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A~tract. The finite amplitude, coupled shear-torsional motion of a circular disk supported 
between identical rubber spring cylinders is studied. The material of the springs is assumed to be 
an incompressible elastic material. The oscillatory motion of the disk is studied for two different 
cases. In the first case, the material of the spring is assumed to be an incompressible elastic 
material whose response functions are constants. Typical examples include the Mooney-Rivlin 
model. The motion of the disk in this case is governed by two independent equations whose 
closed form solutions are noted. For the second case, the material of the spring is assumed to be 
an incompressible quadratic material. The motion of the disk in this case is governed by two 
coupled nonlinear differential equations. The stability properties of small shearing oscillation 
superimposed on finite torsion and small torsional oscillation superimposed on finite shearing are 
studied. 

AMS (MOS) subject classification: 73D35 or 73C50. 

1. Introduction 

Simple shear and pure torsion have been studied separately in numerous  

cases. Impor t an t  results have been noted, such as the universal relations [1], 

static and dynamic  responses o f  oscillating systems [2], and stability o f  the 

mot ions  involved in various engineering applications [3,4]. The coupled 

shear-torsional mot ion  which is observed in a variety o f  engineering design 

applications, however, has not  received enough attention. The purpose o f  this 

work  is to give a comprehensive description o f  the motion.  Physically, we are 

going to consider the mot ion  o f  a circular disk supported between identical 

rubber  cylinders. After  a brief review of  the basic principles o f  con t inuum 

mechanics in §2, the kinematics o f  the mot ion  is studied in §3. The Cauchy  

stress tensor is then determined for a class o f  incompressible elastic materials 

in §4. The equat ions o f  mot ion  o f  the disk supported by the coupled rubber  

springs are derived in §5. The closed form solutions are provided in §6 for a 

class o f  incompressible elastic materials whose response functions are con- 
stants. Then, the equat ions o f  mot ion  o f  the disk are obtained for an 

incompressible quadrat ic  spring support  in §7. We then turn to the oscillation 

problem involving concurrent  finite torsion and small shearing mot ion  o f  the 
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disk. The exact solution to the finite amplitude torsional motion is derived in 
terms of the elliptic integral of  the first kind. The small, coupled shearing 
motion is reduced to Hill's equation whose stability properties are discussed in 
§8. Finally, we look at finite shearing coupled with small torsion. The 
mathematical structure of this problem is the same as the one studied in §8. 
The exact solution for finite shearing and the stability of  small torsion are 
discussed in §9. 

2. Basic equations of continuum mechanics 

We consider a body in a Euclidean space of  three dimensions to undergo a 
deformation described by 

x = x(X, t), (2.1) 

where x and X are the respective position vectors of a typical particle of the 
body at an arbitrary time t and a reference time tR. The velocity v and the 
acceleration a of  the particle are defined by 

v(X, t) ~ ~(X, t), a(X, t) -= it(X, t) = ~(X, t), (2.2) 

dx(X, t) FFr. (2.3) F-~ ~X , B-= 

An isotropic and incompressible, hyperelastic solid is a material whose 
constitutive equation is given by 

T =  - p l + f l l B + f l _ l B  -1, (2.4) 

where T is the Cauchy stress tensor and p is the undetermined pressure due to 
the incompressibility constraint. The response functions fll and f l- i  are 
functions of  the principal invariants of  B and can be derived from the strain 
energy function. A typical example is the Mooney-Rivlin material whose 
response functions are given by [5] 

G ~G 
- - - -  

/~1 - 1 + ~' /~-1 = - 1 + ~ '  ( 2 . 5 )  

where the superimposed dot denotes the usual material time derivative. 
We recall the deformation gradient F and the Cauchy-Green deformation 

tensor B defined by 
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where G is the shear modulus and ~ is a positive material parameter, usually 
between 0 and 1. When ~ = 0, the Mooney-Rivlin model reduces to the 
well-known neo-Hookean model. Another model that will be used in this 
work is the quadratic material defined as [6] 

~ ~--- C I ( I  I - -  3) + C2(I2 - 3) + C3(I~ - 3) 2 + C4(I  2 - 3) 2 

+ C5(I,  - 3)(12 -- 3) + C6(I3), (2.6) 

where Y. is the strain energy function, I; are the principal invariants of B, C;, 
i = 1 . . . .  ,5, are the material constants, and C6(I3) is an arbitrary function of 
13 that vanishes in the undeformed state where I~ = 12 = 3, I3 = 1. In particu- 
lar, if C3 = C4 = C5 = 0 and the material is incompressible, it defines the 
Mooney-Rivlin material (2.5). In this work, we shall consider the special case 
of an incompressible material in which C6 = 0. Then, the response functions E1 
and 8 - l  can be obtained as 

2 OZ 2 /~1= ~ =  C 1 + 4 C 3 ( I , - 3 ) + 2 C 5 ( I 2 - 3 ) ,  (2.7) 

_ 2 ~ E =  8 - ,  = OI2 - 2 C 2  - 4C4(I2 - 3) - 2C5(I ,  - 3). (2.8) 

3. Kinematics of the motion 

We consider a rigid circular disk of mass M resting on a smooth inclined 
surface making an angle y to the horizontal and supported symmetrically 
between identical, prestretched rubber cylinders of original length L, radius 
R0, and surface area A = nRo ~. The springs, prestretched an amount 2s, are 
bonded to the disk at one end and to rigid supports at the other, as shown in 
Fig. 3.1. We suppose that each cylinder executes a combined ideal, time- 
dependent pure torsion deformation of amount H ( t )  and simple shearing 
deformation of amount K( t )  superimposed on the longitudinal static stretch 
2~. Certainly, simple shear is an ideal deformation. Though bending will occur 
with the shearing, we shall ignore the bending effect for mathematical simplic- 
ity. We consider an incompressible material characterized by (2.4). To de- 
scribe the motion, we shall break the combined shear-torsional motion into 
two steps. First, the body with a typical particle at (R, ®, Z)  undergoes a 
torsional .deformation superimposed on the static longitudinal prestretch 2s 
where the angle of twist of each cylinder is H ( t )  per unit length: The particle 
is then moved to (r, 0, z). To effectively describe the simple shear deformation, 
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Fig. 3. L A circular disk supported symmetrically between identical incompressible elastic rubber 
cylinders subjected to an initial longitudinal stretch 2 s. 

we transform the cylindrical coordinates (r, 0, z) into rectangular coordinates 
(X, Y, z). Then the body undergoes an ideal, time-dependent simple shearing 
deformation of amount K(t) superimposed on the torsional motion of H(t) .  

The final position of the particle of the body is then located at (x, y, z). 
Mathematically, the coupled shear-torsional motion is defined by the follow- 
ing equations relating (R, ®, Z)  and (x, y, z): 

r = 2~- ~/~R, X = r cos O, x = X + K(t)z ,  

O = O + H ( t ) 2 s Z ,  Y = r s i n O ,  y = Y ,  (3.1) 

Z = ~ s Z ,  Z = ~ ,  g = ~ .  
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Let i, j, and k denote the usual rectangular Cartesian basis in the directions 
of  x , y ,  z, respectively, as shown in Fig. 3.1. Hence, by (3.1) and (2.3) and 
using the symbol ® for the tensor product we find 

F = As ~/2 cos 0 ( i®i  + j  ®j) + Ask® k + 2~-t/z sin 0 ( j®i  - i®j )  

+ 2s(K - Hr sin 0 ) i®k  + 2sHr cos 0 j ® k ,  (3.2) 

B = (2~ -~ + K~2~ 2 - 22Z~KHr sin 0 + 22~H~r ~ sin z 0 ) i®i  

+ ()~-~ + J,2~H2r2 cos z 0 ) j®j  + 2~Zk®k 

+ (K - Hr sin O)2~Hr cos 0 ( i®j  + j ® i )  

+ (K - Hr sin 0)2s~(i®k + k ® i )  

+ 22~Hr cos 0 ( j ® k  + k®j) ,  (3.3) 

B -~ = 2s( i®i  + j ® j )  + 2s(2j -3 + K 2 + H2r ~ - 2KHr sin 0 ) k ® k  

- 2 ~ ( K - H r s i n O ) ( i ® k + k ® i ) - 2 s H r c o s O ( j ® k + k ® j ) .  (3.4) 

The principal invariants follow from these relations. We find 

2 2 __ I,(B) =2~ +22,7 ~ + K  2s +2Z~H2r ~ 22~KHr sin0, (3.5) 

I2(B) = 2~ -~ + 22s + K22s + 2slier 2 - 22~KHr sin 0, (3.6) 

I3(B) = 1. (3.7) 

4. Cauchy sress components of the deformation 

By the previous relations, equation (2.4) yields the following Cauchy stress 
components: 

TI~ = --p + fll[2~ -~ + K22~ -- 22~KHr sin 0 + 2~H2r 2 sin z 0] + fl-~J-s, (4.1) 

T22 = - p  + fl~[2~ -~ + 2~HZr 2 cos 2 0] + fl_,2~, (4.2) 

T33 : - p  q-,fll A~ + f l _ ,  [)~s(2~ -3 -4- K 2 + H~r 2 - 2KHr sin 0)], (4.3) 
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T~2 = T~ = fll [(K - H r  sin O)22~Hr cos 0], 

Ti3 = T3~ = 2 s ( K  - H r  sin 0)[2sill - fl_~], 

T23 = Ta2 = 2 ~ n r  cos O[2~fl~ - f l_~] .  

(4.4) 

(4.5) 

(4.6) 

between Equations (4.1), (4.3), and (4.5) yield the following relation 

T l l  - -  T33 and TI3 :  

~,~- 3 _ 1 + K 2 - -  2 K H r  sin 0 + H 2 r  2 sin 2 0 
T l l  - T3~ = 

K - H r  sin 0 

× T13 -- f l_~2sH2r  2 c o s  2 0. (4.7) 

Hence, when H = 0, equation (4.7) yields the famous universal relation in 
simple shear. On the other hand, when fl_ 1 = 0, equation (4.7) reduces to 

2 j  -3 - 1 -I- K 2 - 2 K H r  sin 0 + H E r  2 sin 2 0 
T~ - T33 = K - H r  sin 0 T~a. (4.8) 

This is a universal relation for all incompressible elastic materials with fl_ 1 = 0 

and is independent of the response function fl~. 
There exist two additional universal relations. They can be easily identified 

from (4.1) through (4.6) and are given by 

T~ K 
- -  - tan 0, (4.9) 

T23 - H r  cos 0 

K 2 - 2 K H r  sin 0 - H 2 r  2 cos 20 
T~I -  T22- T12. (4.10) 

( K  - H r  sin O ) H r  cos 0 

These two universal relations can also be obtained directly from tensor 
equations TB = BT and TB-  ~ = B-  ~T developed by Beatty [7]. Each of these 
two tensor equations yields three scalar equations expressed in terms of the 
physical components T;j and B0-. Among these equations, two are the genera- 
tors of the universal relations (4.9) and (4.10). They are 

B ~ ( T I ~  - T22 ) = ( B i l  1 - B~21)T~2 + B ~  ~ T32 - -  T~3B~21 , (4.11) 

for relation (4.9), and 

B12(TIl - T2~) = (B~ - B2~)T~2 + Bi3 T32 - -  T~3B32, (4.12) 

for relation (4.10). 
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The traction on the surface of the cylinder where the circular disk is bonded 
can be found as 

t = Tk = T13 i + T23 j + T33k. (4.13) 

Hence, the force exerted on the surface by the disk is given by 

N=f , td~¢ =NI  +N2 + N3, (4.14) 

where the integral is evaluated over the deformed surface ~1 connected with 
the disk and 

N 3 = f ~  T33 d~gk (4.15) 

is the normal force in the z direction. This force is balanced through the 
symmetry of  the spring-mass system shown in Fig. 3.1. N2 in (4.14) is the 
shear force in the y direction and is given by 

; / ;o ° N2 = T23 d~Cj = 2~Hr cos O[2sfll - f l-l] dOr drj, (4.16) 

where ro is the radius of the deformed surface ~¢ and is related to Ro by 
ro = 2~-1/2Ro. Similarly, the shear force N1 in the x direction is given by 

Moreover, 
traction is 

 f?fo 
- - r  

fo-'  fo '° Tt3 d~¢i = 2s(K - Hr sin 0)[2sfll - f l- l]  dOr dri. (4.17) 

the torque M on the bonding surface in the z direction due to the 
found to be 

(xT23 - yT13) d~Ck 

[(r cos 0 + Kz)2sHr c o s  O ( 2 s f l  I - -  fl_ 1 ) 

sin 02s(K - Hr sin 0)(2sfll - fl_ 1)] dOr drk. (4.18) 
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5. Formulation o f  the motion o f  the disk 

We shall consider the motion of the disk in two aspects: the motion of the 
center of the disk and the rotational motion of the disk about its center. By 
(3.1), the acceleration of the center of the disk and the angular acceleration of 
the disk about its center are found as 

a = 2sL~i ,  0" = 2sL/~, (5.1) 

where L is the original length of the cylinder. Hence, the motion of the disk 
is governed by 

M a  = M g * i  - 2Ni, l/)'k = - 2 M ,  (5.2) 

where M and I are respectively the mass and the moment of inertia of the disk 
and 

g* = g sin ~ (5.3) 

in which g is the gravitational acceleration. Let Rg be the radius of gyration 
of the disk. Then, 

I = M R S .  (5.4) 

6. Mot ions  of  an oscillator with constant / I  I and ~ - - 1  

We now consider a special class of materials whose response functions J~l and 
/~-1 are constants independent of both time t and position x, such as the 
Mooney-Rivlin materials. In this case, we find from (4.16) and (4.17) 

N2=0, N, = A[2s/~l - ~_,]Ki. (6.1) 

For constant response functions/~1 and/~_~, equation (4.18) reduces to 

n 1 2 --1 = i A R o 2 s  [2s~ -- ~_l]nk.  (6.2) 

Hence, the equations of motion of the disk are obtained from the previous 
relations and are given by 

R + c o ~ K =  g* L2s' (6.3) 

~ + o)~H ~ 0, (6.4) 
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where 

] ¸  2A 
~oK = [ ~--Tr-~-., [2sfl, - / 3 - , ] ,  (6.5) 

~ M/~Zs 

~o ,+ = x/~---Z d2"Z ;- 2[ L # ' - 8 -  , ] , (6.6) 

with the gyration ratio d defined by 

.R 0 
d = . (6.7) 

Rg 

Hence, for this particular class of materials, the motion of the disk is governed 
by two independent linear differential equations. The equilibrium position can 
be easily established from (6.3) through (6.6), and the static shear deflection 
Ks and static torsion Hs are given by 

Mg* 
Ks - 2A(2,/~, _/~_~), Hs=O. (6.8/ 

Hence, the solutions to (6.3) and (6.4) are simple harmonic. The ratio of the 
frequencies given by (6.5) and (6.6) is found to be 

~oM d 
(6.9) 

Thus, the frequency ratio (6.9) is a universal relation for every incompressible 
elastic shaft with constant response functions fl~ and fl_ ~. The only design 
parameter is the gyration ratio d. The frequency ratio is a monotone decreas- 
ing function of the axial stretch 2s. It approaches infinity when 2s-~ 0 and 
approaches 0 as 2s ~ ~ .  The frequency ratio oa14/~o x reaches 1 when d =  
, ~ .  Hence, when d > ( < ) ~ / ~ ,  the torsional oscillation vibrates faster 
(slower) than the shearing oscillation. The position d = ~ is the point 
where both vibrate at the same speed. 

Bearing in mind the equilibrium position (6.8), the closed form solutions to 
(6.3) and (6.4) are simple harmonic and can be written as 

K = Ks + Ko cos(co~:t + Oxo), (6.10) 

H = Ho cos(o~/+t + 0+4o), (6.11) 
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where Ks is the static equilibrium shear deflection determined by (6.8) and K0, 
Ho, 0~o, and 0/40 are constants determined by the initial conditions. 

To understand the dependence of the circular frequency ogx and ogn on the 
longitudinal static stretch 2s, we shall look at two special cases: (1) the motion 
on an inclined surface; and (2) the motion on a horizontal surface. 

6.1. The motions on a smooth inclined surface (~ ~ O) 

For the motion of the disk on a smooth inclined surface with y # 0, we can 
remove the mass in relations (6.5) and (6.6) by the equilibrium condition 
(6.8). Hence, we find 

;& o. 
ogx=Po , o9/4=Po 2~' P ° ~  , w i t h - - -  

ogH d 

(6.12) 

Hence, the frequency ratio between shearing and torsion is a universal relation 
independent of  the material constants fl~ and /3_1. Both frequencies are 
decreasing functions of  2s and Ks. Relations in (6.12), of  course, have been 
obtained separately on numerous occasions. 

6.2. The horizontal motion 

For motion on a horizontal surface for which y = 0 °, we have Ks = 0 because 
g * =  0. For the Mooney-Rivlin model (2.5), the frequencies (6.5) and (6.6) 
reduce to 

a~x_ / 2 ( 2 s + ~ )  o9/4 d / (2 s+~)  AA/~G 
o9o ~ / 2 s ( l + ~ ) '  o9o = q2~Z( l+~)  ' og°=-qML"  (6.13) 

When ~---0, the normalized frequency o9K/o9o = x/~. Hence, the frequency 
of finite amplitude shearing vibrations of a neo-Hookean oscillator is a 
constant and this constant frequency is not affected by the longitudinal 
stretch 2s. For other cases, the frequencies approach infinity as 2s ~ 0 .  
When 2s -~ ~ ,  ogn/o9o -~ 0 while o9r/090 -~ 2x / /~  + a) (FiE. 6.1). For the level 
oscillation with 2s = 1, we find from (6.13) o9/~/o9o = x/2, ogn/o9o = d. These 
frequency responses are independent of  the material parameter ~. Hence, 
by level oscillation, one cannot tell one Mooney-Rivlin material from the 
other. 
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Fig. 6.1. Normalized circular frequencies versus static stretch 2, for coupled shearing torsional 
motions of a circular disk supported by Mooney-Rivlin rubber cylinders for various values of ~. 

7. Equations of motion of the disk supported by quadratic springs 

The material response functions for quadratic material are characterized by 
(2.7) and (2.8). By (2.7), (2.8), (3.5), and (3.6) we find 

2sill - fl_~ = qo + ql( K2 + H2r2 - 2KHr sin 0), (7.1) 

where qo and ql are constants given by 

qo = 2(2sCl + C2) + (42sC3 + 2C5)(2~ 2 + 227 ~ - 3) 

+ ( 4 c ,  + 2,~sc5)(~; -~ + 2 L  - 3), (7.2) 

q~ = ( 4 2 s C  3 + 2C5)2~ + (4C4 + 22,Cs)2s. (7.3) 
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Using (7.1) in (4.16), (4.17), and (4.18) we find 

N2 = O, N~ = A(qoK + q~K 3 + R~Aj-~q~KH2)i, (7.4) 

AR~ 
= +~Roq~H + 22sq~HK2)k. (7.5) M ~ ( 2 s q ° H  z 2 3 

Hence, the equations of motion of the disk are obtained from (5.1) and (5.2): 

2Aq° K 2Aql K3 2AR~q~ g* 
K; + MLAs + ~ + ML2-~-~ KH2 = L2-~' (7.6) 

Aqod 2 2AR~dEql H 3 2Ad2q~ 
/-~ + ~L-~2 H + ~ +-~L-~s2 HK2 = 0, (7.7) 

If qo and q~ are positive, all the coefficients in equations (7.6) and (7.7) are 
positive. Hence, the nonlinear differential equations (7.6) and (7.7) describe 
the motion of the disk supported by the "hard spring". We shall assume this 
is the case throughout this work. The coefficients of the nonlinear terms in 
equations (7.6) and (7.7) are all proportional to the material constant qt- 
When ql ----" 0 ,  the equations of motion (7.6) and (7.7) reduce to two indepen- 
dent linear differential equations whose solutions are simple harmonic. 

We now introduce 

~'= t A~qo (7.8) 
~/ ML ' 

to reduce equations (7.6) and (7.7) to 

K" + toOK + ~3K K3 + #rKH 2 = ~, (7.9) 

H" + ~o~H + enH ~ + #14HK 2 = 0, (7.10) 

where 

K" -- d2K " d2H 
d?' H - - ' ~  "5' 

~ f ~ ,  2# 
( D K ~  '~K ~ ~ s  ~ 

(7.11) 

:#rig 
(7.12) /~:= 2~2 , 
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d 213d2R~ 213 d2 
= ~  = = (7.13) con , e~ 32~3 , #/~ As ~ , 

[3 = q-~ ~ =_ M g *  (7.14) 
qo' Aqo2s " 

In this work, we shall use the prime ' to denote the derivative with respect to 
the normalized time /" and assume that ql is very small compared with q0. 
Hence, the ratio fl = ql/qo defined in (7.14)1 is a small parameter. We shall use 
it later for the stability analysis by the perturbation method. On the other 
hand, when H and K are small, we may drop all nonlinear terms in (7.9) and 
(7.10) to linearize the equations in studying small amplitude vibrations of the 
disk. In this case, equations reduce to (6.3) and (6.4) whose solutions are 
simple harmonic. Hence, the conclusion about the small oscillation in this case 
is obvious. We shall not pursue its detailed discussion here and rather focus 
our study on the stability properties of the coupled motion between shearing 
and torsion for the following two special cases: (1) small shearing superim- 
posed on the finite torsion; and (2) small torsion superimposed on the finite 
shearing. 

8. Stability of small shearing superimposed on finite torsion 

We start this chapter with the study of small shearing superimposed on the 
finite torsion. In this case, by dropping the nonlinear terms in K, the equations 
of motion (7.9) and (7.10) reduce to 

K" + ~oZrK + #~:KH 2 = ~,, (8.1) 

H "  + ~o214H + e H n  3 ---- O. (8.2) 

It is clear that (8.2) is Duffing's equation whose solution is periodic. This 
solution may be written in terms of the elliptic integral which is derived below. 

Since the system for H is conservative and the solution to (8.2) is a periodic 
function with equilibrium position Hs = 0 as its center, every initial value 
problem with (H0, H~) is equivalent to the problem in which the mass is 
released from rest at either of its extreme positions. Hence, we may assume 
without loss of generality the initial condition of (Ho, 0). In this case, by 
multiplying H '  on each side of (8.2) we obtain 

H ' H '  + og~HH'  + e~tH3H ' = 0. (8.3) 
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This equation is integrated into 

(H ' )  E + O)2H H2 + ½gH H4 = C. (8.4) 

The integration constant C may be obtained from the initial condition of 
(Ho, 0) and is given by 

C 2 2 1 4 ---- 03 H H  0 + ieuHo. (8.5) 

Substituting (8.5) into (8.4) we find 

(H') E = (H~ - H~)[~o~ + ½s/~(Ho: + H:)]. (8.6) 

At this point, we use the transformation 

H = H 0 cos q~ (8.7) 

to change (8.6) into 

(¢,)2 = o2n + ~/~Ho ~ - 2~HHo' 2 sin E q~. (8.8) 

Bearing in mind the initial condition of (Ho, 0) and transformation (8.7), 
equation (8.8) can be integrated into 

~ = + 1 ~o ~ d~b = + 1 F(dp, k), 
v x/1 - k E sin E ~b v 

where 

d ] 2flR~n~ 
v = x//w~ + enHg = Z x]  1 + 3 2 ~ '  

/ _enH~0 2 / 1 
k = X/2(~o ~ + eHH~ ) = 32s ' 

2 2 + flRoHo 

(8.9) 

(8.10) 

and F(~b, k) is the elliptic integral of the first kind. The period of the finite 
amplitude oscillations is determined by 

, 

~ 1 +  o ~  g 1~ 32~ 

in which F0t/2, k) is the complete elliptic integral of  the first kind and 
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z * =  2n/ton is the period of the corresponding linear oscillator. We notice 
from (8.11) that the period of the finite amplitude oscillations depends on the 
initial condition Ho through k. This is a unique characteristic of nonlinear 
vibrations. For infinitesimal oscillation in which en = 0, we find from (8.10) 
that k =0,  v = to~,. Hence, we obtain by (8.11) 

4 ( _ ~ ) 4  ~r 2rr 
z = - - F  ,0 = - - z * .  (8.12) 

con con 2 ton 

Hence, the frequency of infinitesimal vibration is independent of the initial H0. 
This result, of course, can be easily obtained from the analysis of linear 
vibration. For the nonlinear oscillator, we may recall (8.10) for k and find that 
the normalized period z/z* in (8.11) depends on the physical parameters fl, 2s, 
and RoHo alone. This dependence is more clearly demonstrated through Fig. 
8.1 where z/z* is shown as a function of RoHo under different static stretch 2s 
for the case of fl = 0.5. It is obvious that the normalized period is a decreasing 

~, .! 

= 2.0 

-- LO 

= 0 .5  

. 25  

0 2 . 5  5 7 . 5  10 

~s0 
Fig. 8.1. Dimensionless period as a function of the initial value Rol l  o for finite amplitude 
torsional motions of  a quadratic oscillator for material ratio # = 0.5 and for selected values of 2 S. 
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function of RoHo. When RoHo~O, the nonlinear oscillator achieves its 
maximum period of  z*. Hence, the frequency of  the nonlinear oscillator is 
always greater than that of  the linear oscillator. In the mean time, for each 
given RoHo, the normalized period is an increasing function of the static 
stretch 2~. The dependence of r/z* for other values of fl is shown in Fig. 8.2 
and Fig. 8.3 with/3 = 0.05 and 1.0 respectively, z/r* as a decreasing function 
of/3 is shown in Fig. 8.3 + .  

Solution (8.9) also may be written in terms of the Jacobian function 

~b = _ snv/" = + sn(v~, k), (8.13) 

where sn x is the Jacobian elliptic function associated with the elliptic integral 
of the first kind. It is a periodic function with period of  4F(r~/2, k). Hence, the 
solution for torsion H to equation (8.2) is finally obtained as 

H = Ho cos[sn(v~, k)]. (8.14) 

. 7 5  

o 
ii[i 0 / - 

| I I 

0 2 .5  5 7 . 5  10 

R0~I 0 

Fig. 8.2. Dimensionless period as a function of  the initial value Ro l l  o for finite amplitude torsional 
motions of  a quadratic oscillator for material ratio fl = 0.05 and for selected values of  2 s. 
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Fig. 8.3. Dimensionless period as a function of  the initial value Rol l  o for finite amplitude 
torsional motions of  a quadratic oscillator for material ratio fl = 1.0 and for selected values of  2s. 

Hence, the solution H is a periodic function with period z = (4/v)F(n/2, k). 
The phase diagrams of this motion are shown in Fig. 8.4 for various initial 
conditions. The motion is symmetric about its equilibrium position located at 
the origin. Figure 8.5 is the phase diagrams of the motion under various 
values of static stretch ),s. As 2s increases, the speed H ' ( ~  decreases and hence 
the longer period, an expected property since z/z* is an increasing function of 
2s. The phase diagrams of the motion for different values of fl are shown in 
Fig. 8.6. When fl increases, the speed H ' ( ~  increases and hence the shorter 
period, another expected property since z/z* is a decreasing function of ft. We 
have seen that the normalized period of the motion is independent of the 
gyration ratio d. However, the motion itself depends on d since co w is a 
function of d as shown in (7.13). The phase diagrams of torsional motion for 
various values of d are shown in Fig. 8.7. We see that larger d produces higher 
speed and hence greater frequency or smaller period. 
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Fig. 8.3+. Dimensionless period as a function of the material ratio fl for finite ampli- 
tude torsional motions of a quadratic oscillator for initial value RoHo = 5 and for selected values 
of 2~. 
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Fig. 8.4. Phase plane diagrams of the finite amplitude torsional motions of a quadratic oscillator 
for R o = 0.Sm, ~ = 0.5, 2 s -- 0.5, d = 0.5 and for s~lected values of  the initial data (H0, 0). 
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Fig. 8.5. Phase plane diagrams of  the finite amplitude torsional motions o f  a quadratic oscillator 
for Ro = 0.Sm,/~ =0 .5 ,  d =0 .5 ,  H 0 = 4 . 5 m - '  and for selected values o f  2 s. 
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Fig. 8.6. Phase plane diagrams of  the finite amplitude torsional motions of  a quadratic oscillator 
for R 0 = 0.5 m, 2, = 0.5, d = 0.5, H o = 4.5 m -  ~ and for selected values o f /L  
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Fig. 8. 7. Phase plane diagrams of the finite amplitude torsional motions of a quadratic oscillator 
for R o = 0.Sm,/~ : 0.5, 2 s = 0.5, Ho = 4.5 m -  t and for selected values of d. 

By using (8.14) in (8.1) we find the equation for small shearing as 

K" + {a + q cos[2 sn(v~, k)l}K = g, (8.15) 

where 

1 2 1 2 a =-cozx+~laxHo, q =-i#tcHo. (8.16) 

Equation (8.15) is a special type of Hill's equation. To study its stability 
property, we proceed in two directions: (1) to study the stability of  K for 
~'<< ~; and (2) to study the stability of K for the entire time region. 

8.1. Small shearing with ~'<< z 

The Taylor's series for the Jacobian elliptic function sn x is given by 

1 + k  ~ 1 + 14kZ+k  4 1 + 135k2 + 135k'~ + k 6 
s n  x ~ X X 3 +  X 5 X 7 + . .  • 

3! 5! 7! 
(8.17) 
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for small x. If  we keep the first term of (8.17) only as an approximation and 
use it in (8.15), we find 

K" + (a + q cos 2v~K = ~,. (8.18) 

In this equation, k, as a function of  09~/, en, and H0 given by ( 8 . 1 0 ) 2  , 

disappears. However, the stability property of  K still depends on those 

parameters through v shown in (8.10)1. 
We now consider the transformation 

z =2v~" (8.19) 

in (8.18) to obtain 

d2K 
dz ~ + (6 + e cos z)K = b*, (8.20) 

where 

a q b* = ~ (8.21) 
6 = 4 v  2, e = 4 v  2, 4v ~. 

We shall now consider two special cases: (1) the motion of  the disk on a 
horizontal surface in which ~, = 0; and (2) the motion of  the disk on an 
inclined surface in which ~ ~ 0. The stability of  small shearing superimposed 
on the finite torsion will be studied for each case. 

8.1.1. Motions on a horizontal surface 
In this case, 7 = 0 and bearing in mind relations (7.14)2 and (5.3), equation 
(8.20) reduces to 

d2K 
dz 2 + (6 + e cos z)K = 0. (8.22) 

Equation (8.22), which is in the same form as (4.1) in [8], is Mathieu's 
equation whose stability property has been studied extensively, and, in 
particular, as mentioned by Stoker [8], the stable and unstable regions in the 
6, e-plane have been determined completely for all values of  6 and e. This 
6, e-plane is the stability map which can be found from Fig. 4.1 in [8]. Hence, 
the stability of  small shearing K in (8.22) is determined by computing 6 and 
e and then locating the point (6, e) in the map. We also find from (8.21), 
(8.16), and (7.12) that 6 and e are positive because qo and ql are assumed 
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to be positive. Hence, the stability of K is completely determined by Fig. 4.1 
in [8]. 

It is also shown in [8] that for large values of  5 the stable regions become 
very narrow. Hence, for large values of  e, the solution to (8.22) is more likely 
to become unstable. From (8.21), (8.16), (8.10), (7.12), and (7.13) we find 

1 62~ 2 + 32~flR~H2o 1 

6=d-~ 122~+813R~H~' 5 =  4d 213-~ + ~ l "  (8.23) 

Obviously, 5 depends on the longitudinal static stretch 2s. However, its specific 
dependence on 2~ relies on the value of the material ratio [3 = q~/qo which is 
a function of  2s by (7.2) and (7.3). Since we assume the material ratio [3 is 
small, e is also small. This will make K more likely to be stable. For a given 
material in which [3 is a fixed constant, the dependence of e on the initial 
torsion H0 and the gyration ratio d is obvious in (8.23). We find that 5 
decreases as Ho decreases. As d = Ro/Rg increases, 5 becomes smaller. Hence, 
small initial torsion Ho and small disk radius R d = x//~Rg, which produces small 
5, tend to stabilize shearing motion for the disk on a horizontal surface with 
/'<< z. However, the exact stability property of  K still depends on the location 
of  (6, 5) on the stability map. 

8.1.2. Motions on an inclined surface (~ ~ O) 
In this case, the motion-of small K is governed by (8.20). Problems like this 
are usually treated by the perturbation method. We shall first use this 
approach as outlined in [8] to study its stability property for small 5. When 5 
is small, we may assume that the solutions K(z, 5) of (8.20) as well as 6(e) can 
be expanded in series of  powers of  5 as follows: 

K = K 0 + s K I  +52Kz+  ' ' ' ,  (8.24) 

6 = 6 0 " ~ 3 ( ~  I - ' { -52 (~  2 - [ -  " " " . (8.25) 

This small 5 can be interpreted as a weak nonlinearity with small ft. The 
relation between e and fl can be found in (8.23)2. Inserting (8.24) and (8.25) 
in (8.20) yields the following relation: 

dEgo d2Kl 2 d2K2 ) 
-d~-z~ +5-~rz~ + 5  -~-z~ + . . .  +[(6o+~6,  +5~6~+ .- .) + 5  cosz] 

× (Ko + eKl + 52K2 +" • ") = b*. (8.26) 
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To satisfy this equation, the following equations obtained by equating the 
coefficients of  like powers of  e on both sides of  (8.26) must hold: 

d2Ko . . . .  
~ z  ~ + Oor~o = b*, (8.27) 

d2K~ 
d~,2 + 6oK1 = - - ( ~ l K o  - Ko cos z, (8.28) 

d2K2 + 6oK2 = -~zKo - 6~K~ - K~ cos z. (8.29) 
dz 2 

Hence, we find from (8.27) 

b* 
Ko = ~o + hi cos x/~0z + h~ sin w/~oZ, (8.30) 

where hi and h2 are integral constants. To obtain bounded solution for K1 in 
(8.28), 6o must be zero. This will lead to an unbounded solution for Ko. 
Hence, if the perturbation method is applicable, we find that for small e, the 
small shearing on an inclined surface is unstable for /'<< z. Physically, this 
unstability is attributed to the coupled motion between shearing and torsion. 
When ~ ~ 0, due to the gravitational effect, the energy stored in finite torsion 
is easily transported to shear motion. However, we should point out that all 
the conclusions in this section are valid only for /'<< z and are based on the 
perturbation method. We will address the accuracy of  this approach later by 
numerical examples. For the moment, we shall explore the stability property 
of  small shearing for the entire time region and then address the validity of  the 
assumption of  ~'<< z used in this section. 

8.2. Small shearing in the entire time region 

The approach used by Beatty and Bhattacharyya [4] in the study of the 
Poynting oscillations of  a rigid disk supported by a neo-Hookean rubber is 
adopted here to study the stability property of  small shearing for the entire 
time region. We shall begin with the governing equation (8.15) as 

K" + [a + q cos 2q~]K = ~ (8.31) 

and introduce the transformation (8.9) 

/.= 1 ~ dq, (8.32) 
v Jo x//l _ k 2 sin 2 @ 
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Hence, we find 

dq~ = v x / 1  _ k2 sin 2 ¢, 
d/" 

(8.33) 

d2~b -v2k  2 sin ~b cos ~b. 
d ~ 2 -  (8.34) 

Since 

dK d K d ¢  dEK dEK{d¢']2 dKd2~b 
d~" - d~b d / "  ~ - 0¢  2 \ d~',] + - ~  ~ '  

(8.35) 

the transformation (8.32) reduces equation (8.31) to 

d2K + 2P(~b) d ~  + R(¢)K = g~ (¢), 
de  2 

(8.36) 

where 

1 k 2 sin ¢ cos ~b 
P( tk)= 2 1 - k  2sin 2¢  ' (8.37) 

v2r(1 - k~K sin 2 tk) (8.38) 
R(¢) = v2 ( 1 - k 2 sin 2 ¢) ' 

gl(¢)  - vZ(1 _ k 2 sin 2 ¢ ) .  (8.39) 

Parameters v and k are given by (8.10), and two new parameters, v~: and kx, 
are defined through (8.16) and are given by 

vr = x/~o~ + #~:H~ ~/~ ~ . - ~ - - -  
2flR~H~ (8.40), 

/ bt~cHo 2 ~ 1 (8.40)2 

= 1 +  
2s 

flRoHo 

Using the substitution 

o .(_fo (8.41) 
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in (8.36), we obtain the equation of  motion in the form of  

- -  + D(¢)y = g2(~b), (8.42) 
d e  2 

where 

D(¢) = R(~b) - pE(¢) dP(¢)  
d e  ' (8.43) 

g2(¢) = g, (¢) exp(fO (8.44) 

Using (8.37) in (8.41) yields 

K = Y (8.45) 
(1 - k 2 sin 2 q~) 1/4" 

This is the specific form of  the transformation we used in reducing (8.36) to 
(8.42). Using (8.37), (8.38), and (8.39) in (8.43) and (8.44), we find 

vE~( 1 - k~ sin 2 ~b) 
D(¢) - v2(1 _ k2 sinE ¢) 

k2( 1 + sin 2 ~b) 3k 2 cos 2 ¢ 
+ (8.46) 

4 ( 1 - k  2sin E¢) 4 ( 1 - k  Esin 2 ¢ )2 '  

g2(¢) = rE(1 _ k 2 sin 2 4 ) 3 / 4  • (8.47) 

Hence, D(¢) and g2 (¢) are even periodic functions of  ¢ of  period n. For  the 
motion of  the disk on the horizonal surface with 7 = 0, we find from (7.14)2 
and (5.3) that g2(¢) = 0. In this case, (8.42) is called the Hill's equation. In 
the following, we shall proceed in two directions: (1) to study the stability of 
the horizontal motion; and (2) to study the stability of  motion of  the disk on 
an inclined surface. 

8.2.1. Motions on a horizontal surface 

In this case, the equation of  motion (8.42) reduces to 

D(¢)y = O. (8.48) 



148 Z. Zhou 

This equation is in the same form as equation (7.11) in [4]. Using the 
Floquet's theory outlined in [9] and a stability criterion developed by Bhat- 
tacharyya [10], Beatty and Bhattacharyya [4] studied the stability property of  
the Poynting oscillations of a rigid disk supported by a neo-Hookean rubber 
shaft. In this section, we shall adopt the same approach and techniques used 
in [4] to discuss the stability property of Hill's equation (8.48) with D(~b) given 
by (8.46). 

According to Beatty and Bhattacharyya [4], we shall expand the even 
periodic function D(~b) in (8.48) into Fourier series over [0, r~]: 

D ( ~ ) =  ~ b,,e 2mi~, (8.49) 
m ~  - - ~  

where b,~ = b_,~ are constants and i = x / - ~ .  If  we write (8.49) in terms of  the 
cosine function, we have 

D(t~) = bo + 2b~ cos 2~b + 2b2 cos 4tk + 263 cos 6~b + .  • •. (8.50) 

Hence, the coefficients b,, may be obtained through 

bm =-1 D(~b) cos 2m~b d~b, rn = 0, 1, 2 . . . . .  (8.51) 

By the Floquet's theory we may write the solution to (8.48) in the form 

y = e ~ ~ a m e 2"i~, (8.52) 
m ~  - - o ~  

where am are unknown constants. The stability of  solution (8.52) hence is 
entirely determined by the stability index (. By substituting (8.49) and (8.52) 
into (8.48), we obtain the following infinite set of  linear algebraic equations 
for the constants a,, : 

(~ -F 2im)2am d- ~ bpa,,,_p = 0, (m . . . . .  - 1, 0, 1 . . . .  ). (8.53) 
p =  - - o ~  

To obtain a nontrivial solution of  (8.53), the determinant of the infinite 
coefficient matrix of  a,~ must vanish. We apply the same technique used by 
Beatty and Bhattacharyya in [4] to divide the m-th row by b 0 - 4 m  2 
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(bo ~ 4m 2) in securing its convergence and obtain the Hill's infinite determi- 
nant: 

A(iO = 

( i ~ + 2 ) ~ - b 0  bl b~ 
22-bo  2 : - b o  22-bo  

b~ (iO~-bo b~ 
02-bo 02-bo 02-bo 

b~ b~ ( ~ - 2 ) ~ - b o  
22-bo  - 2 2 - b o  22-bo  

= 0. (8.54) 

On the other hand, it is shown in [9] that 

A(i() = A(0) - sin2(in(/2) c o s 2 ( ~ 0 / 2 ) ,  (8.55) 

where A(0) = A(i0[¢= o. Hence, we obtain from (8.54) and (8.55) 

sin(#r(/2) = + A x / ~  sin(nx/~o/2 ). (8.56) 

At this point, we may recall a stability criterion developed by Bhattacharyya 
[10]: I f  A(0) and bo have opposite sign, then ( is a nonzero real-valued quantity; 
and hence, the solution (8.52) of Hill's equation (8.48) is unstable. I f  A(0) and 
bo are real-valued and have the same sign, the solution of (8.48) is stable if  and 
only if 

[sin(in(/2)[ = [ A x / ~  sin(nx/~o/2)[ ~< 1. (8.57) 

Since K and y are related through (8.45), the stability of small shearing is then 
entirely determined by the stability of y. Hence, in the following, we shall look 
at the stability property of y under different values of the physical parameters. 
This, of course, has to be accomplished through the numerical method. 

We shall start with the Fourier series of D(~b) given by (8~49) or (8.50). The 
even periodic function D(~b) of period ~ given by (8.46) contains parameters 
k ~, k~¢, and v~/v 2. By (8.40) and (8.10) we find 

1 
k 2 - (8.58) 

32s ' 
2 + - -  2 2 flRoHo 
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1 
k2~ - , (8.59) 

2~ 
l + - -  

/3R n o 

v~ 1 62~ + 62s/3R~H~o 
- - ~  

v 2 a 2 3L  + 
(8.60) 

Hence, D(~b) is a function of the following parameters: 2s, the static longitudi- 
nal stretch; /3, the material ratio defined by (7.14)1; d, the gyration ratio 
defined by (6.7); Ro the radius of the rubber cylinder; Ho, the initial torsion 
of  the cylinder. It has been found through numerical calculation that the 
product RoHo provides more physically meaningful results than that of  the 
case where Ro and H0 are treated as separate parameters for the stability 
property of y. Hence, we shall conduct our numerical computation for the 
wide range of  values of four physical parameters: 2s, fl, d, and RoHo. Among 
these four parameters, 2s, fl, d, and Ro are positive. It is possible to have 
negative initial torsion H0. However, since H(t) is periodic and any negative 
initial torsion is equivalent to its corresponding positive H0, we may assume 
without loss of generality that Ho is positive. 

We shall now decide the possible values these four parameters may assume. 
For static longitudinal stretch 2~, the spring is pre-compressed if.0 < 2s < 1 
and is pre-extended if ~s > 1. When 2~ = 1, the rubber spring is in its natural 
state. Hence, we may choose 2~ = 0.5, 1, and 2. For the material ratio /3 we 
find from (7.14)1 and (7.9) through (7.13) that the motion is linear when 
/3 = 0. Larger values of/3 correspond to stronger nonlinearity. Typically, we 
may choose/3 = 0.05, 0.5, and 1. For gyration ratio d defined by (6.7), we find 
that d --- x/~Ro/Rd, where Rd is the radius of  the disk. When the cylinder has 
the same radius as the disk, d = x/~. Generally, Ro < Rd. Hence, we may 
choose d = 0.3, 0.5, 1, and x/~. Since Rol l  o is positive, we may give some 
estimate on the possible large values it may assume. For a large cylinder of  
radius of  0.2 meter and of length 1 meter under an initial stretch 2s = 0.2, we 
find from (3.1) that an initial angle of  twist of  2n (360 °) corresponds to 
RoHo = 6.28. Hence, it is reasonable to assume that the possible value of 
parameter RoHo is in the range of (0, 10). According to this estimate, we 
conducted numerical calculations of the stability property of y for the 
following range of values of the four parameters: 

2s ~ [0.2, 4], /3 ~ [0.05, 2], d e [0.01, 10], RoHo e [0.01, 10]. (8.61) 

We see that the range we chose is much more than that likely to occur in a 
physical problem. By the stability theory briefed above, the following results 
have been observed from the numerical calculation: 
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1. The coefficients b,, in (8.51) for the Fourier series of D(~b) in (8.50) 
converges extremely fast for all values of  (8.61). This implies that one may use 
the first few terms in (8.50) in approximating D(~b). This will greatly reduce 
the amount of  work in calculating the Hill's infinite determinant (8.54). 

2. For larger 2s, smaller/3, and smaller RoHo, the function D(~b) tends to 
become a positive constant independent of  ~b. The dominant term in (8.50) for 
this case is bo with b,, << bo for m ~> 1. By (8.58) and (8.59) we find that larger 
2s, smaller/3 and RoHo correspond to smaller values of  k and k~. We indeed 
found under this situation that k and kK are almost zero. Hence, we obtain 
from (8.46) that D(~b)~ vZ~/v 2, a positive constant. In this case, by (8.48), 
(8.45), and (8.32) we find 

K"÷ v~K = 0. (8.62) 

Hence, the shearing motion is simple harmonic and hence stable. From ( 8 . 40 )1  

we see that the frequency response vK depends on the initial torsion Ho due to 
the nonlinearity of  the spring. When ql = 0, a case of  linear motion, we find 
# r  = 0 and vx = cox, the frequency for linear spring which is independent of  
the initial condition Ho. 

3. When 2s gets smaller,/3 and RoHo get larger, and the Fourier coefficient 
b~ in (8.50) gets larger. However, we still find bm << bo, bj for m ~> 2. Hence, 
the dominant terms in (8.50) are bo and b~. With these observations we may 
conclude that for all values of  the four parameters given by (8.61), the 
dominant terms of  the Fourier series for the function D(q~) are the first two 
terms in (8.50). We indeed found that the first two terms in (8.50) give a good 
approximation for D(~b) for ~b e [0, rc]. 

If we just keep the first two terms in (8.50) as an approximation for D(~b), 
then 

D(~b) = b0 ÷ 2bj cos 2~b. (8.63) 

Hence, (8.48) becomes Mathieu's equation whose stability property has been 
studied extensively. At this point we realize that although the stability study 
in Section 8.1.1 needs the condition of  ~'<< ~, nevertheless, the conclusion is 
qualitatively correct for the entire time region since the shearing motion is 
indeed governed by an equation which is very close to Mathieu's equation. 

After these preliminary computations, we are now ready to construct the 
stability map, a class of  boundary curves in the parameter space separating 
the stable regions from the unstable ones, for small shearing motion. Al- 
though the Fourier series of  function D(~b) is dominated by the first two terms, 
we choose the first nine terms in our numerical calculation following Beatty 
and Bhattacharyya's approach [4]. Hence, the Hill's infinite determinant A(0) 
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is calculated by using nine central rows and columns in (8.54) for ~ = 0. Then 
we use the stability criterion developed by Bhattacharyya [10] to construct the 
stability map. Following the steps outlined by Beatty and Bhattacharyya [4] 
and inspired by the stability map in [8], we choose lid and RoH0 as the 
coordinates for the stability map. Hence, for a given material ratio fl and a 
given longitudinal static stretch 2s, the stable region is obtained by finding the 
boundary curves in 1/d-  RoHo space. The stability maps for fl = 0.5 and 
~.~ = 0.5, 1, 2 are provided in Figs. 8.8-8.10 according to the stability criterion 
developed by Bhattacharyya [10, 4]. The shaded area represents the unstable 
region. From there we find: 

1. The stability map for y, and hence for shearing K, resembles the stability 
map for Mathieu's equation in Fig. 4.1 of [8]. This can be explained from two 
aspects. First, the differential equation (8.48) is essentially a Mathieu's 
equation for the values of parameters given by (8.61). Second, we find from 
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Fig. 8.8. Stability map of small shearing motion on the horizontal smooth surface coupled with 
finite amplitude torsional vibrations of a quadratic oscillator for/~ = 0.5 and 2s = 0 . 5 .  The shaded 
areas are the unstable regions. 
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(8.23) that for fixed fl and 2s, 6 is proportional to 1/d and e is proportional 
to RoHo . Hence, the stability map of (8.48) on 1/d - RoHo space should have 
similar structures as that of Mathieu's equation (8.22) given by Fig. 4.1 in [8]. 
This resemblance also indicates that l i d  and Roll  o are good choices for the 
coordinates of the stability map. 

2. Despite the resemblance, significant differences exist between the two 
maps. For Mathieu's equation, the stable regions are connected at the points 
6 = n2/4, ~ = O, n an integer. However, the stable regions for equation (8.48) 
are connected at the points l i d  = nC(2s), RoHo = 0, where n is an integer and 
C(2s) is a function of 2s alone. C(2~) has a value of 1, 0.707, 0.5 for 2~ = 0.5, 
1, 2, respectively. Other values of C under.different 2s are shown in Fig. 8.11. 
We notice that C(2s) is a decreasing function of 2s. It approaches ~ as 2s -~ 0. 
When 2s-* ~ ,  it slowly approaches 0. We should point out from the numer- 
ical calculation that function C(2~) shown in Fig. 8.11 is a universal one 
regardless of the material ratio fl and hence is valid for all quadratic materials. 
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Fig. 8.9. Stability map of  small shearing motion on the horizontal smooth surface coupled with 
finite amplitude torsional vibrations of  a quadratic oscillator for ~? = 0.5 and 2~ = 1.0. The shaded 
areas are the unstable regions. 
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Fig. 8.10. Stability of small shearing motion on the horizontal smooth surface coupled with finite 
amplitude torsional vibrations of a quadratic oscillator for fl = 0.5 and 2s = 2.0. The shaded areas 
are the unstable regions. 

To see the effect of the material ratio fl, we construct the stability map 
shown in Fig. 8.12 for /3 = 0.05, 0.5, 1.0 and for 2s = 0.5. We find that the 
unstable region gets bigger as/3 increases. This confirms our expectation since 
larger/3 means stronger nonlinearity. Although the boundary curves on the 
map vary as /3 changes, the connecting points of the stable regions do n o t  
change, a universal property discussed in the previous paragraph. 

We are now ready to see some applications of the stability maps. The first 
numerical integration of equations (8.1) and (8.2) for the motions of a 
circular disk on a smooth horizontal surface is conducted for the case of 
d = 1.0 and RoHo = 2.5. Other parameters are/3 = 0.5 and 2s = 0.5. This point 
clearly falls into the unstable region on the stability map Fig. 8.8. The motions 
of the disk starts from (Ho, H~) = (5, 0) and (Ko, K~) --(0.5, 0). Figure 8.13 
shows that while the finite torsional motion keeps its constant amplitude, the 
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Fig. 8.11. Universal C(2s) function of  the stability property of  small shearing motion on the 
horizontal smooth surface coupled with finite torsion of  a quadratic oscillator. 

small shearing motion builds up and diverges to infinity. The energy which 
drives the shearing motion to infinity, of course, comes from the torsional 
motion due to the coupling between the two equations. If we keep all the 
other physical parameters unchanged and switch d to d = 2.0, a point falling 
into the stable region on the stability map, the result is shown in Fig. 8.14. We 
see that both the torsional and shearing motions of the disk are constant 
periodic oscillations independent of each other. The stable motions do not 
interact with each other and no energy exchange is involved. These two 
examples support and demonstrate the validity of the stability maps developed 
from Bhattacharyya's Stability Criterion [10]. 

We also remember that equations (8.1) and (8.2) are approximations of the 
general governing equations (7.9) and (7.10) by assuming small shearing 
motion. In reality, the shearing motion cannot reach infinity, even when the 
physical parameters fall into an unstable region. Figure 8.15 shows the 
numerical integration of equations (7.9) and (7.10) for the same physical 
parameters used in Fig. 8.13. The small shearing motion is unstable, its 
amplitude builds up significantly compared with its initial position, reaches to 
a certain extent and then drops. In the meantime, the amplitude of torsional 
motion drops while K(t') builds up and returns to its original magnitude as K(~ 
drops. This clearly shows the energy exchange between two different phases of 
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Fig. 8.12. Stability map of small shearing motion on the horizontal smooth surface coupled with 
finite torsion of a quadratic oscillator for )-s = 0.5 and for various values of/~. - -  : / /=  0.05, 
--- : fl =0.5, - -  . . . . .  :fl = 1.0. 

the mot ions  o f  the disk. The effect o f  coupling and the beating phenomenon  

o f  the mot ion  is apparent  in Fig. 8.15. 

On  the other  hand,  the exact solution o f  (7.9) and (7.10) for the stable 

oscillations shows no difference f rom that  obtained f rom (8.1) and (8.2), 

which is shown in Fig. 8.14. 

8.2.2. M o t i o n s  on an inclined surface 

In this case, we shall look at equat ion (8.31) whose coefficients a and q are 
given by (8.16) and (7.12): 

2 2 
~ 2 f l R o H o  

q =- 5#KHo = 2~ ' (8.64) 

~ R o H  o 2 2 1 2 2 2 2 
a = co x + ~/~cHo = ~ + ~ - + q. (8.65) 

2s 2s 
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Fig. 8,13. Fini te  tors ion and  small  shear ing  m o t io ns  o f  a quadra t ic  oscil lator on s m o o t h  
hor izonta l  surface with fl = 0.5, ~-s = 0.5, d = 1, R o l l  0 = 2.5. This  poin t  falls into  uns tab le  region 
on  the stabili ty m a p  in Fig. 8.8. 

Hence, both a and q are functions of  the material constant ft. If  fl is small, a 
case of  weak nonlinearity, q is also small. Hence, we may again use the 
perturbation method outlined in §8.1.2 to explore the stability property of  the 
motion. The conclusion is apparent and the motion on the inclined surface in 
all cases is unstable. In the meantime, we also notice that the only difference 
between the motion on the horizontal suface and that on the inclined surface 
is the constant gravitational force in the shearing equation. One may expect 
that the conclusions about these two situations should be close to each other, 
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Fig. 8.14. Finite torsion and small shearing motions o f  a quadratic oscillator on smooth  
horizontal surface with ~ = 0.5, 2+~ = 0.5, d = 2, RoH0 = 2.5. This point  falls into a stable region 
on the stability map in Fig. 8.8. 

although the constant forcing term sometimes may cause significant complex- 
ity. With this in mind, we conducted numerical integrations of equations (8,1) 
and (8.2) for several values of  the parameters, Figure 8.16 is the solution for 
the case of  fl = 0.5, 2+, = 0.5, d = 1, RoHo = 2.5. This point falls into the 
unstable region on the stability map in Fig. 8.8 for horizontal motion. The 
equilibrium position of K~ can be easily obtained from (8.1) which gives 
~o~:Ks =~ .  The numerical integration is conducted for Jr(+ = 0.6 with initial 
data of (Ho, H'o)=(5,0) and K0, K S ) = ( 1 , 0 ) .  The small shearing motion 
diverges. The exact solution to (7.9) and (7.10) in this case is shown in Fig. 
8.17 where the coupling and the beating are apparent, This example shows 
indeed the motion on the inclined surface is unstable. 
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Fig. 8.15. Exact solutions of  torsion and shearing motions computed from (7.9) and (7,10) for 
the unstable quadratic oscillator on the smooth horizontal surface with fl = 0.5, 2~ = 0,5, d. = 2, 

Roll  o = 2.5. The energy exchange is apparent. 

If we keep all the physical parameters and only change d to d = 0.35, a 
point falling into the stable region on the stability map in Fig. 8.8 for 
horizontal motion, we obtain the numerical solution of (8.1) and (8.2) shown 
in Fig. 8.18. Though the perturbation method predicted a divergent solution, 
the amplitude of oscillatory K(~ does not go to infinity. We do see in Fig. 
8.18 some build up on the amplitude of the shearing oscillation. However, the 
motion is essentially under control and exhibits beating phenomenon. The 
corresponding exact solutions of (7.9) and (7.10) in this case do not show 
significant difference. This example shows that the perturbation method 
does not necessarily provide valid answers to the stability problems in all 
situations. 
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Fig. 8.16. Finite torsion and small shearing motions of  a quadratic oscillator on the inclined 
surface with fl = 0.5, 2 s = 0.5, d = 1, R0H 0 = 2.5, and K~ = 0.6. This point falls into an unstable 
region on the stability map  in Fig. 8.8 for horizontal motion. 

9. Stabi l i ty  o f  smal l  tors ion  super imposed  on finite shearing 

For small torsion superimposed on finite shearing, the governing equations 
for the disk may be obtained by dropping the nonlinear terms in H in (7.9) 
and (7.10). Hence, we find for K and H 

K" + co~K + ~ x K  3 = ~,  (9.1) 

H" + o92nH + # n H K  2 = 0. (9.2) 
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Fig. 8.17. Exact solutions of  torsion and shearing motions computed from (7.9) and (7.10) for 
the unstable quadratic oscillator on the inclined surface with Ks = 0.6, fl = 0.5, 2~ = 0.5, d = 2, 
Roll o = 2.5. Notice the energy exchange. 

At  this point,  it is apparent  that  we shall pursue in two directions: (1) the 

mot ion  on the horizontal  surface; and (2) the mot ion  on the inclined surface. 

Each case will feature different solutions for finite shearing K and the stability 

properties for small torsion H. 

9.1. Motion o f  the disk on a smooth horizontal surface 

In this case, equat ion (9.1) for the shearing reduces to 

K" + ~o2~K + eK K3 = 0. (9.3) 
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Fig. 8.18. Finite torsion and small shearing motions of a quadratic oscillator on the inclined 
surface with/~ = 0.5, 2 s = 0.5, d = 0.35, R0H o = 2.5, and Ks = 0.6. This point falls into a stable 
region on the stability map in Fig. 8.8 for horizontal motion. 

This  is again  Duffing 's  equa t ion  whose closed form solut ion m a y  be ob ta ined  

in a s imilar  way  to tha t  used in §8. By assuming the init ial  cond i t ion  o f  (K0, 0) 

for  K and  using the t r ans fo rma t ion  

K = K0 cos ~k, (9.4) 

the closed form solu t ion  o f  (9.3) is found  to be 

i ~  d~b 1 
~,= _+1 = _ + - F ( 0 ,  x ) ,  ( 9 . 5 )  

v V/1 _ x2 sin 2 q~ v 
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where 

v = x/~ozr + eKK~ = ~ /~  [1 + flKo~], 

/ _~KK~ _ /  1 

~=q2(~o~.+gKK~) ~/2 2 ' 

(9.6)~ 

and F(~O, x) is again the elliptic integral of the first kind. The solution given by 
(9.5) for travel t ime/ 'has a period of z = (4/v)F(n/2, x) in which F(n/2, x) is 
the complete elliptic integral of the first kind. It is clear that the period of the 
finite amplitude oscillations depends on the initial condition K0. Similarly, we 
may find the period of the shearing motion in the form of 

) "C ~ - -  ~ g  --~Z ~ - - Z *  
V 

x/ + n 1+ o)-~-~ 

(9.6)2 

where z* = 2n/~OK is the period of the corresponding linear oscillator. We see 
that the normalized period r/z* depends on fl and K0 only and is independent 
of the static stretch 2s. The dependence of r/z* on fl and K 0 is demonstrated 
through Fig. 9.1 where r/r* is plotted as a function of Ko for various values 
of ft. For all values of r, the normalized period of the motion is a decreasing 
function of the initial shearing Ko. When fl increases, the nonlinearity of the 
material gets stronger, and z/r* decreases. It is not difficult to see from (9.6)t 
and (9.6)2 that when fl-~0, the material becomes linear, and z / z*-~l ,  as 
expected. 

Solution (9.5) may also be written in terms of the Jacobian function 

~ = _+ snv/ '= _+sn(v~, ~). (9.7) 

Hence, the solution for finite shearing to equation (9.3) is given by 

K = Ko cos[sn(v~, x)]. (9.8) 

Thus, the shearing motion K is a periodic function with period z-- 
(4/v)F(n/2, x). The phase diagrams of the motion are shown in Fig. 9.2 for 
various values of the initial shearing K0. The finite shearing motion on the 
horizontal surface is symmetric about the equilibrium position, similar to that 
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Fig. 9.1. Dimensionless period as a function of the initial shearing K o for finite amplitude 
shearing motions of a quadratic oscillator on a horizontal smooth surface for selected values 
of/~. 

of the torsional motion in Chapter 8. Figure 9.3 is the phase diagrams of the 
motion under various values of static stretch 2s. As 23 increases, the speed 
H ' (~  decreases and hence longer period. The phase diagrams of the motion 
for different values of/3 are shown in Fig. 9.4. When/3 increases, the speed 
H ' (~  increases and hence shorter period, an expected property since ~/z* is a 
decreasing function of fl shown in Fig. 9.1. The finite shearing motion is 
independent of the gyration ratio d, a property can be seen from (7.12). 

By using (9.8) in (9.2) we find the equation for small torsion to be 

H" + (a + q cos 2~)H = 0, (9.9) 

where q~ is given by (9.7) and 

1 2 1 2 (9.10) a =~o2n + ~#nKo, q =- ~#nKo. 
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Fig. 9.2. Phase plane diagrams of  the finite amplitude shearing motions of  a quadratic oscillator 
on the horizontal smooth surface for ~ = 0.5, 2 s = 0.5, and for selected values of  the initial data 
(K o, 0). 
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Fig. 9.3. Phase plane diagrams of  the finite amplitude shearing motions of  a quadratic oscillator 
on the horizontal smooth surface f o r / / =  0.5, K o = 4.5 and for selected values of 2 s. 
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Fig. 9.4. Phase plane diagrams of  the finite amplitude shearing motions of  a quadratic oscillator 
on the horizontal smooth  surface for 2 s = 0.5, Ko = 4.5 and for selected values of  ft. 

Equation (9.9) is identified as Hill's equation. Hence, the dynamical behavior 
of small torsion is similar to that of small shearing in Chapter 8. The same 
techniques may be used in exploring the stability properties of small H under 
different parameters and different initial conditions. First, we would like to 
look at the solution for ~'<< z. 

9.1.1. Small torsion for/'<< z 
In following §8.1, by using the first term of the Taylor's series for the Jacobian 
elliptic function, equation (9.9) is reduced to 

H" + (a + q cos 2vt")H = O. (9.11) 

By using the transformation 

z =2v/" (9.12) 

in (9.11) we obtain 

d2H 
~ z  2 + (6 + e cos z )H  = O, (9.13) 



where 
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a q (9.14) 3 = 4V2, e = 4V 2. 

Here we again obtain the famous Mathieu's equation whose stability property 
is determined by locating the point (3, e) in the stability map. In order to find 
the dependence of the stability property of small H on the physical parame- 
ters, we use (9.14), (9.10), (9.6)1, and (7.13) to find 

d 2 d:flKo flKo 6 
6=~-~, e -82s( l+f lK~)=61+f lK~-  1 (9.15) 

1 + - -  

It is clear that small fl which corresponds to weak nonlinearity produces small 
e. According to the stability map in [8], the small torsion in this case is more 
likely stable. It is also true that the small initial shearing Ko tends to stabilize 
the torsional motion. When d =- Ro/Rg increases, e becomes larger. Hence, for 
a fixed Ro of the rubber cylinder, the larger inertia of the disk tends to 
stabilize the torsional motion. This conclusion matches our experience. We 
recall the discussion in §8.1.1 and remember that the conclusion of e on d for 
small shearing is the opposite. 

9.1.2. Small torsion for all ~ 
For the torsional motion in the entire time region, we may 
approach outlined in §8.2 to introduce the transformation 

follow the 

/ .= 1 f *  d~b 

v Jo ~ /1  - x 2  sin 2 ~b 

in reducing equation (9.9) to 

(9.16) 

d2H 2 dH 
~ + P(~k) ~ + R(~b)H = O, (9.17) 

where 

1 x2 sin ~/ cos $ 
P($) = - - -  

2 1 - x 2 s i n  25 , 
(9.18) 

v ~ ( 1 - ~ ~ sin 2 $) 
R($) - v2 (1 ~2 sin 2 ~b) (9.19) 
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Parameters v and x are given by (9.6)1, and two new parameters, vn and xn, 
are defined through (9.10) and are given by 

d x/1 + 2/3K~, (9.20) ~,, = J ~ ,  + ~.K~ = ~ 

/ ~"/¢°~ ~ -~l = i 
(9.21) 

Using the substitution 

H = y P(~b) dq~) (9.22) 

in (9.17), we obtain the equation of motion in the form 

d2y 
d~ 2 + D(~g)y --- 0, (9.23) 

where 

t~(¢) = R(~0) - P2(¢) d~'(q,) d~0 ' (9.24) 

Again using (9.18) in (9.22) yields 

H =  Y 
(1 - x 2 sin 2 ~)~/4, (9.25) 

which is the specific form of the transformation we used in reducing (9.17) to 
(9.23). Using (9.18), and (9.19) in (9.24) we find 

v~( 1 - xz~ sin ~ ~O) xz( 1 + sin z ~b) -t 3x ~ cos z ~b (9.26) 
D(~b)- vz(1 x zsin ~b) - 4 ( 1 - x  2sin ~b) 4 ( 1 - x  2sin ~k) z" 

We see that the small torsional motion coupled with the finite shear has 
exactly the same mathematical structure as that of small shearing coupled 
with finite torsion studied in §8.2. The only differences between these two 
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problems are the parameters x, x , ,  v, and vn. Through the previous relations, 
we find that 

1 

2 
,BKo 2 

(9.27) 

1 
x~r = 1 ' (9.28) 

1 + - -  
2/3Ko ~ 

vZn d 2 l+2/~Ko 2 
v ~ = 22s(1 +//KoZ) " (9.29) 

Here we again follow Beatty and Bhattacharyya's approach [4] outlined in 
§8.2 to conduct the stability analysis through numerical calculation. Using the 
stability criterion developed by Bhattacharyya [10], we conducted numerical 
calculations for a wide range of parameters 

2s e [0.2, 2], fl ~ [0.05, 1], d e [0.01, 10], K0 ~ [0.01, 10]. (9.30) 

In constructing the stability maps, we found that the Fourier coefficients for 
the function D(~) converge very fast. For all values of (9.30), only the first 
two terms are significant. This demonstrates that small torsional motion is 
governed by an equation similar to Mathieu's equation. Nevertheless, we use 
the first nine terms of the Fourier approximation for function D(~b) for the 
sake of consistency. 

Based on this condition, the stability maps for fl = 0.5 and for selected 
values of 2s are obtained as shown in Figs. 9.5-9.7. The stability maps are 
constructed by indicating the unstable regions in the d - K0 plane. It has been 
seen that the stable regions are disconnected from each other. When 2s 
increases, the unstable regions expand and shift in the positive d direction. To 
see the effect of r ,  we plotted the unstable regions for fl = 0.05, 0.5, 1.0 in 
Fig. 9.8. Although the unstable region shifts, larger fl which corresponds to 
stronger nonlinearity does not produce significant larger unstable region. 

. 

We are now ready to show some numerical applications of the stability map 
established for small torsional motion coupled with finite shearing. Figure 9.9 
shows the result of numerical integration of equations (9.2) and (9.3) for 
fl = 0.5, 2s = 2.0, d = 2.0, K o = 5.0, R0 = 0.5m. This point falls into the unstable 
region on the stability map in Fig. 9.7. The numerical solution is obtained for 
the initial data (K o, Kr) = (5, 0) and (H0, H~) = (0.5, 0). We see, as expected, 
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Fig. 9.5. Stability map of small torsional motion on the horizontal smooth surface coupled with 
finite shearing of  a quadratic oscillator for fl = 0.5 and 2s = 0.5. The shaded areas are the 
unstable regions. 

that the small torsional motion diverges to infinity while the finite shearing 
keeps its constant amplitude oscillations. The corresponding exact solution of 
equations (7.9) and (7.10) for the same physical parameters is shown in Fig. 
9.10. Instead of seeing the divergent solution for H(t"), we find the nonlinear 
coupling and the energy exchange between two different parts of the motions 
as well as the beating phenomenon. 

In keeping all the physical parameters used in Figs. 9.9 and 9.10 except 
switching d to d = 1.0, Fig. 9.11 shows the numerical solutions of (9.2) and 
(9.3) with (d, K0) falling into the stable region on the stability map in Fig. 9.7. 
The small torsion and the finite shearing are independent of each other. The 
numerical integration of (7.9) and (9.10), of course, generates the same 
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Fig. 9.6. Stability map of small torsional motion on the horizontal smooth surface coupled with 
finite shearing of a quadratic oscillator for ]~ = 0.5 and '~s = 1.0. The shaded areas are the 
unstable regions. 

solut ion as shown in Fig. 9.11. These two examples  demons t ra t e  the validity 
o f  the stability m a p s  and  suppor t  again  Bha t t acha ryya ' s  Stability Cri ter ion 

[10]. 

9.2. Motion of  the disk on an inclined surface 

For  mot ions  o f  the disk on an inclined surface with ~ # 0, the governing 
equat ions  are (9.1) and  (9.2). The  equi l ibr ium posi t ion o f  the disk can be 
established f rom (9.1) and (9.2) as 

og~:K~ + @ K  3 = ~ ,  H~ = 0 ,  (9.31) 
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Fig. 9. 7. Stability map of small torsional motion on the horizontal smooth surface coupled with 
finite shearing of a quadratic oscillator for fl = 0.5 and 2 s = 2.0. The shaded area is the unstable 
region. 

where Ks is the equilibrium static shear deflection. By multiplying K' on each 
side of (9.1) we obtain 

K ' K "  + co~xK'K + eKK 'K  3 - if, K" = O. (9.32) 

For finite shearing motion, we assume in this case that the disk starts its 
motion from the most general initial position of (Ko, K~). Hence, equation 
(9.32) is integrated into 

•/ ~K 
K ' =  +__ - - ~ f ( K ) ,  (9.33) 
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Fig. 9.8. Stability map of small torsional motion on the horizontal smooth surface coupled with 
finite sheafing of a quadratic oscillator for 2s = 2.0 and for various values of//. --- : ~ = 0.05, 
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where  

4 2 4~ 
f ( K )  = K + -z K 2 - - -  K - - -  

P gK 

T h e  ma te r i a l  ra t io  

4 C  (9.34) 
~K 

etc _ q~ (9.35) 
/~ co~ q0 

was first i n t r o d u c e d  in  (7.14)~, a n d  the  energy  c o n s t a n t  C in  (9.34) is g iven  by  

C = C ( K o ,  K ' o )  ~- , 2 t .~ ,.,2 ~ 4 ^ = 2[Ko] + ~toK-".-o + ~ t x K o  - g K o .  (9.36) 
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Fig. 9.9. Finite shearing and small torsional motions of  a quadratic oscillator on a smooth  
horizontal surface with fl =0 .5 ,  2s = 2, d = 2, K o --5 ,  and Ro =0.5 .  This point falls into t h e  
unstable region on the stability map in Fig. 9.7. 

Hence, the solution to (9.33) is given by 

^ z * / 2  2r~ 
t=~-~n ~ / -~ I (K ,~ ) ,  z *=- , (9.37) 

(O K 

wherein z* is the period of the corresponding linear oscillator and 

~ dK 
I (K,  fl) =- + . (9.38) - 

In view of (9.34) we realize that I (K,  fl) is a general elliptic integral whose 
standard form depends onf(K).  This elliptic integral is similar to that of (3.6) 
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Fig. 9.10. Exact solutions of torsion and shearing motions computed from (7.9) and (7.10) for 
the unstable quadratic oscillator on a smooth horizontal surface with /~ = 0.5, 2s = 2, d = 2, 
Ko=5,  and Ro =0.5. 

in [11] where the finite amplitude vibrations of a Mooney-Rivlin oscillator is 
studied. Hence, in the following, we shall follow Beatty and Chow [11] to 
reduce (9.38) to the standard form. 

Apparently, f(K) has two real roots, K1, K2, say. These two roots corre- 
spond to the extreme positions for shearing motion for which the speeds 
K'(K~) and K'(K2) vanish. It may be shown from this property or from 
the energy constant C(K~, O)= C(K2, 0) that the extreme shear deflections 
satisfy 
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region on  the s tabi l i ty  m a p  in Fig. 9.7. 

Hence, f ( K )  may be rewritten as 

f ( K )  = ( K -  K , ) ( K -  K2) K2+(K, + K2)K +-~ - K, K2 + (KI + K2) ~ . 

(9.40) 

It is also clear that the other two roots could be real, multiple, or complex 
depending on whether 

S =  (KI+ K2) z -  4 I ~ -  KI K2 + (KI + K2)21 (9.41) 

is greater, equal, or less than zero. We shall show that for our case, S < 0. To 
prove this, let us first assume that S = 0 to get 

(Kl+  K2) 2= 4I~- -  KI K2 + (Ki + K2)2] • (9.42) 
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Bearing in mind the definition of/~ in (9.35), equations (9.31)1 and (9.39) yield 

(KI+  K 2 ) ( ~ + K Z l + K ~ ) = 4 ( ~ + K 3 ~ ) .  (9.43) 

It may be shown that equations (9.42) and (9.43) yield 

K1 + K2 = -2Ks ,  (9.44) 

2 
K~K2 = ~ + 3Ks 2, (9.45) 

and solutions 

K,.2 = - Ks -+ - 2K~ - ~ .  (9.46) 

This shows that K~ and Kz are complex roots which contradicts our assump- 
tion. Hence, S cannot be zero. To prove that K3 and K4 are complex, we assume 
that K3 and K4 are real and S > 0. Then consider the following equations: 

K1 + K2 = x, K .Kz= y. (9.47) 

It may be shown that in order to keep K~ and K2 real, we have to have 

4y < x 2. (9.48) 

On the other hand, relation S > 0 yields 

8 8 
3x 2 < 4y - ~ < x 2 - ~ (9.49) 

which is 

4 
(K, + K2) 2 < - - .  (9.50) /~ 

Since/~ is a positive constant, (9.50) cannot hold. Hence, K~ and K4 are two 
complex conjugate roots with K4 = K'3. Hence, (9.38) becomes 

+ fx: dK 
I(K, ~) = _ o x / (K -- K,)(K 2 - - - ~ K  - K3)(K -/~3)" (9.51) 
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Following Beatty and Chow [11], we introduce 

~ dK 
N(K) = , x / (K _ K,)(K~ - K)(K - K3)(K ~/~3) 

and the transformation 

,[(K~ - K ) e ,  - (K - K_~)~ 1 
¢(K) = cos- L(K2 -~K-- -~- (K KI)Q2J' 

to obtain 

(9.52) 

(9.53) 

K~ Q2 + K2Qt tan2(~/2) 
K = Q2 + Q1 tan2(~/2) (9.54) 

In (9.53) and (9.54), the parameters Q~ and Q2 are given by 

x/K 2 
Qt=Q(Kt)  = ~ + ( K , + K z ) K t + - ~ - K ,  K2+(K,  +K2) ~, 1= 1,2. 

(9.55) 

Substitution of (9.54) into (9.52) leads to 

F(~, k) 
~ ~ N(K) ~ (9.56) 

where F(¢, k) is the elliptic integral of the first kind and the modulus k is given 
by 

k = / ( K ,  - K2) 2 - (Q, - Q2) 2 
(9.57) 

4Q~ Qz 

Hence, the normalized time ~, which is the exact solution to (9.1), is found to 
be 

~ *k /~  ~* f l ~ Q ~  / '= q-~-~ IN(K) -- N(~) ]  = ~ [F(¢, k) - F(~o, k)], (9.58) 

wherein ~ = ¢(K) is given by (9.53) and ~o = ~(Ko). It is easy to see from 
(9.53) that ~ varies between 0 and n when K goes from K~ to K2 in the half 
period z/2. Thus, the period of vibration z is found to be 

) ~ = ~ - k (9.59) 
n ~ flQ,Q2 ~2'  " 
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By (9.55) and (9.57) we see that this period depends on the extreme shear 
deflections K1, K2, and material ratio fl only. This dependence is demonstrated 
in Fig. 9.12 for the normalized period as a function of the extreme shear 
deflection K2. In generating this and the next figure, the other extreme shear 
deflection K1 is assumed to be 0. Hence, the shear motion is oscillating 
between 0 and K2 with the oscillation center located at the middle of [0, K2]. 
We see that the normalized period of the motion is similar to that of the 
motion on the horizontal surface, z/T* is a decreasing function of the extreme 
shear deflection K2. It is also a decreasing function of ft. When fl approaches 
O, zl~*-~ 1, as we expected. 

The closed form solution to finite amplitude oscillations of shearing on an 
inclined surface is given by (9.58). The phase plane diagrams of the motion 
for selected values of K2 are shown in Fig. 9.13. Again, K~ = 0 is assumed in 
generating the figures. It is apparent that the motion is asymmetric about the 
equilibrium static shear deflection Ks. The changes of the phase plane dia- 
grams with respect to 2s and fl are shown in Figs. 9.14 and 9.15. It is shown 

.75 

.25 

!.00 

0 ~ "~ 
2.5 5 7 .5  l0 

Extreme Shear Deflection, K 2 

Fig. 9.12. Dimensionless period as a function of  the extreme shearing K 2 for finite amplitude 
shearing motions of a quadratic oscillator on an inclined surface for selected values of/3. The 
other extreme shear deflection K l is assumed to be 0. 
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Fig. 9.13. Phase plane diagrams of  the finite amplitude shearing motions of  a quadratic oscillator 
on an inclined surface for fl -- 0.5, 2 s = 0.5, and for selected values of  the extreme shear deflection 
K 2. The other extreme shear deflection K~ is assumed to be 0. 

that the patterns of the variation of the phase plane diagrams are similar to 
that of motions on the horizontal surface except in this case the oscillation is 
asymmetric about the equilibrium position K,. 

We are now ready to see some special cases. Since equation (9.1) represents 
a conservative system with periodic motion for shearing, the free shearing 
motion starting from (Ko, K~) is equivalent to its free motion from rest at 
either extreme shearing KI or K2 so that (Ko, K~)= ( g l ,  0 ) =  (K2, 0). By 
selecting (KI, 0) as our initial condition we find from (9.53) that Go = 
~(K~) = 0, and the solution (9.58) reduces to 

t* #~,Q~ /'= +~ F(~, ~c). (9.60) 
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Fig. 9.14. Phase plane diagrams of  the finite amplitude shearing motions of  a quadratic oscillator 
on an inclined surface for ]~ = 0.5, K~ = 0, K 2 = 4.5, and for selected values of  2,. 

By introducing 

2~ ~ (9.61) % = - -  , 
~*q 2 

we may write (9.60) in the form 

1 
/" = _+- F(~, k) (9.62) 

Z 

so that 

~ = +sn Zf=  + s n ( ~  k). (9.63) 

Hence, by (9.54) we finally find the solution to (9.1) for finite shearing: 

K, Q2 + G Q ,  tan2(½ sn z h  
K - Q2 + Q, tan~(½ sn ~t') (9.64) 
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Fig. 9.15. Phase plane diagrams of the finite amplitude shearing motions of  a quadratic oscillator 
on an inclined surface for 2~ = 0.5, K t = 0, K 2 = 4.5, and for selected values of  8. 

We see that K is a periodic function of the normalized time/" with period of 
( 4/7.)F(~ /2, k). 

We now consider the special case of/~ = 0 so that the motion becomes 
linear. It may be shown that 

2n c o  -~[-(K~ + K~) - 2K] 
pQ~Q~=2, ~ : = ~ = ~ o ~ : ,  k = 0 ,  ~ =  s [ -~zZ-K]- . (9.65) 

Since F(~, 0) = ~, we find from (9.62) ~ = +;ft. Hence, (9.65)4 yields 

K = ½(K2 + K,) ~ - 5(K~ - K,) cos o9/~. (9.66) 

Solution (9.66), which can also be obtained from (9.64), shows that the finite 
shearing for a linear oscillator vibrates harmonically between two extreme 
positions K~ and K2 about its equilibrium position located in the middle of K1 
and K2. 

For the nonlinear spring we see its solution (9.62) is similar to (9.5) for 
oscillations on a smooth horizontal surface. The exact solutions of both cases 
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for the travel time ~'are found in terms of the elliptic integral of the first kind. 
The only difference between them is the equilibrium position. This difference 
is reflected from the different forms of the solution for K given by (9.64) and 
(9.8). If we let ~ = 0 in (5.3) so that ~ = 0 by (7.14)2, it may be shown from 
(9.31), (9.39), (9.55), (9.57), and (9.61) that 

Ks=0 ,  K , + K 2 = 0 ,  Q , = Q 2  = K~+ , 

x ; ~ K ~ / l + ~ ,  ~, ~ = ~  (l+~,~). 

(9.67) 

On the other hand, it is shown from (9.6) that 

v =ogK~/1 +/~K~, x =Ko 2(1+/~Ko~) " (9.68) 

By comparing (9.67)4,5 and (9.68) we see that (9.62) reduces to (9.5) and 
(9.64) reduces to (9.8) since Ko = K~ is the initial condition in obtaining (9.62). 
Hence, the closed form solution (9.64) contains (9.8) as a special case. 

Using (9.63) and (9.64) in (9.2) yields 

H" + A(~)H = 0, (9.69) 

where the periodic function A(~) is given by 

A(~) = co~ + ~H j (9.70) 

We shall again follow the approach used in the previous chapters to study the 
stability property of small torsional motion governed by (9.69). In view of 
(9.58) and (9.61), we introduce the transformation 

-;? I 
Z ~/1 - k 2 sin 2 q~ ~/1 - k 2 sin 2 4) 

to reduce equation (9.69) to 

d2H dH 
de 2 + 2P(~) ~ -  + R(~)H = O, (9.72) 
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where 

1 k 2 sin ~ cos ~ 
P ( ~ ) =  2 l - k  ~sin ~ '  (9.73) 

R(~) = 

d 2 

flQ~Q22,(1 - k 2 sin ~ ~) 

2.[-(K~ Q2 + K2Q~) + (K, Q2 - K2Q1) cos 
(9.74) 

In deriving (9.74), we used the definitions of ~or, ~H, /~,, and Z defined 
through (7.12-14), (9.37)2, and (9.61). Now using substitution 

.__y ox,(_ I, (9.75) 

in (9.72), we obtain the equation of motion in the form 

d~y 
d~ 2 ÷ D(~)y = 0, (9.76) 

where 

D ( 0  = R ( 0  - p2(~) d P ( 0  
d~ (9.77) 

Using (9.73) in (9.75) yields 

H =  Y 
(1 - k 2 sin 2 ~)1/4, (9.78) 

which is the specific form of the transformation we used in reducing (9.72) to 
(9.76). This very same transformation has been used twice in the previous 
sections in (8.45) and (9.25). Using (9.73), and (9.74) in (9.77), we find 

d 2 
D(O - 

flQIQ22s(1 -- k 2 sin? ¢) 

I . ,,,,V(K~ Q2+ K2Q1) + (K2Q2-  K2QI) cos ~121 × 

k2(1 + sin 2 ~) 3k 2 cos 2 ~ 

4(1 - k 2 sin 2 ~) + 4(1 - k 2 sin 2 ~)2" 
(9.79) 
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Hence, D(¢) is an even function of period 2~t. From (9.53) we see that when 

K oscillates between its two extreme positions K~ and K2, ¢ moves between 0 
and re. Hence, we only need to consider the function D(~) for ~ ~ [0, ~]. The 

difference between (9.76) and (9.23) is the forms of the function D, which is 
shown by (9.79) and (9.26) respectively. In this case, bearing in mind the 

previous relations, D(~) depends on the following parameter: 

k~ = (K~ - K~) ~ - (Q~ - Q2)~ (9.80) 
4Q~ Q2 

By (9.55) we see that this parameter and D(¢) as a function of ( in turn 

depend on fl, ks, d, K~, and K2. Here we again follow Beatty and Bhat- 
tacharyya's approach [4] outlined in §8.2 to conduct the stability analysis 

through numerical calculation. For all of our numerical calculations, we 

assume K1 = 0 for the convenience of illustration. In other words, we assume 
that one of the extreme shear deflections was located at the unsheared 
position. Using the stability criterion developed by Bhattacharyya [10], we 

conducted numerical calculations for a wide range of parameters 

2 s e [0.2, 2], ,6 ~ [0.05, 1], d ~ [0.01, 10], K2 ~ [0.01, 10]. (9.81) 

It is found again that the Fourier coefficients for D(¢) converge very fast. 
Actually, the first two terms approximate D(~) very well. This indeed shows 

again that the dynamical behavior of small torsional motion coupled with 
finite shearing is very close to that of Mathieu's equation. 

The stability maps for small torsion coupled with finite shearing are 

provided in Figs. 9.16-9.19 with the shaded areas representing the unstable 
regions in the d - K2 space. It is shown that the unstable regions resemble the 
ones in §8.2.1. As )~. increases, the unstable regions shift in the positive d 

direction. When /~ increases as the nonlinearity of the material becomes 
stronger, the unstable region becomes larger, as shown in the figures. 

Figure 9.20 is the result of numerical integration of equations (9.1) and 

(9.2). The constant gravitational force is replaced by two extreme shear 

deflections K1 and K2 through (9.39). The physical parameters used in this 

calculation are /~ = 0.5, 2~ = 1, d = 1.5, Ks = 1, K1 = 0, K2 = 5.0, and with 
initial data of (K0, Kr) = (5, 0) and (H0, H~) = (0.5, 0). This point falls into 
the unstable region on the stability map in Fig. 9.17. We see that the small 
torsional motion builds up and approaches infinity. The corresponding exact 

numerical solution of equations (7.9) and (7.10) shows, however, coupled 
motion similar to that in Fig. 8.15. 
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Fig. 9.16. Stability map of  small torsional motion on an inclined surface coupled with finite 
amplitude shearing vibrations of  a quadratic oscillator for K~ = 0, ]~ = 0.5, and )-s = 0.5. The 
shaded areas are the unstable regions. 
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Fig. 9.17. Stability map of  small torsional motion on an inclined surface coupled with finite 
amplitude shearing vibrations of  a quadratic oscillator for K~ = 0, ]~ = 0.5, and )-s = 1.0. The 
shaded areas are the unstable regions. 



Motion o f  a rubber support system 187 

I0 

9 

8 

7 

6 

5 

4 -  

3 -  

2 -  

1 -  

0 2 3 3.5 

Gyradon Rado,  d 

Fig. 9.18. Stability map of  small torsional motion on an inclined surface coupled with finite 
amplitude shearing vibrations of  a quadratic oscillator for K~ = 0, ~ = 0.5, and 2, = 2.0. The 
shaded areas are the unstable regions. 
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Fig. 9.20. Finite shearing and small torsional motions of  a quadratic oscillator on an inclined 
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region on the stability map in Fig. 9•17. 
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Fig. 9.21. Finite shearing and small torsional motions of  a quadratic oscillator on an inclined 
surface with/3 =0 .5 ,  2 s = 1, d =  1, K~ = 0 ,  K 2 =  1, and K s = 1. This point falls into the stable 
region on the stability map  in Fig. 9.7. The initial data: (Ko, K~) = (5, 0), (Ho, H~) = (0.5, 0). 

Figure 9.21 shows another numerical integration of  equations (9.1) and 
(9.2) for/3 = 0.5, 2s = 1.0, d = 1.0, K~ = 1, K1 = 0, K2 = 1.0 and for the initial 
data of (Ko, K 6 ) =  (5, 0) and (Ho, H ~ ) =  (0.5, 0). This point falls into the 
stable region. The oscillations for both torsion and shearing are periodic and 
independent of  each other. 
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