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Abstract. Spherical void expansion in plastics and rubber-modified plastics is investigated under radial traction
conditions. The plastics are modeled as elastic-plastic pressure-sensitive materials and the rubbers are modeled as
nonlinearly elastic materials. First, the growth of a spherical void in an infinite plastic matrix is investigated under
remote radial traction conditions. The results show that the cavitation stress of the plastic decreases significantly
as the pressure sensitivity increases. Then, the growth of a spherical void located at the center of a spherical rubber
particle in an infinite plastic matrix is investigated under remote radial traction conditions. The results indicate
that without any failure criteria for the rubber, the cavitation stress does not exist when the void is small and the
rubber is characterized by high-order strain energy functions. However, when a failure criterion for the rubber is
considered at a finite stretch ratio, the results show that the cavitation stress for the plastic with the rubber particle
becomes close to that for the plastic without the rubber particle.

Key words: Cavitation instability, cavitation stress, void growth, plastics, rubber, rubber-modified plastics,
pressure-sensitive yielding, toughening.

1. Introduction

Nucleation, growth and coalescence of voids are the main physical mechanism in ductile
fracture processes of solids. Many studies have been conducted to investigate the influence
of microvoid growth on ductile fracture processes. For example, Rice and Tracey (1969)
investigated the growth of a spherical void in an infinite Mises material. Gurson (1975) obtained
an approximate yield criterion for porous Mises materials by an upper-bound approach.
Gurson’s yield criterion (1975) and its modified forms (Tvergaard, 1981; Tvergaard, 1982)
have been widely used to study ductile fracture processes, for example, see Needleman
and Tvergaard (1987) and Tvergaard (1990). Recently, the continuum elastic-plastic theory
based on Gurson’s yield criterion has been employed to study the effects of void growth and
coalescence on crack initiation and growth in ductile solids by Xia and Shih (1995a; 1995b)
and Xia, Shih and Hutchinson (1995).

Cavitation instability occurs when the stress level is sufficiently high such that the void
expansion rate becomes infinitely large. Examples of material failure due to cavitation can
be found in metals (Ashby et al., 1989) and in rubber (Gent and Lindley, 1959). Early work
on cavitation instabilities is summarized in Hill (1950). The cavitation problem has been
investigated in the context of nonlinear elasticity by Ball (1982). Ball studied a class of
bifurcation problems in which a spherical void forms at the center of a sphere of nonlinearly
elastic material under surface tractions or displacements. An alternative interpretation for
such problems in terms of the growth of a pre-existing microvoid has been given by Horgan
and Abeyaratne (1986). An excellent review of cavitation in nonlinearly elastic solids can
be found in Horgan and Polignone (1995). For cavitation in elastic-plastic materials, Huang
et al. (1991) and Tvergaard et al. (1992) examined cavitation instabilities in Mises materials
under both spherically symmetric and axisymmetric conditions. Hou and Abeyaratne (1992)

JEFF. INTERPRINT: PIPS Nr.:79659 ENGI
frac4332.tex; 10/07/1998; 6:43; v.7; p.1



62 W.J. Chang and J. Pan

examined the cavitation in elastic and elastic-plastic solids under non-symmetric loading and
presented cavitation criteria in terms of the principal true stresses for neo-Hookean materials
and elastic-plastic power-law materials.

Cavitation in rubber particles seems to play an important role in the toughening mechanism
of rubber-modified plastics (Yee and Pearson, 1986; Pearson and Yee, 1986, 1991; Yee et al.,
1993; Sue and Yee, 1996; Williams and Schapery, 1965; Gent and Wang, 1991; Lazzeri and
Bucknall, 1993; Jeong and Pan, 1996). Therefore, a thorough understanding of the cavitation
behavior in rubber-modified plastics is essential to understand the toughening. The theoretical
framework of Ball (1982) and Horgan and Abeyaratne (1986) have provided insight into
cavitation in nonlinearly elastic materials. However, there are still some inconsistencies that
need to be explored. For example, the critical surface tractions for neo-Hookean materials
obtained from the bifurcation approach agree with those observed in the internal rupture
of rubber in Gent and Lindley (1959). However, the critical traction becomes unbounded
for Mooney-Rivlin materials or nonlinearly elastic materials characterized by higher-order
strain energy functions (Horgan and Polignone, 1995). Chang and Pan (1998) investigated
this inconsistency by considering a simple strain failure criterion for rubber at large strains.
They found that cavitation instability can be consistently predicted in rubbers characterized
by different strain energy functions with consideration of rubber failure at large strains.

In this paper, we explore the implications of a failure criterion for rubber at large strains
on cavitation instability in rubber-modified plastics in a spirit consistent with those of Ball
(1982) and Horgan and Polignone (1995) for nonlinearly elastic materials. First, we examine
the growth of a spherical void in an infinite plastic matrix subjected to remote radial traction
conditions. Then, we examine the growth of a spherical void at the center of a spherical
rubber particle in an infinite plastic matrix subjected to remote radial traction conditions with
and without consideration of rubber failure. Finally, the results for the plastic and for the
rubber-modified plastic are compared and discussed.

2. Spherical void expansion in plastics

In this section, spherical void expansion in an infinite plastic matrix under remote radial
traction is investigated. The undeformed and deformed configurations for a spherical void
in a plastic matrix are schematically shown in Figure 1. As shown in Figure 1(a) for the
undeformed configuration, the center of the spherical void with the initial radiusr0 is located
at the origin of a spherical coordinate(r; �; �) system. As shown in Figure 1(b) for the
deformed configuration, the remote radial stress�1 is applied at the infinity and the radius
of the void becomesR0 after�1 is applied. We assume that a material point initially located
at r measured from the center of the void moves toR in the deformed configuration after
�1 is applied. Here, the rigid body motion is not considered. Also, we denote the radius of
the plastic zone asC in the deformed configuration so that the material inside the boundary
R = C is plastically deformed and the material outside the boundaryR = C remains elastic
under the remote radial stress�1.

The relation between the radial stress�1 and the void expansion ratioR0=r0 for materials
with different values of pressure sensitivity, with or without strain hardening, are investigated
here. When the remote radial stress approaches to a critical cavitation stress of the material,
the void expansion ratio becomes infinitely large. In general, engineering materials contain
pre-existing microvoids. Therefore these initially invisible microvoids can become very large
when the critical cavitation stress is reached.
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Figure 1. A spherical void in an infinite plastic matrix. (a) undeformed configuration, (b) deformed configuration.

2.1. CONSTITUTIVE MODELING OF PLASTICS

The Drucker–Prager yield criterion (Drucker, 1973; Drucker and Prager, 1952; Li and Pan,
1990a; Li and Pan, 1990b), which is a linear combination of the effective stress�e and the
mean stress�m, is adopted here to model the yielding in the plastic matrix

 (�ij) = �e +
p

3��m = �ge; (1)

where�e = (3sijsij=2)1=2; sij = �ij � �m�ij , and�m = �kk=3. Here,�ij is the Kronecker
delta and the subscriptsi; j andk have the range of 1 to 3. In (1), (�ij) represents the yield
surface in the stress space and� represents the pressure sensitivity of the plastic. Here�ge is
the generalized tensile effective stress and represents the size of the yield surface in the stress
space.
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In this study,� is assumed to be a material constant and can be determined from the initial
uniaxial compressive yield stress�c and the initial uniaxial tensile yield stress�t as

� =
p

3
�c � �t
�c + �t

: (2)

The initial yield surface can be specified by�ge = �0, where�0 is the initial generalized
tensile effective stress and can be determined by

�0 =
2�c�t
�c + �t

: (3)

For perfectly plastic materials, the generalized effective stresses�ge becomes a constant
represented by�0 when yielding occurs.

A plastic potential function�p is defined as

�p(�ij) = �e +
p

3��m = ��; (4)

where� is the plastic dilatancy factor and�� represents the size of the plastic potential surface.
For normality plastic flow,� = �. For incompressible plastic flow,� = 0. The plastic part of
the strain rate tensor,_�pij, can be derived from the plastic potential�p as

_�pij = _�
@�p

@�ij
= _�

�
3sij
2�e

+
�p
3
�ij

�
; (5)

where _� represents a proportionality factor.
The proportionality factor_� in (5) can be determined from the equivalence of plastic work

rate

_W p = �ij _�
p
ij = �ge _�

p
ge; (6)

where_�pge is the generalized equivalent plastic strain rate. Substituting (5) into (6) gives

_� =
�ge

��
_"pge; (7)

where�� is defined in (4). Therefore, (5) becomes

_�pij = _�pge
�ge

��

�
3sij
2�e

+
�p
3
�ij

�
: (8)

The relation between the stresses and the plastic strains for the corresponding deformation
plasticity theory is

�
p
ij = �pge

�ge

��

�
3sij
2�e

+
�p
3
�ij

�
: (9)

Based on Hooke’s law for isotropic linear elastic materials, the elastic part of the strain can
be represented as

�eij =
1
E

[(1+ �)�ij � ��kk�ij ]: (10)
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Therefore, the total strain�ij can be expressed as

�ij = �eij + �
p
ij =

1
E
[(1+ �)�ij � ��kk�ij ] + �pge

�ge

��

�
3sij
2�e

+
�p
3
�ij

�
: (11)

A relation between�ge and�pge for power-law hardening materials is assumed as

�pge=�0 =

(
0 if �ge < �0

(�ge=�0)
n � 1 if �ge > �0;

(12)

where�0 is the initial generalized tensile effective stress,n is the hardening exponent,�0 is
defined by�0 � �0=E, andE is Young’s modulus.

It is well known that deformation plasticity theory is inadequate where there is a large
departure from proportional loading conditions. However, when the loading is nearly pro-
portional, the deformation plasticity theory can be considered no more objectionable than
the corresponding incremental flow theory (Budiansky, 1959). In fact, Huang et al. (1991)
obtained almost the same numerical results for the critical cavitation stresses in perfectly
plastic Mises materials based on a deformation plasticity theory and the corresponding incre-
mental plasticity theory. In this study, we only adopt the deformation plasticity stress-strain
relation specified in (11) for the plastic.

2.2. FORMULATION FOR HARDENING MATERIALS

Recall the initial void radius isr0 and the void radius becomesR0 after the remote radial
stress�1 is applied. The governing equations for the stresses, strains, and displacement are
formulated based on the deformed configuration. We assume that the outer region remains
elastic and the remote radial stress is high enough so that a plastic region develops from
the surface of the void based on the deformed configuration. Assume that the elastic-plastic
boundary is atR = C, whereC > R0. Due to symmetry, the non-vanishing stresses are�R; ��,
and��(= ��). The non-vanishing strains are�R; ��, and��(= ��). The only non-vanishing
displacement isuR. Note that the rigid body motion of the material is not considered.

We begin by considering the stresses and displacement in the outer elastic region. The
small-strain theory is used to obtain closed-form solutions for the outer elastic field to avoid
integration from the infinity. The radial stress�R in the outer elastic region has the form
(1951).

�R =
A1

R3 +A2; (13)

whereA1 andA2 are the constants to be determined from the boundary conditions atR =1
andR = C.

The equilibrium equation for the spherically symmetric problem is

d�R
dR

+
2
R
(�R � ��) = 0: (14)

Substituting (13) into (14) and solving the resulting differential equation with the two boundary
conditions�R(R ! 1) = �1 and�ge(R = C) = �0 give the stresses in the outer elastic
region as

�R = �1 � 2
3(�0�

p
3��1)

C3

R3 (15)
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�� = �1 + 1
3(�0�

p
3��1)

C3

R3 : (16)

Then, (15) and (16) are substituted into (10) to solve for the strains in the outer elastic region.
From the small-strain theory, we have

�R =
duR
dR

(17)

�� =
uR

R
: (18)

The displacementuR in the outer elastic region can be obtained as

uR =

�
(1� 2�)

�1

E

�
R+

(1+ �)

3

"
�0�

p
3��1

E

#
C3

R2 : (19)

Note that we use the small-strain theory to obtain the outer boundary conditions for the inner
plastic region to simplify our problem because the deformation in the elastic region is quite
small and the small-strain theory should be adequate.

The values of the stresses and displacement at the elastic-plastic boundaryR = C will be
used for starting numerical integration for the stresses and displacement in the inner plastic
region where the finite deformation effects must be considered. From (15), (16), and (19), the
non-vanishing stresses and displacement atR = C are

�CR =

�
1+

2p
3
�

�
�1 � 2

3�0 (20)

�C� =

�
1� 1p

3
�

�
�1 + 1

3�0 (21)

uCR =
C

E

�
1+ �

3
�0 +

�
1� 2� � (1+ �)�p

3

�
�1

�
: (22)

Note that the radius of the inner plastic region,C, is not yet determined.
In order to solve the stresses, strains and displacement in the inner plastic region, (11) is

first written as

�R =
1
E

[�R � 2���] + �pge

�
�ge

��

��
�1+

�p
3

�
(23)

�� =
1
E
[���R + (1� �)��] + �pge

�
�ge

��

��
1
2
+

�p
3

�
; (24)

where�pge is expressed as

�pge

�0
= (�ge=�0)

n � 1 (25)
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as in (12). For the spherically symmetric problem, we have

�ge = �� � �R +
�p
3
(�R + 2��) (26)

�� = �� � �R +
�p
3
(�R + 2��) (27)

by assuming�� > �R.
When finite deformation is considered, the strains are defined as

�R = ln
�

dR
dR� duR

�
= �ln(1� duR=dR) (28)

�� = ln
�

R

R� uR

�
= �ln(1� uR=R); (29)

where we recall thatuR = R� r. Substituting (28) into (23) and then (29) into (24) gives

duR
dR

= 1� exp
�
��R � 2���

E
� �ge

�
�ge

��

��
�1+

�p
3

��
(30)

uR

R
= 1� exp

��(1� �)�� � ��R
E

� �ge
�
�ge

��

��
1
2
+

�p
3

��
: (31)

Also, the equilibrium equation (14) can be written as

d�R
dR

=
2
R
(�� � �R): (32)

The governing equations of the inner plastic region for power-law hardening materials are
now reduced to (30), (31), and (32).

Note that�R; ��, anduR are all functions ofR. Therefore, (30) and (32) can be used to
integrate for�R anduR and (31) gives a nonlinear equation for��, which has to be solved by
numerical iterations. Note that we use the small-strain theory to define the strains in the elastic
region whereas we use the logarithmic strain definition to define the strains in the plastic
region. AtR = C, we use the stresses, strains, and displacement from the elastic region based
on the small-strain theory as the boundary conditions to start the integration of (30) to (32)
which are based on the logarithmic strains. However, the strains atR = C are quite small and
the elastic solutions based on the small-strain theory should be good approximations.

The numerical procedures to solve the stresses and displacement in the inner plastic region
are given in the following. Note that the stresses�R and��, and the displacementuR are
referring to the current deformed configuration. The size of the inner plastic region,C, is first
given as an initial guess. Based on the initial guess value ofC, �R, ��, anduR atR = C are
obtained from (20), (21), and (22). From the continuity conditions of�R anduR atR = C,
the values of�R anduR atR = C are used to initiate numerical integration for�R; ��, and
uR in the inner plastic region. A combined fourth-fifth order Runge–Kutta scheme with error
and step-size control is employed to solve (30), (31) and (32) fromR = C toR = R0.

At each step of the integration, the values of d�R=dR and duR=dR are calculated from
(32) and (30) respectively, and (31) is used to obtain�� by numerical iterations. The numerical
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integration is performed until the surface of the void(R = R0) is reached. On the surface of
the void, the traction-free boundary condition requires

�R = 0 at R = R0: (33)

If the boundary condition in (33) is not satisfied, a new value ofC is assigned. Numerical
iterations are performed to find the value ofC to satisfy (33). AfterC is found, these�R; ��
anduR as functions ofR are the solutions for the inner plastic region. Then, the expansion
ratio of the void is calculated from

R0=r0 = R0=(R0� uR(R = R0)): (34)

The numerical iterations to findC to satisfy (33) and to find�� to satisfy (31) require good
initial guesses to reach convergent results. Therefore, the remote radial stress�1 is increased
incrementally from the value at which yielding starts to develop on the surface of the void at
R = R0. This value of�1 can be determined by solving (20) with�CR = 0 and the result is
�1 = 2�0=(3 + 2

p
3�). As the remote radial stress�1 increases, the radius of the plastic

zoneC increases. The solution ofC for the current value of�1 is used as the initial guess
of C for a larger value of�1. In the same manner, when�R; �� anduR are integrated from
R = C to R = R0, the initial guess of�� for solving�� by (31) at each integration step is
taken from the last integration step.

2.3. FORMULATION FOR PERFECTLY PLASTIC MATERIALS

For elastic perfectly plastic materials, the solution procedure is quite similar to that for elastic
power-law hardening materials. However, for elastic perfectly plastic materials, the governing
equations can be reduced to simpler forms and the stresses can be solved independently from
the strains and displacement. In some special cases, closed-form solutions for the relation
between the normalized remote radial stress�1=�0 and the void expansion ratioR0=r0 can
be obtained. These closed-form solutions are especially useful for validating our numerical
solutions.

The solutions for the outer elastic region are the same as those for hardening materials.
Also, the stresses in the inner plastic region for perfectly plastic materials can be solved with
the use of the equilibrium equation (14) and the yield condition

�ge = (�� � �R) +
p

3�
�
�R + 2��

3

�
= �0; (35)

where we have implicitly assumed that�� > �R. Substituting (35) into (14) and applying the
traction boundary condition�R = 0 atR = R0 give the stresses in the inner plastic region as

�R =
�0p
3�

"
1�

�
R

R0

��6�=(
p

3+2�)
#

(36)

�� =

p
3�0p

3+ 2�

(
1+

p
3� �
3�

"
1�

�
R

R0

��6�=(
p

3+2�)
#)

; (37)
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where� > 0. From (36) and (20) and the continuity condition of�R atR = C, the closed-form
solution ofC is given as

C

R0
=

��
1+

2�p
3

��
1�

p
3�
�1

�0

���p3+2�
6�

: (38)

In order to solve the strains and displacement in the inner plastic region, (11) is written as

�R =
1
E

[�R � 2���] + �pge
�ge

��

�
�1+

�p
3

�
(39)

�� =
1
E
[���R + (1� �)��] + �pge

�ge

��

�
1
2
+

�p
3

�
: (40)

Let �1 = �1+ �=
p

3 and�2 = 1=2+ �=
p

3. Multiplying (39) by�2 and (40) by��1 and
adding the results together, we have

�2�R � �1�� = F (R); (41)

where

F (R) =
1
E
[(�2 + ��1)�R + ((�1 � 2�2)� � �1)��]: (42)

Here, the solutions for the stresses�R and�� are expressed in (36) and (37).
Substituting (28) and (29) into (41) results in

ln
(1� uR=R)�1

(1� duR=dR)�2
= F (R): (43)

Equation (43) can be rewritten as

duR
dR

= 1� (1� uR=R)�1=�2 exp[�F (R)=�2]: (44)

Equation (44) and the boundary condition ofuR atR = C, (22), are then used to integrate
uR from R = C to R = R0 by the Runge–Kutta integration scheme. AfteruR(R = R0) is
obtained, the void expansion ratio is calculated by (34).

For Mises materials(� = � = 0), (38), (36), and (37) become invalid. For Mises materials,
the yield condition gives

�ge = �� � �R = �0: (45)

Substituting (45) into (14) and applying the boundary condition�R(R = R0) = 0 result in
the closed-form solutions of�R and�� as

�R = 2�0 ln
�
R

R0

�
(46)

�� = �0 + 2�0 ln
�
R

R0

�
: (47)

frac4332.tex; 10/07/1998; 6:43; v.7; p.9



70 W.J. Chang and J. Pan

From the continuity condition of�R atR = C, (46) and (20) lead to

C

R0
= exp

�
1
2
�1

�0
� 1

3

�
: (48)

Substituting (48) into (22) gives

uR(R = C) = R0�0

�
(1� 2�)

�1

�0
+

1+ �

3

�
exp

�
1
2
�1

�0
� 1

3

�
(49)

The analysis of the displacement field for pressure-sensitive materials is also valid for Mises
materials. For Mises materials, the governing equation ofuR, (44), becomes

duR
dR

= 1�
�

1� uR

R

��2

expf�2F (R)g: (50)

With the use of (46), (47), and (41), the functionF (R) in (50) becomes

F (R) =
(1� 2�)�0

E

�
1+ 3 ln

�
R

R0

��
: (51)

Closed-form solutions for the relation between the normalized radial stress�1=�0 and the
void expansion ratioR0=r0 for incompressible materials are presented in the Appendix. These
closed-form solutions can be used to validate our numerical solutions. For Mises materials
(� = � = 0) with � = 1=2, the closed-form solution for the relation between the normalized
remote radial stress�1=�0 and the void expansion ratioR0=r0 is presented in (A7) and
the critical cavitation stressS=�0 is presented in (A8). For pressure-sensitive incompressible
materials, the solutions for the relation between�1=�0 andR0=r0 and the critical cavitation
stressS=�0 are obtained in (A10) and (A11), respectively. Equation (A13) gives an approxi-
mate solution of the critical cavitation stress for pressure-sensitive incompressible materials
with reasonable accuracy.

2.4. NUMERICAL RESULTS

The void expansion ratiosR0=r0 at different values of the remote radial stress�1=�0 are
calculated for both power-law hardening materials and perfectly plastic materials. The relation
between�1=�0 andR0=r0 also depends on the material properties�; �; �0; �, andn.

In our numerical calculations, the void expansion ratioR0=r0 larger than 104 can be
obtained by gradually increasing the value of�1=�0. Therefore, the critical cavitation stress,
S=�0, is taken as the value of the normalized remote radial stress�1=�0 corresponding to
R0=r0 = 104 in our numerical calculations. In some special cases for perfectly plastic materials
where closed-form solutions of the relation between�1=�0 andR0=r0 are available, the
critical cavitation stressS=�0 is defined as the remote radial stress whenR0=r0 approaches
to 1. Note that in reality, the void expansion ratio must be finite. Cracks or other failure
mechanisms develop near the void surface and, consequently, the load-carrying capacity of
the surface material elements decreases. Further discussions on the loss of load-carrying
capacity of the surface material elements will be given later.

The critical cavitation stresses for materials with� = �; � = 1=2, and different values of
�’s,n’s, and�0=E’s are listed in Table 1. In general,S=�0 decreases as�0=E increases and/or
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Table 1. The critical cavitation stressesS=�0 for pressure-sensitive
materials with� = � and� = 0:5. The symbol ‘�’ indicates that
the critical cavitation stress does not occur when the outer field is
elastic.

�0=E � = 0 � = 0:1 � = 0:2 � = 0:3

0.001 5.00 3.59 2.57 1.88
n =1 0.003 4.27 3.25 2.44 1.85

0.025 2.86 2.45 2.05 1.70

0.001 5.15 3.67 2.61 1.90
n = 100 0.003 4.37 3.32 2.48 1.87

0.025 2.91 2.48 2.08 1.71

0.001 6.85 – – –
n = 10 0.003 5.52 4.03 2.83 –

0.025 3.32 2.80 2.30 1.84

Table 2. The critical cavitation stressesS=�0 for power-
law hardening materials withn = 10; �0=E = 0:025,
and� = 0:5 for different combinations of� and�

� = 0 � = 0:1 � = 0:2 � = 0:3

� = 0 3.32 2.57 2.02 1.61
� = �=2 3.32 2.69 2.16 1.74
� = � 3.32 2.80 2.30 1.84

� increases. The normalized critical cavitation stressesS=�0 for Mises materials withn =1
(perfectly plastic materials) and 10 and�0=E = 0:001 and 0.003 are the same as those in
Huang et al. (1991) to the accuracy of two decimal digits. Also, the critical cavitation stresses
for low-hardening materials withn = 100 are found within 3 percent of the corresponding
solutions for perfectly plastic materials. In Table 1 forn = 10, the symbol ‘�’ indicates that
infinite void expansion ratio does not occur when the remote region is elastic. Since these
conditions occur at very small values of�0=E and the value of�0=E is usually larger than
0.01 for plastics, void expansion with no remote elastic region is not considered here.

The relations between the void expansion ratioR0=r0 and the normalized remote radial
stress�1=�0 are plotted in Figure 2 for materials with�0 = �0=E = 0:025,n = 10; � = 0:5.
We consider three plastic dilatancy factors,� = �; � = �=2, and� = 0 for each� and we take
� = 0;0:1;0:2, and 0.3. As shown in the figure, in general, as the normalized remote radial
stress becomes larger than 1, the void expansion rate increases. As� increases, the normalized
radial stress�1=�0 at a given largeR0=r0 decreases. For a given�, the normalized radial
stress�1=�0 at a given largeR0=r0 decreases as� decreases. The corresponding critical
cavitation stresses for these curves in Figure 2 are listed in Table 2. The pressure sensitivity
� has significant effects on reducing the critical cavitation stress. For example, the critical
cavitation stressS=�0 for � = � = 0 is 3.32 and the value ofS=�0 decrease to 1.61 for
� = 0:3 and� = 0. It should be noted that the value of the critical cavitation stressS=�0 is
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Figure 2. The normalized remote radial stresses�1=�0 as functions of the void expansion ratioR0=r0 for
power-law hardening materials with�0=E = 0:025 andn = 10. Results are shown for different values of�’s
(= 0; 0:1; 0:2 and 0.3) and�’s (= �; �=2 and 0).

as low as 1.61 for the case with� = 0:3 and� = 0 when compared with typical values of 4
to 5 for metals.

Note that we can represent�0 in terms of� and�t as

�0 =

�
1+

�p
3

�
�t: (52)

Here,�t represents the yield stress in tension. Equation (52) is derived from (2) and (3). When
the tensile yield stress�t is taken as a given material constant from a tensile test, (52) indicates
that the value of�0 increases as� increases. For example, the value of�0 for � = 0:3 is 117.3
percent of the value of�0 for � = 0. Therefore, for� = 0, the critical cavitation stressS for
� = 0:3 is 57 percent of the value ofS for � = 0. The predictions of the critical cavitation
stressesS can differ by a factor of 1.75 with and without considering the effect of pressure
sensitivity for a material with� = 0:3 and� = 0 using the tensile yield stress�t as the input.

Figure 3 shows the relations betweenR0=r0 and�1=�0 for perfectly plastic materials
with �0 = �0=E = 0:025 and� = 0:5, obtained by the Runge–Kutta numerical integration
scheme. The general trends shown in Figure 3 for perfectly plastic materials are quite similar
to those shown in Figure 2 for power-law hardening materials. The critical cavitation stresses
S=�0 for the curves in Figure 3 are listed in Table 3. The approximate closed-form solution
of the critical cavitation stressS=�0 for perfectly plastic pressure-sensitive incompressible
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Figure 3. The normalized remote radial stresses�1=�0 as functions of the void expansion ratioR0=r0 for perfectly
plastic materials(n = 1) with �0=E = 0:025. Results are shown for different values of�’s (= 0; 0:1; 0:2 and
0.3) and�’s (= �; �=2, and 0).

Table 3. The critical cavitation stressesS=�0 for perfectly
plastic materials with�0=E = 0:025 and� = 0:5 for
different combinations of� and�

� = 0 � = 0:1 � = 0:2 � = 0:3

� = 0 2.86 2.28 1.84 1.51
� = �=2 2.86 2.36 1.95 1.61
� = � 2.86 2.45 2.05 1.70

materials can be obtained from (A13) in Appendix A. The approximate critical cavitation
stresses obtained from (A13) for�0 = �0=E = 0:025 with� = 0:0001;0:1;0:2, and 0.3 are
2.85, 2.28, 1.84, and 1.51, respectively. These solutions agree very well with the corresponding
critical cavitation stresses for� = 0 obtained from the Runge–Kutta numerical integration
scheme listed in Table 3.
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Figure 4. A void in a spherical rubber particle embedded in an infinite plastic matrix. (a) undeformed configuration,
(b) deformed configuration.

3. Spherical void expansion in rubber-modified plastics

Spherical void expansion in rubber-modified plastics is investigated in this section. As
schematically shown in Figure 4(a), a rubber particle with an initial radiusr0 is embed-
ded in an infinite plastic matrix. A small void with the initial radiusrb is located at the center
of the rubber particle. As schematically shown in Figure 4(b), the radius of the void becomes
Rb, the radius of the rubber particle becomesR0, and the size of the plastic region grows toC
after the remote radial stress�1 is applied. The rigid body motion is not considered. As the
remote radial stress�1 increases, the void in the rubber particle expands. Therefore,Rb; R0,
andC increase as�1 increases. Here, we compare the increase of the radius of the rubber
particle in the rubber-modified plastic and the void expansion in the plastic with the initial
size of the rubber particle in the voided rubber-modified plastic equal to the initial size of the
void in the voided plastic to investigate the effects of the addition of rubber particles on the
cavitation stresses of rubber-modified plastics. For the completeness of presentation, we here
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summarize the constitutive relations and governing equations for the analysis of cavitation in
several rubbers presented in Chang and Pan (1998).

3.1. CONSTITUTIVE MODELING OF RUBBERS

As in Chang and Pan (1998), we adopt a third-order strain energy function investigated by
James, Green and Simpson (1975) and James and Green (1975)

W = C10(I1� 3) + C01(I2� 3) + C11(I1� 3)(I2� 3) + C20(I1� 3)2

+C30(I1� 3)3; (53)

whereI1 andI2 are the first and second invariants of the left Cauchy–Green strain tensor
Bij. Note that (53) reduces to the strain energy function for Mooney–Rivlin materials when
C11 = C20 = C30 = 0 and reduces to that for neo-Hookean materials whenC01 = C11 =
C20 = C30 = 0. The components of the Cauchy stress,�ij , can be derived fromW as
(Truesdell and Noll, 1965)

�ij = �p�ij + 2
@W

@I1
Bij � 2

@W

@I2
(B�1)ij: (54)

wherep is the hydrostatic pressure.
The material constantsCij in (53) are determined by fitting to the experimental data. Here,

we consider a rubber with the material constants (Goldberg, 1976; Morman, 1981)

C10 = 1:008� 10�1 MPa (55)

C01 = 1:612� 10�1 MPa (56)

C11 = 1:338� 10�3 MPa (57)

C20 = 6:206� 10�4 MPa (58)

C30 = 6:206� 10�9 MPa: (59)

We also consider a Mooney–Rivlin material with the constants (Oden, 1972)

C10 = 0:550 MPa (60)

C01 = 0:138 MPa (61)

C11 = C20 = C30 = 0: (62)

In addition, we consider a neo-Hookean material with the constants

C10 = 0:5 MPa (63)

C01 = C11 = C20 = C30 = 0: (64)

For the neo-Hookean material, the only nonzero constantC10 is related to the shear modulus of
rubber,G, asC10 = G=2. The values ofG for rubbers generally lie between 0.2 and 1.0 MPa.
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Figure 5. The stresses as functions of the stretch ratio for three nonlinearly elastic materials. Curves NH, MR, and
JGS represent the NH, MR, and JGS rubbers under uniaxial tensile loading conditions, respectively. Curves BNH,
BMR, and BJGS represent the NH, MR, JGS rubbers under equal biaxial tensile loading conditions, respectively.

In the following, we denote the material with the material constants in (55) to (59) as the JGS
rubber. We denote the Mooney–Rivlin material with the material constants in (60) to (62) as
the MR rubber. We denote the neo-Hookean material with the material constants in (63) and
(64) as the NH rubber.

In Figure 5, the applied stresses as functions of the stretch ratio under uniaxial tensile
loading and equal biaxial tensile loading for the JGS, MR, and NH rubbers are plotted. In
the figure, the curves for the JGS, MR, and NH rubbers under uniaxial tensile loading are
represented by JGS, MR, and NH, respectively. The curves for the JGS, MR, and NH rubbers
under equal biaxial tensile loading are represented by BJGS, BMR, and BNH, respectively.
Since the material elements on the void surface are subjected to equal biaxial loading condi-
tions (due to spherical symmetry), curves BJGS, BMR, and BNH in Figure 5 represent the
constitutive relations for these material elements and therefore have important implications on
the modeling of void expansion in rubber particles. It should be noted that the neo-Hookean
material (the NH rubber) has almost the same response at large strains under both uniaxial
and biaxial tensile loading conditions, as shown by curves NH and BNH. The JGS and MR
rubbers are very stiff under equal biaxial loading conditions. For example, curves BMR and
BJGS in Figure 5 show that the stresses at the stretch ratio� = 4 are about 80 MPa and
120 MPa, which are larger than the yield stresses of the typical plastic matrices in which the
rubber particles are embedded for toughening. The stresses increase very sharply when the
stretch ratio� becomes larger than 4.
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3.2. FORMULATION

Due to symmetry, the stretch ratio in the hoop direction,�, can be simply represented as

� = R=r; (65)

wherer andR represents the radial coordinate of a material point before and after deformation,
respectively. Due to symmetry, the off-diagonal components ofB are zero. The diagonal
components ofB are denoted asBR; B�, andB�. We have

B� = B� = �2: (66)

The incompressibility gives

I3 = BRB�B� = 1: (67)

Then,BR can be derived as

BR = ��4: (68)

Substituting (66) and (68) into (54) gives the relations between the stresses and the stretch
ratio� as in Chang and Pan (1998)

�R = �p� 4C11�
6 + (�2C01 + 6C11)�

4 + 24C30 + (�72C30 + 8C20)�
�2

+(�6C11 + 54C30 + 2C10� 12C20)�
�4 + (4C11 + 24C30)�

�6

+(4C20� 36C30)�
�8 + 6C30�

�12 (69)

�� = �p+ (2C11 + 24C30)�
6 + (�72C30 + 8C20)�

4

+(�6C11 + 54C30 + 2C10� 12C20)�
2 + 24C30

+(4C20� 36C30� 2C01 + 6C11)�
�2 + (6C30� 2C11)�

�6 (70)

�� = ��: (71)

Herep is a functionR. The off-diagonal stress components are equal to 0.
We now begin to solve the stress distribution within the rubber particle. The equilibrium

equation is

d�R
dR

+
2
R
(�R � ��) = 0: (72)

The boundary conditions require

�R = 0 at R = Rb: (73)
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Substituting (69) and (70) into (72), we have

d�R
dR

=
2
R
f(6C11 + 24C30)�

6 + (�72C30 + 8C20 + 2C01� 6C11)�
4

+(�6C11 + 54C30 + 2C10� 12C20)�
2

+(�4C20 + 36C30� 2C01 + 6C11)�
�2

+(6C11� 54C30� 2C10 + 12C20)�
�4 + (�18C30� 6C11)�

�6

+(�4C20 + 36C30)�
�8� 6C30�

�12g (74)

The volume conservation due to incompressibility gives

R3�R3
b = r3� r3

b : (75)

Therefore, the stretch ratio� in (74) can be expressed as

� =
R

r
=

R

(R3�R3
b + r3

b)
1=3
: (76)

SubstitutingR = R0 into (75) gives the expansion ratio of the outer radius of the rubber
particle as

R0

r
=

"
1�

�
rb

r0

�3

+

�
Rb

r0

�3
# 1

3

: (77)

Note that all the length scales are normalized byr0 here. Also note that in (77), the initial
radius of the voidrb=r0 is given as an input for the problem and the final radius of the void
Rb=r0 can be obtained by solving the governing equations in the rubber particle and the plastic
matrix.

Our numerical procedure to obtain the relation between the expansion ratio for the outer
radius of the rubber particleR0=r0 and the remote radial stress�1=�0 is explained in the
following. The size of the plastic regionC in the plastic matrix is first given as an initial guess.
Then, the stresses�R and��, and the displacementuR are integrated by the Runge–Kutta
integration scheme fromR = C inward toward the outer radius of the rubber particle with
use of the governing equations, (32), (30), and (31), and the boundary conditions, (20), (21),
and (22). AtR = R0, the relation

R0

r0
= 1+

ur

r0
(78)

must be satisfied.
During the Runge–Kutta integration for the stresses and displacement in the plastic matrix,

(78) is checked at each increment ofR. When the residual of (78) changes its sign, we can
obtain the two values ofR between which the solution ofR0 is located. The bisection iteration
method is then applied to find the value ofR0 to satisfy (78). Once the value ofR0 is obtained
for the assumedC, the conservation of the total volume of the rubber particle gives

Rb

r0
=

"�
R0

r0

�3

+

�
rb

r0

�3

� 1

# 1
3

: (79)
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Figure 6. The normalized remote radial stresses�1=�0 as functions of the expansion ratio of the rubber particle,
R0=r0, for a void rubber-modified plastic. The material constants of the plastic matrix are�0 = 75 MPa,� = 0:4,
�0=E = 0:025,n = 10; � = 0:13, and� = 0. The constitutive behavior of the rubber particle follows that of the
JGS rubber. The two solid lines represents two bounds for the response of the rubber-modified plastic.

At R = R0, we apply the continuity conditions of�R anduR. Then, the stress�R is integrated
fromR = R0 toR = Rb with the use of (74). The traction-free boundary condition atR = Rb

cannot be satisfied unless the value ofC is chosen correctly. Therefore, numerical iterations
are performed to find the value ofC to satisfy the traction-free condition

�R = 0 at R = Rb: (80)

Note that�� can be discontinuous atR = R0 where the interface of the two materials is
located.

3.3. NUMERICAL RESULTS

The relations between the normalized remote radial stress�1=�0 and the expansion ratio
of the outer radius of the rubber particleR0=r0 are shown in Figure 6 for voided rubber-
modified plastics. The material properties of the plastic matrix are� = 0:4,n = 10; � = 0:13,
� = 0, and�0 = 75 MPa. These are typical material properties of epoxies used in Jeong
and Pan, (1996). We first consider the JGS rubber with the constants described in (55) to
(59) in this study. In Figure 6, the lower solid curve represents the relation between the
normalized remote radial stress�1=�0 and the void expansion ratioR0=r0 for the voided

frac4332.tex; 10/07/1998; 6:43; v.7; p.19



80 W.J. Chang and J. Pan

plastic without the rubber particle. Also in Figure 6, the dashed curves represent the relations
between the normalized remote radial stress�1=�0 and the expansion ratio of the outer radius
of the rubber particleR0=r0 in the rubber-modified plastic with different initial void sizes,
rb=r0 = 0:05;0:1;0:2;0:3;0:4, and 0.5. As shown in Figure 6, as the initial void radiusrb=r0

increases, the relation between�1=�0 andR0=r0 for the rubber-modified plastic becomes
closer to that of the voided plastic without the rubber particle. However, when the initial void
radiusrb=r0 in the rubber particle decreases, the rubber-modified plastic appears very stiff
as�1=�0 increases. The trend indicates that when the initial void size in the rubber particle
becomes infinitesimal, no cavitation stress should be observed. This trend is similar to that
shown in the pre-existing void model for the JGS rubber in Chang and Pan (1998).

Because a rubber material element cannot be extended to infinite stretch ratio, a failure
mechanism at large strains should be considered. Note that the material elements on the void
surface of the rubber particle are under plane stress, equal biaxial stretching conditions. For
vulcanised rubber, the values of the critical stretch ratio at failure under biaxial stretching
conditions are between 3.5 to 4 (Lazzeri and Bucknall, 1993). We adopt a simple failure
criterion such that rupture occurs when the stretch ratio� reaches 10 under plane-stress, equal
biaxial loading conditions (Gent and Wang, 1991). If we select a smaller value of� = 4 at
failure, the results will not be shown clearly in our presentation. Therefore, when the stretch
ratio � of the material elements on the void surface of the rubber particle reaches 10, the
rubber material elements are considered to fail. Then these material elements are no longer
considered for carrying load and can be treated as being conceptually removed from our
consideration. We assume that no permanent deformation occurs in the rubber before rupture
and the deformation in the rubber is elastic and recoverable. Then the rubber material will
adjust the deformation and stresses to those of a rubber-modified plastic with a smaller amount
of initial rubber material (or a larger initial void size).

As we gradually increase the remote radial stress�1=�0, an infinitesimal void starts to
expand. When the material elements on the void surface reach the stretch ratio� = 10, they
fail. For a given value ofrb=r0, we can find a remote radial stress�1=�0 under which the
stretch ratio� for the material elements on the void surface is 10. The deformation and stress
fields of the rubber-modified plastic with the ratio ofrb=r0 at this�1=�0 are basically the
same as those of the rubber-modified plastic with an initially infinitesimal void but with some
inner portion of the rubber particle being ruptured and conceptually removed. Based on this
principle, a solid curve can be drawn in Figure 6 by connecting the point on each dashed
line where the stretch ratio� on the void surface is 10. This solid curve becomes the relation
betweenR0=r0 and�1=�0 for the rubber-modified plastic with an initially infinitesimal void
in the rubber particle with consideration of rubber failure. As we can see in Figure 6, the
maximum difference of the values of�1=�0 for the voided plastic and the voided rubber-
modified plastic is less than 5 percent at a given largeR0=r0. This difference becomes even
smaller if a smaller stretch ratio at failure is assumed.

It should be noted that other non-symmetric rupture mechanisms such as radial cracks can
occur. When the cracks are initiated and grown, the load-carrying capacity of the rubber will
further decrease. Here, the biaxial rupture stretch ratio is assumed to be relatively large (at
10) here. Therefore, the two solid curves in Figure 6 can be regarded as an upper bound and
a lower bound for the rubber-modified plastic. AtR0=r0 = 10, the rubber particle should fail
completely under this condition and the upper and lower solid curves should merge together.
If we select a smaller value of� = 4 at failure, the upper solid curve will be very close to the
lower solid curve. From this observation and a closer examination of the upper solid curve

frac4332.tex; 10/07/1998; 6:43; v.7; p.20



Cavitation instabilities in plastics and rubber-modified plastics81

Figure 7. The normalized remote radial stresses�1=�0 as functions of the expansion ratio of the rubber particle,
R0=r0, for a voided rubber-modified plastic. The material constants of the plastic matrix are�0 = 75 MPa,� = 0:4,
�0=E = 0:025,n = 10; � = 0:13, and� = 0. The constitutive behavior of the rubber particle follows that of the
MR rubber. The two solid lines represents two bounds for the response of the rubber-modified plastic.

in Figure 6, we find that there is a maximum value of�1=�0 betweenR0=Rb = 3 and 5.
When the rubber-modified plastic is subjected to load-controlled conditions, the maximum
stress should be regarded as the cavitation instability stress when the strain failure criterion is
employed.

Figure 7 shows the results for the plastic containing the Mooney–Rivlin rubber particle.
The lower solid curve represents the relation between�1=�0 andR0=r0 for the voided plastic
without the rubber particle. When no failure criterion is considered for the rubber-modified
plastic, the dashed lines shown in the figure indicate that there is no cavitation phenomenon
asrb=r0 decreases. However, when a failure criterion at� = 10 is considered under biaxial
stretching conditions, the relation between�1=�0 andR0=r0 for the rubber-modified plastic
with an initially infinitesimal void in the rubber particle can be obtained and shown as the
upper solid curve in Figure 7. The upper solid curve indicates that cavitation stress exists as
in the plastic containing the JGS rubber as shown in Figure 6.

For the plastic containing the neo-Hookean rubber particle, when a failure criterion is not
considered, the relation between�1=�0 andR0=r0 is almost the same as that for the plastic
itself. When a failure criterion is considered, the relation between�1=�0 andR0=r0 becomes
even closer to that for the plastic itself. Therefore the results will not be shown here.
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Yee and Pearson (1986) and Pearson and Yee (1986) examined the fracture surface of
single-edge notched three-point-bend specimens of rubber-modified epoxies. They showed
that the diameter of the cavity formed from the rubber particle on the fracture surface can
increase up to 200 percent when compared to the diameter of the rubber particle before
deformation. This observation indicates that the plastic matrix itself fractures at finite strains
or stresses. Mathematically, we can assume that the plastic matrix fractures when a critical
stress or strain criterion is satisfied. We can apply the same principle for rubber rupture to
the plastic. For example, we can assume that the plastic fractures at the stretch ratio of 2.
This corresponds to the expansion ratio ofR0=r0 = 2 for the voided plastic. For all the
curves shown in Figures 2 and 3, the normalized remote radial stress�1=�0 atR0=r0 = 2 is
within 5 percent of the corresponding critical cavitation stressS=�0. Note again that when a
strain failure criterion is considered for the rubber, the stress-expansion ratio relations and the
cavitation stresses for the plastic with and without the rubber particle become very close to
each other. Therefore the general trend of the critical cavitation stresses presented here should
be very similar to the general trend of the stresses under which the plastic matrix starts to
fracture at the critical expansion ratioR0=r0 = 2. Thus our results presented here should be
useful to understand the fracture mechanisms in rubber-modified plastics.

4. Conclusion

In this paper, we have investigated the spherical void expansion in plastics and rubber-
modified plastics under remote radial traction. First, the effects of pressure sensitivity on the
cavitation stresses in plastics are examined. Our results show that, in general, the cavitation
stress in plastics decreases as the pressure sensitivity increases and/or the plastic dilatancy
factor decreases. For example, the normalized cavitation stress,S=�0, of plastics decreases
by a factor of 1.75 when the pressure sensitivity� increases from 0 to 0.3 with� = 0. The
decrease of cavitation stress due to the pressure sensitivity and the large ratio of the yield
stress to the modulus in plastics may imply the crack resistance curves may be relatively lower
when compared to those of metals (Tvergaard and Hutchinson, 1992).

When the rubber particles in plastic is characterized by the neo-Hookean strain energy
function, our results indicate that, with and without considering a failure criterion for rubber,
the cavitation stress in the rubber-modified plastic is almost the same as that for the plastic. As
shown from the trend in Figure 6 and 7, when there is a small void in the rubber particle, the
rubber-modified plastic is very stiff and shows no cavitation phenomenon when the rubber is
characterized by the Mooney–Rivlin strain energy function and the third-order strain energy
function of James, Green and Simpson (1975). However, when a strain failure criterion is
considered, the stress-expansion ratio relations and the cavitation stresses for the plastic with
and without the rubber particle become very close to each other. The results suggest that the
computational investigation of the crack-tip fields in rubber-modified epoxies in Jeong and
Pan (1996) is reasonable by using a generalized Gurson’s yield criterion for pressure-sensitive
voided materials to represent the constitutive behavior of rubber-modified epoxies.

Appendix A: Closed-form solutions for incompressible materials

In this appendix, simple closed-form solutions for the normalized radial stress�1=�0 as
functions of the void expansion rationR0=r0 are obtained for two special cases: Mises
materials with� = 1=2, and pressure-sensitive materials with� = 0 and� = 1=2. In these
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two special cases, the governing equations for the displacement become simple due to the
material incompressibility.

A.1. Elasticity incompressible Mises materials

For Mises materials, the governing equation ofuR is (50). When� = 1
2, we haveF (R) = 0

from (42). Therefore, (50) can be simplified to

duR
dR

= 1�
�

1� uR

R

��2

: (A1)

The general solution of (A1) is

R3� (R� uR)3 = B; (A2)

whereB is a constant. Note thatr = R� uR. SubstitutingR = R0 into (A2) gives

B = R3
0� r3

0: (A2)

Therefore, one can find that the governing equation of the displacementuR, (A1), essentially
satisfies

R3�R3
0 = r3� r3

0: (A4)

Note that (A4) can be derived from the material incompressibility such that the total volume
of the material between the void surface and the surface corresponding to a material point
remains constant after deformation.

SubstitutingR = C into (A4) gives

R3
0� r3

0 = C3� (C � uCR)3: (A5)

Rearranging the above equation gives

R0

r0
=

8<
:1�

�
C

R0

�3

+

 
C

R0
� uCR
R0

!3
9=
;
� 1

3

: (A6)

Substituting (48) and (49) into (A6) gives the void expansion rationR0=r0 in terms of the
remote radial stress�1=�0. After rearranging of the equation, we arrive at

�1

�0
=

2
3

(
1+ ln

"
1�

�
R0

r0

��3
#
� ln

"
1�

�
1� �0

2

�3
#)

: (A7)

where�0 = �0=E. The critical cavitation stressS=�0 for Mises materials with� = 1
2 is

obtained whenR0=r0 approaches to1 in (A7) as

S

�0
=

2
3

(
1� ln

"
1�

�
1� �0

2

�3
#)

: (A8)
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When�0 is small, the first-order expansion of (A8) becomes

S

�0
=

2
3

�
1+ ln

�
2

3�0

��
; (A9)

which is the same as (2.10) in Huang et al. (1991).

A.2. Pressure-sensitive incompressible materials

For pressure-sensitive materials with� = 0 and� = 1=2, the governing equation of the
displacementuR, (44), can be reduced to the form in (A1). Therefore, the same simple
relation for the displacement field in the inner plastic region can be represented by (A4), and
also by (A6). Substituting (36), (37), (38) into (A6), a relation between the void expansion
ratio and the normalized remote radial stress�1=�0 can be obtained

R0

r0
=

(
1�

��
1+

2�p
3

��
1�

p
3�
�1

�0

���p3+2�=2�

�
(

1�
�
1� �0

2

�
1�

p
3
�1

�0

��3
))� 1

3

: (A10)

The critical cavitation stressS=�0 can be obtained from (A10) whenR0=r0 approaches to1
as

��
1+

2�p
3

��
1�

p
3�

S

�0

���p3+2�=2�
(

1�
�
1� �0

2

�
1�

p
3�

S

�0

��3
)

= 1: (A11)

Therefore,S=�0 can be obtained by solving (A11). For small�0, (A11) can be approximated
by

��
1+

2�p
3

��
1�

p
3�

S

�0

���p3+2�=2� �3�0
2

�
1�

p
3�

S

�0

��
= 1: (A12)

Solving (A12) forS=�0 gives

S

�0
=

1p
3�

"
1�

�
2

3�0

��2�=
p

3�
1+

2�p
3

��(1+2�=
p

3)
#
: (A13)

Note that (A13) can be reduced to (A9) when�! 0 by the L’Hôpital’s rule.
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