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Abstract. Quasi-statically growing crack-tip fields in elastic perfectly plastic pressure-sensitive materials under
plane strain conditions areinvestigated in this paper. The materials are assumed to follow the Drucker—Prager yield
criterion and the normality flow rule. The asymptotic mode | crack-tip fields are assumed to follow the five-sector
assembly of Drugan et al. (1982) for Mises materials. The crack-tip sectors, in turns, from the front of the crack
tip are a constant stress sector, a centered fan sector, a non-singular plastic sector, an elastic sector and findly a
trailing non-singular plastic sector bordering the crack face. The results of the asymptotic analysis show that asthe
pressure sensitivity increases, the plastic deformation shifts to the front of the tip, the angular span of the elastic
unloading sector increases, and the angular span of the trailing non-singular plastic sector bordering the crack
surface decreases. As the pressure sensitivity increases to about 0.6, the angular span of the trailing non-singular
plastic sector ailmost vanishes. The effects of the border conditions between the centered fan sector and the first
non-singular plastic sector on the solutions of the crack-tip fields for both Mises and pressure-sensitive materials
areinvestigated in details.
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1. Introduction

In the classical metal plasticity theory, it is assumed that hydrostatic pressure has no effect on
material plastic deformation, and plastic dilatancy is neglected. However, for many materials,
such as soils, concrete, rocks and silicate glasses, macroscopic pressure-sensitive yielding
and plastic volumetric deformation are exhibited. Toughened plastics also show apparent
pressure-sensitive yielding and plastic volumetric deformation, for example, see[1, 2, 3, 4].
Pressure-sensitive phase transformation (or yielding) is also observed in zirconia-containing
transformation toughened ceramics, for example, see[5, 6, 7]. It isconsidered that the pressure-
sensitive yielding occurs from basic flow mechanism, cavitation and craze formation in some
polymers and from phase transformation and microcracking in some ceramics.

The available asymptotic near-tip fields for stationary cracksin highly pressure-sensitive
materials show different characteristics from those in pressure-insensitive Mises materials.
Li and Pan [9, 10] studied the effects of pressure-sensitive yielding on asymptotic crack-tip
fields based on the Drucker—Prager yield criterion [8] for power-law hardening deformation
plasticity materials and perfectly plastic materials under mode | plane strain and plane stress
conditions. They found that asymptotic HRR-type crack-tip fields (Hutchinson [11, 12]; Rice
and Rosengren[13]) do exist for pressure-sensitive power-law hardening materials. Theresults
of Li and Pan [9, 10] show that pressure sensitivity can lower the mean stress and the effective
stress directly ahead of the crack tip. Further investigations on characterization of asymptotic
crack-tip fields based on the Drucker—Prager yield criterion can befound in Yuan and Lin [14]
and Yuan [15].
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The crack-tip field of a stationary crack in perfectly plastic Mises materials under mode |
plane strain conditions can be described by the fully-yielded Prandtl field. However, when the
Prandtl field is directly applied to a moving crack, negative plastic dissipation occurs along
the border between the centered fan sector and the trailing constant stress sector. Studies of
the crack-tip fields for moving cracks in elastic perfectly plastic Mises materials show that
there are indeed additional restrictions for moving cracks[16, 17, 18, 19].

Works contributed to the asymptotic solutions of mode | near-tip fields of quasi-statically
growing cracks in elastic perfectly plastic materials under plane strain conditions are briefly
summarized in the following. Slepyan [20] first obtained the solutions for Tresca materials.
Gao [21] later independently developed the solution for Mises materials with Poisson’s ratio
v equal to % Rice et a. [22] included an elastic unloading zone between the centered fan
sector and the trailing constant stress sector instead of the fully-yielded Prandtl field which
should not be adopted due to its negative plastic dissipation for agrowing crack. Subsequently,
Rice [23] conducted more rigorous studies of anti-plane strain, plane strain and plane stress
asymptotic crack-tip fields for materials following a general form of yield criteria and the
normality flow rule.

Rice [23] pointed out an error in the solution of Rice et al. [22] for v < % Drugan et
a. [24] corrected the error and introduced an asymptatic growing crack-tip field with two
non-singular plastic sectorsfor v < % The results of their study showed a general agreement
with the finite element solutions of Sham [25]. However, Hwang and Luo [26] later discovered
negative plastic dissipation in a part of the first non-singular plastic sector in the solution of
Drugan et al. [24] for v < % Hwang and Luo [26] adopted a border condition, from Gao
and Hwang [17], between the first non-singular plastic sector and the elastic sector and then
obtained the asymptotic crack-tip fields. Their results showed that the asymptotic structure
of the stress field for » < 1 tends to that for » = 3 when v approaches to 3. To extend
the analytical studies to large-scale and general yielding conditions, Drugan and Chen [27]
further assumed a curved asymptotic boundary between the front constant stress sector and
the centered fan sector and obtained the ‘m-family’ analytical solutions for Mises materials
with v = 1/2. In Chen and Drugan [28], the ‘m-family’ solutions are shown to compare well
with the corresponding finite element solutions for finite geometries.

In contrast to the crack-tip fieldsfor elastic perfectly plastic materials, Ponte Castafieda[29]
investigated asymptotic crack-tip fields for quasi-statically growing cracksin Mises materials
with linear hardening. He was able to obtain results for materials with very low strain hard-
ening. However, some characteristics of his results are not in good agreement with those for
elastic perfectly plastic materials asin Drugan et al. [24]. A similar approach was adopted in
the work of Bigoni and Radi [30] for pressure-sensitive materials with linear hardening based
onthe Drucker—Prager yield criterion. The crack-tip fields of Bigoni and Radi [30] showed the
similar trend of lower stresses ahead of the tip due to pressure sensitivity when compared with
the asymptotic crack-tip fields of Li and Pan[9, 10] for stationary cracksin pressure-sensitive
materials.

In this paper, the asymptotic crack-tip fieldsfor quasi-statically growing cracksunder plane
strain conditions are constructed for pressure-sensitive material s based on the Drucker—Prager
yield criterion. The assembly of the crack-tip sectors suggested by Drugan et al. [24] for Mises
materials with v < % is adopted for pressure-sensitive materials. We follow the framework
established by Rice [23] to determine the stress and velocity fields in each crack-tip sector.
The conditions along the border between the centered fan and the first non-singular plastic
sector areexaminedin details. The crack-tip fieldsfor variousvalues of pressure sensitivity are
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Figure 1. Cartesian coordinates x1, x> and x3 are fixed in the material; polar coordinates r and 6 are centered at
the tip and move with the tip as the crack grows.

obtained and the stresses ahead of the crack tip are compared with those of the fully-yielded
crack-tip fields for stationary cracks.

2. Governing equations

Figure 1 shows a crack with alength a. In the figure, 21 and z, represent the fixed Cartesian
coordinates, and r and € represent the polar coordinates centered at the growing crack tip. The
crack is assumed to grow in the z; direction.

2.1. EQUILIBRIUM

The equilibrium equations are

2% -0, ®
8.’L‘j

where o;; represent the stress components and f; are the components of the body force. The
subscripts 4, 7 and k& have the range of 1 to 3 and the summation convention is adopted. If
only the leading dominant terms are considered, the asymptotic form (r — 0) of the in-plane
equilibrium equations for growing cracks, in terms of the polar components of stresses, can
be written as (see Rice [23] and Drugan [18])

o —0gg +0hg =0 2
20,9 + 09y =0, ©)

where o/, and oy, represent the derivatives of o,y and oy with respect to § asr — 0.
Under mode | plane strain conditions, a very useful relation which is also derived from the
equilibrium equations (Rice [23]) is

o; iHij = (011 + 022)Hyp + 033 H3s, (4)

whereo ; represent thederivatives of o;; with respect tof asr — 0and H;; arethe components
of an arbitrary tensor.
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2.2. CONSTITUTIVE RELATIONS

The components of the rate of deformation tensor, D;;, are defined as

. 1/ Ov; ov;
Dijzeij:_( Z+_]>v ©)

2 8.’L‘j Ba;l

where ¢;; are the strain components, the dot represents the time derivative at afixed material
point, v; are the velocity components of aparticle and v; = 4; where u; are the displacement

components. D;; can be decomposed into an elastic part, Df;, and aplastic part, ij:

Dy; = D§; + DI, (6)
Based on Hooke's law for elastic isotropic materials, the elastic part Df; can be expressed
as
Dj; = Mok, (7
where
1+v v
M;jn = —E(5ik5jl + 0y djk) — E(sz’j(skl- (8)

Here, ¢;; isthe Kronecker delta. The asymptotic form of the stressrates ¢;; is represented in
Equation (14). In Equation (8), E is Young's modulus and v is Poisson’s ratio.

The pressure-sensitive Drucker—Prager yield criterion [8, 9, 10] is adopted here. Theyield
criterion is alinear combination of the mean stress o,,, (= o /3) and the effective stress o,
(: 3 (Sijsij/Z)l/z where Sijj = 045 — Um(sij) as

¢(Uij) =0+ \/éﬂam = Oge = 00Q- (9)

In Equation (9), v(0;;) represents the yield function of o;;, and . represents the pressure
sensitivity of the material. Here . is taken as a constant. For steels, the values of 1 are quite
small in the range from 0.014 to 0.064 (Spitzig et al. [31, 32]). For polymers, the values
of u arein the range from 0.1 to 0.25 (Kinloch and Young [33]). For phase transformation
ceramics, Chen [34] reported that 1 is 0.55 for Mg-PSZ and 0.77 for Ce-TZP. For Ce-TZP,
1+ can be as high as 0.93 (Yu and Shetty [7]). In Equation (9), 0. represents the generalized
tensile effective stress. For perfectly plastic materials, o, istaken asaconstant oo.
The assumption of normality for plastic strain increments leads to

Dy =P, (10)

where A is a proportionality factor and P ; represent the components of the outward normal
to the yield surface in the stress space. Here, for the Drucker—Prager yield criterion, P;; are
written as

_ Wloy) _ 3y 1
Jojj 20, /3

5ij - (12)

Djj = Mijuio + A Py (12)
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Notethat in Equation (12) the material has been assumed to follow the normality flow rule.
For transformation toughened ceramics, the experimental results suggested that the phase
transformation strain increments follow the normality flow rule [6]. However, non-normality
flow occurs in plastics, rocks and metals, see Drucker [2], Rudnicki and Rice [35] and
Needleman and Rice [36]. Here we will concentrate on the crack-tip behavior for pressure-
sensitive materials with normality flow.

The constitutive relation, Equation (12), involves the stress rates with respect to a fixed
material point. Applying the chain rule to the stressrates 5, (r, 9, t), we get

80’@' . 80’@' . 80’@'
0o o

(13)

('Tij =
Here the rates of the crack-tip polar coordinates can be expressed by § = asing/r and
7 = —a cosf. The asymptotic form of the stress rates then becomes (Rice [23])

dij :Ugdeine/T (14)

by considering only the leading-order terms. Note that Equation (14) is valid only for the
indices of the Cartesian coordinates (i, j = 1, 2). With the use of Equations (14) and (4), the
elastic part of D;; can be written as

ij = Mz’jklé—kl = [Mij,n,n(olll + 0”22) + M¢J330',33]a3|n9/7" (15)

3. Elastic sector

Rice [23] has derived the stress field and kinematically admissible velocity field in an elastic
sector. The compatibility for plane problems gives

9?Dyy  0%°D1q _ 9%D1

= ) 16

Bw% 8:10% 0x10%2 (16)
The components of the rate of deformation tensor are assumed in the form

Dij ~ GF”(Q)/T (17)

The velocity fields which satisfy the compatibility Equation (16) under the assumption of
Equation (17) can have the form

vi = aAg In|rsng/R| —a /(Fll(e)/sine) do, (18)
vs = a A7 In|rcos6/R| +a / (Fa(6)/ cos0) do. (19)

Here, R isalength parameter, and Ag and A7 are constants. Also,
F11(0) = (cos®0 — v)(Agcost + A7sin6) /(1 —v), (20)
Fy(0) = (sin®f — v)(Agcosd + A7sin6)/(1—v). (22)
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The stress components in the elastic sector are

o = ﬁ[4A6In|sin0| + ApCos20 + A7(20 + 2sin20) + Asg], (22)
— UV
— B 4520+ sin2) — A7c0s20 + A 23)
o012 = A1 7 6 7 9,
E .
o9 = m [—AgC0S20 + A7(20 — sin20) + Ajo] , (24)
o33 = v(o11 + o) + A1, (25)

where Ag, Ag, A9, and A1; are constants to be determined from the boundary conditions.

4. Singular plastic sector

For plastic sectors, Rice [23] derived adifferential form of the yield condition near thetip as
Equation (26) is obtained from the fact that the yield criterion is satisfied for al anglesinside
plastic sectors for perfectly plastic materials. Applying Equation (4) to Equation (26), Rice
then gave the governing equation for plastic sectors as

(011 + 029) Prr + 033P33 = 0. (27)

Further, these plastic sectors are categorized into two different types: singular plastic sectors
with P33 = 0 and non-singular plastic sectors with P33 # O.

The singular plastic sectors have at least one singular in-plane plastic strain component.
For singular plastic sectorswith P33 = 0 asr — 0, Equation (27) becomes

(0,11 + UIZZ)PM =0. (28)

4.1. CONSTANT STRESS SECTOR

From the governing Equation (28) for singular plastic sectors, when o/, + 05, = 0, al the
Cartesian stress components are constants in this type of sectors. The velocity field has the
sameform asthat of the elastic sector under the assumption of Equation (17). But the constants
Ag and A7 and F;;(0) are different such that

Fu(0) = gAPn (29)

Fx(0) = gAP227 (30)
and Ag and A7 are replaced by two other constants, C'; and C',, respectively.

4.2. CENTERED FAN SECTOR

When P, = 0, closed-form solutions for crack-tip stresses have been derived in Kim and
Pan [37]. The solutionswill not be repeated here. In order to find the kinematically admissible
velocity fields, we multiply r do;; /06 to both sides of Equation (12)

00

d0;j

" 90

Dij=r (Mijkl(fkl + APij) : (31)
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Here, r(8aij/89)APZ~j is zero for both elastic and plastic sectors because in elastic sectors
A = 0 and in plastic sectors o;; Pij = 0 (Equation (26)). With the use of Equation (4),
rr = Ovp/Or and D33 = 0, Equation (31) becomes

ov, 0ha)? a .

r 87” = 03_1+U,22—2V053+ﬁ E SII’IH, (32)
asr — 0.

Integrating Equation (32) givesthe velocity component v, in the centered fan sector as

a af(o,t

v, =Y (0) = In|R/r| + %, (33)
where

Y (0) = —sin® |0y + 05 — 2vo5s + ,(Lg)z, (34)

o1t o

and f(0,t) isafunction of integration. In order to find vy, the components Dyy and D, are
obtained from using Equations (12) and (15) and by noting that Mg, = Mppss = —v/E
and Mrﬂrr = r633 = Oas

Dyy = —%akk sind + APy (35)

D,y = AP,. (36)

Also, therelations of D,y and Dy to v, and vy from Equation (5) are

10wy v,

Dop = ——5 + - (37)
_ 181}r Ovg vy

Dro =3 (r 89+ or r>' (38)

After combining Equations (35), (37) and (33) and integrating the result over ¢, we get an
expression for vy as

—— o
vy = —3/ Vol sing d9+/ rA Py do
E Jg, 0o

a 0
IR/l [ Y(0) o= 0.0 (1), (39

where 6 is the angle where the centered fan begins and g(r, ¢) is a function of integration.
Here g(r, t) is considered as the contribution from rigid body motion. Note that in Equation
(39) the dependence of A onr and 6 is still not known.

In order to understand the functional form of A, we combine Equations (36) and (38) with
the velocities v, and vy from Equations (33) and (39) and we have

APy = E—I R/r |< /Y d9> - ya}cksina do
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H [/ [ A
L R }/ ( aA) Py 0
(7]

2E 1 Jg, 2 Jo, TE
1 [9%F(6,1) dg(r,t)  g(r,t)
+Z[ L+ fon)| ¢ [ - S0 (40)

We assume the functional form of A to satisfy Equation (40) as
A= x(0)F IN(R/r) 5+ W (6)° + 20)% asr—o (41)
T T T

Here X (0), W(#), and Z(0) are functions of #. Now we substitute Equation (41) into (40)
and compare the coefficients of the most singular termswith 1/ In|R/r|. Then we obtain the
governing equation for X (#) as

2 d9 0o 2 0o

For convenience of numerical calculation, we rewrite Equation (42) in the form of differential
equation as

PoX(0) = & {dy(a) v de} X px(0) . (42)

d?Y ()

1
PrGX’(H) + (P;g + %ng)X(@) = E (W

+ Y(9)> (43)

with the boundary condition
1 dy(9)
X(0) = 55, " o=ty

In summary, if only the most singular terms are considered for ¢ # 0, the velocity
componentsin the centered fan sector become

(44)

o = Y(H)% In|R/r| (45)

w =ik [ :[Y<e> ~ PuX(0)] &, (46)

asr — 0. Notethat Y () and Py can be obtained from the closed-form solution of Kim and
Pan [37]. We need to determine X () numerically from integrating Equation (43) with the
boundary condition (44).

Let us check the velocity field of the centered fan sector in Equations (45) and (46) for the
limit case of ;» = 0. For Mises materials (u = 0), 043 = (071 + 0%)/2 = —2719 Where 7g is
the shear yield stress (1o = 0o/+/3). From Equation (34) we can have

Y (#) = (5— 4v)moSiné. (47)

Also, since P,, = P33 = 0 in the centered fan sector, we have Py, = 0 due to plastic
incompressibility for ;. = 0. Therefore, with the centered fan beginning at § = 45° for Mises
materials, Equations (45) and (46) are reduced to

vy = (5— 4v)(ro/E)asingIn|R/r| (48)

vy = —(5—4)(ro/E)a |1/v/2 ~ cost] In|R/r|, (49)
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which are in agreement with those of Rice [23] and Drugan et al. [24] for Mises materials.

5. Non-singular plastic sector

We now consider non-singular plastic sectors where the material deforms plastically but
P33 # 0in Equation (27) asr — 0. From Equations (12) and (15), the plane strain conditions
for such a sector give

Dy = 0= 7B ”(O,'E'll +92) S gng + Apy, (50)
or, '

A= —Ués_]/é(§;+0,22)gsin0. (51)

The equilibrium equations, Equations (2) and (3), can be rewritten as

olg = 2(ogg — 0) (52)

opy = —209, (53)

where o = (o, + 0gg)/2. As in Rice [23], combining the compatibility equation and the
differential form of the yield condition gives

{<1+ uP"> (o], + opg) — <u+ P") 0'33} sinf = E (A1 cosf + Apsind), (54)
P33 Ps3

where A; and A, are constantsto be determined from the vel ocity fields. Thedifferential yield
condition (27) can be rewritten as

(07, + 0pg) Prr + 033P33 = 0. (55)
Equation (55) can be further rewritten as
P,
ohy = —20 (P_33> . (56)
With the use of Equation (56), Equation (54) can aso be rewritten as
, E(Ajpcosf/sing + Ay) 57)

7 T 2{1+2v(P/Py) + (Brr/Pa)2}

Equations (52), (53), (56), and (57) definethe stressfield in the non-singular plastic sector.
Under the same assumption of Equation (17), the velocity field in this sector can be expressed
by Equations (18) and (19) (Rice [23]) with different constants and F;;(#). The constants
Ag and A7 in Equations (18) and (19) should be replaced by A1 and A, respectively, for
the non-singular plastic sector. But the closed-form solutions of F;;(#) cannot be obtained
because the governing equations for the stress field in the non-singular plastic sector cannot
be solved analytically unless A; = A, = 0in Equation (54), which givesthe trivial solution
of aconstant stress state.

6. Theassembly of sectors

The assembly of the quasi-statically growing crack-tip fields for elastically compressible
(v < 1/2) Mises materials suggested by Drugan et al. [24] is adopted here and shown in
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Figure 2. The assembly of crack-tip sectors for quasi-statically growing cracks.

Figure 2. The crack-tip sectors, in turns, from the front of the crack tip are a constant stress
sector (sector A), a centered fan sector (sector B), anon-singular plastic sector (sector C), an
elastic sector (sector D), and another non-singular plastic sector (sector E) bordering the crack
surface. For Mises materials with v # 1/2, the five-sector assembly in Figure 2 has been
numerically illustrated to approach to a four-sector assembly for v = 1/2 when v increases
to 3 [26]. When . = 0 and v = 3, the leading non-singular plastic sector (sector C) shrinks
to a line, and the trailing non-singular plastic sector (sector E) becomes a constant stress
sector [26].
The symmetry of mode | crack-tip fields requires

o9=0 and vy=0 af=0. (58)

Thetraction along the border between two sectors must be continuous. Thisgivesthecontinuity
of oy9 and o,y along the border. The crack surface (at # = 180°) should be traction-free.
Therefore,

og9 = 0pg =0 a O = 180°. (59)

In addition to the above conditions, all the stress components are continuous along each
border of two neighboring sectors. This condition was first given as an assumption in the
work of Drugan et al. [24] and was proved later independently by Drugan and Rice [16] and
Gao and Hwang [17] for growing cracks. Note that radial stress discontinuity is allowed for
assembly of crack-tip sectors for stationary cracks, for example, see Kim and Pan [37] for
stationary cracksin pressure-sensitive Drucker—Prager materials. However, the corresponding
finite element computational results show no radial stress discontinuity (See more references
in Kim and Pan [37] on thisissue).

Furthermore, another border condition between the first non-singular sector (sector C) and
the elastic sector (sector D) is

A0 = 63) =0, (60)

where 63 is defined in Figure 2. Equation (60) has been proved by Gao and Hwang [17] and
used for the assembly of crack-tip fieldsfor elastic perfectly plastic Misesmaterials by Hwang
and Lou [26].

In order to determine the constants of the velocity field in the first non-singular plastic
sector (sector C), the continuity conditions of v, and vy were applied along the border between
the centered fan sector (sector B) and the non-singular plastic sector (sector C). If the dominant
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In(1/r) singular terms are considered, the constants of the velocity field can be determined
from Equations (18), (19), (45) and (46) as

Ar = —% lY(Gz) cosb; + sinb; /0 "1y (0) = PX (0)] da] (61)

Ay — —% [Y(ez)sinez — costy /0 "1 (0) - PrX (0)] do] (62)

where Y (6) is given in Equation (34) and X (6) in Equation (42). Further, sectors C, D,
and E have the same form of velocity fields (see Equations (18) and (19) with constants A,
and A, for sector C, Ag and A for sector D, and A1, and Aj3 for sector E, respectively).
Therefore, under the assumption of full velocity continuity, al the corresponding constantsfor
the velocity fieldsin sectors C, D and E areidentical: A1 = Ag = Aypp and Ay = A7 = Ajs.

The solution procedure is given as follows. Two parameters, the stress component o171
at 6 = 0 and the value of 6, are first assumed as the initial guesses. In the constant stress
sector, the other two stress components oo, and o33 at 6 = 0 can be determined by the yield
condition and the plane strain conditions for singular plastic sector (P33 = 0). The value of
0, is determined by Kim and Pan [37] as

4,25
61 = Stan~? (@) . (63)

The condition of full stress continuity is imposed to determine the stresses at 6 = ¢, on the
side of the centered fan sector. In the centered fan sector, the closed-form stress solutions [37]
are employed to calculate the stresses from # = 6 to the initially guessed angle 6 . After
the stress field in the centered fan sector is found, the two constants A; and A, for the
velocity singularity are calculated by solving X (#) and Y (#) and performing integrationsin
Equations (61) and (62). The full stress continuity then gives all the necessary values to start
the Runge—Kutta numerical integration of the differential Equationsin (52), (53), (56) and
(57) for the non-singular plastic sector (sector C) from 6 = 65.

Since P33 = P,, = 0 for the centered fan sector, theratio P,/ Ps3 in Equations (56) and
(57) is undetermined at # = 6. To start the numerical integration in sector C, we employed
the Taylor's series expansion at ¢ = 6, to obtain the stresses at 0 = 6, + 66, where §6 isa
small angle, asin Drugan et al. [24]. A detailed discussion of the Taylor’s series expansion at
0 = 0, isincluded in the Appendix. In summary, the Taylor’s series expansion from 6 = 6, to
0 = 62+ 06 isnot unique and should be dependent on theratio Ps3/ P, a 6 = 0, approached
from the side of the non-singular plastic sector. Thisratio cannot be determined simply by the
continuity of stresses and velocities at 6 = 6. However, anon-negative proportionality factor
A at 6 = 6, requiresthat theratio P,/ P33 at 0 = 0, satisfies

1(3+2u? (PW>
—= < | = < -, 64
2<3_'u2> Ps3 0=0, ( )

where

(o=, = lim () (65)

0—)02
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andf > 60,. Notethat sincef > 6, thelimit valuein Equation (65) iseval uated by approaching
to #, from the side of the non-singular plastic sector. The lower bound

P, 1(3+2u?
<P33> 0=0, 2 ( 3—p? ) (69
in Equation (64) corresponds to a set of solutions where agj are continuous at § = #, (see
Appendix).

The general expressionsof the Taylor's series expansion for Ps3 and P, arein the form of
Equations (A45) and (A46) and the stress components derived from these two equations are
found to be rather complicated. Since the variation of the stress fields due to different values
of (Ps3/ Py)g—g, Within the bounds specified by Equation (64) is found to be very small, only
the Taylor's series expansions at # = 6, under the assumption of Equation (66) are shown

in the following. Because (Pi3)g—9, = O under the condition of Equation (66), the Taylor’s
seriesexpansion for Ps3 and P, a 8 = 6, + 00 iswritten as

Py = C(0 — 02)% + - - (67)
Prr—_§<3_uz>c(0_02) +o (68)

where > 6 and C = (P%)y—g,. Here C isaconstant and again cannot be determined from

available boundary conditions at @ = 6,. However, to get anon-negative A, we need C' > 0.
From Equations (52), (53), (67), (68) and the closed-form stress solutions of the centered

fan sector, we obtain the Taylor’s series expansion of the stressesat § = 6, + 660 for » > 0 as

o —00+27M00(9—9)+ 2 00(0 — 62)% + - -- (69)
rd = Org (1_%1”2)1/2 ré 2 1_%1”2 rf 2
00— 2000 — ) — — 024, 70
ogg = ogg — 20,4(0 — 02) (1_5M2)1/20r0( 2)" + (70)
3

o = BF2%)0p, — 2V3u  2(3+ 20,
8- 3—4u? 3—4u?

[ 2v3uB+ 2 o 9(V3uoh — 1)
B—42)¥2 77T 3= u2)(3- 4

(0 — 62)

}0(9—92)2+--- (71)

(38— p?)ogy — V3u _ 2(3— p?)oy,

- 3—4u2 3—4u2 (6 —62)
2V3u(3 —12)0%
AR 0 0+ ©

where 0% = 0,9(0 = 62) and 03, = 0p9(0 = 6,). We have adopted different values of
C(> 0) in our solution procedure and found that the values of C' chosen have very weak
influences on the stressfields.
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The Runge—Kutta integration is then performed from 6 = 6, + §6 with the initial value
obtained by the Taylor's series expansion described above. The non-singular plastic sector
endswhere the zero plastic dissipation condition in Equation (60) is satisfied. The value of 03
in Equation (60) isfound by checking at the end point of each Runge—Kuttaintegration started
from 6, to decide the two end values of theinterval where the solution of 63 exists. A bisection
iteration method isthen applied to find 63 in thisinterval in order to satisfy the requirement of
Equation (60). Then, thefull stress continuity isagain enforced at 63 to determine the constants
Ag, Ag, A10 and Ay for the elastic stressfield in sector D described by Equations (22), (23),
(24), and (25).

In order to find 64, 6 is increased from 63 to the interval where the generalized tensile
effective stress o, at the end point of the integration interval exceeds og. The angle 0 is
again determined in this interval by the bisection iteration method as explained earlier for
determining 63. Once the angle 6, is found, the stress state in the second non-singular plastic
sector (sector E) can be obtained by numerical integration from 6, to 180°. Note that one
of the governing equations for the non-singular plastic sector, Equation (57), is singular at
0 = 180°. Therefore, the Runge—Kuttaintegration is used to perform integration from 6 = 6,
to 6 = 180° — A# where A@ is small in the order of the step size of integration. Then, the
Euler integration scheme is used to perform integration from 6 = 180° — Af to 6 = 180°
to avoid the singular behavior of Equation (57) at § = 180°. Note that it is not necessary
to employ Taylor's series expansion at § = 180° aswe did at 8 = 6,, although Hwang and
Lou [26] did implement a modified boundary condition at & = 180° — n (n = 0.1°) by the
Taylor's series expansion from the boundary conditionsat 6 = 180°.

At 6 = 180°, thetraction-free conditions on the crack surface, ogg = 0,9 = 0 aretested. If
thesetwo traction-free boundary conditionsare not satisfied, new trial valuesfor 011 and 6, are
selected by the Newton—Raphson method. The procedure is continued until the traction-free
conditions at 6 = 180° are satisfied. In the Runge-Kutta numerical integration scheme for
the non-singular plastic sectors, three different increments of the angle (0.01°, 0.001° and
0.0001°) have been used to assess the accuracy of the calculations. All three of them givethe
amost same results for the angles to the order of 0.1°.

7. Numerical results

First, it should be noted that the value of E/oq has no influence on the stress fields. This
can be observed from the governing eguations of each sector and the continuity condition of
stresses. However, the value of E'/oq does affect the velocity constants A; (= As = A12) and
Ay (= A7 = Ay3) in Equations (61) and (62). Asindicated in Equations (61) and (62), alarger
value of E/oq corresponds to smaller values of A; and A, and therefore lower velocities.
Notethat Y () and X () are scaled by o in Equations (61) and (62).

To verify our solution procedure, we have obtained the stress fields for Mises materials
(1 = 0). Theresults are compared with those of Drugan et al. [24] and Hwang and Luo [26].
The stress field for 4 = 0 and » = 0.3, which is shown in Figure 3, agrees well with that
of Drugan et a. [24] and Hwang and Luo [26]. Our solution for ;, = 0 and v = 0.3 gives
01 = 45°, 0, = 110.3°, 63 = 118.3° and 6, = 160.5°. The value of oyy/0o ahead of the
crack tip is 2.95, which is lower than 2.97 of the Prandtl field. Sham [25] has found the
asymptotic stress field for a quasi-statically growing crack by finite element analysis. The
computed stresses of Sham [25] agree very well with the analytical results of Drugan et
al. [24] except the out-of -plane stress ahead of thetip. For ;, = 0.01 and v = 0.3, our solution
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Figure 3. The angular variations of the normalized crack-tip stresses for y = 0.

gives oyg/oo = 2.87 ahead of the crack tip, 61 = 44.7°, 6, = 109.4°, §3 = 117.6° and
04 = 160.8°. The angular distributions of the normalized stresses for ;» = 0.01 are quite
similar to those of the , = 0 case and will not be shown here. It has been noticed that there
is about a maximum discrepancy of 0.2° between our solutions for 6, 63, and 64 and those
of Hwang and Luo [26] for Mises materials for the case of v = 0.3 and v = 0.4. The reason
is possibly that Hwang and Luo [26] employed an expansion for the boundary conditions
from # = 180° to # = 180° — 5 where n isasmall angle (=~ 0.1°) and performed numerical
integrations to & = 180° — n [26]. On the other hand, we use the Euler integration scheme
with avery small step size for the very last integration step to § = 180° to avoid the singular
behavior of Equation (57) at 8 = 180°.

Figures 4, 5, and 6 show the angular variations of the stress fields for , = 0.2, 0.4, and
0.6 with v = 0.3. Results are only shown for . lower than 0.6 because the angle 6, becomes
very close to 180° as y is larger than 0.6. As shown in the figures, when p increases, the
total angular span of the constant stress sector (sector A) and the centered fan sector (sector
B) decreases. This trend agrees with that in Kim and Pan [37] for stationary cracks under
small-scale yielding with no 7' stresses. Also, as . increases, the angular span of the elastic
sector (sector D) increases. The angular span of the trailing non-singular sector (sector E), on
the other hand, decreasesfrom 19.5° for . = 0t0 0.4° for ;» = 0.6. When p islarger than 0.6,
the angular span of the trailing non-singular plastic sector (sector E) becomes even smaller
and almost vanishes.

Note that asymptotic analyses of near-tip fields for growing cracks in pressure-sensitive
materials have been presented by Miao and Drugan [38], Bigoni and Radi [30], and Radi
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and Bigoni [39, 40]. Miao and Drugan [38] obtained the plane strain growing crack-tip
fields for porous perfectly plastic materials based on Gurson’syield criterion [41]. Radi and
Bigoni [39, 40] investigated the growing crack-tip fieldsfor porouslinear hardening materials
with isotropic hardening and with combined isotropic and kinematic hardening, respectively,
based on Gurson'syield criterion. Note that in the above-mentioned asymptotic analyses for
porous materials, the void volume fraction was assumed to be independent of » and 6. Also,
Bigoni and Radi [30] investigated the plane-strain and plane-stress growing crack-tip fields
for linear hardening pressure-sensitive materials based on the Drucker—Prager yield criterion.

Asthe pressure sensitivity increases, our asymptotic results show (i) a decrease of the total
angular span of the plastic sectorsin front of the crack tip, (ii) an increase of the angular span
of the elastic sector, and (iii) a decrease of the angular span of the plastic reloading sector.
Both the solutions of Miao and Drugan [38] for porous perfectly plastic materials and those
of Radi and Bigoni [39] for porous isotropic hardening materials show the trends of (i), (ii),
and (iii) asthe porosity increases. The solutions of Bigoni and Radi [30] for linear hardening
Drucker—Prager materials show only the trend of (i) as the pressure sensitivity increases.
The solutions of Radi and Bigoni [40] for nearly isotropic hardening materials show the
trends of (i), (ii) and (iii) asthe porosity increases. However, for nearly kinematic hardening
materials, their results [40] show that, for various values of the porosity, the angular span of
the plastic loading sector becomes very large, the angular span of the elastic unloading sector
becomes very small, and the angular span of the plastic rel oading sector becomes very small
or disappears, depending upon the hardening.
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Table 1. Normalized stresses ahead of the crack
tipat & = 0° for mode| stationary and growing

cracks (v = 0.3)

219

Stationary crack  Growing crack

12 Trr g96 Orr g96

0 1.8138 29685 1.7941 2.9488

02 13734 18807 13360 1.8558

04 10934 12973 1.0387 1.2745

0.6 08918 0.9468 0.8197 0.9309

Table 2. Border angles of crack-tip sectors
01 62 03 04

I8 vr=03 v=04 v=03 v=04 v=03 v=04 v=03 v=04
0 45° 45° 110.3° 111.6° 118.3° 113.8° 160.5° 161.7°
02 39.2° 39.2° 94.2° 95.4° 103.3° 98.3° 167.2° 168.4°
04 32.9° 32.9° 77.2° 78.2° 88.7° 83.4° 174.3° 175.2°
06 25.1° 25.1° 52.4° 53.1° 69.5° 63.5° 179.6° 179.8°

The asymptotic solutions of the stresses at # = 0° for growing cracks and those for
stationary cracksin Li and Pan [9] are listed in Table 1 for » = 0.3 and ¢ = 0, 0.2, 0.4, and
0.6. As shown in Table 1, the stresses at # = 0° for growing cracks are slightly lower than
those for stationary cracks.

Non-negative plastic dissipation is an important concern for the validity of the solution.
Negativeplastic dissipationisnot allowed inthesolution. Theplastic dissipationinthecentered
fan sector can be represented in Equation (41). Note that X (¢) is the coefficient of the most
singular term of A in Equation (41). We have checked that X (¢) is positive throughout the
entire sector. Also, we have used Equation (51) to verify the positiveness of A inside the two
non-singular plastic sectors. We have not observed any negative plastic dissi pation throughout
our numerical results of the crack-tip fields.

We have also investigated the effect of Poisson’sratio 1 on the crack-tip fields. The angles
of the borders between sectors and the angul ar spansof sectorsfor v = 0.3and 0.4 arelisted in
Tables2 and 3. When theresultsfor v = 0.3 and 0.4 are compared, we can seethat the angular
span of the centered fan sector (sector B) increases, the angular spans of the two non-singular

Table 3. Angular spans of crack-tip sectors

Sector A Sector B Sector C Sector D Sector E
p v=03rvr=04rv=03rvr=04rv=03rv=04v=03rv=04v=03v=04
0 45° 45° 65.3° 66.6° 8.0° 2.2° 42.2°  479° 195° 183°
0.2 39.2° 39.2° 55.0° 56.2° 9.1° 2.9° 63.9° 70.1° 12.8° 11.6°
04 329° 329° 443° 453° 115° 5.2° 85.6° 91.8° 57° 4.8°
0.6 25.1° 251° 27.3° 280° 17.1° 104° 110.1° 116.3° 0.4° 0.2°
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plastic sectors (sector C and sector E) decrease, and the angular span of the elastic sector
(sector D) increases as v increases. Note that the angular span of sector A is not affected by
Poisson’'sratio v.

The results of the asymptotic crack-tip fields can be used to formulate a crack growth
criterion, asthat by Riceet al. [22] and Drugan et a. [24] for Mises materials. Theformulation
is quite straightforward by following the approach of Rice et a. [22] and Drugan et al. [24].
However, the constants in the crack growth criterion cannot be completely determined by
the asymptotic analysis. A finite element analysis of the near-tip fields for pressure-sensitive
materials can be used to determine and validate the necessary constants in the crack growth
criterion (for example, see Rice et al. [22] and Drugan et al. [24]).

The effects of phase transformation on toughening of zirconia ceramics have been studied
by McMeeking and Evans[42], Budiansky et al. [43], and Stump and Budiansky [44] based on
amean stress phase transformation criterion. The effectsof shear on transformation toughening
have been investigated by Lambropoulos [45] and Stam et al. [46]. It should be noted that
for phase transformation ceramics, the phase transformation strains are finite. As the radial
distance to the crack tip decreases, the stresses increase and the phase transformation occurs.
Thematerial appearsto behave plastically. However, astheradial distanceto the tip continues
to decrease and the phase transformation of the material is completed, the material behaves
elastically again. The effects of the second elastic behavior at large strains on the stationary
crack-tip fields for strong phase transformation materials are discussed in details in Kim and
Pan [37]. From this viewpoint, the nature of asymptotic growing crack-tip fields for phase
transformation ceramics is quite different from that of growing crack-tip fields for elastic-
plastic materialswherethe plastic strainscan beinfinitely large and the el astic behavior usually
comes from elastic unloading.

8. Conclusion

Quasi-statically growing crack-tip fields for pressure-sensitive materials under mode | plane
strain conditions are studied in this paper. The materials are assumed to follow the Drucker—
Prager yield criterion and the normality flow rule. The results of the asymptotic analysis show
that asthe pressure sensitivity increases, the total angular span (63) of the front plastic sectors
decreases, the angular span of the elastic unloading sector increases, and the angular span
of the trailing non-singular plastic sector decreases. A finite element analysis of the near-tip
fields for growing cracks in pressure-sensitive materials is suggested for development of a
crack growth criterion for pressure-sensitive materials.

Acknowledgements

Thiswork was supported by the National Science Foundation Materials Research Group under
grant number DM R-8708405.

Appendix A

In this appendix, we will show that the Taylor’'s series expansions at ¢ = 6, along the border
between the centered fan sector (sector B) and thefirst non-singular sector (sector C) cannot be
fully determined simply by the continuity of stressesat § = 6, and the governing equationsfor
the non-singular plastic sectors. The Taylor's series expansion at § = 6, for Mises materials
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(1 = 0) derived by Drugan et al. [24] isjust aspecial casein which the stressesand derivatives
of stresses are assumed to be continuousat # = 6». A family of the Taylor's series expansions
exists such that the discontinuities of the first derivatives of the stress components o, and
o33 a 6 = 6, are allowed and the requirement of non-negative plastic dissipation (A > 0) is
satisfied. However, our numerical results show that the crack-tip stress fields do not change
significantly when different allowable Taylor’'s series expansionsat § = 6, are employed. In
thefollowing, the Taylor’'sseriesexpansionsat § = 6, for Misesmaterialsarefirst investigated
because of the availability of the closed-form solutions of the velocity field in the centered
fan. Then, aparallel analysisis carried out for pressure-sensitive materials.

A.l. Misesmaterials

For Mises materials, the governing equations, Equations (52), (53), (56), and (57), for non-
singular plastic sectors can be reduced to

oy =2(cgs — o) (A1)
ogp = —20,9 (A2)
o — 2E(Ajcosf/sinfd + Ay) (A3)
A+ 4[2((0 — opg)/s33) — 1] + [2((0 — 09g)/s33) — 1]2
sy = - AW (n4)
where
Ay = —[(5- 4w /V?2|(10/E)sin; (A5)
Ay = —[(5— 4v/V2|(10/E) (V2 — cosby). (A6)

and 7o = 0o/+/3 isthe shear yield stress.
The closed-form solutions of the stresses in the centered fan sector are

o9 = To (A7)
ogg = C — 2700 (A8)
o =Cf— 210 (A9)
s33 =0, (A10)

where C/ is a constant depending on the boundary conditions. The stresses o;; at 6 = 6>
are continuous. To obtain the Taylor's series expansions of o,¢, ogg, o, and s33 at 6 = 65,
we need to obtain the derivatives of these four variables evaluated at 6 = 6, using Equations
(A1)—(A4) and the continuity condition of the stressesat § = 6. Note that

(0 — 009)9=0, = (s33)p=0, = O, (A11)

from Equations (A8)—A10). Therefore, theratio (o —ogg) / s33 @t @ = 6, cannot be determined.
Consequently, o’ cannot be determined by Equation (A3) unless the ratio (o — ogg)/s33 @
0 = 65 is determined.
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Here we assume

(ﬂ) = 1. (A12)
s33 /=0,

Note that -y is assumed to be 0 in Drugan et a. [24]. Combining Equations (A3), (A5), (A6),
and (A12), we have

—2(5—4v)1o

! —
(0)0=0: = 35202y D ¢ (27— 12 (A13)
After rearranging Equation (A13), we can show that
5—-4v
— (-2 o= : Al4
1= 1/2)( 70) < (0")p=p, <O (A14)

Thisimplies that we can obtain a family of the Taylor's series expansionsat 8 = 6, when no
further restrictions are applied to .

The proportionality factor A in Equation (51) for non-singular plastic sectors can be
rewritten as

asing {_4(0 — 090)
rFHs33
for Mises materials, with the use of Equation (A4) and P33 = 3s33/2 (1 = O and 0, = 1).
Note that A must be non-negative. Also note that because (s33)g—g, = 0, A is singular at
0 =0,forv< i

In the following, we will try to find the values of - that meets the requirement of Equa-
tion (A15). We apply the Taylor’s series expansion for sz at § = 6>

s33 = (533)9=0, + (533)0=0,(0 — 02) + 5(s%)9=0,(6 — 62)% + -+ -, (A16)
where ( )y, is defined in Equation (65). Since (s33)9—g, = O, the general form of Equa-
tion (A16) can be represented as

s33=C1(0 — 02) + Ca(0 — 02)> + - - -, (A17)

A=—

2 o !
5 T30 21/)}0 >0 (A15)

If the derivativesof o;; withrespectto 6, o;;, arecontinuousat 6 = 6, wehave (sg3)p—9, =

0. Therefore, the Taylor’'s series expansion of s33 in Equation (A17) becomes
s;3=Ca(0 — 02)% + - -- (A18)
because C = (s53)9—p, = 0. After substituting Equation (A18) into (A4), we obtain
3C,?

o—0gg=——(0—02)°+ - (A19)
4o
From Equations (A18) and (A19), we have
(ﬂ> 4 —0 (A20)
533/ 0=0,

To check if Equation (A15) is satisfied near ¢ = 6, on the side of the non-singular plastic
sector, we evaluate the positiveness of A at # = 0, + J6 (because A issingular at § = 65),
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where 06 is a positive yet infinitesimal angle. Substituting Equations (A18) and (A20) into
(A15) withrv < 1/2, we arrive at

Cy > 0. (A21)
Note that we assume
( o=0, = (" )o=p,+00 (A22)

in the above derivation. When v = % no specific constraint condition can be obtained for
C>. However, for Mises materials with v = % the non-singular plastic sector between the
centered fan sector and the elastic sector degeneratesto alinein the assembly of the crack-tip
field[22, 26]. The Taylor's seriesexpansion for ss3 thereforeis not needed for Mises materials
with v = % So far we have shown that o—;j can be continuous at # = 6, without violating
Equation (A15). Note that v = O corresponds to the assumption that o;; are continuous at
0 = 0,.

Next, we assume that some components of o;; are allowed to be discontinuous at 6 = 0.
Since o;., and oy, are continuous at & = #> from Equations (A1) and (A2) and the continuity
of stresses, we are allowing the discontinuity of o’ and s4; (or, o/, and o%3) a 6 = 6». In this
case, (sh3)p=p, 7 0. The Taylor’'s series expansion of s33 is represented by Equation (A17).
From Equation (A17), we can show that

SigN{(s33)9=0,+50} = SION{(533)9=0,150}- (A23)

Recall that 66 is positive and infinitesimal. From Equation (A4) with ¢’ < 0 (see Equa
tion (A14)) and Equation (A23), we can show that

(0 — d90)9=0,+50 > 0. (A24)
With the use of Equations (A24) and (A15), we can further show that only
(533)9=0,+50 > O (A25)

can satisfy both the condition of A > 0 and Equation (A4). Substituting Equation (A24) and
Equation (A25) into Equation (A15) leadsto

v < % —v. (A26)
Also, from Equation (A24) and Equation (A25) we have

v > 0. (A27)
Therefore,

0<y<3—w (A28)

Note that when v = 1/2, Equation (A28) shows that thereis no solution available for ~.
From Equations (A20) and (A28), we can conclude that

0<Y< 35— (A29)
Substituting Equation (A29) into Equation (A13) gives
5—4
" _(—2m0) < (0")g, < (—270) (A30)

A=)
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Thetwo limitsof (o), in Equation (A30) correspondtoy = 0andy = % — v, respectively.
Thefactor (5—4v) /[4(1—v?)] inEquation (A30) is1.05and 1 for » = 0.3and 0.5, respectively.
According to Equation (A30), the change of ¢’ allowed at # = 6, islessthan 5% for v = 0.3.
The maximum variation of the angles, 62, 03, and 6,4 obtained from our numerical solutions
with different values of y for » = 0.3 islessthan 0.08°.

Insummary, theeffectsof theallowabl efirst-order Taylor’sseriesexpansionsare quite weak
on the crack-tip fields. Numerically, a higher-order expansion can essentially be represented
by a first-order expansion just slightly deviated from the state of the continuity of stresses
and stress derivatives. Therefore, the higher-order Taylor's series expansion as in Drugan et
a. [24] should have even weaker effects on the crack-tip fields. It should be noted again that
the first-order Taylor’s series expansion must meet the requirement of Equation (A30) and the
second-order Taylor’s series expansion must meet the requirement of Equation (A21) due to
positiveness of plastic dissipation. In fact, the specific second-order Taylor’'s series expansion
of sz3 in Drugan et al. [24] meets the requirement of Equation (A21).

A.2. Pressure-sensitive materials

For pressure-sensitive materials, a parallel analysis to that for Mises materials is carried
out here. The governing equations of the non-singular plastic sector for pressure-sensitive
materials are Equations (52), (53), (56), and (57). Also, we have P33 = P, = 0at 0 = 0,
for the centered fan sector. Theratio P,/ Ps3 a 6 = 6, cannot be determined simply by the
governing equations of the non-singular plastic sector or the continuity of stressesat 6 = 6.
Consequently, the values of o%; and ¢’ in Equations (56) and (57) cannot be determined at
0 = 60,. Since we have discussed the Taylor’s series expansion for Mises materials (1 = 0)
in Appendix A.1, we will focus on the Taylor’s series expansion for ;1 > 0 in the following
discussions.

For pressure-sensitive materials, the proportionality factor A in Equation (51) can bewritten
as

20'((Pyr/Pa) + 1)

A = > 0.
A e Tsme/o (A31)

Note that we do not have closed-form solutions for A; and A, as for Mises materials.
Therefore, we cannot obtain any explicit bounds for ¢’ as in Equation (A30) for Mises
materials. However, the numerical solutions of the centered fan sector for both Mises and
pressure-sensitive materials indicate that near 6 = 6,

o' <0. (A32)

With this condition, we here start a parallel analysisto that for Mises materials. With the use
of Equations (A31) and (A32) and 6, < 180°, we can show that

P, +vP33<0. (A33)

Assume

PT'T')
— . (A34)
<P33 0=0,
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The Taylor's series expansions of P33 and P, at 6 = 6, are written as
P33 = (Ps3)g—g, + (P33)0=0,(0 — 02) + 5(Pi3)0—0,(0 — 02)* + - -- (A35)
Prr = (Prr)o=0, + (Pl )o=0,(0 — 02) + 3(Pl)o—0,(0 — 02)% + - - (A36)

Also, we can express Ps3 in terms of o and o33 as

_ 033 — 0 L
1-pu(20+0x)/V3 V3
Differentiating Equation (A37) with respect to 6 with the condition of P33 = Oat § = 0, gives

Px3 (A37)

3+ 2u? o Oe
27 1—4u2/3

Pl (A38)

where the effective stress o, (= 1 — u(20 + o33)/+v/3) must be larger than or equal to O.
Equation (A38) will be useful for our later discussions.

If o7; are continuous at & = 0, so that (Pg3)p—g, = (P, )=, = O, the Taylor’s series
expansions of Ps3 and P, can be represented as

Pz = Co(0 — 02)% + - -- (A39)
P = aC(0 — 02)% + - - (A40)

with the use of Equation (A35), (A36), and (A34), where C; = (3)(P4)o—g,. From Equa-
tion (A38) with P33 = 0, we can show that

34 2u°
ol — o A4l
BT 32 (A41)
at 6 = 0,. Substituting Equation (A41) into (56) gives
Prr o o 1 3 + 2,[1,2
<P33>0:02—O[——§ (73—H,2> . (A42)
Substituting Equations (A42) and (A39) into (A33), we arrive at
Co(a+v) <0. (A43)

Sincer < 3 and @ < —3 from Equation (A42) with . > 0, we have a + v < 0. Therefore,
Cy > 0. (A44)

Thus, o7; may be continuous without violating the requirement of non-negative A. In this
case, the value of « isrepresented in Equation (A42) and Equation (A44) hasto be satisfied.
If the components of o;;, o7, and o3, are allowed to be discontinuous at 6 = 6, we can
write the Taylor’s series expansions of P,.,. and Ps3 in Equations (A35) and (A36) as
P33 = 01(9 — 92) —+ (A45)

P = aC1(0 —6) + - -- (A46)
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where C1 = (Pi3)p=g, # 0. Substituting Equations (A45) and (A46) into Equation (A33)
leadsto

Ci(a+v) <0. (A47)

Therearetwo possibilitiesfor C'q: either Cy > 0or C1 < 0. However, thefollowing derivation
showsthat C'y < 0 cannot betrue. Now, if C7 < 0, from Equation (A38) with o, > 0and (56)
we can conclude that

2
a< —% (33412:2 ) . (A48)

With0 < 1 < v/3and v < 1/2, we have
1 (34242 1
a<—§<3_uz><—§<—y. (A49)

Equation (A49) leadsto o + v < 0. With o + v < 0and C7 < 0O, Equation (A47) is violated.
Therefore, we must have C1 > 0. From Equation (A47), we then have

a< —v. (AS0)

Note that Equation (A50) gives the upper limit of .
Next, the lower limit of « is examined. From Equation (A38) with P;; = C1 > 0 and
oe > 0, we can immediately get

o5 _ 3+ 2u?
i < 3,2 (A51)
Applying Equation (A51) to Equation (56), we have
Pma> 1(3+2u?
i = _Z ) A52
(7)o =22 (300 (452
Combining Equations (A50) and (A52), we have
1 (34242
—§<3_M2><a<—y. (A53)

For Mises materials (1 = 0), wehave o = v — % where « is defined in Equation (A34)
and +y is defined in Equation (A12). Equation (A53) reduces to Equation (A29) for Mises
materials. The effects of the allowable first-order Taylor’s series expansions are quite weak
on the crack-tip fields as for Mises materials. For example, for . = 0.6 and v = 0.3, the
maximum allowable variation of ¢’ is 13% from Equation (A53) and (57). For this case, the
maximum variation of the anglesf, 62, 03, and 6, obtained from our numerical solutionswith
different valuesof « islessthan 0.03°. As mentioned earlier for Mises materials, an allowable
higher-order Taylor’s series expansion can be represented by an allowabl e first-order Taylor’'s
series expansion from the numerical viewpoint. Therefore, the effects of the allowable higher-
order Taylor’s series expansion on the crack-tip fields should be even weaker. However, for
completeness of presentation, we list the allowable second-order Taylor’s series expansions
in Equations (69)—(72).
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