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Abstract. Spherical void expansion in plastics and rubber-modified plastics is investigated under radial traction
conditions. The plastics are modeled as elastic-plastic pressure-sensitive materials and the rubbers are modelec
nonlinearly elastic materials. First, the growth of a spherical void in an infinite plastic matrix is investigated under
remote radial traction conditions. The results show that the cavitation stress of the plastic decreases significantl
as the pressure sensitivity increases. Then, the growth of a spherical void located at the center of a spherical rubk
particle in an infinite plastic matrix is investigated under remote radial traction conditions. The results indicate
that without any failure criteria for the rubber, the cavitation stress does not exist when the void is small and the
rubber is characterized by high-order strain energy functions. However, when a failure criterion for the rubber is
considered at a finite stretch ratio, the results show that the cavitation stress for the plastic with the rubber particl;
becomes close to that for the plastic without the rubber particle.

Key words: Cavitation instability, cavitation stress, void growth, plastics, rubber, rubber-modified plastics,
pressure-sensitive yielding, toughening.

1. Introduction

Nucleation, growth and coalescence of voids are the main physical mechanism in ductile
fracture processes of solids. Many studies have been conducted to investigate the influen
of microvoid growth on ductile fracture processes. For example, Rice and Tracey (1969)
investigated the growth of a spherical void in an infinite Mises material. Gurson (1975) obtained
an approximate vyield criterion for porous Mises materials by an upper-bound approach.
Gurson’s yield criterion (1975) and its modified forms (Tvergaard, 1981; Tvergaard, 1982)
have been widely used to study ductile fracture processes, for example, see Needleme
and Tvergaard (1987) and Tvergaard (1990). Recently, the continuum elastic-plastic theor
based on Gurson’s yield criterion has been employed to study the effects of void growth an
coalescence on crack initiation and growth in ductile solids by Xia and Shih (1995a; 1995b)
and Xia, Shih and Hutchinson (1995).

Cavitation instability occurs when the stress level is sufficiently high such that the void
expansion rate becomes infinitely large. Examples of material failure due to cavitation car
be found in metals (Ashby et al., 1989) and in rubber (Gent and Lindley, 1959). Early work
on cavitation instabilities is summarized in Hill (1950). The cavitation problem has been
investigated in the context of nonlinear elasticity by Ball (1982). Ball studied a class of
bifurcation problems in which a spherical void forms at the center of a sphere of nonlinearly
elastic material under surface tractions or displacements. An alternative interpretation fol
such problems in terms of the growth of a pre-existing microvoid has been given by Horgar
and Abeyaratne (1986). An excellent review of cavitation in nonlinearly elastic solids can
be found in Horgan and Polignone (1995). For cavitation in elastic-plastic materials, Huang
et al. (1991) and Tvergaard et al. (1992) examined cavitation instabilities in Mises materials
under both spherically symmetric and axisymmetric conditions. Hou and Abeyaratne (1992)
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examined the cavitation in elastic and elastic-plastic solids under non-symmetric loading anc
presented cavitation criteria in terms of the principal true stresses for neo-Hookean material
and elastic-plastic power-law materials.

Cavitation in rubber particles seems to play an important role in the toughening mechanisn
of rubber-modified plastics (Yee and Pearson, 1986; Pearson and Yee, 1986, 1991; Yee et a
1993; Sue and Yee, 1996; Williams and Schapery, 1965; Gent and Wang, 1991; Lazzeri an
Bucknall, 1993; Jeong and Pan, 1996). Therefore, a thorough understanding of the cavitatio
behavior in rubber-modified plastics is essential to understand the toughening. The theoretic:
framework of Ball (1982) and Horgan and Abeyaratne (1986) have provided insight into
cavitation in nonlinearly elastic materials. However, there are still some inconsistencies tha
need to be explored. For example, the critical surface tractions for neo-Hookean material
obtained from the bifurcation approach agree with those observed in the internal rupture
of rubber in Gent and Lindley (1959). However, the critical traction becomes unbounded
for Mooney-Rivlin materials or nonlinearly elastic materials characterized by higher-order
strain energy functions (Horgan and Polignone, 1995). Chang and Pan (1998) investigate
this inconsistency by considering a simple strain failure criterion for rubber at large strains.
They found that cavitation instability can be consistently predicted in rubbers characterizec
by different strain energy functions with consideration of rubber failure at large strains.

In this paper, we explore the implications of a failure criterion for rubber at large strains
on cavitation instability in rubber-modified plastics in a spirit consistent with those of Ball
(1982) and Horgan and Polignone (1995) for nonlinearly elastic materials. First, we examine
the growth of a spherical void in an infinite plastic matrix subjected to remote radial traction
conditions. Then, we examine the growth of a spherical void at the center of a spherica
rubber particle in an infinite plastic matrix subjected to remote radial traction conditions with
and without consideration of rubber failure. Finally, the results for the plastic and for the
rubber-modified plastic are compared and discussed.

2. Spherical void expansion in plastics

In this section, spherical void expansion in an infinite plastic matrix under remote radial
traction is investigated. The undeformed and deformed configurations for a spherical void
in a plastic matrix are schematically shown in Figure 1. As shown in Figure 1(a) for the
undeformed configuration, the center of the spherical void with the initial ragilsdocated
at the origin of a spherical coordinate, 0, ¢) system. As shown in Figure 1(b) for the
deformed configuration, the remote radial stregsis applied at the infinity and the radius
of the void becomeg®, aftero, is applied. We assume that a material point initially located
at» measured from the center of the void movesitan the deformed configuration after
0o IS @applied. Here, the rigid body motion is not considered. Also, we denote the radius of
the plastic zone a€' in the deformed configuration so that the material inside the boundary
R = C'is plastically deformed and the material outside the boundagy C remains elastic
under the remote radial stress,.

The relation between the radial stress and the void expansion rati®y/ro for materials
with different values of pressure sensitivity, with or without strain hardening, are investigated
here. When the remote radial stress approaches to a critical cavitation stress of the materi
the void expansion ratio becomes infinitely large. In general, engineering materials contair
pre-existing microvoids. Therefore these initially invisible microvoids can become very large
when the critical cavitation stress is reached.
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(a) Undeformed Configuration

¢

(b) Deformed Configuration

Figure 1 A spherical void in an infinite plastic matrix. (a) undeformed configuration, (b) deformed configuration.

2.1. GONSTITUTIVE MODELING OF PLASTICS

The Drucker—Prager yield criterion (Drucker, 1973; Drucker and Prager, 1952; Li and Pan,
1990a; Li and Pan, 1990b), which is a linear combination of the effective sigessd the
mean stress,,, is adopted here to model the yielding in the plastic matrix

w(gij) =0c+ \/éﬂgm = Oge, 1)

whereo, = (3s45:;/2)Y?,5i; = 0ij — omdij, andoy, = ok /3. Here,s;; is the Kronecker
delta and the subscriptsj andk have the range of 1 to 3. In (L}(o;;) represents the yield
surface in the stress space antepresents the pressure sensitivity of the plastic. bHgrés

the generalized tensile effective stress and represents the size of the yield surface in the stre
space.
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In this study is assumed to be a material constant and can be determined from the initial
uniaxial compressive yield stregs and the initial uniaxial tensile yield stressas

p=v3Z—2% 2)

Oc+ oy

The initial yield surface can be specified by. = o9, whereoyg is the initial generalized
tensile effective stress and can be determined by

20.0¢

@)

gg = .
0 Oc+ oy
For perfectly plastic materials, the generalized effective stresgedecomes a constant
represented byo when yielding occurs.

A plastic potential functior, is defined as

¢p(0ij) :Ue+\/§/60mzaaa 4)

whereg is the plastic dilatancy factor amq, represents the size of the plastic potential surface.
For normality plastic flow3 = . For incompressible plastic flow, = 0. The plastic part of
the strain rate tenso#};, can be derived from the plastic potentiglas

. . 0o < (385 I}

Po— )\ p:)\< ) _5..> 5

€ Joj 20, + Vv37)’ (5)

where) represents a proportionality factor.
The proportionality factoh in (5) can be determined from the equivalence of plastic work
rate

WP = aijéfj = 0ge€le, (6)
whereé?, is the generalized equivalent plastic strain rate. Substituting (5) into (6) gives

. o X
h="2a, (7)

whereo,, is defined in (4). Therefore, (5) becomes

. .p Oge 332” /8
Efj = egeo_—i (20_Z + ﬁ(5w> . (8)

The relation between the stresses and the plastic strains for the corresponding deformatic
plasticity theory is
35, Jé]
P _ P Oge ) _5..> . 9
= .2 (2(;@ + s, ©)

Based on Hooke’s law for isotropic linear elastic materials, the elastic part of the strain can
be represented as

1
6% = E[(l + I/)UZ']' - I/Ukk(sij]. (20)
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Therefore, the total straif); can be expressed as

1 o 355 1]
- po_ g g ge ij g
€ij = €+ €; = E[(l +v)oij — vogkdis] + egea—a (Tte + ﬁ513> . (11)
A relation betweeir . andef, for power-law hardening materials is assumed as
0 if 040 < 09
ehe/eo = o (12)
(0gefo0)” =1 ifoge > 00,

whereoy is the initial generalized tensile effective stresss the hardening exponer is
defined byeg = 0o/ E, andE is Young's modulus.

It is well known that deformation plasticity theory is inadequate where there is a large
departure from proportional loading conditions. However, when the loading is nearly pro-
portional, the deformation plasticity theory can be considered no more objectionable thar
the corresponding incremental flow theory (Budiansky, 1959). In fact, Huang et al. (1991)
obtained almost the same numerical results for the critical cavitation stresses in perfectly
plastic Mises materials based on a deformation plasticity theory and the corresponding incre
mental plasticity theory. In this study, we only adopt the deformation plasticity stress-strain
relation specified in (11) for the plastic.

2.2. FORMULATION FOR HARDENING MATERIALS

Recall the initial void radius isg and the void radius becomédg after the remote radial
stresso, is applied. The governing equations for the stresses, strains, and displacement at
formulated based on the deformed configuration. We assume that the outer region remair
elastic and the remote radial stress is high enough so that a plastic region develops fror
the surface of the void based on the deformed configuration. Assume that the elastic-plasti
boundaryisaRk = C,whereC > Ry. Dueto symmetry, the non-vanishing stressesatey,
andog(= o0y). The non-vanishing strains a¢g, ey, ande,(= €y). The only non-vanishing
displacement is z. Note that the rigid body motion of the material is not considered.

We begin by considering the stresses and displacement in the outer elastic region. Th
small-strain theory is used to obtain closed-form solutions for the outer elastic field to avoid
integration from the infinity. The radial stress; in the outer elastic region has the form
(1951).

or = — + Ay, (13)

whereA; and A, are the constants to be determined from the boundary conditidhs=ato
andR = C.

The equilibrium equation for the spherically symmetric problem is

dop 2

R "R
Substituting (13) into (14) and solving the resulting differential equation with the two boundary

conditionsor(R — 00) = 0 andog.(R = C) = og give the stresses in the outer elastic
region as

(ocr —0y) =0. (14)

3

C
O—R:UOO_%(OFO_\/éMO—OO)ﬁ (15)
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1 c?
09 = 0o + 3(00 — \/é,uooo)ﬁ. (16)

Then, (15) and (16) are substituted into (10) to solve for the strains in the outer elastic region
From the small-strain theory, we have

duR
_ 17
" = g (17)
UR
= £, 18
€= "7 (18)
The displacemenity, in the outer elastic region can be obtained as
B Ooo (1+v) [ 00— V3uos | C*
uR = [(1 2v) = ] R+ 3 7 2 (29)

Note that we use the small-strain theory to obtain the outer boundary conditions for the innel
plastic region to simplify our problem because the deformation in the elastic region is quite
small and the small-strain theory should be adequate.

The values of the stresses and displacement at the elastic-plastic boEndatywill be
used for starting numerical integration for the stresses and displacement in the inner plasti
region where the finite deformation effects must be considered. From (15), (16), and (19), th
non-vanishing stresses and displacemeift at C' are

O'% = <1+ %u) Oco — %ao (20)
0§ = (1— %@ Ooo + 200 (21)
u%:%{lgyao—l—{l—Zy—%]om}. 22)

Note that the radius of the inner plastic regi6h,is not yet determined.
In order to solve the stresses, strains and displacement in the inner plastic region, (11) i
first written as

€R = %[UR — 2vog] + €, (Z—‘ie) <—l+ %) (23)
€= %[—MR (- V)] + &, (%) (% 4 %) , (24)

whereel, is expressed as

P
ei; = (0g4e/00)" — 1 (25)
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as in (12). For the spherically symmetric problem, we have

Oge =09 —OR + %(UR + 209) (26)
O'a:(jg—UR-f—ﬂ(O'R-f—ZUg) 27)
V3

by assumingry > o
When finite deformation is considered, the strains are defined as

dR
o= {m} — _In(1— dup/dR) (28)
e =In {R im} — _In(1—up/R), (29)

where we recall thatr = R — r. Substituting (28) into (23) and then (29) into (24) gives

dur _ ) exp|_ 7R 2v70 _ Uge>< _>]
R - 1 exp[ 7 €ge (U 1+ /3 (30)
uR _ . —(1-v)og—vor _ (O'ge> (1 B >]
i 1 exp[ i €ge 3 (31)
Also, the equilibrium equation (14) can be written as
dor 2
dr ~ 7R (32)

The governing equations of the inner plastic region for power-law hardening materials are
now reduced to (30), (31), and (32).

Note thatog, 09, andup are all functions ofR. Therefore, (30) and (32) can be used to
integrate folwp andug and (31) gives a nonlinear equation &gy, which has to be solved by
numerical iterations. Note that we use the small-strain theory to define the strains in the elasti
region whereas we use the logarithmic strain definition to define the strains in the plastic
region. AtR = C, we use the stresses, strains, and displacement from the elastic region base
on the small-strain theory as the boundary conditions to start the integration of (30) to (32)
which are based on the logarithmic strains. However, the straiRs-atC are quite small and
the elastic solutions based on the small-strain theory should be good approximations.

The numerical procedures to solve the stresses and displacement in the inner plastic regic
are given in the following. Note that the stressgsandoy, and the displacement; are
referring to the current deformed configuration. The size of the inner plastic régianfirst
given as an initial guess. Based on the initial guess valde, ofz, oy, anduy atR = C are
obtained from (20), (21), and (22). From the continuity conditionspainduy atR = C,
the values otz andug at R = C are used to initiate numerical integration tog, oy, and
ug in the inner plastic region. A combined fourth-fifth order Runge—Kutta scheme with error
and step-size control is employed to solve (30), (31) and (32) flomC to R = Ry.

At each step of the integration, the values efzgddR and d:r/dR are calculated from
(32) and (30) respectively, and (31) is used to ob#giby numerical iterations. The numerical
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integration is performed until the surface of the voitl = Ry) is reached. On the surface of
the void, the traction-free boundary condition requires

or=0 at R=Ro. (33)

If the boundary condition in (33) is not satisfied, a new valu€'of assigned. Numerical
iterations are performed to find the value@fo satisfy (33). AfterC is found, these g, oy
andup as functions ofR are the solutions for the inner plastic region. Then, the expansion
ratio of the void is calculated from

Ro/ro = Ro/(Ro — ur(R = Ro)). (34)

The numerical iterations to find to satisfy (33) and to find, to satisfy (31) require good
initial guesses to reach convergent results. Therefore, the remote radiabstiresiacreased
incrementally from the value at which yielding starts to develop on the surface of the void at
R = Rp. This value ofs, can be determined by solving (20) wiﬂﬁ = 0 and the result is
0o = 200/(3 4 2v/3u). As the remote radial stress, increases, the radius of the plastic
zoneC' increases. The solution @f for the current value of, is used as the initial guess
of C for a larger value ob .. In the same manner, whet,, oy anduy are integrated from
R = C to R = Ry, the initial guess ob for solving oy by (31) at each integration step is
taken from the last integration step.

2.3. FORMULATION FOR PERFECTLY PLASTIC MATERIALS

For elastic perfectly plastic materials, the solution procedure is quite similar to that for elastic
power-law hardening materials. However, for elastic perfectly plastic materials, the governing
equations can be reduced to simpler forms and the stresses can be solved independently frc
the strains and displacement. In some special cases, closed-form solutions for the relatic
between the normalized remote radial stresg oo and the void expansion ratiBy/ro can
be obtained. These closed-form solutions are especially useful for validating our numerica
solutions.

The solutions for the outer elastic region are the same as those for hardening material
Also, the stresses in the inner plastic region for perfectly plastic materials can be solved witt
the use of the equilibrium equation (14) and the yield condition

oRr + 209

Uge:(ag—oR)—F\/éu[ 3

}zam (35)

where we have implicitly assumed that > 0. Substituting (35) into (14) and applying the
traction boundary conditionr = 0 atR = Ry give the stresses in the inner plastic region as

o R ) ~63/(V3+20)
- 1— (= 36
on ¢@L[ (% (36)

V300 {1+ V3—u [1_ <R>6u/(ﬁ+2u)]}’

00:\/§+2u 3u Ry

(37)
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wherey > 0. From (36) and (20) and the continuity conditiomgfat R = C, the closed-form
solution ofC'is given as

V342

R (1 ) (vm )T @

In order to solve the strains and displacement in the inner plastic region, (11) is written as

1 Oge
GR:E[UR—ZI/O"Q]—FGP < 1+ ﬁ) (39)
_ oge (1 B
€9 = E[—I/O'R + (1—v)og] + egea—ga (E + ﬁ) . (40)

Letp = —1+ /v/3 andp, = 1/2 + 3/+/3. Multiplying (39) by 3, and (40) by—3; and
adding the results together, we have

Baer — Preg = F(R), (41)
where
F(R) = 2152 + vB)on + (B — 280w — o). (42

Here, the solutions for the stressggandoy are expressed in (36) and (37).
Substituting (28) and (29) into (41) results in

(1—up/R)™
(1 — duR/dR)BZ

In = F(R). (43)

Equation (43) can be rewritten as

dur
dR

Equation (44) and the boundary conditiomgf at R = C, (22), are then used to integrate
ur from R = C' to R = Ry by the Runge—Kutta integration scheme. Aftgs(R = Rp) is
obtained, the void expansion ratio is calculated by (34).

For Mises material§. = 8 = 0), (38), (36), and (37) become invalid. For Mises materials,
the yield condition gives

=1— (1—up/R)*/ % exg—F(R)/fa). (44)

Oge = 09 — OR = 0. (45)

Substituting (45) into (14) and applying the boundary conditi@iR = Rp) = O result in
the closed-form solutions efg andoy as

on = 200N ( Ifo) (46)

R
op = og + 2001In < > 47
Ro
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From the continuity condition afz at R = C, (46) and (20) lead to

C lo, 1

Substituting (48) into (22) gives

1 1 1
uR(R:O):Roeo{(l—zy)&"’Jr +”}exp<—a;°°——> (49)
(4] 3 2 o0 3
The analysis of the displacement field for pressure-sensitive materials is also valid for Mises
materials. For Mises materials, the governing equationzgf(44), becomes

U ug\ "2
‘jj_; 1 (1 _ %) exp{—2F(R)}. (50)

With the use of (46), (47), and (41), the functifitR) in (50) becomes

F(R):(l_Eﬂ{lJrSIn (R%)} (51)

Closed-form solutions for the relation between the normalized radial stsgés, and the
void expansion ratidzy/ro for incompressible materials are presented in the Appendix. These
closed-form solutions can be used to validate our numerical solutions. For Mises material:
(u = B = 0) with v = 1/2, the closed-form solution for the relation between the normalized
remote radial stress.,/op and the void expansion ratiB/ro is presented in (A7) and
the critical cavitation stresS/og is presented in (A8). For pressure-sensitive incompressible
materials, the solutions for the relation betweeg/oo and Ry/ro and the critical cavitation
stressS/op are obtained in (A10) and (A11), respectively. Equation (A13) gives an approxi-
mate solution of the critical cavitation stress for pressure-sensitive incompressible material:
with reasonable accuracy.

2.4. NUMERICAL RESULTS

The void expansion ratioRy/ro at different values of the remote radial stress/oo are
calculated for both power-law hardening materials and perfectly plastic materials. The relatior
betweerv ., /oo and Ry /o also depends on the material properiies, o, v, andn.

In our numerical calculations, the void expansion rafig/ro larger than 16 can be
obtained by gradually increasing the valuergf/oo. Therefore, the critical cavitation stress,
S/o0, is taken as the value of the normalized remote radial strgg%o corresponding to
Ro/ro = 10*in our numerical calculations. In some special cases for perfectly plastic materials
where closed-form solutions of the relation betwegp/co and Ry/ro are available, the
critical cavitation stress'/og is defined as the remote radial stress wiiyiro approaches
to co. Note that in reality, the void expansion ratio must be finite. Cracks or other failure
mechanisms develop near the void surface and, consequently, the load-carrying capacity
the surface material elements decreases. Further discussions on the loss of load-carryil
capacity of the surface material elements will be given later.

The critical cavitation stresses for materials with= 1, v = 1/2, and different values of
w's,n’s, andoo/E’s are listed in Table 1. In generdl/oo decreases as/ E increases and/or
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Table 1 The critical cavitation stress&% o for pressure-sensitive
materials with3 = p andv = 0.5. The symbol -’ indicates that
the critical cavitation stress does not occur when the outer field is

elastic.

oo/E p=0 p=01 p=02 p=03
0.001 5.00 3.59 2.57 1.88

n=o00 0.003 4.27 3.25 2.44 1.85
0.025 2.86 2.45 2.05 1.70
0.001 5.15 3.67 2.61 1.90

n =100 0.003 4.37 3.32 2.48 1.87
0.025 291 2.48 2.08 1.71
0.001 6.85 - - -

n =10 0.003 5.52 4.03 2.83 -
0.025 3.32 2.80 2.30 1.84

Table 2 The critical cavitation stresseé¥ oq for power-
law hardening materials with = 10,00/E = 0.025,
andv = 0.5 for different combinations qf andg

p=0 pu=01 p=02 up=03

B=0 3.32 2.57 2.02 1.61
B=upn/2 332 2.69 2.16 1.74
B=np 3.32 2.80 2.30 1.84

w increases. The normalized critical cavitation stresges for Mises materials withh = oo
(perfectly plastic materials) and 10 ang/E = 0.001 and 0.003 are the same as those in
Huang et al. (1991) to the accuracy of two decimal digits. Also, the critical cavitation stresses
for low-hardening materials with = 100 are found within 3 percent of the corresponding
solutions for perfectly plastic materials. In Table 1 foe= 10, the symbol~’ indicates that
infinite void expansion ratio does not occur when the remote region is elastic. Since thes
conditions occur at very small values @/ E and the value of(/E is usually larger than
0.01 for plastics, void expansion with no remote elastic region is not considered here.

The relations between the void expansion rdtigro and the normalized remote radial
stressr,/op are plotted in Figure 2 for materials with = 0o/ E = 0.025,n = 10,» = 0.5.
We consider three plastic dilatancy factgés= p, 5 = 1/2, ands = 0 for each: and we take
u=0,0.1,0.2, and 0.3. As shown in the figure, in general, as the normalized remote radial
stress becomes larger than 1, the void expansion rate increagemaieases, the normalized
radial stresr,/og at a given largeRy/ro decreases. For a given the normalized radial
stresso../op at a given largeRy/ro decreases a8 decreases. The corresponding critical
cavitation stresses for these curves in Figure 2 are listed in Table 2. The pressure sensitivil
1 has significant effects on reducing the critical cavitation stress. For example, the critical
cavitation stressS/oq for p = 5 = 0 is 3.32 and the value df/oq decrease to 1.61 for
p = 0.3 andg = 0. It should be noted that the value of the critical cavitation stf¢s$ is
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4.0

€0 =0.025, n=10
u:B:O

u=0.1, p=0.1
=0.1, p=0.05
1 u=0.1, B=0
p=0.2, B=0.2
n=0.2, B=0.1
n=0.2, p=0
p=0.3, p=0.3
p=0.3, p=0.15
u=0.3, =0

Ow / Op

0.0 T T T T

Ro/ro

Figure 2 The normalized remote radial stresses /oo as functions of the void expansion ratRy/ro for
power-law hardening materials withy/E = 0.025 andn = 10. Results are shown for different values o$
(=0,0.1,0.2 and 0.3) and’s (= p, /2 and 0).

as low as 1.61 for the case with= 0.3 andg = 0 when compared with typical values of 4
to 5 for metals.
Note that we can represesyd in terms ofy, ando; as

a0 = <1+ %) ot (52)
Here,o, represents the yield stress in tension. Equation (52) is derived from (2) and (3). When
the tensile yield stress is taken as a given material constant from a tensile test, (52) indicates
that the value of( increases ag increases. For example, the valuergfor 4 = 0.3is117.3
percent of the value ofq for » = 0. Therefore, fors = 0, the critical cavitation stres$ for
u = 0.3 is 57 percent of the value of for . = 0. The predictions of the critical cavitation
stresses can differ by a factor of 1.75 with and without considering the effect of pressure
sensitivity for a material with, = 0.3 andg = 0 using the tensile yield stresg as the input.
Figure 3 shows the relations betweBg/ro ando., /oo for perfectly plastic materials
with e = 09/ E = 0.025 andv = 0.5, obtained by the Runge—Kutta numerical integration
scheme. The general trends shown in Figure 3 for perfectly plastic materials are quite simila
to those shown in Figure 2 for power-law hardening materials. The critical cavitation stresses
S/oo for the curves in Figure 3 are listed in Table 3. The approximate closed-form solution
of the critical cavitation stresS/oq for perfectly plastic pressure-sensitive incompressible
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g0 =0.025, n=co

GOO/GO

0.0 T T T T
0 0.5 1 1.5 2 2.5 3 3.5 4

Ro/ro

Figure 3. The normalized remote radial stresses/ oo as functions of the void expansion rafig /o for perfectly
plastic material§n = co) with oo/ E = 0.025. Results are shown for different valuesuis (= 0,0.1, 0.2 and
0.3) andB’s (= p, /2, and 0).

Table 3 The critical cavitation stressé4 o, for perfectly
plastic materials withro/E = 0.025 andv = 0.5 for
different combinations ofi and3

p=0 pu=01 pu=02 up=03

B=0 2.86 2.28 1.84 151
B=un/2 2.86 2.36 1.95 1.61
B=np 2.86 2.45 2.05 1.70

materials can be obtained from (A13) in Appendix A. The approximate critical cavitation
stresses obtained from (A13) feg = 0o/ E = 0.025 withp = 0.0001,0.1,0.2, and 0.3 are
2.85,2.28,1.84,and 1.51, respectively. These solutions agree very well with the correspondin
critical cavitation stresses fgf = 0 obtained from the Runge—Kutta numerical integration
scheme listed in Table 3.
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(a) Undeformed Configuration

/

(b) Deformed Configuration

Figure 4 Avoid in a spherical rubber particle embedded in an infinite plastic matrix. (a) undeformed configuration,
(b) deformed configuration.

3. Spherical void expansion in rubber-modified plastics

Spherical void expansion in rubber-modified plastics is investigated in this section. As
schematically shown in Figure 4(a), a rubber particle with an initial radius embed-

ded in an infinite plastic matrix. A small void with the initial radigsis located at the center

of the rubber particle. As schematically shown in Figure 4(b), the radius of the void becomes
Ry, the radius of the rubber particle beconi&s and the size of the plastic region grows’to

after the remote radial stress, is applied. The rigid body motion is not considered. As the
remote radial stress,, increases, the void in the rubber particle expands. Therelyre?o,

andC increase ag ., increases. Here, we compare the increase of the radius of the rubber
particle in the rubber-modified plastic and the void expansion in the plastic with the initial
size of the rubber particle in the voided rubber-modified plastic equal to the initial size of the
void in the voided plastic to investigate the effects of the addition of rubber particles on the
cavitation stresses of rubber-modified plastics. For the completeness of presentation, we he
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summarize the constitutive relations and governing equations for the analysis of cavitation ir
several rubbers presented in Chang and Pan (1998).

3.1. GONSTITUTIVE MODELING OF RUBBERS

As in Chang and Pan (1998), we adopt a third-order strain energy function investigated by
James, Green and Simpson (1975) and James and Green (1975)

W = ClO(Il — 3) + 001(12 — 3) + 011([1 — 3)([2 — 3) + 020(11 — 3)2
+Cs0(I1 — 3)°, (53)

whereI; and I, are the first and second invariants of the left Cauchy—Green strain tensor
B;;. Note that (53) reduces to the strain energy function for Mooney-Rivlin materials when
C11 = Oy = C3p = 0 and reduces to that for neo-Hookean materials wiign= Cy1 =

C2 = C30 = 0. The components of the Cauchy stresg, can be derived fronW as
(Truesdell and Noll, 1965)

ow ow
ii = —p;; +2——DB;; — —Bili'. 54
o J p J + 8.71 J 812 ( ) J ( )
wherep is the hydrostatic pressure.
The material constants;; in (53) are determined by fitting to the experimental data. Here,
we consider a rubber with the material constants (Goldberg, 1976; Morman, 1981)

C1o = 1.008x 10~ MPa (55)
Cor = 1.612x 10~ MPa (56)
C11 = 1.338x 10 3 MPa (57)
Cao = 6.206x 10 % MPa (58)
Cz0 = 6.206 x 107° MPa (59)

We also consider a Mooney—Rivlin material with the constants (Oden, 1972)

C10 = 0.550 MPa (60)
Cor = 0.138 MPa 61)
C11=C2=C3=0. (62)

In addition, we consider a neo-Hookean material with the constants
C10 = 0.5 MPa (63)
Co1=C11=C=C3=0. (64)

For the neo-Hookean material, the only nonzero consiggis related to the shear modulus of
rubber,GG, asC10 = G/2. The values ofs for rubbers generally lie between 0.2 and 1.0 MPa.
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120.0
100.04
B80.0

60.0 -

Applied Stress (MPa)

40.0

20.0

Stretch Ratio

Figure 5 The stresses as functions of the stretch ratio for three nonlinearly elastic materials. Curves NH, MR, anc
JGS represent the NH, MR, and JGS rubbers under uniaxial tensile loading conditions, respectively. Curves BNF
BMR, and BJGS represent the NH, MR, JGS rubbers under equal biaxial tensile loading conditions, respectively

In the following, we denote the material with the material constants in (55) to (59) as the JGS
rubber. We denote the Mooney—Rivlin material with the material constants in (60) to (62) as
the MR rubber. We denote the neo-Hookean material with the material constants in (63) an
(64) as the NH rubber.

In Figure 5, the applied stresses as functions of the stretch ratio under uniaxial tensile
loading and equal biaxial tensile loading for the JGS, MR, and NH rubbers are plotted. In
the figure, the curves for the JGS, MR, and NH rubbers under uniaxial tensile loading are
represented by JGS, MR, and NH, respectively. The curves for the JGS, MR, and NH rubber
under equal biaxial tensile loading are represented by BJGS, BMR, and BNH, respectively
Since the material elements on the void surface are subjected to equal biaxial loading cond
tions (due to spherical symmetry), curves BJGS, BMR, and BNH in Figure 5 represent the
constitutive relations for these material elements and therefore have important implications ot
the modeling of void expansion in rubber particles. It should be noted that the neo-Hookear
material (the NH rubber) has almost the same response at large strains under both uniaxi
and biaxial tensile loading conditions, as shown by curves NH and BNH. The JGS and MR
rubbers are very stiff under equal biaxial loading conditions. For example, curves BMR and
BJGS in Figure 5 show that the stresses at the stretch xato4 are about 80 MPa and
120 MPa, which are larger than the yield stresses of the typical plastic matrices in which the
rubber particles are embedded for toughening. The stresses increase very sharply when tl
stretch ratio\ becomes larger than 4.
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3.2. FORMULATION
Due to symmetry, the stretch ratio in the hoop directigrgan be simply represented as

A= R/r, (65)

wherer andR represents the radial coordinate of a material point before and after deformation,
respectively. Due to symmetry, the off-diagonal componentB aire zero. The diagonal
components oB are denoted aBr, By, andB,. We have

By = By = )2 (66)
The incompressibility gives

I3 = BrByB, = 1. (67)
Then,Bg can be derived as

Br=\"*% (68)

Substituting (66) and (68) into (54) gives the relations between the stresses and the stretc
ratio A as in Chang and Pan (1998)

or = —p — 40118 + (—2C01 + 6C1)A* + 24C30 + (—72C30 + 8Ca0) A 2
+(—6C11 + 54C30 + 2C10 — 12C20) A4 + (4C11 + 24C30) )\ °
+(4C20 — 36C30) A~ + 60301 ™12 (69)

09 = —p + (2C11 + 24C30) X + (—72C30 + 8Co0) \*

+(—6C11 + 54C30 + 2C10 — 12C20) A2 + 24C30

+(4C50 — 36030 — 2Co1 + 6C11) A2 + (6C30 — 2C11) A © (70)
o4 = 0p. (71)

Herep is a functionR. The off-diagonal stress components are equal to 0.
We now begin to solve the stress distribution within the rubber particle. The equilibrium
equation is

dop 2
i + E(O"R —op) =0. (72)
The boundary conditions require

or=0 at R=R,. (73)



78 W.J.Changand J. Pan

Substituting (69) and (70) into (72), we have

d 2
% = ={(6011+ 24C30)\° + (~72C30 + 8020+ 2C01 — 6C1)X*
+(—6C11 + 54C30 + 2C10 — 12C) 22
+(—4C20 + 36C30 — 2C0; + 6C11) A 2
+(6C11 — 54C30 — 2C10 + 12020)A™* + (—18C30 — 6C11)A~°
+(—4C50 + 36C30)A 8 — 6C50A 12} (74)
The volume conservation due to incompressibility gives
R3— R,? =3 7",:,". (75)
Therefore, the stretch ratibin (74) can be expressed as
a= Bl i (76)

r (R3—R§’+r§’)l/3'

SubstitutingR = Rp into (75) gives the expansion ratio of the outer radius of the rubber
particle as

1
3 3]s
@:[—<T—”>+<&>] . (77)
T T0 7o
Note that all the length scales are normalizedrpyere. Also note that in (77), the initial
radius of the voidr, /ro is given as an input for the problem and the final radius of the void
Ry, /ro can be obtained by solving the governing equations in the rubber particle and the plasti
matrix.

Our numerical procedure to obtain the relation between the expansion ratio for the outel
radius of the rubber particl&®y/ro and the remote radial stress, /oo is explained in the
following. The size of the plastic regiatiin the plastic matrix is first given as an initial guess.
Then, the stressesg andoy, and the displacement; are integrated by the Runge—Kutta
integration scheme frolR = C inward toward the outer radius of the rubber particle with
use of the governing equations, (32), (30), and (31), and the boundary conditions, (20), (21)
and (22). AtR = Ry, the relation

Bo_ g (78)

o o
must be satisfied.

During the Runge—Kutta integration for the stresses and displacement in the plastic matrix
(78) is checked at each increment®f When the residual of (78) changes its sign, we can
obtain the two values aR between which the solution @i; is located. The bisection iteration
method is then applied to find the valueRyq to satisfy (78). Once the value & is obtained
for the assumed’, the conservation of the total volume of the rubber particle gives

mo(m)e @)
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Figure 6. The normalized remote radial stresses/ao as functions of the expansion ratio of the rubber particle,
Ro/ro, for a void rubber-modified plastic. The material constants of the plastic matrigare75 MPa,y = 0.4,
oo/E = 0.025,n = 10, p = 0.13, and3 = 0. The constitutive behavior of the rubber particle follows that of the
JGS rubber. The two solid lines represents two bounds for the response of the rubber-modified plastic.

At R = Rp, we apply the continuity conditions ef; andu . Then, the stressy, is integrated
from R = Rgoto R = R, with the use of (74). The traction-free boundary conditioRat R,
cannot be satisfied unless the valugbis chosen correctly. Therefore, numerical iterations
are performed to find the value 6fto satisfy the traction-free condition

or=0 at R=R,. (80)

Note thatoy can be discontinuous @& = Ry where the interface of the two materials is
located.

3.3. NUMERICAL RESULTS

The relations between the normalized remote radial stres&o and the expansion ratio
of the outer radius of the rubber particl®/ro are shown in Figure 6 for voided rubber-
modified plastics. The material properties of the plastic matriwat€0.4,n = 10, u = 0.13,

8 = 0, andog = 75 MPa. These are typical material properties of epoxies used in Jeong
and Pan, (1996). We first consider the JGS rubber with the constants described in (55) t
(59) in this study. In Figure 6, the lower solid curve represents the relation between the
normalized remote radial stress,/oo and the void expansion ratiBy/ro for the voided
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plastic without the rubber particle. Also in Figure 6, the dashed curves represent the relation:
between the normalized remote radial stregg o and the expansion ratio of the outer radius

of the rubber particle?y/ro in the rubber-modified plastic with different initial void sizes,
ry/ro = 0.05,0.1,0.2,0.3,0.4, and 0.5. As shown in Figure 6, as the initial void radiyso
increases, the relation betweeg, /oo and Ry/ro for the rubber-modified plastic becomes
closer to that of the voided plastic without the rubber particle. However, when the initial void
radiusr,/ro in the rubber particle decreases, the rubber-modified plastic appears very stiff
aso./op increases. The trend indicates that when the initial void size in the rubber particle
becomes infinitesimal, no cavitation stress should be observed. This trend is similar to tha
shown in the pre-existing void model for the JGS rubber in Chang and Pan (1998).

Because a rubber material element cannot be extended to infinite stretch ratio, a failur
mechanism at large strains should be considered. Note that the material elements on the vo
surface of the rubber particle are under plane stress, equal biaxial stretching conditions. Fc
vulcanised rubber, the values of the critical stretch ratio at failure under biaxial stretching
conditions are between 3.5 to 4 (Lazzeri and Bucknall, 1993). We adopt a simple failure
criterion such that rupture occurs when the stretch ratimaches 10 under plane-stress, equal
biaxial loading conditions (Gent and Wang, 1991). If we select a smaller valye-o# at
failure, the results will not be shown clearly in our presentation. Therefore, when the stretch
ratio A of the material elements on the void surface of the rubber particle reaches 10, the
rubber material elements are considered to fail. Then these material elements are no long
considered for carrying load and can be treated as being conceptually removed from ou
consideration. We assume that no permanent deformation occurs in the rubber before ruptu
and the deformation in the rubber is elastic and recoverable. Then the rubber material wil
adjust the deformation and stresses to those of a rubber-modified plastic with a smaller amou
of initial rubber material (or a larger initial void size).

As we gradually increase the remote radial stiesg oo, an infinitesimal void starts to
expand. When the material elements on the void surface reach the stretch £atl®, they
fail. For a given value of/ro, we can find a remote radial stress, /oo under which the
stretch ratio\ for the material elements on the void surface is 10. The deformation and stress
fields of the rubber-modified plastic with the ratiogfro at thiso, /oo are basically the
same as those of the rubber-modified plastic with an initially infinitesimal void but with some
inner portion of the rubber particle being ruptured and conceptually removed. Based on thi:
principle, a solid curve can be drawn in Figure 6 by connecting the point on each dashec
line where the stretch ratid on the void surface is 10. This solid curve becomes the relation
betweenRy/ro ando, /oo for the rubber-modified plastic with an initially infinitesimal void
in the rubber particle with consideration of rubber failure. As we can see in Figure 6, the
maximum difference of the values ef, /oo for the voided plastic and the voided rubber-
modified plastic is less than 5 percent at a given laggéro. This difference becomes even
smaller if a smaller stretch ratio at failure is assumed.

It should be noted that other non-symmetric rupture mechanisms such as radial cracks ce
occur. When the cracks are initiated and grown, the load-carrying capacity of the rubber will
further decrease. Here, the biaxial rupture stretch ratio is assumed to be relatively large (e
10) here. Therefore, the two solid curves in Figure 6 can be regarded as an upper bound at
a lower bound for the rubber-modified plastic. R§/ro = 10, the rubber particle should fail
completely under this condition and the upper and lower solid curves should merge togethe
If we select a smaller value of = 4 at failure, the upper solid curve will be very close to the
lower solid curve. From this observation and a closer examination of the upper solid curve
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Figure 7. The normalized remote radial stresses/co as functions of the expansion ratio of the rubber particle,
Ro/ro, for a voided rubber-modified plastic. The material constants of the plastic mateiy ar&’5 MPay = 0.4,
oo/E = 0.025,n = 10, p = 0.13, and3 = 0. The constitutive behavior of the rubber particle follows that of the
MR rubber. The two solid lines represents two bounds for the response of the rubber-modified plastic.

in Figure 6, we find that there is a maximum valueogf /oo betweenRy/R, = 3 and 5.
When the rubber-modified plastic is subjected to load-controlled conditions, the maximum
stress should be regarded as the cavitation instability stress when the strain failure criterion |
employed.

Figure 7 shows the results for the plastic containing the Mooney—Rivlin rubber patrticle.
The lower solid curve represents the relation betwegpog andRy/ro for the voided plastic
without the rubber particle. When no failure criterion is considered for the rubber-modified
plastic, the dashed lines shown in the figure indicate that there is no cavitation phenomeno
asry/ro decreases. However, when a failure criterion at 10 is considered under biaxial
stretching conditions, the relation betweegp /oo and Ry/ro for the rubber-modified plastic
with an initially infinitesimal void in the rubber particle can be obtained and shown as the
upper solid curve in Figure 7. The upper solid curve indicates that cavitation stress exists a
in the plastic containing the JGS rubber as shown in Figure 6.

For the plastic containing the neo-Hookean rubber particle, when a failure criterion is not
considered, the relation betweeg, /oo andRy/ro is almost the same as that for the plastic
itself. When a failure criterion is considered, the relation betwegpoo and Ry /o becomes
even closer to that for the plastic itself. Therefore the results will not be shown here.
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Yee and Pearson (1986) and Pearson and Yee (1986) examined the fracture surface
single-edge notched three-point-bend specimens of rubber-modified epoxies. They showe
that the diameter of the cavity formed from the rubber particle on the fracture surface can
increase up to 200 percent when compared to the diameter of the rubber particle befor
deformation. This observation indicates that the plastic matrix itself fractures at finite strains
or stresses. Mathematically, we can assume that the plastic matrix fractures when a critice
stress or strain criterion is satisfied. We can apply the same principle for rubber rupture tc
the plastic. For example, we can assume that the plastic fractures at the stretch ratio of :
This corresponds to the expansion ratioRy/ro = 2 for the voided plastic. For all the
curves shown in Figures 2 and 3, the normalized remote radial stsgéso at Ro/ro = 2 is
within 5 percent of the corresponding critical cavitation stri€ssy. Note again that when a
strain failure criterion is considered for the rubber, the stress-expansion ratio relations and th
cavitation stresses for the plastic with and without the rubber particle become very close tc
each other. Therefore the general trend of the critical cavitation stresses presented here shot
be very similar to the general trend of the stresses under which the plastic matrix starts t
fracture at the critical expansion ratity/ro = 2. Thus our results presented here should be
useful to understand the fracture mechanisms in rubber-modified plastics.

4. Conclusion

In this paper, we have investigated the spherical void expansion in plastics and rubber
modified plastics under remote radial traction. First, the effects of pressure sensitivity on the
cavitation stresses in plastics are examined. Our results show that, in general, the cavitatic
stress in plastics decreases as the pressure sensitivity increases and/or the plastic dilatar
factor decreases. For example, the normalized cavitation s&ésg, of plastics decreases

by a factor of 1.75 when the pressure sensitiyityicreases from 0 to 0.3 with = 0. The
decrease of cavitation stress due to the pressure sensitivity and the large ratio of the vyiel
stress to the modulus in plastics may imply the crack resistance curves may be relatively lowe
when compared to those of metals (Tvergaard and Hutchinson, 1992).

When the rubber particles in plastic is characterized by the neo-Hookean strain energ
function, our results indicate that, with and without considering a failure criterion for rubber,
the cavitation stress in the rubber-modified plastic is almost the same as that for the plastic. A
shown from the trend in Figure 6 and 7, when there is a small void in the rubber particle, the
rubber-modified plastic is very stiff and shows no cavitation phenomenon when the rubber i
characterized by the Mooney—Rivlin strain energy function and the third-order strain energy
function of James, Green and Simpson (1975). However, when a strain failure criterion is
considered, the stress-expansion ratio relations and the cavitation stresses for the plastic wi
and without the rubber particle become very close to each other. The results suggest that t
computational investigation of the crack-tip fields in rubber-modified epoxies in Jeong and
Pan (1996) is reasonable by using a generalized Gurson'’s yield criterion for pressure-sensitiv
voided materials to represent the constitutive behavior of rubber-modified epoxies.

Appendix A: Closed-form solutions for incompressible materials

In this appendix, simple closed-form solutions for the normalized radial sttggso as
functions of the void expansion ratioRy/rp are obtained for two special cases: Mises
materials withv = 1/2, and pressure-sensitive materials with= 0 andv = 1/2. In these
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two special cases, the governing equations for the displacement become simple due to tf
material incompressibility.

A.1. Elasticity incompressible Mises materials

For Mises materials, the governing equation:gfis (50). Whernv = % we haveF'(R) =0
from (42). Therefore, (50) can be simplified to

duR_ UR -2
I =1 (1 R) . (A1)

The general solution of (Al) is
R®— (R—ug)® =B, (A2)
whereB is a constant. Note that= R — ug. SubstitutingR = Ry into (A2) gives
B=R3—13. (A2)

Therefore, one can find that the governing equation of the displaceme(Al1), essentially
satisfies

R®— RS =73 7“8. (A4)
Note that (A4) can be derived from the material incompressibility such that the total volume
of the material between the void surface and the surface corresponding to a material poir
remains constant after deformation.

SubstitutingR = C into (A4) gives

Ry —r§=C3%— (C —u$)3 (A5)

Rearranging the above equation gives

R o\ (Cc WS\°|
752{1—(3—0)+<R—0—R—’Z>} - (k)

Substituting (48) and (49) into (A6) gives the void expansion rafigpirg in terms of the
remote radial stress,,/oo. After rearranging of the equation, we arrive at

‘L”:g{nln 1—(%’)3]—|n [1—(1—%’)3]}. (A7)

o0
whereeg = oo/E. The critical cavitation stresS/og for Mises materials withy = % is
obtained wherRy/ro approaches teo in (A7) as

S

Wi
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Wheneg is small, the first-order expansion of (A8) becomes

2-3en(@) oo

which is the same as (2.10) in Huang et al. (1991).

A.2. Pressure-sensitive incompressible materials

For pressure-sensitive materials wjth= 0 andv = 1/2, the governing equation of the
displacement:r, (44), can be reduced to the form in (Al). Therefore, the same simple
relation for the displacement field in the inner plastic region can be represented by (A4), anc
also by (A6). Substituting (36), (37), (38) into (A6), a relation between the void expansion
ratio and the normalized remote radial stress/oo can be obtained

o GO

x{l—[l—%’(l—x@%)F}}_%. (A10)

The critical cavitation stresS/og can be obtained from (A10) whe®y/ro approaches teo

as
L L R (S R TR R

Therefore,S/o( can be obtained by solving (A11). For smajl (A11) can be approximated
by

2u S\ V322 13, S\] _
(%) -] e
Solving (A12) forS/oq gives
—2u/v/3 —(1+2u/V/3)
St (i) (1+ 2—”) . (A13)
o0 V3u 3eo V3

Note that (A13) can be reduced to (A9) wher- 0 by the L'Hopital’s rule.
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