
the cylindrical specimens,

A constant, \ = 3kf/hﬁ§ .

Orthogonal coordinates aligned along and normal to the ortho-
tropic axes of an orthotropic laminate.

Stress.



FOREWORD

The properties of orthotropic laminates subjected to local bending
stresses about symmetric axes have}not yet been discussed in this series
of reports. It is necessary to consider bending so that a quantitative
measure of bending stiffness for this type of structure may be cbtained,
This result should be useful in formulating a.strain—energy function for
a toroidal shell and also for understanding the basic reaction of a cord-
rubber laminate to bending stresses, This report is an attempt to apply

the theory proposed in Ref. 1 to the bending problem,






SUMMARY

The classical theory of pure bending is used in conjunction with the
generglized Hooke's law to develop an expression for the stiffness of lami-
nated, orthotropic cord-rubber sheets which are subjected to bending de-
formationsvabout symmetric axes of the structure. This stiffness may be
predicted for a laminated structure with any number of plies and any angle
between the cords of alternate plies if the four basic elastic moduli of a
single ply are known.

Tests were run to determine the validity of the expressions predicting
stiffness. The agreementﬁbetween experiment and theory was good. The
stiffnesé was found to be dependent on all four elastic cqnstants, with the

effects of extensional moduli and cross modulus particularly large.






ANALYSTIS OF BENDING STIFFNESS

An . h‘ﬂ B e

Neutral
Axis

Fig. 1. Schematic view of a small section of a two-ply laminate.

Consider a two-ply laminate, as shown in Fig. 1, in which the cords are
either completely in tension or completely in compression. The angles O are
between £, a symmetric axis of the laminate, and the cord direction in an
individual ply, +0 for the cords of one ply and -0 for the cords of the other,
h is the thickness of a ply and { is ‘an orthogonal coordinate in the direc-
tion of the laminate's thickness‘

Assuming the cords all to have the same stiffness, say due to being
preloaded into tension, let bending be about eithef of the symmetric axes

£ or n so that twist vanishes. From Ref. 1, the elastic law relating stress



and strain for each ply of Fig. 1 is:

& = allog + alEUn + alsdgn

1.
N

en = aglcg + aggdn + azsdgn _(4
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This is recognized as the generalized Hooke's Law, Due to the assumed sym-
metry of the deformation when bent about the £ or n axis, the shear strain
egn‘due to twist must vanish. Hence, when o and oy are applied, Eg. (1) be-

comes:

€ = 8110 * 8120y + alsﬁén
- &g = 8210 + 8220y + aésdén (2)
0 =

'
asldg + 8.320'71 + 8.330'&71

where ¢, 1is the shearing stress necessary for strain compatibility between

En
the plies, cén acts on each ply and does not contribute directly to the

bending moment about the neutral axis. The last of Egs. (2) may be solved

for o, , and this value may be inserted into the first two of Egs. (2), giv-
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It might be noted here that the moduli Eg,

1|
]

ﬂ’ T are dependent on the

Young's moduli E and En and also on the cross modulus an. By substitution
of Egs. (15) from Ref. 1 into Eg. (3) of this report, these relationships are

found to be:
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It is thus possible to predict Eg, ﬂ’ and T knowing the elastic properties

B B

ny, and ny of a single sheet of orthotropic material.
In formulating a stiffness constant, the assumptions of pure bending of

thin plates will be used; that is, 1t will be assumed that planés remain plane



and perpendicular to the axes n and & and that displacements and displace-
ment gradients are small., On the basis of these assumptions, the strain-

displacement relations for a plate are

eg = -géflr = = Ckg
d3t®
(6)
82
& = -ggﬁg = —Ckn.
Equations (4) may now be rewritten
o, = - t(E.k, +TFk)
€ E7E N
(7)
OT] = - C(—Enkn +'Fk§).

With reference to Fig. 1, the moments per unit length me and my may be
formed by multiplying the appropriate stresses by the lever arm, td¢, and in-
tegrating from (+nh) to (-nh) where 2n is the total number of plies and h is
the thickness of each ply. This is a generalization to 2n plies with al-
ternating angles of +0 or -0, Previously only a two-ply structure was con=-
sidered. It is Jjustified by fhe fact that the stress distribution in any ply

is given by Eq. (2), within the confines of the assumptions in force here,

Thus,
+nh 3
n = fnh stat = - (T, +'Fkn)2(§h)
(8)
+nh = _ 3
m = [nh optdt = - (Enkn+Fk§)2(;lh) .



These may be written

] ! (9)
mTl = - Dﬂkﬂ - Dké
where
T - Eg‘%(nh)s - I, (102)
T, - Eq'%(nh)s - EI, (10b)
D - 'B_“o%(nh)s - I (10c)

represent the effective plate stiffnesses in beanding,

With knowledge of thickness and elastic properties of a single sheet of
orthotropic material, a bending-stiffness constant can thus be predicted for
a laminate of these sheet;. The fact might again be recalled that this re-
lationship is valid only if the cords in a cord-rubber laminste are either in
tension or compression, The case in which some cords are in compression and

some in tension will be taken up in a later report.






EXPERIMENTAL MEASUREMENT OF BENDING STIFFNESS

Some effort was expended in planning a test which would be particularly
applicable to the clear demonstration of local bending rigidity in a cord-
rubber laminate. Since only specimens of cylindrical shape were avallable,
it seemed most direct to treat these as beams and to measure their deflec-

tion when loaded by end moments, such as shown in Fig. 2, However, this

Fig. 2. Schematic view of a finite cylindrical tube loaded
by end moments.
type of loading presented real difficulties in three areas:

(a) It was not possible to preload the cords without inducing frictional
end moments which would have been difficult to measure accurately.

(b) The bending induced in the tube is in the form of a distribution of
shell-membrane stresses around the tube, and is not composed of bending which
vis local in nature, so that the neutral axis lies inside the tube wall, be-
tween the two plies. It is desired to illustrate bending of this lattef type,
not the distribution of membrane forces.

(¢) Early buckling of the tube wall would most certainly occur, since it
is very thin,

11



For these reasons 1t was decided to attempt to demonstrate bending
phenomena by use of a somewhat more novel and complicated scheme in which
a radial line load is applied around the circumference of the tube by means
of a constricting wire, such as is shown schematically in Fig. 3. This sys-
tem also has the advantage of allowing the imposition of internal pressure
and axial end loads in order fo preload the cords. This problem is two-
dimensional in the coordinates & and { as the deformation is symmetrical

gbout the axis of the tube,

Fig. 3. ©Schematic view of a cylindrical tube under the action
of radial line load applied on a circumference,
The bending rigidity of‘the tube walls may be derived from the solution

for the radial deflection of the walls under this load. This problem is a
relatively simple one in strength of materials, but 'its solution is quite
lengthy and, for that reason, only the results will be presented here. The
solution itself is thoroughly discussed in the Appendix. .From the Appendix
it may be shown that the bending. stiffness is described, in a special case,

by Egs. (11).

12
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=
I

2D ke (11a)

then

4
- P
5, - kf%@ (110)

in which N is the axial end load, P is the radial line load in pounds per
inch, and 1 is the internal pressure. kf represents a foundation stiffness
proportional to the modulus of the tube in the circumferential direction,

Eﬂ’ while ﬁg represents the bending rigidity in the longitudinal or axial
direction. ZEquations (11) are valid only for a condition in which the axial
load is set according to Eq. (lla), under which conditions the bending stiff-
ness is given by Eq. (11b),

From Eqs. (11) it is clear that the determination of bending stiffness
5§ is an iterative or cyclic process. It may also be seen that bending stiff-
ness 1s dependent both upon the stiffness ks and upon the fourth power of the
radial load per unit pressure increase., This means that considerable care
must be taken in experimental measurement since small fluctuations or errors
in either measurement of the line load P or in measurement of the internal
pressure could result in large variations of predicted bending stiffness.

The specimens used for these experiments were previously described in
Ref. 1, These are four-ply 6-in,-diameter tubular specimens, with alternate
cord angles being equal but opposite as is the usual construction practice,‘

and they are shown in Fig. L.

13



Alternate
Four - Ply Structure Plies Laid

at Angle a
to ¢

Fig. 4. Tubular test specimen showing dimensions.

The experimental procedure which was found necessary here began with
the calculation of a value 5§ for the particular specimen by use of Egs. (10).
This value was substituted into Eq. (lla), along with a measured value of
the stiffness kp. The resulting axial load N was found. Next, calculations
were made to determine the values of axial load and internal pressure which,
used together, resulted in proper loading of the cords in the specimen by
means of the point Mohr's circle criterion described in Ref. 2.

The use of this Mohr's circle criterion also insured that angle changes
would be quite small under the applied loads, thus removing the necessity
for correcting data for angular change. Fortunately, the necessary value of
end load N as predicted by Egs. (11), when used in conjunction with the proper
internal pressure as predicted from Mohr's circle as previously discussed,
resulted in strains which were of the proper order of magnitude for the de-

velopment of the full tension modulus of the textile cords. Table I shows

1L



the strains used in the various experimental specimens described in this

report,

TABLE T

o 0° 15°  30° L45°  60°

Cord Straln, o5 0.3 0.3 0.4 1.3
per cent

The specimens were placed in a standard tensile testing machine using
grips previously shown in Ref. 1, and the proper internal pressure and axial
load were appiied. This accomplished loading of the cords into a state of
tension strain, as shown by Teble I, as well as applying the necessary end
load, as shown by Eq. (1la). At this point, a thin restraining wire was
placed around the specimen with a small preload and its total length measured.
Now internal pressure was caused to vary about this preset point. During
this process a line load was generated in the wire due to expansion of the
cylinder, and this load was measured by means of a load cell attached to the
wire itself. A plot of the line load versus internal pressure, similar to
that shown in Fig., 5 for a particular specimen, was then obtained for each
specimen,

The slope of this curve was then determined and used in Eq. (11b) for
calculation of a new stiffness 55. Generally, this calculated stiffness
was quite close to or identical with the stiffness originallj predicted from
calculation, and only one or two successive iterations of the experimental

process were necessary to cause convergence. This type of experiment was

15
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Fig. 5. Typical line load vs. pressure curve for cylindrical tubes
subjected to constant axial loads and variable internal pressure
with a restraining cable on a circumference.
performed on two samples at each of the cord angles shown in Table I, so that
a total of twelve experimental points was obtained. The results of these
are shown in Fig. 6 compared with the predicted values of stiffness obtained
from Egs. (10). Note that ﬁg(a) = 5n(n/2-a).
Agreement between experiment and theory is relatively good, although a

few substantial deviations from theory exist. In particular, the 45° spec-
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imens indicated bending stiffnesses somewhat lower than predicted by Eg.
(10). 1In general, the fundamental difficulty in determining bending stiff-
ness by the constriction of a cylindrical tube lies in the error propagation
inherent in Eq. (11), where errors in measured quantities such as line loads
or internal pressures are quadrupled due to the fourth-power dependence of
bending stiffness on these line loads and pressures.

In view of this admittedly bad sensitivity, it is considered significant
that agreement between experiment and theory was so close, and it is felt
that this provides sufficient evidence to show that bending stiffness may

indeed be predicted from Egs., (10) with some accuracy.

18



EXPERIMENTAL INSTRUMENTATTON

Since this is an unusual way of measuring bending stiffness, a descrip-
tion of the measuring techniques might be of interest. As mentioned earlier,
the specimens were loaded in a standard Riehle screw-type tensile testing
machine. Internal pressure was provided by bottled nitrogen, using both a
T-foot mercury manometer and a 150-pound Bourdon-tube pressure gauge in the
line, For lower-pressure work the manometer was switched on, while for high-
pressure work it was cut out of the system. Axial loads ranged from 1800 to
2500 pounds, while internal pressure fanged from 10 in. Hg to 140 psi, de-
pending on the specimens being tested. Specimens with low cord angle gen-
erally required larger end loads and lower pressures, while the 60° speci-
mens used very large internal pressures coupled with compressive end forceso
The specimen in the testing machine is shown in Fig. 7.

The constricting cable was l/l6-in. flexible aircraft control cable
wound once»around the specimen and connected through a turn-buckle on one
-end into a 500-1b Baldwin load cell, The other end of the cable was attached
to the opposite end of the load cell. This load cell rode on a track so
that translaetion of the specimen could occur without inducing load in the
constricting wire., Using this mechanical arrangement, changes in diameter
of the specimen were the only causes of load in the wire,

Figure 8 is a sketch of this measuring system and the constricting wire,

and Fig. 9 is a photograph of the arrangement. A scale attached to the cable

19
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was used to measure the change in circumference of the specimen. When the
radius of the specimen was to be kept constant at the point of application

of the line load, the turn-buckle was used to adjust the system for étretch

of the cable.

23






APPENDIX

Consider an element of a plate with unit width as shown in Fig. 10.
This might be a strip from a cylindrical shell if the ratio of plate thick-
ness to radius is quite small. The moment equilibrium equation may be writ-

ten

M+dM-M+Nat - Qd¢ = O.

» £

!
el | e

Y Q+dQ

Fig. 10. Free-body diagram of a differential strip from
a cylindrical shell under the action of forces and moments.

This may be differentiated twice.

2 2
M + N -d—_g- - g'—-Q-’ = O
dg= de®  at

°

It will be recalled from elementary bending theory that

_ 2 — g2
M = -FI Q_E = =D g.ﬁ .
¢ 2 € 2
de - de
Note that
pde = krldt + p;dt

25



where k¢ is the spring constant of the elastic foundation model and py 1s
the internal pressure on the cylinder. The assumption is made that the
cylinder responds to a load as if it were a mass of springs. The equili-

brium equation may be written

_ a4 2
DE g—.g. - g—.g + kfg = —pi. (a)
d§4 d§2
For the homogeneous problem let ¢ esg. s is the solution of the equation,
g4 - ﬁ_ 82 + Ei = 0
Dg Dg

Case It N < 2ﬂdkfﬁg
The quantity under the inner square root is positive. s might thus be

written as a complex number,

81,2,3,4 = T v 1B,

4 )
kf + — = '1'{2— - —-_— = 'IE'E— o (C)
14.]) h.])g \’ LLD ll-Dg LI-DE

The general solution is

where

£ = he'® 1Pt 4 BeVE G1BE | (VB TIBE | pevE MiRE

26



or

¢t = [élevg + Cge'fﬂ cos PRE + [ésevg + C4e_v%}sin BE.

For the particular integral, the solution { = A is assumed and substituted

into (a), from which

A = -pi/kf.

The complete general solution is written

¢t = - Pi, Elevg + Cge—vﬂ cos BE + Egevg + C4e-vﬂ sin BE.
ke

The boundary conditions are now applied. At {(«) the only deflection

is due to internal pressure.
. P4 .
() = - = (a1)

Also, the bending moment must vanish there:

a°t
é—g—;)gm = 0. (da2)

These conditions imply C; = Cs = O. If only the positive half beam (¢ >0)

is considered, the other two boundary conditions are

3
o) = -Z =7 —d—% , (a3)
d&” k=0

(where P is the line load applied at the origin). Also, the slope will be

zero at the origin, so that

ag _
@, - o

27



Substitution into the solution gives

_ P 1 P 1
Ca = - C2 = = —
b D, B(% + 17) b (g2 + 3D
and the elastic deflection line for Case I is
; P A2 .
¢ = - Pl L e B cos Bt + v sin BE
kr 2vB kf

Case II: N > 2 keDy

B of the previous discussion may be replaced by iB, where

B o= | N |k
LDt WD

In this case, the constants Co and C, become

C, = P 1l Co = P 1
Ty = = — I s
4 D 1BV - B?) ¥ v(v2 - BAD
and
2}\2 = V2 - E2 3
The elastic line for Case II is thus written
. -y - -
E = - 21 + 23:—5— Eésh RE + 2 sinh ?E};
kf 8VD§}\2 B
Case III: N =2 \/kf'ﬁg
In this case, v reduces to a and B vanishes.
a = -ﬂ; ; B = 0,
2D
€

28
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Substitution into the general solution yields the deflection line

e o= Ry _:;L— e 8t (1L + at). (1)
ke MDEaS

Little has previously been written about the relationship of the beam
on the elastic foundation to cylindrical shells. Timoshenko (Ref. 3) shows
that the two problems are identical since the shell walls act as an elastic
foundation. For the tubular shell, the hoop strain € 1s proportional to
the radial displacement { if the radial strain is uniform across any cross

section., Thus,

K |us

€h

where r is the tube radius. A radial displacement thus generates a hoop

strain related to the hoob stress by

- £ _ ony _ ¢ .
S e T
Et
S

where oy, 1s the hoop load per unit width. There must be a relationship be-
tween oy, and the radial line load which caused it. Consider the equilibrium

of the shell segment shown in Fig. 11.

T
J{\ Pr sin €46 = EGhu
flgf) Yo

= Prl-cos 6]§ = 2Pr

& *Ghu P = Shu

Fig, 11, Free-body diagram showing the equilibrium between the con-
stricting cable and the membrane hoop stresses in the cylindrical shell.

29



Thus the line load may be written

P=9h“=[5ﬂ€- (3)
r r%J

This- relation expresses deflection in terms of the load. The proportionality
factor is the radial stiffness, kg, of the structure.
ﬁg is obtained by solving a deflection line equation for BE when £(0)

is used as an experimentally determinable variable, For Cases I and II,

s . 1 p°
£  Lk3 | >
Jyzee:
, £

This expression might be useful in some cases, but in general the experi-

Nkgy . (k)

ments could not be performed accurately enough to warrant its use. Subtrac-
tion of numbers nearly the same size magnifies errors, as does the process

of raising to powers. Case III seemed to offer fewer problems and was finally
accepted as the basis for experiments. Here it is necessary to satisfy the

two equations

= P4 P
N = 2vkeDp ; Lo) = - =+ .
f ke Mﬁgaa

If the radius is held constant at zero defléction,

¢(o) = o, (1)
and thus
. _EB_
kf hﬁgaa
Solving for 5§ yields
3 2
—_ _ ENpl
£ r2P



but, as this is Case IIT

so, eliminating N,

_ﬁg = kf%) . (n)

R
Thus, in running any experiments in Case III bending the relationships (1)
and (m) were followed as closely as possible with the experimental variables

being P and P;e
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