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Abstract. The objective of this paper is to investigate the fracture behavior of short fiber reinforced ceramic structures 
by means of the fracture mechanics approach. In this paper, structural stability in relation to crack growth in shear key 
structures with a softening process zone under effectively bending loads is studied through residual strength diagrams 
and load deflection curves. In addition, the behavior of process zone size preceding traction free crack in the shear key 
structure is investigated. 

Shear key structures with a softening process zone can behave stably under loading in the presence of a crack. Results 
of this analytical study potentially indicate that short fiber reinforcement for ceramics could eliminate catastrophic 
failure or unstable fracture behavior of ceramic structures, and also indicate the plausible applicability of ceramics as 
construction materials. 

Nomenclature 

T h e  fo l lowing  sym bo l s  are  used in this paper :  

ap = applied load; E 
A = deflection at the center point of 6c 

loaded area; f*  6c 
ao = initial crack length (traction free Gr = 2 

crack length); 
lp = process zone size; EGy 
(/p)~s = steady-state process zone size; lch = f2 
L = size of a structure; 
ft = first cracking strength of composites; 
f* = post cracking strength of composites; 
v(= 0.2) = Poisson's ratio; 

= Young's modulus; 
= critical CTOD; 

= fracture energy (for linear stress- 
separation curve); 

= material characteristic length; and 

= fracture toughness (for LEFM 
Kic k/(l - v 2) analysis). 

1. Introduction 

Prev ious ly ,  a qua l i t a t i ve  analys is  on  app l i cab i l i ty  of  a d v a n c e d  ce ramics  to c o n s t r u c t i o n  based  

on  a set of  c r i te r ia  such  as durab i l i ty ,  b r i t t l eness  o r  e c o n o m y  was ca r r i ed  ou t  [1] ,  and  s o m e  

feasible s t ruc tu ra l  sys tems for ce ramics  such as s egmen ta l  p recas t  s t ruc tu res  were  inves t iga ted  

[2].  M o s t  of  the i n t r o d u c e d  s t ruc tu ra l  sys tems have  a shear  key. A shear  key cou ld  be l oaded  

cr i t ica l ly  in p recas t  m e m b e r s  since tha t  pa r t  m a y  have  m i n i m u m  area,  o r  m a y  have  the larges t  

stress. The  f rac ture  b e h a v i o r  of  the shear  key cou ld  thus  c o n t r o l  the b e h a v i o r  of  the who le  

s t ructure .  It  is the p u r p o s e  o f  this pape r  to inves t iga te  the f rac ture  b e h a v i o r  of  the shear  key 

s t ruc tu re  m a d e  of  shor t  f iber  re inforced  ce ramics  by s tudy ing  a m o d e  I - d o m i n a t e d  f rac ture  of  

shea r  keys  wi th  a so f ten ing  p rocess  zone.  
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2. Review of behavior of fiber reinforced composites 

The fracture behavior of fiber reinforced cementitious composite was studied by Li and Liang 
[3]. They analyzed the overall load-deformation behavior of the center-cracked panel shown in 
Fig. 1 in terms of load-crack opening displacement (COD) curves with the same fracture energy 
but different shapes. The stress-separation constitutive models used (see Fig. 2) are 

(a) a linear straight line descending from the tensile strength at zero material separation to zero 
stress at the critical separation and 
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Fig. 1. Geometry of center-cracked panel; Traction Free (_'rack (TRF) with length a and process zone with length /p 
make up total crack of length c [3]. 
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Fig. 2. Stress-separation constitutive models; both models have same Gc and f ,  but shapes are quite different with very 
small critical separation distance Wc for (a) Model 1, and much larger Wc for (b) Model 2, [3]. 
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Fig. 3. Normalized load applied at remote edges of the center-cracked panel versus normalized opening displacement 
at crack center, for Model 1 (RUI) and for Model 2 (RU2) [3]. 

(b) a nonlinear line with a rapid drop in traction transfer with separation, followed by a long 
tail. 

Their results (see Fig. 3) show the linear model allows the structure to reach a higher peak load, 
about one and a half times that of the nonlinear model. At the same time, the descending branch is 
much sharper in the load-deformation curve for the linear line model than for the nonlinear line 
model. These behaviors make the structure seemingly stronger (with higher tensile strength) but 
more brittle for the linear line model. Also their results show the process zone is still being 
developed at the peak load and after the peak load the traction free crack propagates when the 
process zone is fully developed. The tensile strength in the curve of fiber reinforced ceramics can be 
much higher than that of fiber reinforced concrete. As a result, the descending branch in the 
stress-separation curve of fiber reinforced ceramics might be sharper than that of fiber reinforced 
concrete. (Details of the stress-separation curve and the presence of multiple-cracking are 
controlled by fiber volume fraction, amongst other factors. In general, a higher fiber volume is 
used in ceramics than in concrete composites). From this limited point of view, the behavior of 
fiber reinforced ceramic structures may be predicted by a linear line model in the stress- 
separation curve while that of fiber reinforced concrete structures should generally be predicted by 
a nonlinear line model. In addition, we could calculate from their work the ratio of the traction free 
crack propagation load to the peak load, and the ratio of the COD at traction free crack 
propagation to that at the peak load. The former ratio for the linear line model is 0.95 and that for 
the nonlinear line model is 0.45, and the latter ratio for the linear line model is 1.1 and that for the 
nonlinear line model is 5.0. For a stress-separation curve with a sharply descending softening 
branch (such as in the linear model described above), traction free crack propagation load can be 
assumed to be the same as the peak load. In this paper, this assumption is used for our analysis. 

3. Objective of analysis 

The present numerical study focuses on the investigation of fracture behavior in terms of 
residual strength diagram and load-deflection curve after the peak load (the pre-peak behavior is 
not considered) for different shapes of stress-separation curves. These stress-separation curves 
are determined by several types of assumed uniaxial tensile behaviors. Unlike conventional 
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construction structures such as steel structures or steel reinforced concrete structures, ceramic 
structures may be adversely influenced by their unstable behavior after the peak load (or after 
propagation of the traction free crack). Therefore, we focus especially on the stability in relation 
to crack growth in the structures. The structural stability of ceramic structures is analyzed via 
the descending branch of both residual strength diagrams and load-deflection curves. 

The behavior of fiber reinforced ceramic structures could be dominated by the process zone 
undergoing inelastic deformation described by a stress-separation curve. Li and Liang [3] sug- 
gested that process zone size Ip depends on the stress-separation constitutive behavior, the loading 
configuration and the structural geometry. In the present analysis, using a similar approach to that 
of Li and Liang, we try to find the quantitative relation between process zone size lp, the stress- 
separation constitutive behavior, and structural geometry (size) for a fixed loading configuration. 

The above mentioned analysis can be carried out by means of a nonlinear elastic fracture 
mechanics (NLEFM) approach since they behave nonlinearly with the developed process zone. 
On the other hand, a linear elastic fracture mechanics (LEFM) approach is generally much less 
difficult than the NLEFM approach. Also, there are currently many general purpose computer 
programs in terms of LEFM concept rather than those in terms of NLEFM concept. Therefore, 
it is very important to find the valid condition for LEFM in the numerical process from the 
present simple model. This is also one of the objectives in this numerical analysis. Therefore, the 
behavior of shear key structures is also analysed by means of a LEFM approach, and compared 
with NLEF M results to determine the condition of validity for the LEFM approach. 

4. Numerical implementation 

Most short fiber reinforced ceramics are tension-softening materials which have decreasing post 
peak tensile strength with increasing displacement. During tensile testing of this material, 
specimens do not exhibit signs of plasticity prior to failure as metals do. Instead, a highly localized 
zone of straining eventually forms a through crack before final failure of the specimen. It has been 
observed that displacements along the post peak stress-strain curve are mainly due to the opening 
of the locally strained region which can also be described as a crack with incompletely separated 
surfaces across which stresses can still be transmitted. These observations have led to the concept 
of the tension-softening or stress-separation curve which relates post peak stresses across the crack 
to the crack opening displacement c5. For fracture failure of a short fiber reinforced ceramic 
structure, it is assumed that a fictitious crack (a crack with bridging stresses) forms when the 
maximum strength of the material is reached. The bridging stresses decrease with increasing 
opening displacement until the separation reaches a critical value 6c at which point the crack faces 
are separated completely and the bridging stresses cease to exist. 

The effective crack may be considered as consisting of two parts: 

(1) the real or traction free crack and 
(2) the process zone with bridging stresses depending on the opening displacement along the 

process zone as prescribed by the material stress-separation curve. 

Figure 4 shows a schematic diagram of this so called 'cohesive zone model'. In contrast to the 
singular stress distribution obtained from LEFM assumptions, stresses from the cohesive zone 
model do not exceed the material strength. Furthermore, propagation of the traction free crack 
is governed by the opening displacement 6* at the crack tip of the traction free crack region. 
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Fig. 4. The cohesive zone model: (a) Effective crack and (b) Stress distribution along the effective crack. 

When 6 * =  3o free crack extension is imminent. This condition may be regarded as a 
replacement of the Kxc-fracture criterion. 

The cohesive zone model is actually based on Barenblatt's theory of equilibrium cracks [4]. 
According to the theory, the complete response of a cracked body to loads is defined by the 
stresses, the strains and the final configuration of the cracks which would make the crack tip 
stresses finite. Thus, unlike the typical elasticity problem, the final boundaries of the body or 
specifically the crack lengths are unknown. To find the complete solution, the molecular forces 
of cohesion which are activated along the separating faces of the crack must be included in the 
analysis. Although Barenblatt had considered inter-molecular stress-separation curves in his 
theory, his mathematical formulation of the problem is equally applicable to the cohesive zone 
model of tension-softening materials with their macroscopic stress-separation curves. The 
inclusion of the process zone size as another unknown is balanced by the requirement of zero 
singularities at the crack tips, i.e. the stress intensity factors induced by external loading must be 
cancelled out by the negative stress intensity factors induced by the cohesive stresses along the 
process zone. With this last requirement, the process zone size can be calculated. 

Based on the above mentioned approach for tension softening materials, the numerical 
simulation was carried out by means of the hybrid boundary element method [5] and [6]. 

5. Models for analysis 

The geometric and loading configurations of the analytical shear key model are shown in Fig. 5. 
The external load tends to open the corner which has a pre-existing crack ao. For this structural 
geometry and loading configuration, only mode I crack may result. 

The composite uniaxial curves used are shown in Figs. 6-8. These curves could express three 
typical types of stress-strain curves under tensile loading in short fiber reinforced ceramics. As 
discussed in the previous section, the stress-separation curves are assumed linear lines from three 
typical types of stress-strain curves. 

These curves show the behavior of composites with different fiber reinforcement such as the 
characteristics of fibers, the distribution and the interfacial behaviors. In general, the interface is 
characterized by a frictional bond and a chemical bond (see Fig. 9). If only a frictional bond is 
present, there is stable transition from fiber debonding to fiber pull-out. If there is a chemical 
bond as well, stable debonding will be followed by an unstable drop to the pull-out branch [7]. 

In the softening model 1, extensive matrix cracking occurs at the first cracking strength 
of the composite ft.  The slope of the pre-peak straight portion of the curve is approximated 
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Fig. 6. Softening Model  1 ( J , / f*  = 0.5t: (a) Compos i t e  
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Frictional bond ing  plus chemical bonding.  
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by the rule of mixtures based on matrix and fiber moduli. After f ,  is reached, the stress drops 
unstably to the post cracking strength of the composite f*.  After f *  is reached, fibers tend to be 
pulled out gradually showing softening behavior. In this case, after matrix cracking fibers cannot 
support all the load (e.g. the fiber volume fraction is too small to carry the load shed by the 
matrix), thus leading to the sudden load drop. Alternatively, after matrix cracking fibers can 
support a slightly higher load before there is a sudden drop in stress due to unstable fiber 
debonding in a case where there is both chemical bond and friction at the interface. 

In the softening model 2, extensive matrix cracking occurs at the first cracking strength of the 
composite ft. The slope of the pre-peak straight portion of the curve is approximated by the rule 
of mixtures based on matrix and fiber moduli as well. After f ,  (= f*) is reached, fibers tend to be 
pulled out gradually showing softening behavior. In this case, after matrix cracking fibers can 
support a slightly higher load before the pull-out occurs. The interface is purely frictional so 
there is no sudden load drop. 

In the softening model 3, the slope of the initial straight portion of the curve is closely 
approximated by the rule of mixtures based on matrix and fiber moduli as well. Extensive matrix 
cracking, often involving a small stress drop [8], occurs at the first cracking strength of the 
composite ft. Subsequently, the matrix becomes permeated by many equally spaced cracks that 
traverse the full cross-section of the specimens. This portion could be called a damage zone. Under 
continued loading, the fibers alone provide most of the subsequent stiffness. The post cracking 
strength of the composite f *  would be associated with the maximum stress carried by the 
fiber/matrix interface. Thus, fibers can support a much higher load before the pull-out occurs. 
Again, in this case a purely friction interface is assumed. In model 3, multiple cracking of the 
matrix may occur beyond the first cracking strength. Due to this multiple cracking phenomenon, 
fracture analysis of a single crack is not strictly valid. Thus, the correct structural behavior of 
model 3 could be obtained by an approach which can take into consideration the multiple 
cracking phenomenon. At the present stage, for simplicity, we assume a line crack model which 
may not be valid as the value of f* / f t  increases to 2.0. Therefore, the numerical results obtained in 
the region of f* / f t  = 1.0-2.0 could be correct only when the value of f* / f t  is close to 1.0. The 
interpretation of the results in the region of f* / f ,  = 1.0-2.0 are based on this restricted 
assumption. As the value off*l-f, increases from 1.0 to 2.0, the results become more conservative. 

A material characteristic length lch proposed by Hillerborg [9] is used to normalize all length 
dimensions. Although the material characteristic length has no physical meaning, it can be 
advantageously used to reduce structural lengths to dimensionless forms. In addition, all stress 
dimensions are normalized by a first cracking strength f,.  Some examples are described as follows. 

Critical crack tip opening displacement (CTOD) 

6<) 2 

ts,) ks, ) 

Fracture energy 

(2) 
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ft* 

ft 

E/fi = 1000.0 (conslant) 

2.0 k L/gch = 0.5, 1.0,5.0 
q 

(Gf/ft/gch) = 0.001 (constant) 

ft*/ft = 0.5, 1.0, 2.0 I 
I 

1.0 ~'N,\ i g~C/gch = 1.0E-3, 2.0E-3 4.0E-3 I' 

O.5 ~ - -  ' ~  

1.0E-3 2.0E-3 4.0E-3 gch 

Fi,q. 10. Linear model of stress-separation curves. 

Fracture toughness 

K~c 1 

,5-v2 
_ _  ~ 1.0. (3) 

In this analysis, the residual strength of the structure is defined by the applied load cr~,/f, 
where the process zone is fully developed or when the crack opening displacement at the 
physical crack tip is equal to the assumed critical crack tip opening displacement in the 
stress-separation curve. Specifically, the residual strength could be calculated by first specifying 
the crack opening displacement at the physical crack tip to be the critical opening displace- 
ment. Then, the process zone length is assumed and numerical iteration is carried out until 
there is no singularity at the fictitious crack tip of the process zone. The process zone at this 
stage is fully developed. 

The variations of material properties in the analysis are shown in Fig. 10. L/Ich is a geometric 
size and f*/ f t  is a parameter of the stress-separation curves and E/ft is a material parameter of 
the composite as well as of the stress-separation curve. This figure can be understood as follows. 

Let L/lch and E/J] (in the analysis, Elf, is fixed 1000.0) be fixed. In changingf*/f, from 0.5 to 
2.0, the composite maintains the fracture energy (Gs/ft)/lch constant (since (Gi/J))/lch is inversely 
proportional to E/ft), and also maintain the fracture toughness (K~c/f~)/(lch) °'5 constant (since 
the present normalization always makes it constant). 

All the following analysis results and interpretations are based on this restricted variation. 

6. Res idual  strength d iagram 

Residual strength could be defined as the remaining strength of structures under the presence of 
cracks [10]. Thus, the residual strength diagram could show the maximum load carrying 
capacity of a cracked structure. This value is the same as the peak load and is different from the 
traction free crack propagation load (see Fig. 3). Thus, the residual strength is not directly 
related to the propagation of traction free crack. However, the difference btween the peak load 
and the traction free crack propagation load may be fairly small in the linear stress-separation 
model which was discussed in the previous section (see also Fig. 3). Therefore, we define the 
residual strength for each traction free crack length ao to be the traction free crack propagation 
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load with fully developed process zone in this analysis. The loads in the obtained load-deflection 
curves are defined the same as well. 

Obtained residual strength diagrams are shown in Figs. 11-13. The LEFM results show the 
behavior of composites when they are calculated by LEFM concept. Therefore, the difference 
between LEFM results and NLEFM results indicate the conditions for validity of LEFM in the 
numerical analysis. 

From the analysis, the following results are observed (Here, it should be noted that the 
validity of results in the region of f*/J~ = 1.(~2.0 decreases as the value of f* / f ,  increases since 
the damage zone size could increase as the value of f* / f ,  increases). 

(1) In the region of a small initial crack length ao (ao/lcn<O.1), the behavior of composites is 
insensitive to the presence of a crack. 

(2) The residual strength %/ft  for a given crack length increases as the value of f* / f ,  increases 
(or the value of t~c/lch decreases). 

(3) The NLEFM results are closer to LEFM results as the slope of the linear line in the 
stress-separation curve becomes more negative (the value of ,:Sc/lch decreases or f* / f t  
increases in Fig. 10). 

(4) The above behavior of composites is the same even if L/Ich is changed. However, as the value of 
Z/lch increases, the NLEFM results become closer to LEFM results. This is because something 
like a small scale yielding (SSY) condition can be approached faster with a larger structure. 
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Fig. 11. Residual strength diagram (L/lch = 5.0). 
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(5) Valid condition for LEFM approach is observed for relatively large crack length 
(ao/lch>O.O1). This is because as ao/lch gets larger, the ratio of the process zone size to the 
initial crack length becomes smaller. 

7. Load-deflection curve 

Obtained load-deflection curves associated with steady-state crack propagation are shown in 
Figs. 14-16. The values of loads in the figures are identical to those in the residual strength 
diagrams shown in Figs. 11-13. The pre-peak behavior is neglected in the figures. The maximum 
load shown could be slightly lower than the actual maximum load (--the peak load in Fig. 3) 
since the maximum load on the graph is obtained from the traction free crack propagation load 
as discussed previously. However, one can see the stability of shear key structures with a 
softening process zone under effectively bending loads after the peak load. From the analysis, 
the following results are obtained (Here, it should be noted again that the validity of results in 
the region of f*/J) = 1.0-2.0 decreases as the value of .f*~ft increases). 

(1) Brittle materials usually show a snap back phenomena during crack propagation. Such a 
behavior is shown by the curves for LEFM in Figs. 14-16. For composites (with behavior 
shown in the same figures), there is no significant snap back and their overall behavior 
therefore seems to be stable. 

(2) The structures with lower value of 6c/lch or higher value of f* / f ,  (the more negative the slope 
of the stress-separation curve in the present case) have a sudden drop of load carrying 
capacity after the snap back action resulting in relatively unstable behavior. 

(3) The structures with higher value of 6c/Ich or lower value of f* / f ,  have larger deformation for 
the same physical crack length. 

(4) The NLEFM results with lower value of 6~/leh or higher value of f* / f t  are closer to LEFM 
results. This behavior could also be observed in the residual strength diagram. 

(5) The structure with higher value of 6c/lch or lower value of f* / f t  (more stable structures in the 
present case) shows the lower maximum load in the load-deflection curve and shows larger 
deflection at the maximum load. This can be explained from the work of Li and Liang [3] 
that shows the initial stiffness of composites are the same and more ductile structures tend to 
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reduce the stiffness earlier and the difference between displacement at the peak load and that 
at the traction free crack propagation load increases as ductility increases (see Fig. 3). 

(6) The above behavior of composites is the same even if L/lch is changed. However, as the value 
of L/l~h increases, the NLEFM results become closer to LEFM results as well as the residual 
strength diagram. This is because something like a small scale yielding (SSY) condition can 
be approached faster with a larger structure. 

8. Behavior of process zone size 

The steady-state process zone size (lp)ss may be estimated by assuming the stress intensity factor 
induced by the applied force equal to the fracture toughness of the composite in the equilibrium 
relation of stress intensity (Barenblatt's approach) and assuming that the fiber bridging stresses 
vary linearly from f to 0 in the process zone. This procedure was first used by Palmer and Rice 
[11] who studied the 'slip-weakening' process in consolidated clay slopes under shear deforma- 
tion. They obtained 

= . (4) 

Evaluation of the above equation gives (Ip)ss/lch-~-0.9. This relation is extremely simple. 
However, this equation may not precisely describe the present NLEFM results since they 
assumed a linear stress distribution in the process zone. In addition, they did not consider 
geometric size in their analysis which might also affect their results. 

The process zone size Ip/lch v e r s u s  crack length ao/lch c u r v e s  obtained from the NLEFM 
analysis are shown in Figs. 17 19 for the case of E/ft = 1000.0. From the analysis, the following 
results are observed (Here, it should be noted again that the validity of results in the region of 
f*/ft  = 1.0-2.0 decreases as the value of f*/ft  increases). 

(1) Process zone size is very insensitive to the crack size in the small crack region (ao/lch < 0 . 1 ) .  This 
phenomenon is especially evident in the case of the lower value of ~c/lch o r  higher value off*I f ,  

(2) The case with lower value of 8c/lch or higher value of f*/f~ (more negative slope of line in the 
stress-separation curve in the present case) has the lower process zone size. 
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Fig. 17. P r o c e s s  z o n e  s i ze  (L/lh = 5.0). Fig. 18. P r o c e s s  z o n e  s ize  (L/lch = 1.0). 
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Fly. 19. P r o c e s s  z o n e  size (L/lch = 0.5). Fiy. 20, N o r m a l i z e d  p r o c e s s  z o n e  size for  d i f f e r en t  v a l u e  o f  

L/l<h. 

(3) Process zone size tends to drop suddenly at the large crack region. This phenomenon is 
especially evident in the case of the higher value of 6</l<h or lower value of f*/f t .  

(4) The above behavior of process zone size is the same even if the value of L/lch is changed. 
However, as L/l~n increases, the process zone size increases. 

Overall, the obtained results are different from Palmer and Rice's simple relation. This is 
because we assumed the linear stress-separation curves resulting in nonlinear stress distribution 
in the process zone, while they assumed linear stress distribution in the process zone. 

From the N L E F M  results, the process zone size lp/l<h could be calculated as a function of 
f* / f t  and L/l~h. The objective here is to find numerically a simple relation among the process 
zone size, the stress-separation curve and geometric size assuming a linear stress-separation 
curve and fixed loading configuration. We try to find a simple approximate relation between 
lp/lch, f* / f t  and L/lch with cohesive zone approach. Unknown constants will be present in such a 
simple relation. By plotting the numerical results obtained from the N L E F M  analysis, a 
regression analysis could be carried out to obtain the unknown constants. 

Cohesive zone approach indicates the stress intensity factors induced by external loading 
must be cancelled out by the negative stress intensity factors induced by the cohesive stresses 
along the process zone. Actually, this theory cannot be valid for certain composites where a 
singularity is maintained by the relatively high toughness matrix material. In the present 
analysis, this effect is neglected to obtain the simple relation between lp/l~h, f* / f t  and L/l<h. 

Using the Dugdale model [12] which assumes a constant bridging stress distribution at the 
process zone, one could obtain the following simple relations by mathematical approximation 
(see Appendix I). 

10,0  l0 l (  _t-7--- c2B + 

l~, + i t  / 

where/7 could be related to 1/(L/lch), and C1 and C2 are constant. The reason for the use of the 
Dugdale model assuming uniform bridging stress is that the purpose of the simple analysis is to 
identify parameters governing the size of the process zone. The actual dependence of process 
zone size on such parameters will be obtained through empirical fitting to results from 
numerical computation. 



Fracture behavior of shear key structures 357 

1,5  

t p/ tch 
1 

0 . 5  

0 

0 . 5  

E / f t  = 1 0 0 0 . 0  ( c o n s t a n t )  

Gf/f i l  t c h  = 0.(301 ( c o n s t a n t )  

- -  • f t * / f t  = 1.0 

o f t * / f t  = 2 .0  

• - -  f t * / f t  = 0 .5  

l l l l . l . . l  . . . .  I . . . .  I I l , , l l l l l l l l , . I  . . . .  I , i , I 

1.5 2.5 3,5 4.5 
L/gch 

Fig. 21. N o r m a l i z e d  p rocess  zone  size for  different value  o f f j f * .  

Using this relation, one can carry out a regression analysis with the NLEFM numerical 
results. Then, one could obtain the behavior of Ip/lch in terms of f *~f, and L/l~h shown in Fig. 20 
and Fig. 21. As discussed previously, the validity of these figures in the region off*/f t  = 1.O-2.0 
could decrease as the value of f*/f t  increases. 

Actually, these quantitative relations should be assessed with experimental verification, and 
are valid for only the present cases. However, these results might be used for several types of 
shear key structures with a softening process zone like short fiber reinforced ceramic structures, 
especially in the small crack region with large size structures if the behavior of the structures is 
dominated by mode I. 

9. Conclusion 

In this paper, we investigated the fracture behavior of short fiber reinforced ceramic shear key 
structures by means of the fracture mechanics approach. Structural stability in relation to crack 
growth of shear key structures under effective bending loads was studied through a residual 
strength diagram and a load deflection curve. In addition, the behavior of process zone size in 
the structure was investigated, and quantified numerically. 

From this analytical study, the following conclusions could be drawn. 

(1) The shear key structures with a softening process zone behave stably under the presence of 
relatively small crack. Specifically, the residual strength of cracked shear key structures is 
insensitive to the relatively small crack, and no significant snap back action is observed in 
the load-deflection curves. These phenomena are not influenced by the structural size. 

(2) The residual strength of shear key structures with a softening process zone can be predicted 
by LEFM calculation when the value of ao/lch is larger than approximately 0.01. 

(3) The process zone size of shear key structures with a softening process zone is quantitative- 
ly predicted by a relatively simple numerical manner. The derived quantitative equation of 
process zone size is expressed in terms of the stress-separation curve and the structural size 
of shear key structures. These analytical results might make further numerical work on the 
behavior of fiber reinforced ceramic structures under tensile loading easier. However, since 
these quantities are obtained numerically and the calculation is achieved by a simple 
model like the Dugdale model, these results should be compared with the experimental 
works. 
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(4) Present analytical studies indicated short fiber reinforcement for ceramics with adequate 
toughness and a large critical separation 6" could eliminate a catastrophic failure or unstable 
fracture behavior of ceramic structures, and also indicated potentially the plausible applica- 
bility of ceramics as construction materials. 

Appendix I 

Calculation of process zone size 

The stress intensity factors induced by external loading (see Fig. 5) 

where fl~ is a geometric factor and can be related to 1/L. 
The stress intensity factors induced by the cohesive stresses assumed to distribute uniformly 

with the magnitude of f*  along the process zone 

K2 f122f*x/a°+lpcos-i  ( ao ) 
rc ao + lp 

where f12 is a geometric factor and could be related to 1/L. 
Equating K~ to K2 

fllap n,~O + Ip)= flE2f* rr cos- 

namely 

COS 2~t, TC -- ao + I v 

then, normalizing the variables by l~h and f, 

]oh 
- - = s e c  ½~/~ - 1, 
ao 

l<~ \ 77-,/ 

where fl equals fll/fl2 and can be related to 1/(L/IM. 
Fixing ao/l<h in the region of small crack 

l<-~ -4- l.O oc sec/~.pf---~). 

\ / , /  

(7) 

(8) 

(9) 

(10) 

(11) 
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Assuming ap/f, is linearly propor t iona l  to f * / f ,  (This is slightly different f rom the N L E F M  

results) 

t<-~+ l.Oo~sec c l  +c~/,Is, ! /'* l 
f , /  f , I  

(12) 

Neglecting the higher order  terms in the series, one can obtain 

/ 2 
1.o Cl/~ 

- - l _ .  ~ 10 - c2~ + Z;-_,*/' 

Ich + 1.0 f ,  / 

(13) 

where C1 and C2 are constant.  

The relat ion between the process zone size and stress-separat ion curve with fixed Z/lch and 

Elf, is obta ined as follows. 
Fixing r ,  one can obtain  

l p = f l  , - 

l<h + 1.0 I f ,  \ f t /  ) 

(14) 

Using this relation, one can carry out  a regression analysis with the N L E F M  numerical  results. 
The obta ined results are as follows 

,0 
L/lch=5.0: lp--" - -  ; (15a) 

~+ 1.o \ZI  

1.0 = 1.1365 - 0.62959 + 0.16157 ; (15b) L/Ich = 1.0: lp--"  
+ 1.o \Z /  \Z /  

0 01, 04068( )+007 / ,  1 L/lch : 0.5: it , -- - 

/~h + 1.0 - -  \ f '  / 

The relation between the process zone length and geometric size with fixed f * / f ,  and E/ft are 
obta ined as follows. 
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Fix ing  f* f f ,  in (13), one  can  o b t a i n  

1.0 
- -  = f 2 : ~ , ~ 2 } ,  
IV 
lc-~ + 1.0 

where  fl can  be re la ted to l/(L/IcD. 
Using  this re la t ion ,  one  can  carry  ou t  a regress ion  analys is  with the N L E F M  

results.  The  o b t a i n e d  results are as follows 

(16) 

numer i ca l  

,.o /'t f*/f ,  = 1.0: I ~  - 0.58326 + 0.091684 - 0.0037891 -~ ; (17a) 

t~-~ + 1.o VT~/ V,.-d 

10 
f*/,f, = 2.0: iv . . . .  0.83251 + 0.037733 - 0.0082662 ; (17b) 

+ l.o \~/  \~/  

(/ 1.0 1 
f*/f ,  = 0.5: 1 - ~ - - - ~  = 0.31128 + 0.2520 -~ - 0.037263 . (17c) 

;c~ + 10  \ ~ , ~ /  
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