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Cutting a Polytope 
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Abstract. We investigate whether it is the case that for every convex d-polytope P and pair of 
distinct vertices x and g of P, there exists a hyperplane passing through x and y which cuts P into 
two smaller d-polytopes, one of which has fewer facets than P. Such a result would lead to inductive 
proofs of Conjectures 1 and 2 below. However, for d > 4, our answer is in the negative. 

Mathematics Subject Classifications (1991): Primary 52; Secondary 05. 

1. Introduction 

Several unresolved problems about convex polytopes concern proving the existence 
of  certain paths between two prespecified vertices of  the polytope. Below, we cite 
three outstanding conjectures as examples. 

DEFINITION 1. A k-path on a d-polytope (k < d) between vertices x and y 
is a sequence of  k-faces, where two consecutive k-faces in the sequence share a 
(k - 1)-face, x belongs to the first k-face in the sequence and y to the last. 

C O N J E C T U R E  1 ([11]). Let d = dl + d2 + ' . .  + dr. be a partition of the number 
d. Then, between any pair of  vertices v~ w of a d-polytope P, there exist a dl-path, 
a d2-path, . . . ,  and a din-path where all the m paths on P are pairwise disjoint 
except for  the end vertices v, w. 

The conjecture is unresolved even for the case d = (d - 1) + 1. When dt = 
d2 = . . . .  d d =  1 the above conjecture reduces to Balinski 's theorem [1]. The 
conjecture is true when the vertices v and w are adjacent from which it follows that 
it is true for all neighborly polytopes [15]. 

CO NJEC TUR E 2 ([4]). Between any two vertices of  a d-polytope there exist (~) 
k-paths such that no two of the k-paths have one or more k-faces in common. 

CO NJEC TUR E 3. Given a d-polytope P and a pair of  its vertices x and y, there 
exists a refinement homeomorphism [5]from P to the d-simplex T a, which maps 
x and y onto two vertices o f t  d. 

Micha A. Perles suggested that Conjecture 3 would imply both Conjectures 1 and 
2. G ~ n b a u m ' s  proof  of  G ~ n b a u m - M o t z k i n  theorem [6] also proves a variant of  
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Conjecture 3 in which we insist that one prespecified vertex of 19 (instead of two) 
be mapped into a vertex of a d-simplex. 

A fourth example of an unresolved conjecture in which two prespecified vertices 
of a d-polytope play a special role concerns a generalization of G~nbaum-Motzkin 
theorem. See [12] for the statement of and partial results concerning the conjecture. 

In all of  the above problems we are required to prove the existence of certain 
paths between two special prespecified vertices of the polytope. 

If for every pair of vertices x and y of a polytope one could find a hyperplane 
H such that 

(1) H contains x and y and 
(2) H cuts the d-polytope P into two smaller d-polytopes 191 and 192 with 191 

having fewer facets than P 

then one could resolve Conjectures 1 and 2 using induction on the number of facets 
in a d-polytope (the conjectures are trivially true for a d-simplex, the d-polytope 
with minimum number of facets). 

Hence our interest was to prove that for  every d-polytope P (except a d-simplex) 
and for  every pair of  vertices x and y in P, one can cut P into two smaller d- 
polytopes, using a hyperplane containing x and y, such that one of  the smaller 
polytopes has fewer facets than 19. 

However, it turns out that there are curious 4-dimensional polytopes that do not 
admit the cuts described in the previous paragraph (see Theorem 2). The result 
seems rather surprising - partly due to the fact that every 3-dimensional polytope 
(except 3-simplex) does admit a cut as described in the previous paragraph (see 
Theorem 3). 

Our main result - Theorem 2 - contributes to the growing understanding of 
how hyperplanes intersect the boundary of polytopes. We mention below a few 
examples of results about intersection of hyperplanes with the boundary of a 
polytope. Bezdek, Bisztriczky and Connelly [2] showed that a hyperplane can 
intersect the relative interiors of all the j-dimensional faces of a d-polytope only if 
j >_ [d/2J. Pedes [14] and Prabhu [15] prove stronger version of the above result: 
i f  a k-flat intersects the relative interiors of  all the j-faces of  a d-polytope then 
k > 2(d - j ) .  Further, Perles and Prabhu show how to construct polytopes with 
arbitrarily large numbers of vertices in which all the j-faces, j ___ [d/2J, can be 
intersected by a 2(d - j)-flat. We make a special mention of Khovanskii's results 
[8]. He showed that if a hyperplane H intersects a d-polytope P,  ( and / / +  and H -  
are the two closed halfspaces of H) then there exist two faces of P,  F1 E H + and 
F2 E H -  such that dim(F1) + dim(F2) _> d - 1. For other results see [9, 10, 16]. 

Besides the main result (Theorem 2), Theorem 1 below (that we use to prove 
Theorem 2) will likely be of independent interest to researchers in Computational 
Geometry and Polytope Theory. 

In Section 2 we discuss and prove Theorem 1 about an arrangement of tetrahedra 
around the origin. In Section 3, we prove the main result (Theorem 2). Section 4, 
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shows that for any two vertices of a 3-polytope P one can find a plane containing 
the vertices, that cuts the 3-polytope into two smaller 3-polytopes, such that one of 
the smaller polytopes has fewer facets that P;  thus 4-polytopes provide the lowest 
dimensional examples of polytopes that do not admit such cuts. 

2. Arrangement of Tetrahedra 

Let T and T I be two tetrahedra positioned such that the origin is in the interior of 
both. Given such an arrangement can one find a plane H through the origin, that 
has two of the eight boundary triangles on one side (in a closed halfspace)? For 
many of the simple arrangements (e.g. T ~ = - T )  it is easily seen that such a plane 
exists. We show below how to construct and position two tetrahedra such that no 
plane through the origin can have more than one of the eight boundary triangles on 
each side. 

Two of the eight boundary triangles lie on one side of a plane through the origin 
if and only if six of the eight vertices do. Hence we have 

THEOREM 1. There exist tetrahedra T and T t which can be positioned such that 

(1) the origin is in the interior of both the tetrahedra; and 
(2) no closed half-space whose boundary plane passes through the origin contains 

more than five of the eight vertices of the two tetrahedra. 

Proof. For each nonzero vector v C R 3 define a closed dual halfspace 

D(v) = {z e R3l(v, z) > 0}. 

Conversely for every closed halfspace X whose boundary contains the origin we 
can find a dual vector D - I ( x ) .  ( D- I ( X )  is not unique; for any a > 0, a D - l ( X )  
is also a dual vector of X. When we say D - I ( X )  we mean some nonzero v such 
that D(v)  = X.)  

Observe that if p, q are two vectors in R 3 then p C D (q) if and only if q E D (p). 
Let vert(T) = { v l , . . . ,  '04}, vert(T') = {vs , . . . ,  v8} and V = vert(T) U vert(T'). 
If six or more of the eight vertices in V are contained in some halfspace / /  that's 
bounded by a hyperplane through the origin, then D -1 ( / / )  must be contained in 
the dual halfspaces corresponding to those vertices (i.e. in at least six of the eight 
halfspaces D(v l ) , . . . ,  D(v8)). Now we construct a set of eight closed halfspaces 
D1 , . . . ,  D8 having the following properties: 

(1) Dual vectors of D1,..., ., D4 (resp. D s , . . . ,  D8) are the vertices of a tetrahedron 
T (resp. T ~) which contains the origin in its interior. 

(2) The intersection of any six of the eight halfspaces D 1 , . . . ,  D8 is empty. 

Then considering T (resp. T I) to be the convex hull of the dual vectors of 
D1 , . . . ,  D4 (resp. D s , . . . ,  Ds) completes the proof. 
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It's convenient to map the problem of constructing D 1 , . . . ,  Ds, onto the unit 2- 
sphere S 2 = {z C R3I Ilzll = 1}. A circle on S 2 of unit radius is called a great 
circle and a semicircle of a great circle, a great semicircle. The intersection of S 2 
with a hyperplane through the origin is a great circle. Let H and H ~ be two closed 
halfspaces bounded by hyperplanes through the origin, such that h = D-1(11) 
and h ~ = D-1(11 ~) are linearly independent. Then S 2 M H N H ~ will be called a 
crescent (whose boundary on S 2 is the union of two great semicircles). 

LEMMA 1. Let H I , . . . ,  [14 be closed halfspaces bounded by hyperplanes through 
the origin. Further, let 1tl M 112 (1 $2 and 113 ['1114 0 S2 form crescents C and C t that 
do not intersect. Then D - l ( / / 1 ) , . . . ,  D- I (H4)  are the vertices of a tetrahedron 
containing the origin in its interior. 

Proof. Four vectors P l , . . . ,  P4 E R 3 form the vertices of a tetrahedron contain- 
ing the origin in its interior if and only if for each nonzero vector v E R 3, (v, pi} > 
0 f o r s o m e l < i < 4 .  

Let hi = D - l ( I I i ) ,  i = 1 , . . .  ,4. (v, hi) > 0 if and only if v lies in the open 
halfspace of Hi. The union of the open halfspaces of H1 and 112 contains all of 
S 2 except the image of C under inversion I : z ~ - z .  Since C N C' = 0, the 
open halfspaces corresponding to 111, . . . , / /4  cover S 2 and hence h i , . . . ,  h4 are 
the vertices of a tetrahedron containing the origin in its interior. [] 

Thus every pair of nonintersecting crescents on S 2 corresponds to a tetrahedron 
with the origin in its interior. We now show that one can draw an arbitrarily large 
number of mutually nonintersecting crescents on S 2. 

LEMMA 2. There are infinitely many mutually nonintersecting great semicircles 
on S 2. 

Proof Call two antipodes of S 2 the north and south poles. Consider two lat- 
itudes L1 and L2 symmetric about the equator. There is a great circle C on S 2 
tangent to both L1 and L2. Let C1/2 be the great semicircle of C, with endpoints 
on L1 and L2. As L1 and L2 are rotated in step about the axis determined by the 
north and south poles, C1/2 generates a continuum of mutually nonintersecting 
great semicircles. [] 

PROOF OF THEOREM 1. Consider four mutually nonintersecting great semi- 
circles G1 , . . . ,  G4 on 5 '2. They can be widened to form four mutually nonin- 
tersecting crescents C1 , . . . ,  6'4. Let D1, D2 be the halfspaces forming crescent 
C1 , . . . ,  D7, D8 the halfspaces forming 6'4. If any nonzero vector is contained in 
six or more of D1 ~ • . . ,  D8 then it must be contained in at least two of the four 
nonintersecting crescents, which is impossible. Thus crescents {C1, 6'2} give us 
the tetrahedron T and {C3, 6'4} the tetrahedron T I. [] 
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3. Construct ion  o f  4 -Polytope  

Let 11 be a hyperplane that cuts a d-polytope P into two smaller d-polytopes/)1 and 
P2. P1 has fewer facets than P if and only if two of the facets of P are contained 
in the closed halfspace of H containing P2- 

Using the above observation and Theorem 1 we prove 

THEOREM 2. There is a convex 4-polytope P C R 4 with vertices v and w for  
which no hyperplane containing v and w has more than one facet o f  P in either 
closed half-space. 

Proof  Let T and T ~ be the tetrahedra of Theorem 1 lying in R 3. Coordinatize 
R 4 with x, y, z and t axes and identify R 3 with the hyperplane t = 0. Translate 
T along the t-axis to the hyperplane t -- 1 and similarly T ~ to the hyperplane 
t = - 1. Let e be small enough that every line containing a point of T p and the 
point v = (0, 0, 0, 1 + e) intersects the interior of T, and every line containing a 
point of T and the point w = (0, 0, 0, - 1 - e) intersects the interior of T ~. Let 
C be the cone with vertex v and cross-section T; C ~ is the cone with vertex w 
and cross-section TP; then P = C A C '~ is a convex 4-polytope with eight facets 
- four in the star of v and the other four in the star of w [3]. If possible, let H 
be a hyperplane containing {v, w}, that has two facets of P on one side. Since 
H intersects the interior of T two facets from the star of v cannot lie on the same 
side of H (and likewise for w). However if the stars of v and w contribute one 
facet each then the orthogonal projection of H onto the hyperplane t = 0 would 
be a plane in R 3 passing through the origin and having two of the eight boundary 
triangles of T and T ~ in one closed halfspace (w.r.t. R3). Hence H cannot 
exist. [] 

4. Cutting 3-Polytopes 

THEOREM 3. Let P C R a be any convex 3-polytope; let v and w be two vertices 
of  P. Then there is a plane 11 containing v and w such that at least two facets o f  
P lie in one of  the closed halfspaces of  H. 

Proof  If v and w lie on the same facet of P ,  the theorem is clear. Otherwise, 
let G be a plane normal to the segment [v, w]. Let fv and fw be vertex-figures of 
v and w; they can be projected orthogonally onto G to give polygons fv and fw. 
Clearly the point 0 = [v, w] fq G lies i n_n the relative interiors of both fv and fw. 
Let u be any vertex of fv; the line L = 0u intersects the relative interior of at most 
one side of fv and at most two sides of fw; hence at least three sides of  the two 
polygons are contained entirely in the closed halfplanes of L. So three facets of P 
are contained entirely in the two closed halfspaces of the plane 11 = aft(u, v, w); 
two of them must lie on the same side of H.  [] 
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