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1. Introduction

Let I" be a finitely generated group and let k be an algebrically closed field of char-
acteristic zero (usually k£ = C). T" is said to be representation rigid (briefly, rigid) if,
for each n, I" has only finitely many isomorphism classes of irreducible representa-
tions of degree n.

A useful way to study the representations of I' over k is to consider the proalge-
braic completion A(T") of T', also called the Hochschild-Mostow group of I'. A(T)
is the proalgebraic (more precisely, proaffine algebraic) group with a homomorphism
P:T" — A(T') such that for any representation p of I' there is unique algebraic repre-
sentation p of A(T") such that po P = p.

This means that the representation theory of I" is equivalent to the algebraic repre-
sentation theory of A(T).

The prounipotent radical of A(T") is denoted U(T"), and Q(I") = A(I')/U(T") denotes
the maximal proreductive quotient. In fact, A(T") is the semidirect product of U(I")
and any maximal proreductive subgroup [13]. The identity component is denoted
A%D).

T is called representation super rigid (briefly, super rigid), if A(I") is finite-dimen-
sional (i.e. the identity component A% is an affine algebraic group). Super rigid
groups are rigid (Corollary (9)).



20 HYMAN BASS ET AL.

Throughout this introduction, and usually also throughout this paper, we assume
that I' is a finitely generated residually finite group. (Note that for a finitely gener-
ated group the finite-dimensional representations of I separate the points of T if
and only if I is residually finite.)

Examples of residually finite super rigid groups include the finitely generated tor-
sion groups constructed by Golod (usually known as the groups of Golod—Shafare-
vich type). For these groups I, A°%(T") = {1} and so dim(A(I")) = 0. More interesting
examples are the S-arithmetic subgroups of higher rank semi-simple groups, whose
super rigidity was established by Margulis. Platonov conjectured that every finitely
generated linear rigid group is of arithmetic type. A counter example to this conjec-
ture was constructed in [5], where a rigid, even super rigid, linear nonarithmetic
group is produced.

The main result of the current paper is the construction of rigid groups which are
not super rigid. We produce examples of rigid groups where A(I') is infinite dimen-
sional in ‘all possible ways’. For a rigid group I', the identity component Q) is
semi-simple, and is in fact a direct product of simple simply-connected algebraic
groups S; (Corollary 3). We construct examples of rigid groups of each of the follow-
ing types:

(1) U(T) is infinite-dimensional and Q(TI") is finite-dimensional.

(2) U(T) is finite-dimensional (in fact U(I') = {1}) and Q(I') is infinite-dimensional,
infinitely many different simple factors S; occur, and each appears with a finite
multiplicity.

(3) UT)={1} and Q)= S° x S, for some simple algebraic groups S
and S,.

These examples are constructed in Sections 5 (of type (1)) and 6 (of types (2)
and (3)).

In Section 3, we give general results on the structure of the proalgebraic comple-
tion of a rigid group and we give criteria for I' to be rigid in terms of properties of
A(). For example, we define the degree n proalgebraic completion A,(I') as
AT)/K,(I'), where K,(I') is the intersection of the kernels of all the n dimensional
representations of A(I'). All n dimensional representations of I' factor uniquely
through A4,(T).

One can easily see that A(I') = 1<i21 A,(I'). We prove:

THEOREM A. The following are equivalent:

(1) T is a rigid group.
(2) Vn, A,(') is an affine algebraic group.
(3) Vn, dim(4(I)) < cc.

Thus rigidity is equivalent to A4,(I') being finite-dimensional for all », and
super rigidity means that there is a common bound for the dimensions of A,(I")
for all n.
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Here, A4,(I") can be viewed as an analogue, for groups, of the process, for algebras,
of imposing the identities of n x n matrix algebras.

For more conditions equivalent to the rigidity of I", see Section 3. We also show in
section (4) that if I is super rigid, it has a finite index normal subgroup I'y for which
A(Ty) = A°(Tg) x To = A°(T) x T

In Section 2 we prove two general results on the proalgebraic completion of any
finitely generated group I" which are of independent interest:

THEOREM B. A(I') is simply connected (in the sense of Definition 6).

THEOREM C. A(T') has profinite component lifting; i.e., a closed profinite subgroup
which meets every connected component.

In Section 7 we make some suggestions for further research on some sequences of
numerical invariants associated with rigid groups.

CONVENTIONS AND DEFINITIONS OF RIGIDITY

For the reader’s convenience, we collect here the notations, conventions and defini-
tions introduced in this introduction.

CONVENTION 1. k denotes an algebraically closed field of characteristic 0;
without loss of generality, k can be assumed to be C.

CONVENTION 2. T" denotes a discrete group, usually assumed to be finitely
generated and residually finite. A proalgebraic group A is identified with its k rational
pojnts, and homomorphisms of these are assumed to be algebraic, and continuous
for the pro-Zariski topology. This applies in particular to profinite groups.
Representations are assumed to be finite k-dimensional linear representations.
(Prorepresentations are projective limits of these.) We write I'*" for the Abelianiza-
tion, I'/(T', T') of T'. Similarly for 42> = 4/(A4, A), except that in the proalgebraic
category we always understand commutator subgroups to be closed, i.e. the closure
of the algebraic commutator subgroup.

NOTATION 1. R,(T) = Hom(T, GL,(k))

DEFINITION 1. A discrete or proalgebraic group is n representation rigid
(briefly, n rigid) if it has only finitely many isomorphism classes of simple
representations in dimension n or less. It is (representation) rigid if it is n rigid
for all n.

DEFINITION 2. A discrete or proalgebraic group is representation reductive
(briefly, reductive) if every representation is semi-simple.
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Let G be an algebraic group, U its unipotent radical and Q° = G°/U its connected
reductive quotient. Then G is rigid if and only it Q° is semisimple, i.e. has finite cen-
ter, and G is reductive if and only if U = {1}.

NOTATION 2. The profinite completion p: " — T is universal for maps from I' to
finite groups. It is injective if and only if I" is residually finite.

NOTATION 3. A(T') denotes the proalgebraic completion of T'. (See Definition 4
below). P:T" — A(T) is the canonical homomorphism, universal with respect to maps
from T to algebraic (or proalgebraic) groups; Ker(P) = Ker(p) for T" finitely gen-
erated. A°(I) is the identity component of A(I"), U(T) is the prounipotnet radical of
AT), and Q(I') is the maximal proreductive quotient A(I')/U(T). Q%T) is the
identity component of Q(I').

DEFINITION 3. T is representation super rigid (briefly, super rigid) if A(T') is finite
dimensional.

REFERENCES

We rely on and commend to the reader the following references on proalgebraic
groups in general and proalgebraic completions in particular: ‘Representations
and representative functions of Lie groups’ [7] and ‘Pro-affine algebraic groups’ [§]
by G. Hochschild and G. D. Mostow; ‘Pro-affine algebraic groups’ [13] by
F. Minbashian; and [10, Chapter 4].

2. Proalgebraic Completions
2.1. BASICS

We begin with an arbitrary group I" and define the proalgebraic completion of I' in
terms of its universal property:

DEFINITION 4. A proalgebraic completion for I' relative to k is a pair (p,, G)
consisting of a proalgebraic k group G and a homomorphism p,: I' — G such that
for any proalgebraic group G and any homomorphism p: I' — G there is a unique
morphism ¢,: G — G such that p =p, o q,.

Itisimmediate from the definition that a proalgebraic completion for I"is unique up to
unique isomorphism. Moreover, p,(I') is Zariski dense in G. In fact, let G denote the
Zariski closure of p,(I') in G. The universal property then furnishes a retraction
q:G — G < G. Since ¢ and Idg are endomorphisms of G that agree on p,(I), they are
equal, hence ¢ = Idg, i.e. G = G. We denote this group A,(I"). Moreover, it is also easy
to see that it is enough for a proalgebraic completion for I" only to satisfy the definition
for the case that G is an affine k group, and hence for the case that G = GL,,(k), some n.
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Our field k is usually fixed, and we generally drop the subscript k& and write A(I")
for the proalgebraic completion. However, we point out that A(I') depends on the
field in a crucial way, and that for base change k& C K we may have Ag(I') #
K®; Ar(I).

There are two standard constructions for A(I"): the first considers the product

P =[] {GL.(k) | p € Hom(T', GL,(k)). n € N}

of all the ranges of all the finite-dimensional k representations of I'. P is a
proalgebraic group, and there is an obvious diagonal homomorphism P: " — P.
Then taking the Zariski closure of P(I') in P produces a pair satisfying
Definition (4).

The other construction begins by directly producing the ind-affine coordinate ring
O of a proalgebraic completion: by Zariski density, functions in O are determined by
their values on I', so O may be regarded as a ring of functions on I'. Any function in
the coordinate ring of the range of any representation of I' pulls back via p, to a
function in O. One checks that these are precisely the k-valued functions on I whose
translates by I' span a finite-dimensional vector space over k; these are termed repre-
sentative functions on I'. The set of representative functions on y is denoted O (I'). It
is seen to be a Hopf algebra whose associated proalgebraic group, of k algebra
homomorphisms to k, Alg,(Ox(I), k), is a proalgebraic for completion I'
(I’ — Alg,(Ox(I), k) is given by sending y € I' to evaluation at y.)

A third common construction of the proalgebraic completion is as the group of
tensor product preserving automorphisms of the forgetful functor from the category
of finite-dimensional I" modules to the category of finite-dimensional k vector spaces
(‘Tannaka Duality’); see [11].

As per Notation 3 above, we use (P, 4,(I')) to denote the (equivalent) proalgebraic
completions resulting from either construction.

The case I = 7 is instructive:

EXAMPLE 1. The Zariski closures of the representations of 7 are the closures of
the cyclic subgroups of GL,(k). These are Abelian, can have an (at most) one-
dimensional unipotent radical, a torus of aribtrary size, and a finite cyclic group on
top. The divisibility of the first two types of subgroups shows that the group is a
direct product of the three types. Hence, A(Z) = G,(k) x T x 7., where T = (7) is
an infinite-dimensional protorus whose character group is the divisible group
Hom(7, k*) = k*. Here U(7) = Gu(k) 2k and A°%(7) = G,(k) x T, and Q°(7) is
isomorphic to 7. Note that the groups A(7), A%(Z), and Q°%7Z) = T(7) are all
infinite-dimensional.

EXAMPLE 2. More generally, if " is Abelian, then A(I') = U(I') x T x I. Here
U(') is k dual to the k vector space Hom(T', k), (finite-dimensional if T" is finitely
generated, zero if and only if I is torsion). The character group X(I') of the protorus
T is isomorphic to the torsion free quotient of Hom(I', k*). The torsion subgroup of
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Hom(T", £*) is Pontryagin dual to . Now Hom(T', £*) is torsion if and only if T is
torsion of bounded exponent. In all other cases, Hom(I', £*) has infinite torsion-free
rank, as can easily be checked. Thus, either I is torsion of bounded exponent, and
T = {1}, or else T is infinite-dimensional. Thus we have the equivalence of the
conditions:

(1) T is torsion of bounded exponent.
(2) X(T) is torsion.

() TT)={1}.

4) Dim(7T(I)) < oo.

Moreover, these conditions imply the following equivalent conditions:

(5) Hom(T, k) = {0}, i.e. ' is torsion.
(6) u)={l}.

EXAMPLE 3. If T is no longer assumed to be abelian, then the above analysis
describes A = A(I'*®) (see Remark 1 below). Namely, A(I')*® = U x T x P, where
P =T and is Pontryagin dual to the torsion subgroup of X(G) := Hom(I", k*); T
is the protorus whose character module is the torsion free quotient of X(I'); and U is
the kK module dual of the k vector space Hom(T', k).

The following simple results on finite index subgroups, which we recall here with
proofs, are basic for our analysis.

PROPOSITION 1. Let T be a group and let T° be a finite index subgroup. Then
ATy — A(T) is injective, and q:TJT° — A(T)/A(T°) is bijective.

Proof. Every finite-dimensional T° module M is a I’ submodule of a finite-
dimensional T" module k[I'] ®ro; M, so every representative function on I is the
restriction of a representative function on I'. Thus the restriction R(I') — R(I'°) is
surjective, which makes A(I'’) — A(T) is injective. If y,,...,7, are coset repre-
sentatives for I'/T, then A(T%)y, U---U ATy, is a closed subset of A(T") which
contains I', and hence A(T'), so ¢ is surjective. The permutation representation of
I' on A[I'/T°] extends to a representation p of A(I') such that p(4(I')) = p(I'),
p(AT%) = p(T'%), and the p(y,) are distinct modulo p(I'’). Hence, ¢ is also
injective. O

COROLLARY 1. Let T be a group and let T be a finite index subgroup. Then
A%T%) — ANT) is an isomorphism.

Proof. We consider A(T") — A(T") an inclusion. Without loss of generality, we
may asume that I'* is normal in ', which in turn implies that 4(I'°) is normal in A(I")
and, hence, so is the characteristic subgroup A%(I"°). A(T'*)/A%T?°) is profinite and is
of finite index in A(I")/A%(T""), which implies that the latter is profinite as well. Thus
A°(T?) is a connected normal subgroup of A(T") with profinite quotient, which
implies that 4°(T"%) — A%T) is an isomorphism. |
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Remark 1. Let ' - I’ — I') — 1 be an exact sequence of discrete groups.

(a) The sequence A(I'y) > A(I') — A(I';) — 1 is exact.

(b) Call 'y — I' observable if every representation of I'y is I'j equivariantly
embeddable in a representation of I'y. This is the case for example when I' is a finite
index subgroup of I'. From the point of view of representative functions (see the dis-
cussion following Definition 4) we see that this is necessary and sufficient for the
injectivity of A(I'g) — A(T).

(c) Taking I'y to be the commutator subgroup of I', so that I'; is the Abelianiza-
tion IT*® = IT'/(T", T), we see that A(I')*® = A(I'*), and the latter group is as described
in Example 2 above. Since A(I') = U(I') x Q(I"), we have

AT = UT*) x T(T™) x T,

where

UI#*) = UM)/(A(), UT))

(recall that commutator groups are here always understood to be the closures of the alge-
braic commutator subgroups); U(T*) is k dual to the k vector space Hom(T", k). More-
over, Q(I'™®) = T(I'*) x T'* is a proreductive Abelian group with character group X(I')
= Hom(T", k%), and the character group X(7(I"*)) is the torsion free quotient of X(I").

(d) For any group I' we put S(I') = (Q°(T), Q°(I')), a prosemisimple group, and
) = ZQO(F)(S(F))O, the connected center of Q°(T"), which s a protorus. (This nota-
tion is consistent with the notation 7(I'"*®) in (c) above.) We have Q°(I") = S(I") - T(I").

Remark 1 gives a necessary condition for rigidity, which we will now name and
give some equivalent formulations of:

DEFINITION 5. We introduce the following conditions on a group I

(TAb) ng =T/, ') is torsion for all I'y of finite index in T,
(BTAD) ng =Ty/(Ty,Ty) is torsion of bounded exponent for all I’y of
finite index in T,
(FADb) ng =T/, I'p) is finite for all I'y of finite index in T.

Remark 2. Clearly (FAb) implies (BTAb) implies (TAb), and they are all
equivalent if T" is finitely generated. We have

(TAb) if and only if Hom(I'y, k) = {0} for all I'y of finite index in I'; and
(BTADb) if and only if Hom(I'y, £*) = {1} for all I'y of finite index in I

I' = Q/7Z satisfies (TADb) but not (BTAb). I' = I,,[/] satisfies (BTAb) but not (FAb).
If T is a weak direct product of infinitely many copies of s finite simple group, then I
satisfies (FAb) but I" is not rigid.

PROPOSITION 2. Let I be a discrete group.
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(1) Condition (a) implies condition (b):

(a) T is rigid,
(b) T has (FAD).

(2) The following conditions on T are equivalent:

(a) T has (BTAD),
(b) T(I') = {1},
(¢) Dim(T(I') < 0.

(3) The following conditions on T are equivalent:

(a) (TAb),
(b) UI) = (4°%(), U(T)).

When T is finitely generated, all of the above conditions are equivalent.

From (2) it follows that if there is one representation p:I" — GL,(k) such that
p(A°(T)) has a nontrivial linear character, then T(T) is infinite-dimensional.

Proof. Tt will suffice to prove the following implications:

(1)(a) implies (1)(b):

Let I'y be a finite index subgroup of I'. If l"gb is infinite then I'¢ has infinitely many
one-dimensional representations with finite image, and these induce to representa-
tions with finite image of I' in dimension [I" : '] with infinitely many distinct char-
acters, thus violating rigidity of I.

(2)(a) implies (2)(b):

If T(T') # {1} there is an epimorphism A°(I") — k*. This appears in an algebraic
quotient of A(I"), whose connected component pulls back to an open subgroup of
A(T") whose intersection, I'g, with I" is a finite index subgroup mapping to k* with
Zariski dense (i.e. infinite) image. Thus T’ Sb is not torsion of bounded exponent, con-
tradicting (BTAD).

(2)(c) implies (2)(a):

Let I'y be a finite index subgroup of I', and X(I'g) = Hom(T"y, £*). Then T(ng) isa
quotient of 7(I'), and hence finite-dimensional, by hypothesis. By Example (2), this
can happen only if T(ng) = {1}, i.e. if X(I'p) is torsion, and this happens only if ng
is torsion of bounded exponent, whence (BTAD).

(3)(a) implies (3)(b):

Let W = UT)/(4%T), U)). If W £ {1} then there is an algebraic quotient G of
A(T) such that (G°)* has a nontrivial unipotent radical, which is a direct factor. This
produces, as usual, a finite index subgroup I'y of G which maps to k with Zariski
dense (i.e. nonzero) image, whence ng is not torsion, contradicting (TAb).

(3)(b) implies (3)(a):

If (TAD) fails then Hom(I'y, k) # {0} for some finite index Iy in I'. This entails a
non-trivial unipotent quotient of A(I'y), and so W # {1}.

(1)(b) implies (1)(a) for T finitely generated:
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If T is not rigid then, in some GL,(k), I has infinitely many conjugacy classes of
representations with finite image, and therefore images of unbounded size. Let T,
denote the intersection of all subgroups of I' of index at most j = j(n) as in Jordan’s
Theorem (below). Since I is finitely generated, the latter are finite in number, and so
I, itself has finite index in I". Moreover, Jordan’s Theorem implies that, for each
representation p : I' — GL,(k), p(I';,) is Abelian. Since these images have unboun-
ded size, it follows that l"f;b is infinite, thus violating hypothesis (FAD). O

In the previous proof, and in other results below, we have used Jordan’s Theorem.
We recall its statement and some consequences:

JORDAN’S THEOREM There is a number j = j(n) such that each finite subgroup of
GL, (k) has an Abelian normal subgroup of index at most j.

Consequences. For an integer N > 0, call a group G N-residual if the quotients of G
of order at most N separate the points of G. For any group G, let GV denote the
intersection of the normal subgroups of index at most N. Then G/G" is the N-resi-
dual quotient of G. If G is finitely generated (discrete or profinite) then it is clear that
G/G" is finite. If the n-dimensional representations of G separate points, then it fol-
lows from Jordan’s Theorem that G/ is Abelian. Thus, if G is finitely generated and
its n-dimensional representations separate points then G/ is an Abelian normal
subgroup of finite index (and G/G/®™ is j(n)-residual).

If T is rigid, then Proposition (2) (1)(a) holds (it is a special case of rigidity). Hence:

COROLLARY 2. A4 finitely generated rigid group has (FAD).

2.2. SIMPLY CONNECTIVITY OF PROALGEBRAIC COMPLETION IDENTITY COMPONENT

In this section, we observe that, for a finitely generated group I', the identity compo-
nent A°(T") of A(T) is simply connected, in the sense which we now define.

DEFINITION 6. A connected proalgebraic group G is said to be simply connected
if every surjection p: G; — G where G| is connected proalgebraic and the kernel of p
is finite is an isomorphism. (It follows that the same property holds if we assume only
that Ker(p) is profinite.)

In terms of structure, this signifies the following. Write G = U x Q, where U is the
prounipotent radical of G, and Q is connected and proreductive. In turn, we can
write Q = S - T, where S = (Q, Q) is connected prosemisimple and 7 = ZQ(S)0 is a
protorus. Further we can write S as an almost direct product of simple algebraic
groups Sy, in the sense that the map ¢:[[ S; — S is surjective with central kernel.
Now, with this notation, G is simply connected if and only if Q = S x T, each S,
is simply connected (as algebraic group), the map ¢ is an isomorphism, and the char-
acter group X(7) is divisible.
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The following proposition gives a more convenient version of the simply connec-
ted property:

PROPOSITION 3. Let G be a connected proalgebraic group. The following are
equivalent:

(1) G is simply connected

(2) If H is a normal subgroup of G such that G/H is affine, and q:G — G/H is an
eprimorphism of affine groups with finite kernel, then there is a homomorphism
r:G — G such that g or is the canonical map G — G/H.

Proof. Suppose G is simply connected and ¢: G — G/H is a map as in (2). Let
G, =G xg/m G, and let p1: G, — G be projection on the first factor. Then p; is
surjective (since ¢ is) and Ker(p;) = Ker(g) is finite. Then, by hypothesis, p: G3 — G
is an isomorphism. Then r = p o p~!, where p,: G < G, — G is projection on the
second factor, is the desired homomorphism.

Now suppose that G satisfies (2) and that there is a surjection p: G; — G where G,
is connected proalgebraic and the kernel K of p is finite. Let H; be a connected nor-
mal subgroup of G| such that G,/H, is affine and such that KN H, is the identity.
Let H = p(H}). Then ¢: G, /H, — G/H is a surjection of affine groups with finite ker-
nel K, and so there is a map f: G — G/H; such that ¢(f(g)) = gH for g € G. It fol-
lows that f(H) < K, and since H is connected and K finite, this implies that
f(H) = {e}. But then f factors through G/H and provides a section G/H — G/H,
of q. Thus G;/H, =2 G/H x K, and since G|/H; is connected this implies that
K =1 and p is an isomorphism. So G is simply connected. O

Now we show that identity components of proalgebraic completions of finitely
generated groups have this property:

THEOREM 1. Let T be a finitely generated group. Then A°() is simply connected.
Proof. We apply Proposition 3. Assume that H is normal in 4%(I") and such that

A%T)/H is affine, and ¢: G — A%T)/H is surjective with finite kernel with G con-

nected. Suppose H; < H is also normal in 4°(I") with affine quotient. Then

G1 = (G X ryH AYD)/Hy)’ — A°T)/H,

by projection on the second factor is also surjective with finite kernel, and a map
A%I) — G will give the desired map to G when followed by projection on the first
factor. So we can replace H by smaller normal subgroups. In particular, we can
replace H by a subgroup normal in A(I"). (If A) =Ilim A(I')/H, then
AYD) = lim A%T)/(4%(T) N H,)). -

Let p ‘be the representation of I' corresponding to A(I') > A(I')/H and let
I =pY(p()NANT)/H). Then pT°) is Zariski dense in A%I)/H. Let
A =g '(p). A is an extension of p(I'’) by the finite Abelian group K. A is
a finitely generated linear group and, hence, residually finite. Let A' be a finite
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index normal subgroup of A with A' N K the identity. Let I'' = ¢(A'). The exten-
sion A of T? by K is thus split over I''. This means that the map I'' — 4°(T)/H
lifts to a map I'' — G. This in turn gives rise to a map A(I'') — G and, hence,
a map A°(T"') - G. By Corollary 1, A°T!) — A%T) is an isomorphism, so we
have a map A%(T") — G as required by proposition 3. It follows that A°(T") is simply
connected. O

As an important consequence of simple connectivity, we have the following:

COROLLARY 3. Let T be a finitely generated group. Then Q°(T) is the direct
product of a protorus T(I') with uniquely divisible character group and the closed
commutator subgroup S(I') of Q%T); S(T) is the (possibly infinite) direct product of
simply connected simple algebraic groups.

It is possible of course for 7(I') in Corollary 3 to be trivial. From Proposition 2(2) once it is
nontrivial, then it is in fact infinite-dimensional.

2.3. LIFTING PROFINITE QUOTIENTS, AND PROJECTIVE PROALGEBRAIC GROUPS

DEFINITION 7. Let G be a proalgebraic group. A component quotient lift
(briefly, lifting) is a profinite subgroup of G which maps onto G/G°.

The main goal of this section will be to show that all proalgebraic groups admit
component quotient lifts.

For the case of an affine algebraic group, such liftings are due to V. Platonov
[14]. We obtain the existence of liftings in the proalgebraic case by a reduction
to the case treated by Platonov: we introduce the notion of projective proalgebraic
group, and show that projectivity can be tested on affine surjections. From this, we
deduce that a projective profinite group is projective as a proalgebraic group. It
follows that free profinite groups are projective. This provides a component lifting
for the case of A(F), F free, from which the existence of component liftings in gen-
eral then will follow,

We begin with the definition of projective proalgebraic:

DEFINITION 8. A proalgebraic group P is projective if for every epimor-
phism o: 4 — B of proalgebraic groups and for every homomorphism f: P — B
there is a homomorphism ¢: P — A such that f=o0o0¢. We call ¢ a lifting of f
(through «).

Symbolically, we want to complete the diagram

A

\
P — B
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with a diagonal map

oy <

/!
P —

For example, when F is a free group (possibly on an infinite set), then A(F) is
clearly a projective proalgebraic group.
The following proposition is the key step in our reduction argument.

PROPOSITION 4. Let P be a proalgebraic group. The following are equivalent:

(1) P is projective.

(2) For every (a,f) as in Definition (8) with Ker (o) algebraic [ admits a lifting
through o.

(3) For every (o, f) as in Definition (8) with A algebraic [ admits a lifting through o.

Proof. Clearly (1) implies (2) implies (3). We prove the converse of each.

Assume P satisfies (3) and let a: 4 — B, f: P — A, be such that o has algebraic ker-
nel K. Since K has the descending chain condition on closed subgroups, and the
closed normal subgroups of A with affine quotient have intersection the identity,
we can find such a normal subgroup N of 4 with N N K = {e}. We can identify B with
A/K and hence identify B/a(N) with 4/KN. Then A/N is algebraic and the induced
maps A/N — A/KN and P — A/KN admit an extension ¢:P — A/N. Then
® = (f, ¢) maps P to the fibre product 4/K x 4/xny A/N. On the other hand, it is easy
to see that since the intersection KN N is the identity, the map of 4 to the fibre pro-
duct induced by the canonical projections 4 — 4/N and 4 — A/K is an isomorph-
ism (‘Chinese Remainder Theorem’ for groups). Thus we can regard ® as a map to
A, and it is an extension of « and f as needed for (2).

Now assume P satisfies (2) and assume a: 4 — B is any surjection and f: P — B is
a morphism. It will be convenient to write B as A/L. For any normal subgroup N of
A contained in L, we will call a morphism ¢: P — A/N an N partial extension for f'if
the composition of ¢ and A/N — A/Lis f. The set N of pairs (N, ¢) where ¢ is an N
partial extension of f'is partially ordered: we say (N, ¢) < (N, ¢') if N < N and ¢’
induces ¢ mod N. We claim that any chain C = {(N;, ¢;) | i € I} in N has a maximal
element. (Note: the indexing set 7 in C is not necessary countable.) Let Ny = N;N,.
A/Ny = lim A/N; and the maps ¢; induce a map ¢,: P — A/Ny. (No, ¢y) is a max-
imal element for C. By Zorn’s lemma, A has a maximal element (N, ¢). If N = {e}, ¢
is an extension of o, f as desired. If not N # {e}, then there is a normal subgroup M
of A with 4/ M affine such that M N N = L is a proper subgroup of N. The surjection
A/L — A/N has algebraic kernel K = MN/M. By (2), there is an extension y for
A/L — A/N and ¢: P — A/N, which implies that (N, ¢) < (L, ), contrary to the
maximality of (&, ¢). Thus N = {e} and (1) follows. O
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As previously noted, Platonov proved component lifting for algebraic groups.
Using Proposition (4), we use this to conclude that projective profinite groups are
projective proalgebraic:

COROLLARY 4. A4 profinite group which is projective in the category of profinite
groups is projective in the category of proalgebraic groups.

Proof. Let P be a profinite group which is projective in the profinite group cate-
gory. By Proposition 4, P will be projective proalgebraic if morphisms f: P — B and
o: A — B, o onto and 4 and B algebraic, have an extension. Since B is algebraic, f( P) is
finite. Let C = o' (f(P)). By [14] there is a finite subgroup F < C mapping onto f(P).
Since P is profinite projective, there is an extension ¢: P — F for the maps P — f(P)
and F — f(P). Then regarding ¢ as a map to 4 we have an extension for fand o. [

It is clear that the profinite completion F of a free group F is projective profinite
and, hence, by Corollary 4 is projective proalgebraic.

COROLLARY 5. Let F be a free group. Then there is a profinite subgroup A of A(F)
which maps isomorphically onto A(F)/A°(F).

We can regard any group I' as a homomorphic image of a free group F, which
makes A(I") a homomorphic image of A(F) and, hence, A(I')/A%T) an image of
A(F)/A°(F). If A is a profinite subgroup of A(F) as in Corollary 5, then its image
in A(T") maps onto A(I")/A%T"). Hence,

COROLLARY 6. Let " be a group. Then there is a profinite subgroup of A(I') which
meets every coset of A°(I).

The argument used to establish Corollary 6 applies to any proalgebraic group
which is a homomorphic image of A(F):

COROLLARY 7. Let G be a proalgebraic group. Then there is a profinite subgroup of
G which meets every coset of G°.

Proof. Let g,, a € A be elements of G that generate G/G° as a proalgebraic
group.Let F be a free group on x,, a € A and define a morphism F — G by x,— g,.
By the universal property of proalgebraic completions, this extends to a morphism
p: A(F) — G which is surjective and, by construction, gives rise to a surjection
A(F)/A°(F) — G/G°. If A is a profinite subgroup of A(F) as in Corollary 5, then
p(A) is a profinite subgroup of G which maps onto G/G°, as asserted. O

3. The Proalgebraic n Completion and Rigidity Criteria

There is an analogue of A(I') which has a corresponding universal property for
representations of dimension 7 or less. In this section we define it and discuss its con-
nection with rigidity. We begin with a definition:
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DEFINITION 9. Let K,(I') be the intersection of the kernels of all the algebraic
representations of A(I") of dimension at most n. The proalgebraic #n completion of ',
denoted A4,(I'), is the quotient A(T")/K,(I'). We let U,(I') and Q,(I') denote the
prounipotent radical and maximal reductive quotient of A4,(I'). We use V,,(I') for the
quotient of U,(I') by its closed commutator subgroup.

It is clear from the definition that representations of I of dimension # or less
extend uniquely to representations of A4,(I) of the same dimension. Since the
representations of I' are assumed to separate points (of I' and hence of A(I")), the
representations of dimension n or less separate the points of A4,(I").

As an application of Corollary 7 and Jordan’s Theorem, we have the following
property for A4,(I') when T satisfies (FAD):

COROLLARY 8. Let I be a finitely generated group and n a positive integer.

(1) There exists a finite index normal subgroup T of T such that

A,(T")/ AN(T) = (Qu(T™)/QA4(T))
is Abelian.

(2) If T satisfies (FAD) then A,(I'")/A%Y) is finite, Q%T) is prosemisimple and we
can choose T" in (1) so that A,(I") = A%(T).

(3) If T satisfies (FAb) and Dim(Q,(I")) < oo, then Q,(I') is algebraic and rigid.

Proof. Let D be a profinite subgroup of 4,(I") such that 4,(T") = A%T)D. Since T
is finitely generated we can select D to be finitely generated as a profinite group. The
consequences of Jordan’s Theorem furnish an Abelian normal subgroup D/ of
finite index in D. Then 4%T)- D/® is an open normal subgroup of 4,(I') whose
intersection I with I" satisfies the condition of (1).

If T satisfies (FAb) then the Abelian image of I modulo 4%T’) must be finite, so,
by making I'” smaller by finite index we can put I'" inside 4%(T"). From this and Pro-
position 2, (2) follows. Clearly (3) follows now from (2). O

We are going to see the connection between rigidity and the finite dimension-
ality of the 4,(I'). In this connection, we note that a proalgebraic group is algebraic
if (and only if) it is finite-dimensional and has finitely many connected components.

The main result of this section is the following theorem:

THEOREM 2. The following are equivalent for the finitely generated group T':

(1) T is rigid.

(2) Vn, 4,() is rigid.

(3) Vn, A,(') is an algebraic group.
(4) Vn, A,(1) is finite-dimensional.
(5) Vn, Q,(I') is rigid.
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(6) Vn, Q,(I') is an algebraic group.
(7) Vn, 0,() is finite-dimensional.

We will prove Theorem 2 by means of Theorem 3 below, which makes more pre-
cise the connections between the various properties.

We begin by enumerating the various rigidity and finiteness conditions to be
considered:

NOTATION 4. n denotes a positive integer

(R), T is n-rigid.

(AR), An(I) is rigid.

(AA), An(I) is an algebraic group.
(AD), Dim(A4,(I')) < oo.

(OR), 0,(I) is rigid.

(QA),, On(I) is an algebraic group.
(OD), Dim(Q,(I)) < cc.

For each of the properties P = R, AR, AA, AD, QR, QA, QD we will write (P),, to
mean that (P), holds for all n. Note that (R),, is equivalent to rigid.
We have some obvious implications:

(1) (QR), is equivalent to (4R), and both imply (R),,.

(2) (A4A), holds if and only if (4D), holds and 4,(I")/A%T) is finite.
(3) (QA), holds if and only if (OD), holds and Q,(I')/Q%T) is finite.
(4) Thus (4D), and (QA), implies (4A4),.

(5) By Corollary 8 (2) (4D), and (FAb) implies (44),; and

(6) (OD), and (FADb) implies (QA),,.

(7) Finally, we note that (R),, implies (FAD).

The following theorem records some of the main relationships among the proper-
ties of Notation 4.

THEOREM 3. For all integers n the following implications hold.:

(R)n2

4
@D (AA), = (AR), = (AD),
% U U

(@D), + (FAb)] = (QA), = (QR), = (QD),

(I1) (AA), = (R), = (QR),
(I (R)..,(AA)...(AR),(AD).., (QA)... (QR)..(QD)., are all equivalent.

Proof. Assertion (III) follows from (I) and (II). In the proof of (I) and (II), the
only implications that are nonobvious or are not covered by the discussion above,
are the following:
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(R), = (QA),,, whence (QR), = (QA),. Assume (R), (that I" is n-rigid). For a
representation p of A(I'), we will denote by p,, the associated semisimple representa-
tion. It is easy to see that p(A(I")) is the quotient of p(A(I")) by its unipotent radical.
It follows that the representations {p,, | p € R,(I')} separate the points of Q,(I'); i.e.,
their kernels have trivial intersection. Since I' is n-rigid, there are only finitely many
such kernels, which implies that Q,(I') is embedded in a finite product of algebraic
groups, and hence is algebraic.

[(QD), + (Fab)] = [(QR), + (QA),] This follows from Corollary 8(3) above.

(R),2 = (AA),. Since n’-rigidity implies n-rigidity, we already have (QA),, proved
above, so it remains to show the finite-dimensionality of U,(I"). This follows from
Proposition 5(2) below. [

PROPOSITION 5.

(1) Let G be a group, let S be a simple G-module of dimension d, and let V be an
S-isotypic G-module generated by r elements. Then Dim(V) < rd°.
(2) If G =T is finitely generated and n*-rigid then Dim(U,(T")) < oco.

Proof. We are grateful to R. Guralnick for the proof of part (1).

Proof of (1): An easy induction argument shows that it suffices to treat the case
r = 1, and in this case it suffices to show that S**! cannot be G generated by a single
element v = (vg, ..., vy) € S!. Since V has dimension d, the components of v are
linearly dependent: there are a; € k, 0 < i < d not all 0 such that > av; = 0. Then
v belongs to the kernel K of the nonzero G linear map A:S8“! — S by
(Wo, ..., wg) B> > a;w; contrary to the assumption that v generates.

Proof of (2): Since the n-dimensional representations of the prounipotent
group U,(I') separate points, it is nilpotent. Thus, it suffices to show the finite
dimensionality of the semisimple G-module V = U”(l")"lb. Since I is finitely gener-
ated, U,(I'), being a normal semidirect factor of A4,(I'), is finitely generated as a
normal subgroup, which implies that V is finitely generated as a G-module. The sim-
ple submodules of V appear as subquotients of n-dimensional representations of
U,(T') and so they have dimension <n?. Hence, by n’-rigidity of I', there are only
finitely many classes of them. Now the finite-dimensionality of V follows from
part (1). O

Note that Theorem 3 III is simply a restatement of Theorem 2, and hence the latter
is now proved.

COROLLARY 9. A representation super rigid group is representation rigid.
Proof. If T is super rigid, A(I') is finite-dimensional by definition. Hence A4,(I") is
finite-dimensional for all n, and so by Theorem 2 T is rigid. O

The finite-dimensionality of U(I), in fact the finite-dimensionality of V(I'), also
implies rigidity in the presence of (FAb), as we now show.



THE PROALGEBRAIC COMPLETION OF RIGID GROUPS 35

THEOREM 4. Let T be a finitely generated group with (FAD), and suppose that U(T")
is finitely generated as a prounipotent group. Then T is rigid.

Proof. We assume that I' has (FAD), that U(T) is finitely generated (which means
V(I') is finite-dimensional) but that I' is not rigid. It follows from Theorem 3 that for
some 7, the prosemisimple group Q%T) has infinitely many simple factors iso-
morphic to some simple algebraic subgroup S < GL, (k). It follows that we have an
epimorphism AYT) — I1 =S~ =[],.,S; with each S; is isomorphic to S. Let
¢;:I1 — S denote projection on the ith factor. Choose the finite index subgroup
I < T as in Corollary 8 (2) so that I'” projects onto (a Zariski dense subgroup of)
A%T). Let p;:T" — S be the composition of this projection with ¢;. We claim that,
for i#j, we cannot have p; = wop; for any o € Aut(S), in particular any inner
automorphism. For otherwise the image by (p;, p;) of I'" in § x S would lie in the
graph of o = {(s, a(s) | s € S}, a proper algebraic subgroup of S x S, contradicting
Zariski density of the image of I'”. Let [ p;] denote the class of p; in the (categorical)
quotient variety X of Hom(I'”, S) by the conjugation of S. By choosing a simple S
module V, and noting that p; makes V" a simple I module as well, by Zariski density,
it follows that the p; have closed S orbits in Hom(I"™”, S), and so the points [ p;] of X
are all distinct.

Let L = Lie(S) and Ad = Ads: S — GL(L) the adjoint representation, a simple S
representation since S is a simple algebraic group. By Zariski density of p;(I""), and
the observation above, the representations p; = Ad o p; are pairwise non isomorphic
simple I'" representations.

It follows from a theorem of Weil [15] that the tangent space T7,;(X) embedds in
the cohomology space H' (I, p,). From [10] it follows that for any simple I"" repre-
sentation p we have

H'(I", p) = Homp+(V(I™). V),

and so H'(I'", p) # 0 implies that p occurs in V(I'") = V(I'). Thus the infinitely many
p; occur in V(I'). Our hypothesis implies that V(I') is finite-dimensional, so this is a
contradiction. O

The proof of Theorem 4 actually shows that under the condition (FADb), if I’
is not rigid then for some n both U,(I') and V,,(I') are infinite-dimensional. We
deduce:

COROLLARY 10. The following are equivalent for the group T':

(1) T isrigid
(2) T has (FAD) and for every n, U,(I') is finite-dimensional
(3) T has (FAD) and for every n, V(') is finite-dimensional.

We further mention that if I has (FAb) and is not rigid, then we can deduce that
U(T') is not nilpotent. As in the proof of Theorem 4, there is a finite index subgroup A
of I' which has infinitely many nonconjugate Zariski dense homomorphisms into a
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simple algebraic group S. One can show that this implies that there is a curve of such,
and therefore that A has a Zariski dense representation into the pro-affine group
S(k[[£]]). (See [1] for the analogous case where GL,, replaces S.) S(k[[{]]) is isomorphic
to U x S(k), where U is an infinite-dimensional prounipotent group whose associated
graded group is isomorphic to © ® k[[]], where © = Lie(S). One sees, using the den-
sity of the image of A in S(k) and from the simplicity of & as an S module that U(A)
maps onto U. Hence we deuce:

COROLLARY 11. Suppose I" has (FAb) and that U(T') is nilpotent. Then T is rigid.

To summarize: we have shown that various finiteness assertions on 4(I') imply, or
are even equivalent to, rigidity. (We are including the observation that (FAb) is
equivalent to dim(7,(I")) < 00.)

In particular, we have shown:

COROLLARY 12. If either the solvable radical or the maximal reductive quotient of
A(T) are finite-dimensional, then T is rigid.

In Sections 5 and 6 we exhibit examples of rigid groups with infinite dimensional
unipotent or reductive parts. These show that the converse of Corollary 12 is not
true. On the other hand, if both the unipotent and reductive parts of A(I') are
finite-dimensional, then A(I") is finite-dimensional. We will see in Section 4 that in
this case I' is super rigid.

4. Finite-Dimensional Proalgebraic Completions and Super Rigid Groups

Let I" be a finitely generated group. Its proalgebraic completion 4(T") is finite-dimen-
sional when the latter’s identity component A°(T) is finite dimensional (that is, is an
affine proalgebraic group). By Corollary 6, there is a profinite subgroup A of A(I)
such that A(T) = A°%(T") - A (not necessarily semidirect, of course.)

Consider the homomorphism A — Aut(4%(I")) given by conjugation. Since the
automorphism group of an affine algebraic group is a discrete group extended by
an affine algebraic group, the image of A in Aut(4°(I')) is finite and, hence, the kernel
A is of finite index in A. Ay commutes with 4%(I"). As it is normalin A, A°(T") - Ay is a
finite index normal subgroup of A(I').

Consider the intersection F = 4°(I") N A. This is a closed profinite subgroup in the
affine algebraic group A%T) and, hence, finite. It follows that there is a finite index
normal subgroup A; of A such that FN Ay is the identity. It follows that 4°(") - A; is
a semidirect product and is a finite index normal subgroup of A(T).

Let A = Ag N Ay. Then A% - A = A%(T") x A” is a finite index normal subgroup
of A(T). Let T = ' N (4°(I") x A°) (we identify T" with its image in A(I")). Ty is of
finite index in I". The injective map A(I'°) — A(I") has image in A%(I") x A° and indu-
ces an isomorphism A°%(T%) — A%T). It follows that A(I'%)/A°T%) =T° maps
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injectively to A° = (4°(I") x A%)/A%(T). We replace A by this image, and sum up the
result in the first assertion of the following theorem:

THEOREM 5. let T be a finitely generated linear group and suppose that its proal-
gebraic completion A(D) is finite-dimensional. Then there is a normal subgroup I’ of
finite index in T such that A(T) = A%T°) x T°.

(1) Let p be the composite T — ATy — AT°), the second map being projection.
The kernel of p is finite. T® may be chosen so that p is injective.

(2) Let p: T° — GL,(k) be any representation of T°. Then there is a representation
p.: AXT%) — GL,(k) and a finite index subgroup F(l) of T such that p = p,op
onT’ (1).

(3) Let p: ' = GL, (k) be any representation of I'. Then there is a representation
p,: AN — GL,(k) and a finite index subgroup Ty of T such that p = p,op
on TI.

Proof. As noted, the isomorphism A(I'") = 4°T°) x '’ is a consequence of the
analysis preceding the theorem.

The kernel of p is N = '’ N A, (we identify I'° with its image in A(T"°)). The pro-
finite subgroup Ay of A(I'’) has finite image in every affine quotinet of A(I'°), which
means that N has finite image in every representation of I'’, including a faithful one.
So N is finite and there is a finite index normal subgroup of I" contained in I'” and
meeting N in the identity. Replacing I’ by this subgroup makes p injective. This
proves (2).

Now suppose p is a representation of Iy, and let G denote the Zariski closure of
the image of p. Let p, denote the map A(T"°) — G induced from p. p,(Ay) is finite. p,
and p,,, factor as

' — 4% x p,(Ag) = G.

We take F? to be the inverse image of 4A°(I'°) under the first map; it has the proper-
ties claimed in (2).
Finally, (3) is an obvious consequence of (2). O

5. Rigid Groups with Large Prounipotent Radical
5.1. CONSTRUCTION
Let

<G (=01 (D
be super-rigid embeddings of finitely generated infinite groups. Let

M =a Z[I'j]-module, free of finite rank over Z. (2)
and satisfying

M/, M) is finite for all I';  of finite index in I. 3)
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Here M/(T'y, M) = Hy(I'y)) = M/JM, where J is the augmentation ideal in Z[I'(].
The commutator notation applies inside M x I'y.
Now put

F+ = FO X F]
U=M®y 7[['], a finitely generated 7Z[I"]-module, and 4)
I'=UxIy, a finitely generated group.

We will show that T is rigid, that Q%T') = Gy x G| (so finite dimensional) and
that U(T') is infinite dimensional. (See Theorem 6 below for a precise statement.)

LEMMA 1. (FAb) If T" < T, then (I")* = 1.

Proof. We are at liberty to replace I by a smaller finite index subgroup. First
replace I" by U' xI",, where I, =T"NT, <z 'y and U =T"NU<p U, a T, -
invariant subgroup. We can then further reduce to the case I, =1I7) x I'} where
=T NT; for i=0, 1. Then we have

() = (U™ = (U/(I, UY) x (T,

Since the T'; are rigid, so is I'y = I'y x I';. Thus it satisfies (FAb) and so (l"’Jr)alb is
finite.

It remains to show that (U'/(I”,, U")) is finite. The finite group U/U" is a I, mod-
ule and so is annihilated by a finite index two sided ideal K of Z[I', ], whence

K-USU<KU.

Since U= M ®; 7[I'1], and 7Z[I'j] is a finitely generated (free) Z[I";] module,
U/KU = M ®,(7[T"1]/KZ[T"1]) is the tensor product over 7 of a finitely generated
and a finite Abelian group and, hence, is itself finite. Thus K- U < U, so it suffices
to show that KU/(I/, KU) is finite.

Let J; denote the augmentation ideal of Z[I'}]. Z[I",] = Z[Ij] ® Z[I'"|] has
augementation ideal J' = J; ® Z[I'|]+ Z[I'|] ® J;. Since KU = M ®,, KZ[T'1], we
have

KU KU _ M ® K7[T']
(I',,KU) JKU JMQKZ[T'\]+M® J,KZ[I']

= (M/Jy) @ (KZIT\1/J\KZ[T1).

By assumption, M/JyM = M/(T'y, M) is finite. Since K/Z[I'|] is finite and
I'' <p Ty, KZ[I] is a finitely generated I'} module. It follows that
K7|I')/J1 KZ|I'1] is a finitely generated Abelian group, and therefore its tensor pro-
duct with the finite group M/Jj is finite as well. This proves that KU/(I",, KU) is
finite, as required. [
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5.2. REPRESENTATIONS

Let p:T' = GL,(C) be a finite C-dimensional representation of I" and let G, H, and
W denote the Zariski closures of the images under p of I', I'y, and W, respectively.
Then W is an Abelian normal subgroup of G and G = WH. W, being Abelian, is a
product W =V x T x S where V is a vector group (the unipotent radical of W), T is
a torus (the unique maximal torus of W x T so that V' x T is the identity component
WP of W, and S is a finite group. Both W and T are characteristic in W and, hence,
normalized by G. Since the automorphism group of T is discrete, T is centralized by
the identity component G°. Thus T is a central torus in G°. Suppose that 7' # 1. Then
G° has a nontrivial character y:G° — G,,. Let T = p~1(G°). Then y(p(I'")) is
Zariski dense in G, and in particular infinite Abelian. Since % is of finite index
in I', which is (FAb) by Lemma 5.1, this is impossible, so in fact 7= 1 and

W=VxS Q)

where V' is a vector group and S'is finite. (Note that S, being the torsion subgroup of

W, is also characteristic in W and hence normalized by G and centralized by G°.)
H, and hence I', is represented on the vector space V. In the proof of Lemma 5.1,

it was shown that for I, <z T, and U < U, U'/(I'", U') is finite. It follows that

(H' V=V (6)

The action of C[I'|] on V factors through some ideal K of finite codimension so
that there is a C[I"] module surjection

(C®z M)®c (C[IN]/K) — V. (7
Let

M- = C Q7 M and Uc = C Q7 U=M: Q¢ C[l"l] (8)
Finally, let

C[I'y] = lim(C[I']/K) )

where K varies over two-sided ideals of finite codimension in C[I';].
Since the representation p here is arbitrary, we draw the following conclusions
about proalgebraic completions:

AD) = A(U)x AT ),
A(T) = Image(A(U) — A(T),

ATy = A°(Ty) x Ty, (10)
AYT)) =Gy x Gy,

I =TyxI.
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Further,

A, (U) = A°%(U) x U*, where
A" (Uyx = M ®@c C[[I]] < U(T) (11)

U* =1imU/U’, U’ ranging over finite index sub I' -modules of U.

If U/U is a finite ', module as above, then as in the proof of Lemma 5.1 above,
the I'; action factors through a finite quotient I'; /T"}, and hence U/ U’ is a quotient of
M ®y 7[T'1/T] and, hence, for some integer N > 0, of the finite I, module
(M/NM) ®;, 7|1 /T'}]. Taking the inverse limit of these gives

U =M ®; Z[IT1]. (12)
where

ZIT1]] = lim(Z/NZ)[T,/T'] as N - oo and T — 1.

Summarizing this section’s discussion, then, we have the following class of
examples of finitely generated rigid groups with infinite-dimensional prounipotent
radical.

THEOREM 6. Let T;<G;, (i=0,1), be super rigid embeddings, and let
I', =Ty xT'1 <Gyx G =Gy. Let M be a 7|Ty] module, 7, free of finite rank such
that for all Ty <p T'o, M/(I'y, M) is finite. Finally, let U= M ®, Z[I'1] regarded as a
'y module, and define I’ = UxT'y. Then T is a finitely generated rigid group, whose
prounipotent radical U(I') is infinite-dimensional, and whose maximal connected
reductive quotient Q°(I) is finite-dimensional. If, moreover, G, is reductive, then U(T)
is Abelian.

5.3. ADDITIONAL EXAMPLES

We conclude this section with a short discussion without details of another type of
example of a rigid group with an infinite dimensional prounipotent radical.

Let L=7" be the free Abelian group on f¢,...,4, and let A ="7[L]=
Z[t, z;‘, R t;l] be its integral group algebra. I'y = SL,(Z) acts as a group of
automorphisms of L and, hence, of 4, and L acts on 4 by multiplication. These
actions are compatible and lead to an action of I'j = Lx Iy on 4. This action pre-
serves the augmentation ideal 4’ on 4, and we can form the semidirect product

I'=A'xT| = A'x(Z"xSL.(7)).

For r = 3, Ty is a rigid group [2], and it follows from [2] as well that T" will be
rigid as long as its finite index subgroups have finite Abelianization. We omit that
calculation.

The prounipotent radical of A(I') maps onto a prounipotent group containing
A'x 7" Zariski densely.
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6. Representation Reductive Groups with Finite or Infinite Multiplicity of
Simple Factors in their Proalgebraic Completions

6.1. WEAK PRODUCTS

Let {I';}, n > 1, be a sequence of groups. In the product IT =[], T, we iden-
tify each I', as a subgroup, in the nth component as usual. Then the weak direct
product

weak
= ]_[ r,<II

n=1

-{ur)

is the subgroup generated by these component subgroups.
We also consider the condition

r®=1 forall n> 1. (Abl)

PROPOSITION 6. Assume (Abl). Then we have natural isomorphisms

A — [T AT, (A)
n=1

A0y - []4°T,). and (A%)
nx=l1

m— []T- (@)

n>=1
If each T, is connected split, then so is IT.
Proof. (A) easily implies the other two assertions. To prove (A), we introduce the
notation

weak
m. = r-(Ur)

m>n m>n

and make the observation that (A) will follow if, for p:II' — L = GL(V) any finite-
dimensional C representation, p must vanish on IT, | for some #, or in other words,
that p must factor through a projection

In"—-1I;x---xI, (13)

with kernel IT, .
For UL, let U denote Zariski closure, and let H=p(IIl') and

H,=p[) x---xT,)forn>1,s0 H=U,H,. By (Abl), we can choose nj so that

=1 forn> n. (14)
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On centralizers, we have

Z(H) = () Zu(H,) = Zu(H,,)

for some n;. Let N = max(ng, ny).
We claim that

pITy,) = 1. (15)
and, hence, (13) and (A). For (15), it suffices to show

o()=1 form> N. (16)
But for m > N, T',,, centralizies I'y x --- x I'y, so

p(Tw) < Zu(p(l'y x - x ['y)) = Zy(Hy). 17
Since N = ny, Zy(Hy) = Z(H), so p(I';;) is Abelian. Since m > ng, by (14) F,f;b =1.
Thus p(I';;) = 1. Thus (16) and, hence, (A), follows. O

6.2. GROUP TOWERS
In this section we consider an ascending chain (‘tower’) of groups
F1<1"2<F3... (18)

and put I'o =U, > -
As in Section 6.1 above, we have the weak products

weak
= [[r.<O=[]I. (19)
n=1 n>=1

Let x = (x4),>1 € [ [; x» € I'y. We call x eventually constant if, for some ny = no(x),
Xp = Xp, for all n > ny. In this case we put

Poo(x) =X (Y1 = ng). (20)
Put

A = {x € IT | x is eventually constant}. 2D
Then A is a group and we have an exact sequence

l->II' > A—>Tx—1 (22)

where the second map is inclusion and the third is given by pe.
For n> 1, we can write IT = (I'y x - -+ x I';;) x I,y with IT,; =[], m. We
put IT,, = II"N 1L,y and A,y; = ANJ],41. Then we have

A= T x - xTy) x Apyy; (23)
and

Poot A1 /T, — T is an isomorphism.
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6.3. Ty ACTIONS

We retain the notion of the preceding sections.
Let I’y be a group an suppose there is an action

o, Ty — Aut(l')) (24)
for each n > 1. We denote the actions
S X =0,(s)(x) forsely,xel,

We do not assume that the inclusions I'), < I',4; are I’y equivariant. However, we will
need the following ‘stable equivariance condition’:
For s e I'y and x € I';, there is an N = N(s, x) = n such that

Smx=s-yx forallm=>= N. (25)
We then write
S0 X=258-mx forall m= N(s, x). (26)
It is then easily seen that (26) defines the unique action of I'y on I', so that
(22) is an exact sequence of I'y groups. 27
We can thus form the semi-direct direct product sequence
Il > II' > AxTy = T'eoxTg — 1 (28)
In our next result, we will use the following hypotheses:

For all finite-dimensional C representations p of Ay, x T,
we have p(I'y) = 1. (Pl =1)

For all n > 1, the action of I'y on I',, factors
through a finite quotient of I'y. (Jo.To] < o)

PROPOSITION 7. Assume (Abl) and (pT'so = 1). Then any finite dimensional C
representation of T =AxTy factors through some quotient T /A, =
Ty x -+ xTy)xTy. Hence we have a natural isomorphism

A(T) = lim ATy x -+ x T,)x ). (A)

n

Further assume (|o,I'g| < 00). Then we have a natural isomorphism

A1) - []4T) (A?)

n=0

and a natural isomorphism

f+<ﬂﬁ)xﬂ, ()
n=1
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where the action ofﬂ on each l/"; is defined because of (|o,I'g] < 00).

Proof. Let p: T' — GL(V') be a finite-dimensional C representation. Because
of (Abl) and (.2) (A), on IT' < A the restriction of p factors through a pro-
jection II" - I'y x --- x I',, with kernel I, ,. So p factors through I'/IT  , =
(A/TT,, ) )xTy. Because of (.3)(7),(A/IT,, ) = ("1 x---xT,) x T'e. The hypoth-
esis (pI's) applied to (I'g)xT9) < (A/IT, ;) implies that p vanishes on I'y, so
that p factors through I'/A,,1 = x--- x I',)xTy. This establishes assertion
(A).

Now assume (|g,Ig| < o0). Then the I'y action on I'} x --- x I',, factors through
some finite quotient I’y /F(O”) . So the (direct) product (I'y x --- x I'};) X l“g') has finite
index in the semidirect product (I'} x --- x I',;))x Ty, which implies that they have the
same A°:

AY(T) x - x T)xTg) = ANT)) x - -+ x A%T,) x A%(Ty). (29)

Passing to the inverse limit over » in (29) we obtain assertion (A4°).

Next, we observe that the action of the finite group I'y /l"f)") on I, extends to an
action on f; (every finite index subgroup of I',, contains a I'y invariant finite index
subgroup). It follows easily from this that there is a natural isomorphism

[(T) 5 - x D)% L]~ = (T) x -+ x [,)x T, (30)

Passing to the inverse limit over » in (30) we obtain assertion (°). O

6.4. FILTERING I,

Let T’y be a finitely generated residually finite infinite group with a finite generating
set S} such that

To=(S), lesS,, S;=u ) 15]=3. (31)
We inductively construct finite sets

SicSicsSc---clhy (32)
and normal subgroups of I'y

Oo>T{>18 > ... (33)
such that for all n > 1 we have

S, — /T s bijective (34)
and

Sii1 C Sur1,  where S, =S;-S,. (35)

It will follow from (35) that (S})" C S,, and so, in view of (31), we have
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To= [ S (36)
n>=1
It then further follows from (36) and (34) that
Oy =1 (37)
n=1

The construction proceeds as follows: for n > 1, we first choose l"gl) < I'p normal
and of finite index, and so that S} — I'y/ 1"(()” is injective (the later is possible because
I'y is residually finite). Then we enlarge S} to a set of coset representatives of I'g/I" gl).

Now assume, inductively, that Sy,...,S, and T E)l),...,l" 81) have been chosen
as above. Then let S, , =S}-S, and, using residual finiteness again, choose
Iy < T normal of finite index in [y such that §,,, — Lo/ is injective.
Finally, enlarge s;, to a set of representatives of I O/Fg’“).

We will use the following notation:

For s € Ty, define s(n) € S, by s~ 's(n) e TJ". (38)

6.5. THE CASET, = A%

We fix a group A and consider the set of A valued functions on I':

Al = {x: Ty — A} (39)
For x € A™, we define support by

supp(x) = {s € I'g | s(x) # 1}. (40)
For a subset S C Ty, we define

AS = {x: AT | supp(x) € S}. 40

From the sequence (32)
Sic S c--- Ty, (42)
we obtain the tower of groups
I << <A™ where [, = A% (43)
and the group
To=JTu=A", (44)
n>1
where
AT = {x e AT | supp(x) is finite}.
To acts on A" via left translations on I'y. We denote this action as follows:

ForseTo,xe AT and 1 € Ty, (500 X)(1) = x(s7 7). (45)
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Under this action I'y, is I'y invariant (and the groups I',, are not). However, the bijec-
tion S, — Iy /I“E)”) defines an isomorphism AT/T 1) 5 ASt = I', so by transport of
structure a I'y action on I',,. To describe the action, we make the convention that
for u € Ty, u(n) € S, denotes its representative modulo l"g)). Then s € I'y acts on
xel, by

) _ I x(s7'n(m)), for t e Sy;
(50 90 = { : e (46)
Now let s € I'y and x € I',,. Choose N = N(s, n) large enough so that sS, C Sy.

Then we claim that
S mX=258wxXx, form=N. 47)

By definition, for fe Ty, (50 X)(f)=x(s"'¢), and this is # 1 only for
tesS, CS,. On the other hand, (s-, x)(¢®)=1 for t¢S,, and, for reS,,
(5 -mx)0) =x((s"'0)(m)). If tesS,, (s7't)(m)=s""¢. It remains to consider
1€ 8y —s5S, Then (s '5)(m)=s"t (modT{") so s((s~'1)(m)) = ((mod TY"). If
(s7'1)(m) € S,,, then s((s~'1)(m)) € sS, C S,,. Since ¢ € S,,, the congruence implies
that ¢ =s((s"'t)(m)) € sS,,, contrary to assumption. Thus (s~'t)(m)¢S,, so
(s mx)t) =1 = (5 - X)(t), and (47) is proven.

6.6. THE GROUP I'(A, T)

We retain the notation of 6.4 and 6.5. For n>1, A€ A, and s € I'y, we define
Ins €y = A5 by

A, if t = s(n);

s (1) = { 1, otherwise. (“43)

Similarly, we let A, , denote the s(n) factor A in AS". Define

5(,,)“2 A — Hn = | | Fn (< II = H])
mz=n (49)
5(11),‘?()&) - (/lm,s)m >n-

Note that, with respect to the inclusion
[, =A% < T = A",
the formula in (48) is valid for all 7 € I'y. Moreover, in case that s € S,,, then s(n) = s,
so that the formula no longer involves n. Thus relative to I', < I'1) < -+ < T
Ifse S, then A, 5 =4y, forallmz=n. (50)
For any s € I’y we have s € S,, for m sufficiently large. Hence

0@),s(A) consists of eventually constant sequences in IT,,. (5D

Let u € Ty then (u -, Ay )(¢) = 1 if t¢ S,. If t € Sy, then (u -, Ap) (1) = Ap(u'1),
and this equals 1 unless u~'7 = s(n); that is, unless ¢ = u - s(n). Since ¢ € S,,, this latter
means that r = (u - s(n))(n) = (us)(n). Thus we have:
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U-n in.s = )Ln,uSv and u- 5(n),s(/l) = 5(n),us(£) (52)

where, in the latter, u acts on II, by the product action on factors.
Now let

0=0m1: A= Il =1II (53)
and put

I' = (6(A), T'p) < IIxT. (54)
Clearly

I' = A’ %Iy,
where

AN=TnI 55)

= the I’y subgroup of Il generated by o(A).
In 6.2 (21) we defined the group
A = {eventually constant sequences in IT}. (56)
In view of the I'y invariance of A and (51), we have
A <A (57)
Now assume that A satisfies (4B1):
AP =1. (58)
Then we claim:
A =A. (59)
We begin the proof of (59) by showing that

weak
I (= I rn) <A (60)

For AeA and sely we have s-6(A)=(n2n1)y>1 = ns)y>1- Choose
s € 1"81) - 1"2)2), so s(1) =1 and s(n) # 1 for n> 1. Then, for n > 1 "€ A, 1, and
An.s belong to different factors of T', = A%, and thus commute. Thus

(/l, )“,)l,l’ for n = 1,
1, for n > 1.

(/‘Ln,xv /1:1!1) = {

Since A = (A, A) by (58), it follows that A’ contains Aj; < ' < AS'. Since A1l gen-
erates I'; as a I'y group, this implies that I'; < A'.

Now suppose that we have shown that T'y, ..., I, <A Modulo I’y x --- x I',_1,
we can modify d(A) = d(1)1(A) to obtain d,(A) < A’. Choose s e I — T+,
Then, arguing as above, for 4,2 € A and m > n we have
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, i) form=n
/ln ) i == ( ’ ml, ’
(Am,s m,l) { 1, for m > n.

As before, since A = (A, A) we then have that A’ contains A, 1, and it follows by Ty
invariance that I, < A’. Thus (60) follows by induction.

To complete the proof of the claim (59), we recall the exact sequence of I'y groups
6.2 (22):

1> > AT, > 1

In view of (60), it suffices to show that p,.(A") = I's,. We have
Poo(3(A) S Too = A

where

A, fort=1,

Po(3(N(0) = { I fortt 1

Thus p(6(A)) is the copy of A in the 1-coordinate of AT Since this clearly gener-
ates ', as a I'y group, poo(A’) = ', as required, and (59) follows.
From (54) and (55), combined with (59), we have

I'=(6(A), Ty) = AxT. (61)
We will sometimes write

I = I'(A, T).

Note that its construction depends on the group A (which is required to satisfy (451)
(58) and on the residually finite group I'o, as well as on the filtrations (S,), - ; and
(T, > | of 6.4.

From (61), we note that

If A is finitely generated, so is I'. (62)

6.7. AT(A,Ty))

We are going to describe the proalgebraic completion A(I') for the group
I' =T(A,T) defined in 6.6 (61), using the Proposition 7. We begin by verifying
the hypotheses (Abl), (pI' = 1), and (Jo,I'g| < o0) of that proposition.

Condition (Abl) requires that Fib = 1 for all n sufficiently large. This follows here
because I, = A% and because A*® = 1 by assumption.

Condition (|o,I'g| < co) means that Iy acts on I',, through a finite quotient for
each n. This holds here since Iy acts on T, = A" through the permutation action
on S, = I/,

Finally, the condition (pI's, = 1) requires that for any finite dimensional C repre-
sentation p: Toox Ty — L = GL(V) we have p(T's) = 1. Since I'y, = AT, it follows
from the fact that A*® = 1 and from Proposition 6 that p(AT°~5) = 1 for some n.



THE PROALGEBRAIC COMPLETION OF RIGID GROUPS 49

Since Ker(p) N T is a T invariant subgroup, and since p(AT°™5") clearly generates

s = AT as a Ty group, we conclude that pI's, = 1 as required.
We now state the conclusions of Proposition 7 as a theorem:

THEOREM 7. Let Iy be a finitely generated residually finite group, filtered as in 6.4,
and let A be a group satisfying A®™ = 1. Let T = T(A, T) = (5(A), Tp).
Then there are natural isomorphisms

AT) 2 1lim AT x --- x T}))x ), (A)
S

A%T) = [T 4T, (A?)
n=0

(7). .

n>=1

If A is finitely generated, then so is T.

6.8. REMARKS
(1) For T',, = A", we have
AT, = AN,  A%T,) = A°%A)>, and T, = AS". (63)
Thus, putting
S=51OSasS;0... (64)
we have, from Theorem 7 (A°) and (°),
AN = A%A)S x A°(T) (65)

and

~ o~

T =~ ASx T, (66)

IR

From (65) we see that, for suitable choice of A, simple groups can occur with infinite
multiplicity in Q(I). It follows that, if T" is rigid, it is not connected split. (Otherwise,
it would have infinitely many irreducible representations in a single dimension.)

(2) To illustrate this last point, we could take A =Ty = SLy(Z) with d> 3.
Then

A(A) = A°(A) x A,
A°(A) = SLy(C),
A = SLu«(7).
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Hence, A°(I) is an infinite product of copies of SL,(C). It follows that I is not rigid.

(3) If A and I'y are rigid, then so is I', since representations of I" factor through a
quotient (I'y x --- x I',)xTy, and (I'y x --- x I',)) x 1“84) is a rigid finite index sub-
group of this quotient.

6.9. THE GROUPS L, = 75

We now make a construction like that of 6.5, but now with A = 7 (in contrast with
6.6 where we assumed from (59) on that A = 1). We recall the notation and results
of 6.5 in this context. We have the additive group

750 = (x: Ty — Z). (67)
For x € 7,
supp(x) = {s € I'g | x(s) # O}. (68)

For S c I'y we identify

75 ={xe 7z supp(x) € S}, and 79 ={xeZ5| supp(x) is finite}

(69)
From the sequence 6.4 (32) of finite sets
S;cSHcCsS3C--- (70)
we obtain the tower of finitely generated free modules 7 modules
LiCL,CLyC....L,=7" (71)
and
Lo = U L,=7" = {x e 7" | supp(x) is finite}. (72)
n>=1
Iy acts on Z' by
(5 00 X)(1) = x(s7'1) fors,tely, xeZb (73)
and L, is 'y invariant in this action.
Iy acts on L, by
. _ X7 'nm)), iftre S, 74
(5 0 X)(0) = {0’ res, (74)

As before, the inclusions L, C L,, C Ly are not I'y invariant. Nonetheless, if
seTly, xeL,, and N = N(s, n) is large enough so that sS, C Sy, then

Sm X =58u, form=N. (75)
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6.10. THE GROUPS I',, = SL(L,)
The free Abelian group Lo, = ZT? has an evident basis indexed by I'y. We write
GL(Ly) = Aut(Ly),

and

GL/(Ly) = {g € GL(Ly) | g fixes all but finitely (76)

many basis elements}.

The determinant is defined on GL/(Lo), and we have the exact sequence

1 - SL/(Ly) —» GL/(Ly) — {£1} — 1. (77)

For S c I'y, we can write

Lo =278 @ 7T0=9 (78)
and we identify g € GL/(Z®) with

g®1d,r, 5 € GL/(Lo). (79)
When S is finite,

78 =75, GU(Z®)=GL(Z%), and SL/(Z®)=SL(Z5).
We have the tower of groups

Fl <F2 <F3...,

I, =SL(L,) =SL(Z%), and Tu:= | I =SL(Lx). (80)

n=1

The actions 6.9 (73) and (74) of I'y on L, and L, (permuting bases) correspond to
homomorphisms a¢: ') > GL(Ly), 1 < n < oo. These define actions of I’y on I, as
follows: for s € I'y and g € I';,, define

Sng= O'n(S)an(S)_l (l <n < OO) (81)
For n < oo, this action factors through FO/FE)").
Here, g operates only on L, = 75 and is the identity on 2™ In L = 7D,
S+ g is like g, but transferred from the basis S, of L, to the basis sS, of Z*5.
Choose N = N(s, n) large enough so that sS, U S, C Sy. Then:

Smg@=S0g forallmz=N. (82)

LEMMA 2 (T'y generation of I'),). For 1 <n < oo, I'; is generated by T'y as a Ty

group.
Proof. We have T, = SL/(Z5"), where we can identify S, with FO/FB"), taking
l"g’o) = 1 when n = oo, and the action of I'y on I',, is via the translation action of S,
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on itself. Now I'; = SL(Z5"), so the I'y group generated by I'; is the group generated
by all SL(Z5") (s € S,).

Consider the graph with vertex set S, and edges the pairs {s, ¢} such that
sS1 N ¢S] # . It is easily seen that the connected component of 1 € S, in this graph
is (S1)S,; that is, the graph is connected. The lemma now follows from the following
lemma: O

LEMMA 3. Let S = UU V be finite sets with UNV # @. Then SL(Z5) is generated
by its subgroups SL(ZY) and SL(Z").

Proof. SL(Z5) is generated by the matrices Xy =1+ ey, (s #t) where e, has a
single nonzero entry, 1 in the (s, f) position. Moreover, we have the commutator
formula:

Xsu = (Xg4, X)) for s, ¢, u distinct.

If s,¢ € U then xy, € SL(ZY). If 5, € V then X5 € SL(Z"). If neither is the case,
say s € Uand t € V, we can choose u € UN V (# @, by assumption). Then s, ¢, u are
distinct, so

Xs,t = (Xs,u» xu,v) € (SL(7’U)’ SL(IZV))v

and the lemma follows. O
The next proposition affirms the hypotheses of Preposition 7, in preparation for its

application, and also prepares for the proof of the finite generation of AxTy. We
also find it convenient to introduce some additional terminology.

DEFINITION 10. We call two groups 4 and B estranged if they have no nontrivial
isomorphic quotient groups. In other words, if 4— Q «— B are epimorphisms, then

0=1.
PROPOSITION 8. The groups T',, 1 < n < oo satisfy.

(Abl) T2 =1.
(lo.To| < o0) the action of Ty on Ty, factors through the finite quotient l"o/l"g’),

(n < 00).
(pI'ee = 1) For any finite-dimensional C representation p of I'w,
pl) = 1.

(Est)

Forl<n<m<oo, I, and T'), are estranged.

Proof. (Abl) follows since SL(Z%)*® =1 whenever |S|> 2. The condition
(Jo,.ITg| < o0) follows from our construction.

Since |S,| = 3 for all n, it follows from the Congruence Subgroup Theorem that
the quotients of I',, = SL/(Z") are all of the form SLis,((Z/q7)/Z, for some integer
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q =0, and where Z is a central subgroup. It is immediate that succh groups
cannot be isomorphic for n <m (since |S,| < |Su|), and so condition (Est)
follows.

Finally, we note that, for m = 0o, SL.(Z/q7) has trivial center, and cannot be
embedded in any GLy(C) (which implies condition (pI's, = 1)). When ¢ = 0, this
follows since SL4(Z) (d < 00) has no faithful representations of dimension less than
d. When ¢ > 0, SLo.(Z/q7,) is an infinite, locally finite group. If it were linear, by
Jordan’s Theorem it would have a normal Abelian subgroup of finite index. This
is obviously not the case for SL.(7Z/p7Z) for p prime, and the case for
SL..(7Z/q7.), q, reduces to the prime case by passage to a quotient. O

6.11. FINITE GENERATION OF I' = Ax T

Recall from 6.2 that A is the group of eventually constant sequences in
IM=]],>, s and it is generated by the groups 9,(I',), where §, is the diagonal
embedding of ', into IT, =[] r

m=z=n- n-
Put
[ = (61(T'1), To) < MxTy. (83)
We show that I' = Ax T is finitely generated by showing that I' = T". Clearly
I" = DxTIy, where D= the Iy group generated by 5;(T"}). (84)
We must show that
the inclusion D < A is an equality. (Claim)

For 1 < n < oo, the projection p,: A — I', maps D to the I'y-group generated by
pn(01(I'))) =T, in I';,. From Lemma 2 we can conclude that

pn(D)=T,, forl <n<oo. (85)

In view of the above discussion and Proposition 8, the next proposition will imply
that (Claim) obtains, and hence that

I''=AxTy=(0,T), o), a finitely generated group. (86)

PROPOSITION 9. Let D < A be a subgroup such that p,(D) =T, for 1 <n < oo.
Assume that
(Ab = |
and
(Est) Forl<n<m<oo, I'y and 'y, are estranged.
Then D = A.

Before starting the proof, we first establish a lemma:
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LEMMA 4. Assume (Est).

(1) Forl<n<oo, I'y x---xT,_y and T, are estranged.
2) If EXT| x---xTIy, and p{E)=T; for each projection p;, 1 <i<n then
E<T;x---xT,.

Proof. Letp: T'y} x---xI',_1 > Q < I',;: q be epimorphisms. For (1), we must
show that O = 1. If p(I'y) = Q, this follows because I'} and I',, are estranged. In
general, since I'] is normal in '} x --- x I',,_1, p(I'1) is normal in Q, so that Q/p(I'})
is a common quotient of I', x --- x I';,_; and I';, so Q/p(I'}) = 1 by induction on n.

To prove (2), we also argue by induction on n, the case n = 1 being trivial. For
n=2, put E;= ENT; =Ker(p,_;|E), which is a normal subgroup of E for
i=1,2. We have E/E; =2 T',_; since p;(E) =TI';. Thus E/(E, - E;) is a common quo-
tient of I'y and I'; and, hence, trivial by (Est), so £ = E| - E,. Clearly E{ N E;, = 1, so
E=E| x E;.Since E; = p(E)=T; (i=1,2), we have E=T x I'5.

For n>2, I'y x---xI,_; and I',, are estranged by (1), and E projects onto
I' x---xTI,-; by induction. Hence, E=(T x---xI,_1) xI, by the case
n=2. O

Now we prove Proposition 9.

Proof. We have a commutative diagram with exact rows (see 6.2)

Il - II' - A - T, — 1
U U [ (1

1 - D —- D —- T, — 1

where D' = DNII', and D — T, is onto since poo(D) = I's, by hypothesis. More-
over, by hypothesis p,(D) =T, for 1 <n < 00, so it follows from Lemma 4 that

D projects onto I'y x --- x I, for 1 < n < oo. (2)

Since D’ is normal in D, it follows from (2) that

weak

D<Al = ]_[ L,

and hence that D’ is normal in IT, since all normal subgroups of IT’ are. In particular,

D<A 3)
Next put
D,=DnNT, (=D'nT,), 1<n<oo
weak 4
pr=]] <D. @
n>=1

In view of (3),

D,, D*<A. (5)
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P_ut A= A/D*; for H < A, let H denote the image of H in A. Thus T, = I',/D, and

T = [[V% T, We claim that

DNT,=1, forl<n<oo. (6)

For if ge T, and g € DNT,, then gd € D for some d = (dm)n =1 € D*. It follows
from the definition of D* that d, € D, and gd, € D, whence ge DNT,, = D,, so
g=1

Now from (6) and the fact that D'<]IT’, we have

T,.D)<DNI,=1,

hence D’ centralizes T, for all , and so

_ _ weak _ _ o

D < Z/: = l_[ Zy, Z,= Z(rn)

=Z(IT'A). (7
The inverse image Z' of Z modulo D* has the form
weak

Z:=[]%w D.<Z,<T, D'<Z<II. ®)
Put

A=A/Z =A/Z and H = the image of H in A for H < A. 9)
From (1), (8), and (9), we have

D=~D/DNZ =D/D =T (10)

For 1 <n<oo, the projection p,:A — I', induces a projection p,: A—
I./p.(Z)=T,/Z, Restricting to D=>~Ty (see (10)) and recalling that
pn(D) =T, by hypothesis, we obtain an epimorphism ', — I',,/Z,. Since 'y
and T, are estranged by assumption, we have I, =Z,. Now I, =Z,/D, =
Z,=ZT,), so T, is Abelian. By assumption, I'®® = 1. Thus T, = [; that is,
I', = D,. Hence

weak weak

D*:]_[Dn:]_[rnzn/gu

In view of (1), this implies that D = A, as claimed. This completes the proof of Pro-
position 9. O

Now we combine (86), Proposition 8, and Proposition 7 to obtain the following
theorem:

THEOREM 8. Let T’y be finitely generated, residually finite, and filtered as in 6.4.
Let
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Fl < F2 < F3 e
I, =SL(Z5), S<8 <8;<<Iy,
S, — Iy/T,©

be as in 6.10, with Ty acting on T',, via translation on S, (identified with FO/FE)")), hence
alsoon 1 =[], T Let

ol =10, oq)=(4q,q.q,...)

be the diagonally embedding, and put T = (5(I"1), T'g) < Ix . Then T is finitely gen-
erated, and I’ = Ax Ty, where A is the group of eventually constant sequences in T1.

Every finite-dimensional C representation p of U factors through some quotient
/A =@ x -« x Ty)xTy. We have

AT) =1lim ATy x -+ x [,))x ). (4)
n

A1) = [T 4°T) (4°)
n=0

and

r— (1‘[ f) x T, 0]
n=>1
Put d(n) = |S,| for n = 3. Then for n > 1, we have
A,) = A%T,) x T,
AO(FH) = SLd(n)((j)»
[, = SLyw(7)

(The final assertions, about A(I'), for n = 1, follow from the strict congruence sub-
group theorem and rigidity properties of SL;(7) for d = 3; see [4].)

7. Concluding Remarks

The results of this paper show that a number of sets associated to a finitely gen-
erated residually finite representation rigid group I' are finite or finite dimen-
sional, for example S,(I') (the isomorphism classes of simple n-dimensional
representations of I'), or 4,(I'). Thus we have a number of numeric sequences
associated to I'. We list them in this section. It should be of interest to relate
these numer—theoretic functions to each other, and to consider their growth
and/or other structural properties.

In addition to the objects previously defined, we also refer in the definition of the
sequences to SS,(I"), the isomorphism classes of semi—simple n dimensional represen-
tations of I'; and to V,(I'), the commutator quotient of U,(I").
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DEFINITION 11. Let I" be a finitely generated residually finite rigid group.
Associated to I' are the following numeric sequences:

(1) 5,(I) = |Su(D)]

(2)  ssu(I) = [SS,(D)]

(3) ay(I') = dim(4,(I))

@) pu(T) = | 4,(D)/4,(D)°|
(5)  gu(I') = dim(Q,(I"))
(6)  uy(I') = dim(U,(T"))
() va(I') = dim(V,(T"))

One may also speculate about the relation of these sequences to the sequence o, (I")
which counts the number of subgroups of I of index n. If T has (FAD), «,(I") grows
strictly slower than #'°2”, for example, one can conclude that I' is super rigid: for this
condition implies that for every prime p the pro-p completion of every finite index
subgroup of I' is p-adic analytic, and this latter condition implies dim(Q(I")) < oo.
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