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Abstract. Harm reduction interventions to reduce
blood-borne disease incidence among injection drug
users (IDUs). A common strategy to estimate the long-
term impact of such interventions is to examine short-
term incidence changes within a specific group of
individuals exposed to the intervention. Such evalua-
tions may overstate or understate long-term program
effectiveness, depending upon the relationship between
short-term and long-term incidence and prevalence.
This short paper uses steady-state comparisons and a

standard random-mixing model to scrutinize this
evaluation approach. It shows that evaluations based
upon short-term incidence changes can be significantly
biased. The size and direction of the resulting bias
depends upon a simple rule. For modest interven-
tions, such analyses yield over-optimistic estimates of
program effectiveness when steady-state disease prev-
alence exceeds 50% absent intervention. When steady-
state prevalence is below 50%, such analyses display
the opposite bias.
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Introduction

Many interventions seek to slow the spread of in-
fectious disease in settings that do not allow complete
data regarding program impact or disease incidence
and prevalence. A common strategy to estimate the
long-term impact of such interventions is to examine
short-term incidence changes within a specific group
exposed to the intervention. An inherent shortcoming
of such evaluation is that short-term analysis can ei-
ther overstate or understate the impact of prevention
interventions on long-run disease spread. Although
these generic limitations of short-term analysis are
well-known, their full implications are easily over-
looked.

Harm reduction interventions for injection drug
users (IDUs) provide an especially important appli-
cation in which short-term analysis and naive intu-
ition may be misleading. In simplest form, harm
reduction seeks to prevent blood-borne diseases
without altering the underlying pattern or intensity of
substance use. Those who implement harm reduction
hope that such interventions will induce some IDUs
to enter treatment or to reduce their drug use.
However, harm reduction is intended to slow disease
spread even without such behavioral effects. Indeed
the most widely-cited evaluation of syringe exchange
programs (SEP) examines short-term changes in the
proportion of infected needles, and then infers

changes in disease incidence and prevalence assuming
no underlying change in the frequency and duration
of injection drug use.

This short paper uses steady-state comparisons and
a random-mixing model to examine this evaluation
approach. It shows that reliably-measured short-term
changes in disease incidence can provide biased esti-
mates of the long-run effectiveness of studied inter-
ventions. A simple rule describes the direction and
size of the resulting bias.

Background

Given the covert nature of injection drug use, harm
reduction is difficult to evaluate using standard
methods. In principal, however, many researchers
and policy makers take clinical trials as the point of
departure in evaluating such interventions. Though
study designs differ, the general strategy is to estimate
infection rates per person per unit time among IDUs
exposed to the intervention, and to compare these
rates to observed patterns within a comparison group
of other IDUs. The observed difference in short-term
disease incidence is then used to compute policy-rel-
evant measures such as the efficacy or the costs per
averted infection associated with the intervention.
Such comparisons might arise from prospec-
tive randomized trials, or more commonly from



392

non-experimental comparisons with pertinent com-
parison groups. Such analyses might also be con-
ducted based upon pre-post comparisons within the
treated group itself. The development of novel inci-
dence—estimation techniques such as the detuned as-
say test may increase the use of short-term incidence
analysis in harm reduction program evaluation.

Such evaluations face many threats to internal and
external validity: selection bias, cross-over effects,
non-random attrition, inadequate power, question-
able applicability of best-practice results to the
widespread implementation of lower-quality inter-
ventions [1, 2]. IDUs are a hidden population whose
health status and underlying risk behavior is difficult
to observe. By now, these evaluation challenges are
familiar to clinicians, to researchers, and to many
policy makers.

Less widely-appreciated is the fact that short-term
comparisons may not capture the long-run impact of
broadly-implemented prevention efforts. Short-term
studies do not capture the full period that treated
individuals face disease risk. Such evaluations may
therefore fail to capture the possibility that treated
individuals will become subsequently infected.

Regardless of specific design, most such evalua-
tions observe a small fraction of the total population
facing disease risk. Except in rare cases, evaluations
cannot measure ‘secondary’ or ‘downstream’ infec-
tions attributable to members of the treated group.
Even when such data are possible to collect, this ef-
fort requires prolonged and elaborate investigation
that is often infeasible. Thus, downstream infections
are generally ignored. Yet downstream infections are
often important, and can amplify or reduce the ulti-
mate impact of the studied intervention.

Vaccination that confers permanent immunity
provides one clear example of such effects. Vacci-
nating one child protects her from illness. Yet vacci-
nation also protects other children whom she might
have otherwise infected [3]. Evaluation strategies that
measure disease patterns within the immunized group
while ignoring secondary infection can severely un-
derstate the benefits of vaccination [4].

Motivated by this example, one might think that
ignoring downstream infections always understates
the benefits of prevention efforts. Metzger et al. [5, 6]
compare the incidence of human immunodeficiency
virus (HIV) among methadone maintenance patients
and among out-of-treatment injection drug users.
One might assume that an expanded analysis that
considers the safety of one’s sex and needle-sharing
partners would yield even more favorable results.

This intuition is wrong when prevention interven-
tions provide imperfect or temporary protection to
treated individuals. In the case of vaccination, those
with declining effectiveness over time can produce
counterintuitive effects on disease spread [3]'. In the

'T thank an anonymous reviewer for this observation.

case of substance abuse treatment, some methadone
clients who remain uninfected during the study peri-
od will subsequently become infected and may then
infect others. Because treatment merely delays infec-
tion for some treated individuals, short-term group
differences in disease incidence can provide over-
optimistic estimates of program effectiveness.

Epidemiological model

When, then, do evaluations that ignore downstream
infection create large biases, and in which direction?
A susceptible-infected model with random mixing
among IDUs [7, 8, 9] provides one answer to this
question. Within this simplified but empirically rele-
vant framework, there is a constant-size population
of N active IDUs. Every week, some fraction & will
exit the population of active users due to death. At
the same time, some number 6 uninfected individuals
are recruited into the population of active users. In
steady-state, N = 0/3. These population parameters
are assumed to be fixed. They do not depend upon
disease prevalence within the population.

The dynamics of disease spread are described by an
equally simplified process. At any time ¢, some I(¢)
active drug users are infected, and n(¢) = I(¢)/N is the
proportion of infected individuals within the drug-
using population. Each IDU shares a needle with a
randomly selected partner at a common rate of A
times per week. If a susceptible comes into contact
with an infected IDU, the probability of disease
transmission is some constant k. This reflects both
disease biology and behavioral risks. This framework
leads to the standard model

% = —3I(t) + KAN[l — n(8)]n(z) (1)

Note that at time 7, N —I(¢) = N[l — n(¢)] drug
users remain susceptible to infection. These IDUs
share needles A times per week. Under random mix-
ing, they have probability m(f) per encounter of
sharing a needle with an infected person. If this does
happen, they will become infected with probability k.
Putting this together, the number of new infections
yields a standard expression for disease incidence
under random mixing in a fixed population:

1() = Nxhn(0)[1 — n(t)] )

To simplify the analysis, we assume that steady-
state comparisons accurately describe disease inci-
dence and prevalence for policy modeling. One
determines steady-state prevalence by setting di/
dt = 0, which yields:

d



Throughout, we assume that ©* is positive to avoid
algebraic complications associated with zero preva-
lence. Steady-state incidence is then

Nxdn*(1 ) =0]1 o 4

(= N (1 =) = 0|1 - | @

Suppose that one devises a modest harm reduction
intervention which reduces the rate of needle sharing
from | time per week to A — e. Since the product kA is
the critical factor for disease spread, an identical
analysis could be done of interventions that reduce k.
This analysis therefore captures features of many
interventions [10]. SEP reduces the frequency of
needle-sharing [11]. Bleach provision might be
thought of as reducing infectivity [12]. Outside the
immediate model, methadone maintenance or incar-
ceration can be modeled as reducing disease incidence
by raising the exit rate 6 from active drug use.

Given these assumptions, well-implemented evalu-
ation will capture short-term incidence changes by
measuring changes in 1 within the treated group.
When study participants are a small subgroup of the
overall population and the intervention occurs over a
short period compared with the dynamics of disease
spread, researchers typically regard population
prevalence as a constant unaffected by the interven-
tion itself.

Modest interventions

In many cases, one seeks to examine the efficacy and
cost-effectiveness of interventions that have small
behavioral or epidemiological effects — in other words
interventions where e is very small. Examining mod-
est interventions, a well-implemented study would
capture the change in disease incidence over a period
in which population prevalence may be takes as
constant. Under these assumptions, the short-term
reduction in disease incidence are given by A; in
Equation (5) below:

a * *
A = e(mNKkn (1-m ))7T
* ) e 8
= eNkn (1-ﬂ)—€x(l—a) (5)

A more complete analysis considers that prevalence
itself changes as a consequence of the intervention.
Given a sufficiently long time-series or the correct
application of a steady-state epidemiological model, a
widely-provided intervention would change disease
prevalence. The intervention would therefore reduce
steady-state incidence 1 by the effectiveness (¢) multi-
plied by the total derivative of 1 with respect to A:

d: O\ drn*
M=eg=h ”(%)ﬁ
d *
= Aj + eNKkA[l — 21"] d—T; (6)
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If Ay <A,, short-term incidence comparisons
understate the intervention’s steady-state impact on
disease spread. Comparing equations, this happens
exactly when the last term in Equation (6) is positive.
The same analysis understates the true treatment ef-
fect when A; > A,.

When does this happen? When prevalence is posi-
tive, straightforward calculation shows that =*
strictly increases with A. So A, > A; exactly when
NxA[l — 27*] is positive. This happens when 7* < 0.5.
The opposite result holds when n* exceeds this
threshold.

Thus, for small interventions, short-term incidence
analysis understates long-term program effectiveness
exactly when steady-state prevalence is below 50%.
Although some beneficiaries of the intervention will
become infected after the period of observation, these
long-run effects are outweighed by the number of
secondary infections prevented as a result of the in-
tervention. In like fashion, short-term incidence
analysis overstates program effectiveness exactly
when 7* exceeds 50%. In this case, many IDUs who
derive immediate protection are eventually infected,
and so short-term analysis exaggerates the long-run
effect.

Manipulating Equations (5) and (6), the relative
error in short-term incidence analysis is given by
(A — A) /A, = (21" — 1)/(1 — n*). As shown, igno-
ring downstream infection can cause large bias when
steady-state prevalence diverges from the 50% point.
When n* is below 20%, short-term incidence com-
parisons understate program effectiveness by more
than 75%. Applying the calculations in Figure 1 for a
prevalence of 70%, short-term incidence comparisons
are predicted to overstate program effectiveness by
more than 100%.

Substantial interventions
The above findings were derived using calculus for

modest interventions. Building on [9] one can derive a
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Figure 1. Bias in short-term incidence estimation for
modest interventions (negative values indicate understate-
ment of program effect).
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similar approach for more extensive interventions.
When the fraction (e/A) is large, the short-term inci-
dence analysis remains unchanged. Holding preva-
lence constant, the incidence is proportional to A, and
so Equation (5) continues to hold even for large in-
terventions. However, when one considers the re-
sulting change in steady-state prevalence, the
resulting change in steady-state incidence is

"o 9(1 : fk) ) 9(1 s e)) -
)

Comparing Equations (5) and (7), short-term in-
cidence analysis overstates long-run effects when
Ay > A;. After algebra, one can show that this
happens when steady-state prevalence absent inter-
vention is sufficiently great:

. 1
> PN e/n (8)

Since e is non-negative, short-term analysis always
understates long-term program effectiveness when the
steady-state prevalence absent intervention, is below
50%. When steady-state prevalence far exceeds 50%,
however, short-term analysis will generally overstate
the long-run effects of typical interventions. For
example, if steady-state prevalence is 75%, short-
term incidence analysis will overstate steady-state
effects for interventions that cause a proportional
reduction in needle-sharing (e/A) of less than 2/3.

Previous analysis based upon the New Haven, Ct.
SEP provides one empirically pertinent example of a
substantial intervention [7, 8, 9, 11]. Pollack considers
an intervention in which & = 1/(4000 days),
A = 0.142, and k = 0.005. These parameters yield a
steady-state prevalence of 65% — a prevalence that
matches observed data prior to SEP intervention. In
a population of N = 2000 IDUs, these parameters
indicate steady-state incidence of 0.325 new infections
per week.

The work of Kaplan and collaborators indicates an
estimated program effectiveness of e = 1/3. Given
these parameters, short-term incidence analysis indi-
cates an incidence reduction of 0.1083 infections per
week associated with the intervention. Applying
Equation (7) to obtain steady-state values, we find a
reduction of 0.0875 infections per week. In this
example, steady-state prevalence was close to the
threshold defined by Equation (8). Short-term anal-
ysis and steady-state analysis therefore yield similar
results.

In contrast to this example, high steady-state
prevalence yields more pessimistic results. Raising the
presumed value of k from 0.005 to 0.01 raises steady-
state prevalence to 82.5%, with a steady-state inci-
dence of 0.413 new infections per week. In this case,
short-term incidence analysis indicates that SEP re-
duces disease incidence by 0.1375 infections per week.

Steady-state analysis indicates a reduction of only
0.0438 infections per week. Thus, failure to consider
long-run effects leads one to overstate SEP effective-
ness by more than 200%. Data from hospital needle-
stick accidents indicates much higher estimates of k
for HCV — highlighting the difficulty of short-term
incidence analysis in examining measures to prevent a
highly infectious disease.

Discussion

Practicality dictates that infectious disease prevention
efforts are often evaluated based upon their short-
term effects. Given other challenges to validity and
generalizability, one might overlook the fact that
short-term incidence measures can provide a biased
account of long-run treatment effects.

This paper explores these biases using steady-state
analysis of a random-mixing model. The paper de-
rives simple rules to quantify the size and direction of
the resulting bias. Short-term incidence comparisons
always understate long-run program effectiveness
when steady-state prevalence is below 50% absent
intervention. For modest interventions, the same
analyses yield over-optimistic results where steady-
state population disease prevalence exceeds 50%. The
resulting bias can be quite large when steady-state
prevalence is far above or far below 50%. Analogous
findings hold for substantial interventions.

The present results depend on a specific model with
important limitations. Perhaps most important, we
assume random mixing. Other types of models may
yield different results [13, 14]. Heterogenous popula-
tions, such as those with a highly active core group,
raise issues outside the scope of the present analysis.
Steady-state analysis also has limited application to
slowly changing epidemics that begin far from long-
run values [9]. Specific calculations suggest that steady-
state calculations work well in analyzing HCV.

The present analysis is not applicable to interven-
tions that provide permanent protection to treated
subjects (the case e¢/A = 1) [15]. It is striking, how-
ever, that the major vaccinatable diseases have very
high prevalence absent intervention ([3], p. 88). The
present analysis highlights the comparative advan-
tage of vaccination in curbing these ailments.

Despite specific limitations of the current analysis,
its main conclusions highlight broader concerns.
Within homogeneous populations, the number of
‘discordant’ contacts between infected and uninfected
individuals is maximized at 50% prevalence. When
initial prevalence is below 50%, measures that reduce
current prevalence will also reduce the number of
subsequent discordant contacts that generate further
infections. Downstream infections therefore amplify
short-term treatment effects. When steady-state
prevalence exceeds 50%, however, the opposite
dynamic occurs. Short-term prevention slightly in-



creases the number of subsequent discordant pairs.
This partially offsets the benefits of the intervention.
Because prevalence is a concave function of A, this
intuition must be slightly modified for more sub-
stantial interventions. Yet the basic argument holds.

One consequence of the above analysis is to high-
light the challenge to harm reduction posed by hep-
atitis B and C, and by other highly infectious agents.
Although HIV and HCV arise from similar behav-
ioral risks, the high infectivity of hepatitis leads to
extremely high prevalence, even in IDU populations
that maintain low prevalence of HIV [16]. In much of
the United States, Europe, and Australia, more than
70% of active IDUs are apparently infected with
HCV [16-18]. Because intervention merely delays
infection for many members of the treated group,
short-term incidence analysis is likely to produce
over-optimistic estimates of steady-state effects [19,
20].

On a more optimistic note, the same calculations
imply that short-term analysis understates the long-
term effectiveness of prevention interventions in low-
prevalence populations. Tacoma, Sydney, and other
cities have maintained HIV prevalence of 10% or
lower among active IDUs [20]. Short-term analysis of
SEP in such low-prevalence environments may un-
derstate the capacity of modest interventions to
maintain low HIV prevalence.

The particular application is to harm reduction for
IDUs. However, the same factors are pertinent to
other interventions and settings. When an interven-
tion reduces, but does not eliminate disease risk,
short-term incidence analysis likely overstates long-
run program effectiveness in curbing highly-infectious
agents. Short-term analysis will likewise understate
the long-run effectiveness of interventions that curb
diseases with low steady-state prevalence absent
intervention. In both cases, policy modeling of public
health interventions requires well-considered epide-
miological analysis to link observed short-term results
to the underlying dynamics of infectious disease
spread.
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