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Abstract. The shear lag model has been used in conjunction with the 3D elasticity equations to determine the
stress state in a fiber/matrix system containing an interface crack. The use of a shear lag model to capture the
stress state at the crack tip and the modelling of the region away from the crack tip by the elasticity equations
leads to a simple analytical expression which can be used to determine the compliance changes for both unsteady
crack growth as well as steady state crack propagation under compressive loading. Certain modifications to the
assumptions used in the classical shear lag model have been made to increase the accuracy of the predictions for
the rate of change of compliance with respect to crack length, dc/dl. The present approach leads to closed form
expressions for the compressive strength of unidirectional fiber reinforced composites.
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1. Introduction

It has long been recognised that the compressive strength of polymer matrix composites is the
limiting factor for the use of composites in primary load hearing structures. The compression
strength of polymer matrix composites is almost half of its tensile strength. Thus, understand-
ing the behavior of polymer matrix composites under compression loading has been an active
area of research. The interested reader is referred to the review paper by Waas and Schultheisz
(1996) which provides an exhaustive coverage of the literature in this field. From the available
literature it is clear that the composite compressive strength is found to be dependent on
various parameters like fiber radius, fiber-matrix interfacial properties, misalignment of fibers,
fiber packing density, fiber volume fraction and strain gradients. Research on developing mod-
els to predict the compressive strength of composites have focussed on including the above
parameters in their formulation. (Drapier et al. (2001). Wisnom and Atkinson (1997) have
studied the effect of strain gradients on compressive failure and found that the compressive
strength increased under bending compression loading compared to pure compression loading.
From the experimental investigations carried out by previous researchers (Kyriakides et al.,
1995; Fleck, 1997; Lee, 1998; Lee and Waas, 1999; Oguni and Ravichandran, 2000) it can
be inferred that the initiating mechanisms for compressive failure of composite materials are
usually microbuckling and kinking of fibers aligned along the loading direction.

Lee (1998), Lee and Waas (1999) and Oguni and Ravichandran (2000) observed that glass
fiber reinforced polymer matrix composites fail predominantly by splitting. This was observed
in the optical photomicrographs which show aligned cracks between the fiber and matrix,
indicating that splitting failure is akin to interfacial fiber/matrix fracture. Thus a fracture
mechanics based approach was adopted by Lee (1998) and Lee and Waas (1999) to model
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the splitting failure of polymer matrix composites. Their model was based on linear elas-
tic fracture mechanics and the assumption of steady state crack propagation. Independently,
Oguni and Ravichandran (2000) also provided fracture mechanics based expressions for the
compression splitting failure stress of composites. These authors also examined the influence
of confinement on compression strength. The stress analysis in Lee and Waas (1999) included
areas in the cracked and uncracked regions of the composite and excluded a small region
of size ε around the crack tip. In this region the stress state is a function of the crack tip
field. When the crack is propagating under steady state conditions, this region translates
with the crack tip. Thus, the rate of change of compliance with crack length is unaffected.
The expression for the rate of change of compliance dc/dl is also independent of the crack
length or the initial fiber length. For short cracks, where the crack propagation is unsteady,
Lee and Waas (1999) used the finite element method to extract the dependency of dc/dl on
crack length. A major goal of the present work is obtaining a closed form expression for the
change in compliance dc/dl as a function of crack length. This expression can then be used
in determining the compressive stress of a polymer matrix composite in terms of its fracture
toughness γf and dc/dl in closed form. For this purpose a modified shear lag model has
been used to study the stress state at the crack tip. The local shear lag based stress field has
been superposed on the far field stress state of the composite obtained from the 3D elasticity
equations, to obtain expressions for compliance and compliance change as a function of the
crack length. In the development of this shear lag based model, only perfectly aligned fibers
have been considered. The inclusion of misalignment will result in a change in the stiffness
of the fiber and has already been treated in the steady-state splitting model by Lee and Waas
(1999). The validation of the splitting model based on the steady state crack propagation
assumption with experimental results presented in Lee and Waas (1999) indicates a good
correlation.

2. Stress Analysis

Consider a representative volume element (RVE) of the composite containing a single fiber of
length 2L with a crack of length 2l embedded in it as shown in Figure 1. The single fiber is
divided into four regions for the purpose of deriving an expression for compliance and the rate
of change of compliance. By symmetry, only one side of the fiber (0 < z < L), containing
the crack region (0 < z < l) is modeled. Assume that a region ε extends from the crack tip in
the positive Z axis direction as well as in the negative Z axis direction. The region extending
beyond ε is modeled as in the case of the steady state splitting model as shown in Lee and
Waas (1999).

2.1. SHEAR LAG ANALYSIS

The main assumptions in the traditional shear lag model of Cox (1952), are that the matrix
carries only shear and any axial straining in the matrix is only for the purpose of load intro-
duction. The fiber can only undergo axial contraction or extension and the fiber axial stress is
zero at the fiber ends. It was observed by the authors that the classical shear lag method based
on the above assumptions leads to a reasonably accurate calculation of the compliance of a
cracked fiber/matrix system. But the rate of change of compliance with crack length, dc/dl
turns out to be inaccurate. This in turn leads to the inaccurate calculation of strain energy
release rate. In the present work the traditional shear lag parameter
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Figure 1. RVE showing the various regions of analysis.

η2
cox = 1

r2
0

2Em

Ef (1 + νm) ln(1/Vf )

as proposed by Cox (1952) has been used along with a modified set of boundary conditions
since it gives an accurate value of the change in compliance with respect to crack length,
dc/dl, in addition to preserving the accuracy of the compliance calculation.

For the present work, we assume that the fiber ends do carry some load and that the shear
lag method is valid over the small region extending from (l−ε) to (l+ε). These modifications
are introduced into the shear lag model by ensuring that the fiber axial stress at z = (l + ε),
matches with the fiber axial stress of the uncracked region calculated using the 3D equations
of elasticity. Also, at z = (l− ε), the fiber axial stress is equated with the steady state splitting
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Figure 2. Free body diagram of a small segment of fiber and attached matrix.

model stress in the crack region, which is similar to what is obtained via a simple rule of
mixtures based stress prediction.

Taking a small segment dz of the composite containing the single fiber as shown in Fig-
ure 2, we can get the radial variation of shear stress in the matrix, τ̂ by equating the shear
farces on neighboring annuli with radii r1 and r2 of length dz. Then,

2πr1τ̂1 dz = 2πr2τ̂2 dz.

From the above equation, we get the relation between τ̂1 and τ̂2 as τ̂1/τ̂2 = r2/r1. Thus at any
radius r, we can relate the shear stress τ̂ (r) to the interface shear stress τ̂i .

To obtain the relation between shear strain and shear stress, consider the displacement
ûr (z) of the matrix with respect to the unstressed position. Then

dû

dr
= γ = τ̂r

Gm

= τ̂i

Gm

(r0

r

)
or dû = τ̂i

Gm

(r0

r

)
dr.

Integrating the above equation between r = r0 and r = R, we obtain∫ ûr=(R)

ûr=(r0)
dû = τ̂i r0

Gm

ln

(
R

r0

)
= ûR − ûr0,
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where ûR is the matrix displacement at a distance R from the fiber and ûr0 is the matrix
displacement at interface r = r0. The value of R is based on the assumption that the matrix
strain is uniform, remote from the fiber-matrix interface. Thus the appropriate value of R
is dictated by the proximity of fibers which in turn depends on the fiber packing and fiber
volume fraction Vf . Assuming a hexagonal packing of fibers (Hashin and Rosen, 1964) and
also taking note of the fact that the ratio R/r0 appears as a logarithmic term and is relatively
insensitive to the details of geometry, we can write the following expression relating fiber
volume fraction Vf and the ratio R/r0.

Vf = πr2
0

2
√

3R2
,

(
R

r0

)2

≈ 1

Vf
.

From Figure 2b, by equating the farces acting along the axial direction of the fiber we get
the relation between the axial stress in the fiber and the interfacial shear stress.

2πr0τ̂i dz = −πr2
0 dσ̂ f,

dσ̂f
dz

= −2τ̂i (z)

r0
.

Combining the above expression with the expression for interfacial shear stress τ̂i in terms of
the displacements we get

dσ̂f
dz

= −2Em

(1 + νm)

(ûR − ûr0)

r2
0 ln(1/Vf )

, (1)

differentiating Equation (1), we get

d2σ̂f

dz2
= −2Em

(1 + νm)r
2
0 ln(1/Vf )

(
dûR
dz

− dûr0
dz

)

= η2

r2
0

(σ̂f − ε̂mEf )

(2)

In the above expression the following substitutions have been made.

dû

dz

∣∣∣∣
r=r0

= ε̂f = σ̂f

Ef

,
dû

dz

∣∣∣∣
r=R

= ε̂m, η2 = 2Em

Ef (1 + νm) ln(1/Vf )
,

where ε̂m is the matrix strain, ε̂f is the fiber axial strain, σ̂f is the fiber stress and Ef is axial
fiber modulus.

Equation (2) is a second order ordinary differential equation, whose solution is

σ̂f (z) = Ef ε̂m + B sinh

(
ηz

r0

)
+D cosh

(
ηz

r0

)
. (3)

2.2. SPLITTING MODEL – SHEAR LAG METHOD

In this section we present the details of the application of the shear lag model to the splitting
model analysis of Lee and Waas (1999). For this purpose, the RVE can be divided into two
regions - the crack region and the uncracked region.

2.2.1. Crack region
In this region it is reasonable to assume that the fiber axial stress is equal to that of the axial
stress obtained from the splitting model with increasing distance from the crack tip. Also in
the crack region according to the shear lag model there is no shear stress hence the fiber axial
stress is constant. Thus,
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dσ̂f (1)
dz

= 0,

⇒ σ̂f (1) = A,

⇒ ε̂f (1) = A

Ef

.

Integrating the expression for fiber axial strain we get ûf (1) = (A/Ef )z where the constant of
integration has been taken to be zero since it represents a rigid body translation. The expres-
sions for the stress and displacement field from the splitting model for the crack region are as
given in Lee and Waas (1999).

σ̂f 2D = PEf

πr2
0δ
,

from which we can obtain

ûf 2D = P

πr2
0δ
z,

where

δ = Ef + Em

(
1

Vf
− 1

)
.

2.2.2. Uncracked region
In the uncracked region, we can take the expression of normal fiber stress as given by Equa-
tion (3). However in the present analysis this expression is valid in the region l < z < l + ε.
For z > l + ε, the normal stress expression corresponding to the 3D equations of elasticity,
is taken from the splitting model. Thus, at z = l + ε, we equate the fiber normal stress σ̂f (2)
obtained from the shear lag analysis with that of the fiber normal stress obtained from the
splitting model. Also, at the interface between the crack and uncracked region continuity of
fiber normal stress and axial displacements is enforced. The expression for normal fiber strain
can be obtained from Equation (3) and is as follows.

ε̂f (2) = ε̂m + B

Ef

sinh

(
ηz

r0

)
+ D

Ef

cosh

(
ηz

r0

)
.

On integrating the above, we get

ûf (2) = ε̂mz+ B

Ef

r0

η
cosh

(
ηz

r0

)
+ D

Ef

r0

η
sinh

(
ηz

r0

)
+ C2.

Similarly an expression for the displacement field in the region beyond z = l + ε can be
obtained from the 3D splitting model analysis and is as follows

u3d = βP

πr2
0

z + C2

The expression for the stress σ3d is as follows (Lee and Waas, 1999),

σ3d = βP

πr2
0

(Em − 4ανm(νf − νm)),
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where

α =
[

2(1 + νf )(1 − 2νf )

Ef

(V −1
f − 1)+ 2(1 + νm)(1 − 2νm + V −1

f )

Em

]−1

,

β = [Ef + (V −1
f − 1){Em + 4α(νf − νm)

2}]−1. (4)

The following boundary conditions can be written for the present boundary value problem.
Crack region
at

z = l − ε, σ̂f (1) = σf 2D,⇒ A = PEf

πr2
0δ

and hence

ûf (1) = P

πr3
0δ
(l − ε).

Further, at z = l

ûf (1) = ûf (2).

From the condition for continuity of displacement across the crack interface the constant C2
is evaluated which is then used to get the displacement field ûf (2) to be,

ûf (2) = P

πr2
0δ

+ B

Ef

r0

η

[
cosh

(
ηz

r0

)
− cosh

(
ηl
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)]
+ D

Ef

r0

η

[
sinh

(
ηz
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)
− sinh

(
ηl

r0

)]
. (5)

At z = l, the continuity of normal stresses provides

σ̂f (1) = σ̂f (2),
PEf

πr2
0δ

= Ef ε̂m + B sinh

(
ηl

r0

)
+D cosh

(
ηl

r0

)
. (6)

Uncracked region

at z = l + ε

σ̂f (2) = σf 3D,

which translates to

Ef ε̂m + B sinh

(
η(l + ε)

r0

)
+D cosh

(
η(l − ε)

r0

)
= βP

πr2
0

[Em − 4αν(νf − νm)]. (7)

To ensure compatibility, we equate the displacements uf (2) and uf 3D. This provides,

ε̂m(l + ε)+ B

Ef

r0

η
cosh

(
η(l + ε)

r0

)
+

D

Ef

r0

η
sinh

(
η(l + ε)

r0

)
= βP (l + ε)

πr2
0

+ C3

(8)
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Equation (8) enables to obtain the constant C3 in terms of the remaining constants B and D.
The constants B and D can be evaluated from the two Equations (6) and (7). Knowing B and
D, C3 and C2 can be determined. Expressions for the constants B and D are given below.

D = &
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(
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)
sinh

(
η(l + ε)

r0

)

sinh

(
ηl

r0

) − cosh

(
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)

,

B =
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(
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)
&
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(
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) 
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(
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)
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(
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(
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(
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)

,

where

& = P

πr2
0

[
Ef

δ
− β

[
Ef + 4ανf (νf − νm)

(
1

Vf
− 1

)]]
.

The total axial displacement can be written in terms of the integrals of the fiber axial strains
as follows.

' = 2
∫ l

0
ε̂f (1) dz︸ ︷︷ ︸

Crack region(1)

+

Uncracked region(2)︷ ︸︸ ︷
2
∫ (l+ε)

l

ε̂f (2) dz + 2
∫ L

(l+ε)
εf 3D dz .

On substituting the expressions for the axial strains in the above integrals results in,

' = 2
∫ l

0

P

πr2
0δ

dz + 2
∫ (l+ε

l

[
ε̂m + B

Ef

sinh

(
ηz

r0

)
+ D

Ef

cosh

(
ηz

r0

)]
dz + 2

∫ L

l+ε
βP

πr2
0

dz.

(9)

We can observe from the above equations for total displacement ' that as ε → 0 (meaning
the region ε around the crack tip vanishes), the second integral vanishes and also the third
reduces to the same expression as given in Lee and Waas (1999) giving us the displacement
expression obtained with steady state crack propagation assumption.

3. Strain energy release rate

The total potential energy II of the RVE under consideration, when subjected to a compressive
load, P is U − W , where U is the strain energy stored in the RVE and W is the work clone.
The expression for strain energy release rate is

G = d*

dA
,
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where A = 4πr0l is the crack surface area and r0 is the fiber radius. The overall compliance
of the RVE, c is defined as:

c = '

P
, (10)

where ' is the axial compressive displacement of the composite and P is the external com-
pressive load. The expression for ' is substituted from Equation (9). For either case of load
control or displacement control, the strain energy release rate can be written as

G = P 2

8πr0

dc

dl
.

The fracture toughness γf is half of the value of G at the time of initiation of crack propaga-
tion.

G = 2γf .

The compressive stress σc can be related to the fracture toughness of the material γf by the
following the expression

σc =
√√√√√ 16γf V 2

f

πr3
0

(
dc

dl

) . (11)

4. Solution

The expression for ' in the form of the integral given in Equation (9) is evaluated to get the
displacement.

' = 2

{
P l

πr2
0δ

+ Pε

πr2
0δ

+
{
B

Ef

[
cosh

(
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)
− cosh

(
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[
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(
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)
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(
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)]}
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η
+ Pβ(L − l − ε)

πr2
0

}
.

(12)

We get the relation for compliance c by dividing Equation (12) by the load term P . Thus,

c = 2

{
l

πr2
0δ

+ ε

πr2
0δ

+
{
B

Ef

[
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(
(l + ε)η
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)
− cosh

(
lη

r0

)]
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[
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(
(l + ε)η

r0

)
− sinh

(
lη

r0

)]}
r0

η
+ β(L− l − ε)

πr2
0

}
.

(13)

Equation (13), is an expression for compliance of the system in terms of the crack length,
l, and crack tip influence zone ε. The rate of change of compliance, dc/dl is obtained by
differentiating Equation (13) with respect to the crack length, l.

dc

dl
= 2

πr2
0

[
1

δ
− β

]
+
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r0

ηEf

(
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dl
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)(
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)
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(
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)

+
(
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)(
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(
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)
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(
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))}]
.

(14)
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Figure 3. Variation of normalised stress along the length of fiber as a function of increasing ε with crack length
factor n1 = 7.

It can be seen in the above equation that the first term corresponds to the steady state
behavior (independent of crack length, l) and the second term, which contains the crack length
l and the crack tip influence zone size ε, is due to non steady effects. The constants B and D
in the above expression are functions of crack length l. For determining the rate of change of
compliance with crack length, the previously described expressions were coded in MAPLE
(symbolic math package) and evaluated for a glass/epoxy composite system of fiber volume
fraction (Vf = 10%). For the ease of calculation the half length of fiber L, half crack length
l and the crack tip influence zone ε were all expressed as a factor of the fiber radius r0. The
fiber half length L was taken to be 20 times the the fiber radius for the present calculations.
The normalized crack length n1 = l/r0, and the normalized crack tip zone, n = ε/r0, are used
as parameters. Plots of normal stress variation along the length of fiber, compliance and rate
of chance of compliance as a function of n1 and n are shown in Figures 3–6. The following
material properties of the glass fiber and vinyl-ester matrix were used in the analysis.

– Glass fiber

r0 = 0.012 mm, Ef = 72 000 MPa, νf = 0.22.

– Vinyl-ester resin

Em = 3585 MPa, νm = 0.36.

5. Discussion and conclusions

As the equation for the rate of change of compliance with crack length, dc/dl, indicates, com-
pliance change is no longer independent of the crack length l or the crack tip influence zone
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Figure 4. Curves of compliance as a function of normalized crack length for different values of ε and L = 20r0.

Figure 5. Normalized compliance with normalized crack length factor, n1.
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Figure 6. Curves of rate of change of compliance with crack length dc/dl as a function of crack length with
varying ε and L = 20r0.

Table 1. dc/dl values obtained from splitting
and FE models

Glass/vinyl ester

Vf Splitting model FE model

dc/dl dc/dl

10 3.59715 × 10−5 3.1881 × 10−5

60 2.801 × 10−5 2.4042 × 10−5

Table 2. Compressive stress values
obtained from splitting and FE models
with γf = 1.0546 × 10−4 KJ m−2

Glass/vinyl ester

Vf Splitting model FE model

10 298 312.25

60 1998.45 2157.36
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parameter ε. However, the value of ε is initially unknown since the crack tip zone advances
with the crack and also the region of influence does not remain constant. Thus the first step in
evaluating dc/dl would be to determine the value of ε. However, before determining the value
of ε, a study of the normal stress variation along the fiber length is necessary. A plot (Figure 3)
of the normalised stress (σf /σ3D with a normalised length factor (z/r0) indicates that there is
a discontinuity between the 2D stress state in the cracked region and the 3D stress state in the
uncracked region, which is bridged by the modified shear lag model. The value of ε controls
the gradient of the stress in this bridging region, with increasing values of ε decreasing the
stress gradients. Hence, for a given crack length it is necessary to take ε as large as possible.
But, it has to be kept in mind that the value of ε cannot exceed the half crack length l and
at the same time ε should be smaller than L − l. As shown in Figure 4, the compliance of
the fiber/matrix system is plotted as a function of the crack length parameter for different
values of ε. For a particular ε we can see that the compliance vs crack length plots are straight
lines, implying that the slope dc/dl is a constant. If we mark the lower tip of the straight lines
with black dots as shown in Figure 4, we can observe that the slope of the locus of these
points is initially varying and then approaches a constant af ter some crack length parameter
n1 indicating the steady state. The variation of compliance obtained from the present shear lag
model, the FEM results (Lee and Waas, 1999), and the steady state expression are plotted as a
function of crack length factor, n1 and is shown in Figure 5. The slopes of all the three curves
in the linear region are nearly equal. Similarly, for the compliance change dc/dl the curve of
dc/dl vs ε as a function of n becomes nearly flat beyond ε ≥ 1.5r0 as seen in Figure 6. It can
be seen from Figure 6 that when the crack length is small, as expected dc/dl is a function of
crack length and the crack tip zone, even if we take the crack tip zone, ε equal to the crack
length, l.

The value of rate of change of compliance obtained with the present rated approach using
the modified shear lag model is found to be 3.5971 × 10−5 (N/mm)−1 which is approximately
equal to the value obtained from the steady state analysis, 3.597186×10−5 (N/mm)−1 and the
FEM value of 3.1881 × 10−5 (N/mm)−1 given in Lee and Waas (1999). This value of dc/dl
was obtained for a ε of 0.024 mm and crack length, l of 0.096 mm. The total length of fiber
considered was about 40r0. As seen in Figure 6, for this crack length and ε, the dc/dl value
has reached its asymptotic value. Thus the present analysis incorporating the shear lag model
to account for the crack tip stress state provides an analytical approach to study both unsteady
crack growth of short cracks and steady state crack behavior as crack length increases. It
replaces the need to resort to finite element based computation for short crack length (unsteady
crack growth). In Tables 1 and 2, we have compared the compressive strength predictions of
the splitting model using Equation (11) with the FEM data provided in Lee and Waas (1999)
for fiber volume fractions of 10% and 60%. The value of fracture toughness for a perfectly
aligned composites was taken from Lee and Waas (1999). It is seen that the predicted values
of compressive splitting strength are very high for Vf = 60%, indicating that splitting is not a
failure mode. This was indeed observed during experiments where the specimens failed by a
combination of kinking and splitting.
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