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Abstract. A finitely generated group G is called representation rigid (briefly, rigid) if for every
n, G has only finitely many classes of simple C representations in dimension n. Examples

include higher rank S-arithmetic groups. By Margulis super rigidity, the latter have a stronger
property: they are representation super rigid; i.e., their proalgebraic completion is finite dimen-
sional. We construct examples of nonlinear rigid groups which are not super rigid, and which

exhibit every possible type of infinite dimensionality. Whether linear representation rigid
groups are super rigid remains an open question.
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1. Introduction

Let G be a finitely generated group and let k be an algebrically closed field of char-

acteristic zero (usually k ¼ C). G is said to be representation rigid (briefly, rigid) if,

for each n, G has only finitely many isomorphism classes of irreducible representa-

tions of degree n.

A useful way to study the representations of G over k is to consider the proalge-

braic completion AðGÞ of G, also called the Hochschild–Mostow group of G. AðGÞ
is the proalgebraic (more precisely, proaffine algebraic) group with a homomorphism

P:G! AðGÞ such that for any representation r of G there is unique algebraic repre-

sentation r of AðGÞ such that r � P ¼ r.

This means that the representation theory of G is equivalent to the algebraic repre-

sentation theory of AðGÞ.
The prounipotent radical of AðGÞ is denoted UðGÞ, and QðGÞ ¼ AðGÞ=UðGÞ denotes

the maximal proreductive quotient. In fact, AðGÞ is the semidirect product of UðGÞ
and any maximal proreductive subgroup [13]. The identity component is denoted

A0ðGÞ.
G is called representation super rigid (briefly, super rigid), if AðGÞ is finite-dimen-

sional (i.e. the identity component A0ðGÞ is an affine algebraic group). Super rigid

groups are rigid (Corollary (9)).
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Throughout this introduction, and usually also throughout this paper, we assume

that G is a finitely generated residually finite group. (Note that for a finitely gener-

ated group the finite-dimensional representations of G separate the points of G if

and only if G is residually finite.)

Examples of residually finite super rigid groups include the finitely generated tor-

sion groups constructed by Golod (usually known as the groups of Golod–Shafare-

vich type). For these groups G, A0ðGÞ ¼ f1g and so dimðAðGÞÞ ¼ 0. More interesting

examples are the S-arithmetic subgroups of higher rank semi-simple groups, whose

super rigidity was established by Margulis. Platonov conjectured that every finitely

generated linear rigid group is of arithmetic type. A counter example to this conjec-

ture was constructed in [5], where a rigid, even super rigid, linear nonarithmetic

group is produced.

The main result of the current paper is the construction of rigid groups which are

not super rigid. We produce examples of rigid groups where AðGÞ is infinite dimen-

sional in ‘all possible ways’. For a rigid group G, the identity component Q0ðGÞ is

semi-simple, and is in fact a direct product of simple simply-connected algebraic

groups Si (Corollary 3). We construct examples of rigid groups of each of the follow-

ing types:

(1) UðGÞ is infinite-dimensional and QðGÞ is finite-dimensional.

(2) UðGÞ is finite-dimensional (in fact UðGÞ ¼ f1g) and QðGÞ is infinite-dimensional,

infinitely many different simple factors Si occur, and each appears with a finite

multiplicity.

(3) UðGÞ ¼ f1g and Q0ðGÞ ¼ S11 	 S2 for some simple algebraic groups S1

and S2.

These examples are constructed in Sections 5 (of type (1)) and 6 (of types (2)

and (3)).

In Section 3, we give general results on the structure of the proalgebraic comple-

tion of a rigid group and we give criteria for G to be rigid in terms of properties of

AðGÞ. For example, we define the degree n proalgebraic completion AnðGÞ as

AðGÞ=KnðGÞ, where KnðGÞ is the intersection of the kernels of all the n dimensional

representations of AðGÞ. All n dimensional representations of G factor uniquely

through AnðGÞ.
One can easily see that AðGÞ ¼ lim

 �
AnðGÞ. We prove:

THEOREM A. The following are equivalent:

ð1Þ G is a rigid group.

ð2Þ 8n, AnðGÞ is an affine algebraic group.
ð3Þ 8n, dimðAðGÞÞ <1.

Thus rigidity is equivalent to AnðGÞ being finite-dimensional for all n, and

super rigidity means that there is a common bound for the dimensions of AnðGÞ
for all n.
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Here, AnðGÞ can be viewed as an analogue, for groups, of the process, for algebras,

of imposing the identities of n	 n matrix algebras.

For more conditions equivalent to the rigidity of G, see Section 3. We also show in

section (4) that if G is super rigid, it has a finite index normal subgroup G0 for which

AðG0Þ ¼ A
0ðG0Þ 	cG0 ¼ A

0ðGÞ 	cG0.

In Section 2 we prove two general results on the proalgebraic completion of any

finitely generated group G which are of independent interest:

THEOREM B. AðGÞ is simply connected ðin the sense of Definition 6 Þ.

THEOREM C. AðGÞ has profinite component lifting; i.e., a closed profinite subgroup
which meets every connected component.

In Section 7 we make some suggestions for further research on some sequences of

numerical invariants associated with rigid groups.

CONVENTIONS AND DEFINITIONS OF RIGIDITY

For the reader’s convenience, we collect here the notations, conventions and defini-

tions introduced in this introduction.

CONVENTION 1. k denotes an algebraically closed field of characteristic 0;

without loss of generality, k can be assumed to be C.

CONVENTION 2. G denotes a discrete group, usually assumed to be finitely

generated and residually finite. A proalgebraic group A is identified with its k rational

pojnts, and homomorphisms of these are assumed to be algebraic, and continuous

for the pro-Zariski topology. This applies in particular to profinite groups.

Representations are assumed to be finite k-dimensional linear representations.

ðProrepresentations are projective limits of these.Þ We write Gab for the Abelianiza-

tion, G=ðG;GÞ of G. Similarly for Aab ¼ A=ðA;AÞ, except that in the proalgebraic

category we always understand commutator subgroups to be closed, i.e. the closure

of the algebraic commutator subgroup.

NOTATION 1. RnðGÞ ¼ HomðG;GLnðkÞÞ

DEFINITION 1. A discrete or proalgebraic group is n representation rigid

(briefly, n rigid) if it has only finitely many isomorphism classes of simple

representations in dimension n or less. It is (representationÞ rigid if it is n rigid

for all n.

DEFINITION 2. A discrete or proalgebraic group is representation reductive

(briefly, reductive) if every representation is semi-simple.
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Let G be an algebraic group, U its unipotent radical and Q0 ¼ G0=U its connected

reductive quotient. Then G is rigid if and only it Q0 is semisimple, i.e. has finite cen-

ter, and G is reductive if and only if U ¼ f1g.

NOTATION 2. The profinite completion br:G! bG is universal for maps from G to

finite groups. It is injective if and only if G is residually finite.

NOTATION 3. AðGÞ denotes the proalgebraic completion of G. (See Definition 4

below). P:G! AðGÞ is the canonical homomorphism, universal with respect to maps

from G to algebraic (or proalgebraic) groups; KerðPÞ ¼ KerðbrÞ for G finitely gen-

erated. A0ðGÞ is the identity component of AðGÞ, UðGÞ is the prounipotnet radical of

AðGÞ, and QðGÞ is the maximal proreductive quotient AðGÞ=UðGÞ. Q0ðGÞ is the

identity component of QðGÞ.

DEFINITION 3. G is representation super rigid (briefly, super rigid) if AðGÞ is finite

dimensional.

REFERENCES

We rely on and commend to the reader the following references on proalgebraic

groups in general and proalgebraic completions in particular: ‘Representations

and representative functions of Lie groups’ [7] and ‘Pro-affine algebraic groups’ [8]

by G. Hochschild and G. D. Mostow; ‘Pro-affine algebraic groups’ [13] by

F. Minbashian; and [10, Chapter 4].

2. Proalgebraic Completions

2.1. BASICS

We begin with an arbitrary group G and define the proalgebraic completion of G in

terms of its universal property:

DEFINITION 4. A proalgebraic completion for G relative to k is a pair ðru;GÞ
consisting of a proalgebraic k group G and a homomorphism ru: G! G such that

for any proalgebraic group G and any homomorphism r: G! G there is a unique

morphism qr: G! G such that r ¼ ru � qr.

It is immediate fromthedefinitionthataproalgebraic completionforG isuniqueupto

unique isomorphism. Moreover, ruðGÞ is Zariski dense in G. In fact, let G denote the

Zariski closure of ruðGÞ in G. The universal property then furnishes a retraction

q:G! G4G. Since q and IdG are endomorphisms of G that agree on ruðGÞ, they are

equal, hence q ¼ IdG, i.e.G ¼ G. We denote this groupAkðGÞ. Moreover, it is also easy

to see that it is enough for a proalgebraic completion forG only to satisfy the definition

for the case thatG is an affine k group, and hence for the case thatG ¼ GLnðkÞ, some n.
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Our field k is usually fixed, and we generally drop the subscript k and write AðGÞ
for the proalgebraic completion. However, we point out that AðGÞ depends on the

field in a crucial way, and that for base change k 
 K we may have AKðGÞ 6¼
K�k AkðGÞ.

There are two standard constructions for AðGÞ: the first considers the product

P ¼
Y
fGLnðkÞ j r 2 HomðG;GLnðkÞÞ; n 2 Ng

of all the ranges of all the finite-dimensional k representations of G. P is a

proalgebraic group, and there is an obvious diagonal homomorphism P : G! P.

Then taking the Zariski closure of PðGÞ in P produces a pair satisfying

Definition (4).

The other construction begins by directly producing the ind-affine coordinate ring

O of a proalgebraic completion: by Zariski density, functions in O are determined by

their values on G, so O may be regarded as a ring of functions on G. Any function in

the coordinate ring of the range of any representation of G pulls back via ru to a

function in O. One checks that these are precisely the k-valued functions on G whose

translates by G span a finite-dimensional vector space over k; these are termed repre-

sentative functions on G. The set of representative functions on g is denoted OkðGÞ. It

is seen to be a Hopf algebra whose associated proalgebraic group, of k algebra

homomorphisms to k, AlgkðOkðGÞ; kÞ, is a proalgebraic for completion G
(G! AlgkðOkðGÞ; kÞ is given by sending g 2 G to evaluation at g.)

A third common construction of the proalgebraic completion is as the group of

tensor product preserving automorphisms of the forgetful functor from the category

of finite-dimensional G modules to the category of finite-dimensional k vector spaces

(‘Tannaka Duality’); see [11].

As per Notation 3 above, we use ðP;AkðGÞÞ to denote the (equivalent) proalgebraic

completions resulting from either construction.

The case G ¼ Z is instructive:

EXAMPLE 1. The Zariski closures of the representations of Z are the closures of

the cyclic subgroups of GLnðkÞ. These are Abelian, can have an (at most) one-

dimensional unipotent radical, a torus of aribtrary size, and a finite cyclic group on

top. The divisibility of the first two types of subgroups shows that the group is a

direct product of the three types. Hence, AðZÞ ¼ GaðkÞ 	 T	 bZ, where T ¼ TðZÞ is

an infinite-dimensional protorus whose character group is the divisible group

HomðZ; k	Þ ffi k	. Here UðZÞ ¼ GaðkÞ ffi k and A0ðZÞ ¼ GaðkÞ 	 T, and Q0ðZÞ is

isomorphic to T. Note that the groups AðZÞ, A0ðZÞ, and Q0ðZÞ ¼ TðZÞ are all

infinite-dimensional.

EXAMPLE 2. More generally, if G is Abelian, then AðGÞ ¼ UðGÞ 	 T	 bG. Here

UðGÞ is k dual to the k vector space HomðG; kÞ, (finite-dimensional if G is finitely

generated, zero if and only if G is torsion). The character group XðGÞ of the protorus

T is isomorphic to the torsion free quotient of HomðG; k	Þ. The torsion subgroup of
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HomðG; k	Þ is Pontryagin dual to bG. Now HomðG; k	Þ is torsion if and only if G is

torsion of bounded exponent. In all other cases, HomðG; k	Þ has infinite torsion-free

rank, as can easily be checked. Thus, either G is torsion of bounded exponent, and

T ¼ f1g, or else T is infinite-dimensional. Thus we have the equivalence of the

conditions:

(1) G is torsion of bounded exponent.

(2) XðGÞ is torsion.

(3) TðGÞ ¼ f1g.
(4) DimðTðGÞÞ <1.

Moreover, these conditions imply the following equivalent conditions:

(5) HomðG; kÞ ¼ f0g, i.e. G is torsion.

(6) UðGÞ ¼ f1g.

EXAMPLE 3. If G is no longer assumed to be abelian, then the above analysis

describesAðGÞab
¼ AðGabÞ (see Remark 1 below). Namely,AðGÞab

¼ U	 T	 P, where

P ¼dGab, and is Pontryagin dual to the torsion subgroup of XðGÞ :¼ HomðG; k	Þ; T
is the protorus whose character module is the torsion free quotient of XðGÞ; and U is

the k module dual of the k vector space HomðG; kÞ.

The following simple results on finite index subgroups, which we recall here with

proofs, are basic for our analysis.

PROPOSITION 1. Let G be a group and let G0 be a finite index subgroup. Then

AðG0Þ ! AðGÞ is injective, and q:G=G0 ! AðGÞ=AðG0Þ is bijective.

Proof. Every finite-dimensional G0 module M is a G0 submodule of a finite-

dimensional G module k½G� �k½G0�M, so every representative function on G0 is the

restriction of a representative function on G. Thus the restriction RðGÞ ! RðG0Þ is

surjective, which makes AðG0Þ ! AðGÞ is injective. If g1; . . . ; gd are coset repre-

sentatives for G=G0, then AðG0Þg1 [ � � � [ AðG
0Þgd is a closed subset of AðGÞ which

contains G, and hence AðGÞ, so q is surjective. The permutation representation of

G on k½G=G0� extends to a representation r of AðGÞ such that rðAðGÞÞ ¼ rðGÞ,
rðAðG0ÞÞ ¼ rðG0Þ, and the rðgiÞ are distinct modulo rðG0Þ. Hence, q is also

injective. &

COROLLARY 1. Let G be a group and let G0 be a finite index subgroup. Then

A0ðG0Þ ! A0ðGÞ is an isomorphism.
Proof. We consider AðG0Þ ! AðGÞ an inclusion. Without loss of generality, we

may asume that G0 is normal in G, which in turn implies that AðG0Þ is normal in AðGÞ
and, hence, so is the characteristic subgroup A0ðG0Þ. AðG0Þ=A0ðG0Þ is profinite and is

of finite index in AðGÞ=A0ðG0Þ, which implies that the latter is profinite as well. Thus

A0ðG0Þ is a connected normal subgroup of AðGÞ with profinite quotient, which

implies that A0ðG0Þ ! A0ðGÞ is an isomorphism. &
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Remark 1: Let G0 ! G! G1 ! 1 be an exact sequence of discrete groups.

(a) The sequence AðG0Þ ! AðGÞ ! AðG1Þ ! 1 is exact.

(b) Call G0 ! G observable if every representation of G0 is G0 equivariantly

embeddable in a representation of G1. This is the case for example when G0 is a finite

index subgroup of G. From the point of view of representative functions (see the dis-

cussion following Definition 4) we see that this is necessary and sufficient for the

injectivity of AðG0Þ ! AðGÞ.
(c) Taking G0 to be the commutator subgroup of G, so that G1 is the Abelianiza-

tion Gab ¼ G=ðG;GÞ, we see that AðGÞab
¼ AðGabÞ; and the latter group is as described

in Example 2 above. Since AðGÞ ffi UðGÞ 	jjQðGÞ, we have

AðGÞab
¼ UðGabÞ 	 TðGabÞ 	

dGab;

where

UðGabÞ ¼ UðGÞ=ðAðGÞ;UðGÞÞ

(recall that commutator groups are here always understood to be the closures of the alge-

braic commutator subgroups);UðGabÞ is k dual to the k vector space HomðG; kÞ. More-

over,QðGabÞ ¼ TðGabÞ 	
dGab is a proreductive Abelian group with character groupXðGÞ

¼ HomðG; k	Þ, and the character group XðTðGabÞÞ is the torsion free quotient of XðGÞ.
(d) For any group G we put SðGÞ ¼ ðQ0ðGÞ;Q0ðGÞÞ; a prosemisimple group, and

TðGÞ ¼ ZQ0ðGÞðSðGÞÞ
0; the connected center ofQ0ðGÞ, which is a protorus. (This nota-

tion is consistent with the notation TðGabÞ in (c) above.) We haveQ0ðGÞ ¼ SðGÞ � TðGÞ:

Remark 1 gives a necessary condition for rigidity, which we will now name and

give some equivalent formulations of:

DEFINITION 5. We introduce the following conditions on a group G.

(TAb) Gab
0 ¼ G0=ðG0;G0Þ is torsion for all G0 of finite index in G,

(BTAb) Gab
0 ¼ G0=ðG0;G0Þ is torsion of bounded exponent for all G0 of

finite index in G,

(FAb) Gab
0 ¼ G0=ðG0;G0Þ is finite for all G0 of finite index in G.

Remark 2: Clearly (FAb) implies (BTAb) implies (TAb), and they are all

equivalent if G is finitely generated. We have

(TAb) if and only if HomðG0; kÞ ¼ f0g for all G0 of finite index in G; and

(BTAb) if and only if HomðG0; k
	Þ ¼ f1g for all G0 of finite index in G.

G ¼ Q=Z satisfies (TAb) but not (BTAb). G ¼ Fp½t� satisfies (BTAb) but not (FAb).

If G is a weak direct product of infinitely many copies of s finite simple group, then G
satisfies (FAb) but bG is not rigid.

PROPOSITION 2. Let G be a discrete group.
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ð1Þ Condition ðaÞ implies condition ðbÞ:

ðaÞ bG is rigid,

ðbÞ G has ðFAbÞ.

ð2Þ The following conditions on G are equivalent:

ðaÞ G has ðBTAbÞ,

ðbÞ TðGÞ ¼ f1g,
ðcÞ DimðTðGÞ <1.

ð3Þ The following conditions on G are equivalent:

ðaÞ ðTAbÞ,

ðbÞ UðGÞ ¼ ðA0ðGÞ;UðGÞÞ.

When G is finitely generated, all of the above conditions are equivalent.

From ð2Þ it follows that if there is one representation r:G! GLnðkÞ such that

rðA0ðGÞÞ has a nontrivial linear character, then TðGÞ is infinite-dimensional.
Proof. It will suffice to prove the following implications:

(1)(a) implies (1)(b):

Let G0 be a finite index subgroup of G. If Gab
0 is infinite then G0 has infinitely many

one-dimensional representations with finite image, and these induce to representa-

tions with finite image of G in dimension ½G : G0� with infinitely many distinct char-

acters, thus violating rigidity of bG.

(2)(a) implies (2)(b):

If TðGÞ 6¼ f1g there is an epimorphism A0ðGÞ ! k	. This appears in an algebraic

quotient of AðGÞ, whose connected component pulls back to an open subgroup of

AðGÞ whose intersection, G0, with G is a finite index subgroup mapping to k	 with

Zariski dense (i.e. infinite) image. Thus Gab
0 is not torsion of bounded exponent, con-

tradicting (BTAb).

(2)(c) implies (2)(a):

Let G0 be a finite index subgroup of G, and XðG0Þ ¼ HomðG0; k
	Þ. Then TðGab

0 Þ is a

quotient of TðGÞ, and hence finite-dimensional, by hypothesis. By Example (2), this

can happen only if TðGab
0 Þ ¼ f1g, i.e. if XðG0Þ is torsion, and this happens only if Gab

0

is torsion of bounded exponent, whence (BTAb).

(3)(a) implies (3)(b):

Let W ¼ UðGÞ=ðA0ðGÞ;UðGÞÞ. If W 6¼ f1g then there is an algebraic quotient G of

AðGÞ such that ðG0Þ
ab has a nontrivial unipotent radical, which is a direct factor. This

produces, as usual, a finite index subgroup G0 of G which maps to k with Zariski

dense (i.e. nonzero) image, whence Gab
0 is not torsion, contradicting (TAb).

(3)(b) implies (3)(a):

If (TAb) fails then HomðG0; kÞ 6¼ f0g for some finite index G0 in G. This entails a

non-trivial unipotent quotient of AðG0Þ, and so W 6¼ f1g.

(1)(b) implies (1)(a) for G finitely generated:
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If bG is not rigid then, in some GLnðkÞ, G has infinitely many conjugacy classes of

representations with finite image, and therefore images of unbounded size. Let Gn
denote the intersection of all subgroups of G of index at most j ¼ jðnÞ as in Jordan’s

Theorem (below). Since G is finitely generated, the latter are finite in number, and so

Gn itself has finite index in G. Moreover, Jordan’s Theorem implies that, for each

representation r : G! GLnðkÞ, rðGnÞ is Abelian. Since these images have unboun-

ded size, it follows that Gab
n is infinite, thus violating hypothesis (FAb). &

In the previous proof, and in other results below, we have used Jordan’s Theorem.

We recall its statement and some consequences:

JORDAN’S THEOREM There is a number j ¼ jðnÞ such that each finite subgroup of

GLnðkÞ has an Abelian normal subgroup of index at most j.

Consequences. For an integer N > 0, call a group G N-residual if the quotients of G

of order at most N separate the points of G. For any group G, let GN denote the

intersection of the normal subgroups of index at most N. Then G=GN is the N-resi-

dual quotient of G. If G is finitely generated (discrete or profinite) then it is clear that

G=GN is finite. If the n-dimensional representations of G separate points, then it fol-

lows from Jordan’s Theorem that G jðnÞ is Abelian. Thus, if G is finitely generated and

its n-dimensional representations separate points then G jðnÞ is an Abelian normal

subgroup of finite index (and G=G jðnÞ is jðn)-residual).

If G is rigid, then Proposition (2) (1)(a) holds (it is a special case of rigidity). Hence:

COROLLARY 2. A finitely generated rigid group has ðFAbÞ.

2.2. SIMPLY CONNECTIVITY OF PROALGEBRAIC COMPLETION IDENTITY COMPONENT

In this section, we observe that, for a finitely generated group G, the identity compo-

nent A0ðGÞ of AðGÞ is simply connected, in the sense which we now define.

DEFINITION 6. A connected proalgebraic group G is said to be simply connected

if every surjection p:G1 ! G where G1 is connected proalgebraic and the kernel of p

is finite is an isomorphism. (It follows that the same property holds if we assume only

that Ker(p) is profinite.)

In terms of structure, this signifies the following. Write G ¼ U	jjQ, where U is the

prounipotent radical of G, and Q is connected and proreductive. In turn, we can

write Q ¼ S � T, where S ¼ ðQ;QÞ is connected prosemisimple and T ¼ ZQðSÞ
0 is a

protorus. Further we can write S as an almost direct product of simple algebraic

groups SI, in the sense that the map q:
Q
SI ! S is surjective with central kernel.

Now, with this notation, G is simply connected if and only if Q ¼ S	 T, each SI
is simply connected (as algebraic group), the map q is an isomorphism, and the char-

acter group XðTÞ is divisible.
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The following proposition gives a more convenient version of the simply connec-

ted property:

PROPOSITION 3. Let G be a connected proalgebraic group. The following are

equivalent:

ð1Þ G is simply connected

ð2Þ If H is a normal subgroup of G such that G=H is affine, and q: �G! G=H is an

eprimorphism of affine groups with finite kernel, then there is a homomorphism

r:G! �G such that q � r is the canonical map G! G=H.

Proof. Suppose G is simply connected and q: �G! G=H is a map as in (2). Let

G2 ¼ G	G=H �G, and let p1:G2 ! G be projection on the first factor. Then p1 is

surjective (since q is) and Kerð p1Þ ffi KerðqÞ is finite. Then, by hypothesis, p:G0
2 ! G

is an isomorphism. Then r ¼ p2 � p
�1, where p2: G

0
2 4G2 ! �G is projection on the

second factor, is the desired homomorphism.

Now suppose that G satisfies (2) and that there is a surjection p:G1 ! G where G1

is connected proalgebraic and the kernel K of p is finite. Let H1 be a connected nor-

mal subgroup of G1 such that G1=H1 is affine and such that K \H1 is the identity.

Let H ¼ pðH1Þ. Then q:G1=H1 ! G=H is a surjection of affine groups with finite ker-

nel K, and so there is a map f:G! G1=H1 such that qð fðgÞÞ ¼ gH for g 2 G. It fol-

lows that fðHÞ4K, and since H is connected and K finite, this implies that

fðHÞ ¼ feg. But then f factors through G=H and provides a section G=H! G1=H1

of q. Thus G1=H1 ffi G=H	 K, and since G1=H1 is connected this implies that

K ¼ 1 and p is an isomorphism. So G is simply connected. &

Now we show that identity components of proalgebraic completions of finitely

generated groups have this property:

THEOREM 1. Let G be a finitely generated group. Then A0ðGÞ is simply connected.
Proof. We apply Proposition 3. Assume that H is normal in A0ðGÞ and such that

A0ðGÞ=H is affine, and q:G! A0ðGÞ=H is surjective with finite kernel with G con-

nected. Suppose H1 4H is also normal in A0ðGÞ with affine quotient. Then

G1 ¼ ðG	A0ðGÞ=H A
0ðGÞ=H1Þ

0
! A0ðGÞ=H1

by projection on the second factor is also surjective with finite kernel, and a map

A0ðGÞ ! G1 will give the desired map to G when followed by projection on the first

factor. So we can replace H by smaller normal subgroups. In particular, we can

replace H by a subgroup normal in AðGÞ. (If AðGÞ ¼ lim
 �

AðGÞ=Ha then

A0ðGÞ ¼ lim
 �

A0ðGÞ=ðA0ðGÞ \HaÞ).

Let r be the representation of G corresponding to AðGÞ ! AðGÞ=H and let

G0 ¼ r�1ðrðGÞ \ A0ðGÞ=HÞ. Then rðG0Þ is Zariski dense in A0ðGÞ=H. Let

L ¼ q�1ðrðG0ÞÞ. L is an extension of rðG0Þ by the finite Abelian group K. L is

a finitely generated linear group and, hence, residually finite. Let L1 be a finite
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index normal subgroup of L with L1
\ K the identity. Let G1 ¼ qðL1

Þ. The exten-

sion L of G0 by K is thus split over G1. This means that the map G1 ! A0ðGÞ=H
lifts to a map G1 ! G. This in turn gives rise to a map AðG1Þ ! G and, hence,

a map A0ðG1Þ ! G. By Corollary 1, A0ðG1Þ ! A0ðGÞ is an isomorphism, so we

have a map A0ðGÞ ! G as required by proposition 3. It follows that A0ðGÞ is simply

connected. &

As an important consequence of simple connectivity, we have the following:

COROLLARY 3. Let G be a finitely generated group. Then Q0ðGÞ is the direct
product of a protorus TðGÞ with uniquely divisible character group and the closed
commutator subgroup SðGÞ of Q0ðGÞ; SðGÞ is the ð possibly infiniteÞ direct product of
simply connected simple algebraic groups.

It is possible of course for TðGÞ in Corollary 3 to be trivial. From Proposition 2(2) once it is
nontrivial, then it is in fact infinite-dimensional.

2.3. LIFTING PROFINITE QUOTIENTS, AND PROJECTIVE PROALGEBRAIC GROUPS

DEFINITION 7. Let G be a proalgebraic group. A component quotient lift

(briefly, lifting) is a profinite subgroup of G which maps onto G=G0.

The main goal of this section will be to show that all proalgebraic groups admit

component quotient lifts.

For the case of an affine algebraic group, such liftings are due to V. Platonov

[14]. We obtain the existence of liftings in the proalgebraic case by a reduction

to the case treated by Platonov: we introduce the notion of projective proalgebraic

group, and show that projectivity can be tested on affine surjections. From this, we

deduce that a projective profinite group is projective as a proalgebraic group. It

follows that free profinite groups are projective. This provides a component lifting

for the case of AðF Þ, F free, from which the existence of component liftings in gen-

eral then will follow,

We begin with the definition of projective proalgebraic:

DEFINITION 8. A proalgebraic group P is projective if for every epimor-

phism a:A! B of proalgebraic groups and for every homomorphism f:P! B

there is a homomorphism f:P! A such that f ¼ a � f. We call f a lifting of f

(through a).

Symbolically, we want to complete the diagram

A
#

P ! B
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with a diagonal map

A
% #

P ! B

For example, when F is a free group (possibly on an infinite set), then AðF Þ is

clearly a projective proalgebraic group.

The following proposition is the key step in our reduction argument.

PROPOSITION 4. Let P be a proalgebraic group. The following are equivalent:

ð1Þ P is projective.

ð2Þ For every ða; f Þ as in Definition ð8Þ with Ker ðaÞ algebraic f admits a lifting
through a.

ð3Þ For every ða; f Þ as in Definition ð8Þ with A algebraic f admits a lifting through a.

Proof. Clearly (1) implies (2) implies (3). We prove the converse of each.

Assume P satisfies (3) and let a:A! B, f:P! A, be such that a has algebraic ker-

nel K. Since K has the descending chain condition on closed subgroups, and the

closed normal subgroups of A with affine quotient have intersection the identity,

we can find such a normal subgroup N of A with N \ K ¼ feg. We can identify B with

A=K and hence identify B=aðN Þ with A=KN. Then A=N is algebraic and the induced

maps A=N! A=KN and P! A=KN admit an extension f:P! A=N. Then

F ¼ ð f;fÞ maps P to the fibre product A=K	A=KN A=N. On the other hand, it is easy

to see that since the intersection K \N is the identity, the map of A to the fibre pro-

duct induced by the canonical projections A! A=N and A! A=K is an isomorph-

ism (‘Chinese Remainder Theorem’ for groups). Thus we can regard F as a map to

A, and it is an extension of a and f as needed for (2).

Now assume P satisfies (2) and assume a:A! B is any surjection and f:P! B is

a morphism. It will be convenient to write B as A=L. For any normal subgroup N of

A contained in L, we will call a morphism f:P! A=N an N partial extension for f if

the composition of f and A=N! A=L is f. The set N of pairs ðN;fÞ where f is an N

partial extension of f is partially ordered: we say ðN;fÞ4 ðN0;f0Þ if N04N and f0

induces f mod N. We claim that any chain C ¼ fðNi;fiÞ j i 2 Ig in N has a maximal

element. (Note: the indexing set I in C is not necessary countable.) Let N0 ¼ \iNi.

A=N0 ¼ lim
 �

A=Ni and the maps fi induce a map f0:P! A=N0. ðN0;f0Þ is a max-

imal element for C. By Zorn’s lemma, N has a maximal element ðN;fÞ. If N ¼ feg, f
is an extension of a, f as desired. If not N 6¼ feg, then there is a normal subgroup M

of A with A=M affine such that M \N ¼ L is a proper subgroup of N. The surjection

A=L! A=N has algebraic kernel K ¼MN=M. By (2), there is an extension c for

A=L! A=N and f:P! A=N, which implies that ðN;fÞ < ðL;cÞ, contrary to the

maximality of ðN;fÞ. Thus N ¼ feg and (1) follows. &
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As previously noted, Platonov proved component lifting for algebraic groups.

Using Proposition (4), we use this to conclude that projective profinite groups are

projective proalgebraic:

COROLLARY 4. A profinite group which is projective in the category of profinite

groups is projective in the category of proalgebraic groups.

Proof. Let P be a profinite group which is projective in the profinite group cate-

gory. By Proposition 4, P will be projective proalgebraic if morphisms f:P! B and

a:A! B, a onto andA and B algebraic, have an extension. SinceB is algebraic, fðPÞ is

finite. Let C ¼ a�1ð fðPÞÞ. By [14] there is a finite subgroup F4C mapping onto fðPÞ.

Since P is profinite projective, there is an extension f:P! F for the maps P! fðPÞ

and F! fðPÞ. Then regarding f as a map to A we have an extension for f and a. &

It is clear that the profinite completion bF of a free group F is projective profinite

and, hence, by Corollary 4 is projective proalgebraic.

COROLLARY 5. Let F be a free group. Then there is a profinite subgroup D of AðF Þ
which maps isomorphically onto AðF Þ=A0ðF Þ.

We can regard any group G as a homomorphic image of a free group F, which

makes AðGÞ a homomorphic image of AðF Þ and, hence, AðGÞ=A0ðGÞ an image of

AðF Þ=A0ðF Þ. If D is a profinite subgroup of AðF Þ as in Corollary 5, then its image

in AðGÞ maps onto AðGÞ=A0ðGÞ. Hence,

COROLLARY 6. Let G be a group. Then there is a profinite subgroup of AðGÞ which
meets every coset of A0ðGÞ.

The argument used to establish Corollary 6 applies to any proalgebraic group

which is a homomorphic image of AðF Þ:

COROLLARY 7. Let G be a proalgebraic group. Then there is a profinite subgroup of

G which meets every coset of G0.

Proof. Let ga, a 2 A be elements of G that generate G=G0 as a proalgebraic

group.Let F be a free group on xa, a 2 A and define a morphism F! G by xa 7! ga.

By the universal property of proalgebraic completions, this extends to a morphism

p:AðF Þ ! G which is surjective and, by construction, gives rise to a surjection

AðF Þ=A0ðF Þ ! G=G0. If D is a profinite subgroup of AðF Þ as in Corollary 5, then

pðDÞ is a profinite subgroup of G which maps onto G=G0, as asserted. &

3. The Proalgebraic n Completion and Rigidity Criteria

There is an analogue of AðGÞ which has a corresponding universal property for

representations of dimension n or less. In this section we define it and discuss its con-

nection with rigidity. We begin with a definition:
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DEFINITION 9. Let KnðGÞ be the intersection of the kernels of all the algebraic

representations of AðGÞ of dimension at most n. The proalgebraic n completion of G,

denoted AnðGÞ, is the quotient AðGÞ=KnðGÞ. We let UnðGÞ and QnðGÞ denote the

prounipotent radical and maximal reductive quotient of AnðGÞ. We use VnðGÞ for the

quotient of UnðGÞ by its closed commutator subgroup.

It is clear from the definition that representations of G of dimension n or less

extend uniquely to representations of AnðGÞ of the same dimension. Since the

representations of G are assumed to separate points (of G and hence of AðGÞ), the

representations of dimension n or less separate the points of AnðGÞ.
As an application of Corollary 7 and Jordan’s Theorem, we have the following

property for AnðGÞ when G satisfies (FAb):

COROLLARY 8. Let G be a finitely generated group and n a positive integer.

ð1Þ There exists a finite index normal subgroup Gn of G such that

AnðGnÞ=A0
nðGÞ ¼ ðQnðGnÞ=QA0

nðGÞÞ

is Abelian.

ð2Þ If G satisfies ðFAbÞ then AnðGnÞ=A0
nðGÞ is finite, Q

0
nðGÞ is prosemisimple and we

can choose Gn in ð1Þ so that AnðGnÞ ¼ A0
nðGÞ.

ð3Þ If G satisfies ðFAbÞ and DimðQnðGÞÞ <1, then QnðGÞ is algebraic and rigid.

Proof. Let D be a profinite subgroup of AnðGÞ such that AnðGÞ ¼ A0
nðGÞD. Since G

is finitely generated we can select D to be finitely generated as a profinite group. The

consequences of Jordan’s Theorem furnish an Abelian normal subgroup D jðnÞ of

finite index in D. Then A0
nðGÞ �D

jðnÞ is an open normal subgroup of AnðGÞ whose

intersection Gn with G satisfies the condition of (1).

If G satisfies (FAb) then the Abelian image of Gn modulo A0
nðGÞ must be finite, so,

by making Gn smaller by finite index we can put Gn inside A0
nðGÞ. From this and Pro-

position 2, (2) follows. Clearly (3) follows now from (2). &

We are going to see the connection between rigidity and the finite dimension-

ality of the AnðGÞ. In this connection, we note that a proalgebraic group is algebraic

if (and only if ) it is finite-dimensional and has finitely many connected components.

The main result of this section is the following theorem:

THEOREM 2. The following are equivalent for the finitely generated group G:

ð1Þ G is rigid.

ð2Þ 8n, AnðGÞ is rigid.
ð3Þ 8n, AnðGÞ is an algebraic group.
ð4Þ 8n, AnðGÞ is finite-dimensional.
ð5Þ 8n, QnðGÞ is rigid.

32 HYMAN BASS ET AL.



ð6Þ 8n, QnðGÞ is an algebraic group.
ð7Þ 8n, QnðGÞ is finite-dimensional.

We will prove Theorem 2 by means of Theorem 3 below, which makes more pre-

cise the connections between the various properties.

We begin by enumerating the various rigidity and finiteness conditions to be

considered:

NOTATION 4. n denotes a positive integer

ðRÞn G is n-rigid.

ðARÞn AnðGÞ is rigid.

ðAAÞn AnðGÞ is an algebraic group.

ðADÞn DimðAnðGÞÞ <1.

ðQRÞn QnðGÞ is rigid.

ðQAÞn QnðGÞ is an algebraic group.

ðQDÞn DimðQnðGÞÞ <1.

For each of the properties P ¼ R;AR;AA;AD;QR;QA;QD we will write ðPÞ1 to

mean that ðPÞn holds for all n. Note that ðRÞ1 is equivalent to rigid.

We have some obvious implications:

(1) ðQRÞn is equivalent to ðARÞn and both imply ðRÞn.

(2) ðAAÞn holds if and only if ðADÞn holds and AnðGÞ=A0
nðGÞ is finite.

(3) ðQAÞn holds if and only if ðQDÞn holds and QnðGÞ=Q0
nðGÞ is finite.

(4) Thus ðADÞn and ðQAÞn implies ðAAÞn.

(5) By Corollary 8 (2) ðADÞn and ðFAbÞ implies ðAAÞn; and

(6) ðQDÞn and ðFAbÞ implies ðQAÞn.

(7) Finally, we note that ðRÞ1 implies ðFAbÞ.

The following theorem records some of the main relationships among the proper-

ties of Notation 4.

THEOREM 3. For all integers n the following implications hold:

ðIÞ

ðRÞn2

+

ðAAÞn ) ðARÞn ) ðADÞn
m + +

½ðQDÞn þ ðFAbÞ� ) ðQAÞn ) ðQRÞn ) ðQDÞn

ðIIÞ ðAAÞn ) ðRÞn ) ðQRÞn
ðIIIÞ ðRÞ1; ðAAÞ1; ðARÞ1; ðADÞ1; ðQAÞ1; ðQRÞ1; ðQDÞ1 are all equivalent.

Proof. Assertion (III) follows from (I) and (II). In the proof of (I) and (II), the

only implications that are nonobvious or are not covered by the discussion above,

are the following:
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ðRÞn ) ðQAÞn, whence ðQRÞn ) ðQAÞn. Assume ðRÞn (that G is n-rigid). For a

representation r of AðGÞ, we will denote by rss the associated semisimple representa-

tion. It is easy to see that rssðAðGÞÞ is the quotient of rðAðGÞÞ by its unipotent radical.

It follows that the representations frss j r 2 RnðGÞg separate the points of QnðGÞ; i.e.,

their kernels have trivial intersection. Since G is n-rigid, there are only finitely many

such kernels, which implies that QnðGÞ is embedded in a finite product of algebraic

groups, and hence is algebraic.

½ðQDÞn þ ðFabÞ� ) ½ðQRÞn þ ðQAÞn� This follows from Corollary 8(3) above.

ðRÞn2 ) ðAAÞn. Since n2-rigidity implies n-rigidity, we already have ðQAÞn, proved

above, so it remains to show the finite-dimensionality of UnðGÞ. This follows from

Proposition 5(2) below. &

PROPOSITION 5.

ð1Þ Let G be a group, let S be a simple G-module of dimension d, and let V be an

S-isotypic G-module generated by r elements. Then DimðVÞ4 rd2.

ð2Þ If G ¼ G is finitely generated and n2-rigid then DimðUnðGÞÞ <1.

Proof. We are grateful to R. Guralnick for the proof of part (1).

Proof of (1): An easy induction argument shows that it suffices to treat the case

r ¼ 1, and in this case it suffices to show that Sdþ1 cannot be G generated by a single

element v ¼ ðv0; . . . ; vdÞ 2 S
dþ1. Since V has dimension d, the components of v are

linearly dependent: there are ai 2 k, 04 i4 d not all 0 such that
P
aivi ¼ 0. Then

v belongs to the kernel K of the nonzero G linear map l:Sdþ1 ! S by

ðw0; . . . ;wdÞ 7!
P
aiwi contrary to the assumption that v generates.

Proof of (2): Since the n-dimensional representations of the prounipotent

group UnðGÞ separate points, it is nilpotent. Thus, it suffices to show the finite

dimensionality of the semisimple G-module V ¼ UnðGÞ
ab. Since G is finitely gener-

ated, UnðGÞ, being a normal semidirect factor of AnðGÞ, is finitely generated as a

normal subgroup, which implies that V is finitely generated as a G-module. The sim-

ple submodules of V appear as subquotients of n-dimensional representations of

UnðGÞ and so they have dimension <n2. Hence, by n2-rigidity of G, there are only

finitely many classes of them. Now the finite-dimensionality of V follows from

part (1). &

Note that Theorem 3 III is simply a restatement of Theorem 2, and hence the latter

is now proved.

COROLLARY 9. A representation super rigid group is representation rigid.

Proof. If G is super rigid, AðGÞ is finite-dimensional by definition. Hence AnðGÞ is

finite-dimensional for all n, and so by Theorem 2 G is rigid. &

The finite-dimensionality of UðGÞ, in fact the finite-dimensionality of VðGÞ, also

implies rigidity in the presence of (FAb), as we now show.
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THEOREM 4. Let G be a finitely generated group with ðFAbÞ, and suppose that UðGÞ
is finitely generated as a prounipotent group. Then G is rigid.

Proof. We assume that G has (FAb), that UðGÞ is finitely generated (which means

VðGÞ is finite-dimensional) but that G is not rigid. It follows from Theorem 3 that for

some n, the prosemisimple group Q0
nðGÞ has infinitely many simple factors iso-

morphic to some simple algebraic subgroup S4GLnðkÞ. It follows that we have an

epimorphism A0
nðGÞ ! P ¼ SN ¼

Q
i5 0 Si with each Si is isomorphic to S. Let

qi:P! S denote projection on the ith factor. Choose the finite index subgroup

Gn4G as in Corollary 8 (2) so that Gn projects onto (a Zariski dense subgroup of)

A0
nðGÞ. Let pi:Gn! S be the composition of this projection with qi. We claim that,

for i 6¼ j, we cannot have pi ¼ a � pj for any a 2 AutðSÞ, in particular any inner

automorphism. For otherwise the image by ð pi; pjÞ of Gn in S	 S would lie in the

graph of a ¼ fðs; aðsÞ j s 2 Sg, a proper algebraic subgroup of S	 S, contradicting

Zariski density of the image of Gn. Let ½ pi� denote the class of pi in the (categorical)

quotient variety X of HomðGn;SÞ by the conjugation of S. By choosing a simple S

module V, and noting that pi makes V a simple Gn module as well, by Zariski density,

it follows that the pi have closed S orbits in HomðGn;SÞ, and so the points ½ pi� of X

are all distinct.

Let L ¼ LieðSÞ and Ad ¼ AdS:S! GLðLÞ the adjoint representation, a simple S

representation since S is a simple algebraic group. By Zariski density of piðGnÞ, and

the observation above, the representations ri ¼ Ad � pi are pairwise non isomorphic

simple Gn representations.

It follows from a theorem of Weil [15] that the tangent space T½pi�ðXÞ embedds in

the cohomology space H1ðGn; riÞ. From [10] it follows that for any simple Gn repre-

sentation r we have

H1ðGn; rÞ ffi HomGn ðVðG
nÞ;VrÞ;

and so H1ðGn; rÞ 6¼ 0 implies that r occurs in VðGnÞ ¼ VðGÞ. Thus the infinitely many

ri occur in VðGÞ. Our hypothesis implies that VðGÞ is finite-dimensional, so this is a

contradiction. &

The proof of Theorem 4 actually shows that under the condition (FAb), if G
is not rigid then for some n both UnðGÞ and VnðGÞ are infinite-dimensional. We

deduce:

COROLLARY 10. The following are equivalent for the group G:

ð1Þ G is rigid

ð2Þ G has ðFAbÞ and for every n, UnðGÞ is finite-dimensional
ð3Þ G has ðFAbÞ and for every n, VnðGÞ is finite-dimensional.

We further mention that if G has (FAb) and is not rigid, then we can deduce that

UðGÞ is not nilpotent. As in the proof of Theorem 4, there is a finite index subgroup D
of G which has infinitely many nonconjugate Zariski dense homomorphisms into a
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simple algebraic group S. One can show that this implies that there is a curve of such,

and therefore that D has a Zariski dense representation into the pro-affine group

Sðk½½t��Þ. (See [1] for the analogous case where GLn replaces S.) Sðk½½t��Þ is isomorphic

to U	jjSðkÞ, where U is an infinite-dimensional prounipotent group whose associated

graded group is isomorphic to S� k½½t��, where S ¼ LieðSÞ. One sees, using the den-

sity of the image of D in SðkÞ and from the simplicity of S as an S module that UðDÞ
maps onto U. Hence we deuce:

COROLLARY 11. Suppose G has ðFAbÞ and that UðGÞ is nilpotent. Then G is rigid.

To summarize: we have shown that various finiteness assertions on AðGÞ imply, or

are even equivalent to, rigidity. (We are including the observation that (FAb) is

equivalent to dimðTnðGÞÞ <1:Þ

In particular, we have shown:

COROLLARY 12. If either the solvable radical or the maximal reductive quotient of

AðGÞ are finite-dimensional, then G is rigid.

In Sections 5 and 6 we exhibit examples of rigid groups with infinite dimensional

unipotent or reductive parts. These show that the converse of Corollary 12 is not

true. On the other hand, if both the unipotent and reductive parts of AðGÞ are

finite-dimensional, then AðGÞ is finite-dimensional. We will see in Section 4 that in

this case G is super rigid.

4. Finite-Dimensional Proalgebraic Completions and Super Rigid Groups

Let G be a finitely generated group. Its proalgebraic completion AðGÞ is finite-dimen-

sional when the latter’s identity component A0ðGÞ is finite dimensional (that is, is an

affine proalgebraic group). By Corollary 6, there is a profinite subgroup D of AðGÞ
such that AðGÞ ¼ A0ðGÞ � D (not necessarily semidirect, of course.)

Consider the homomorphism D! AutðA0ðGÞÞ given by conjugation. Since the

automorphism group of an affine algebraic group is a discrete group extended by

an affine algebraic group, the image of D in AutðA0ðGÞÞ is finite and, hence, the kernel

D0 is of finite index in D. D0 commutes with A0ðGÞ. As it is normal in D, A0ðGÞ � D0 is a

finite index normal subgroup of AðGÞ.
Consider the intersection F ¼ A0ðGÞ \ D. This is a closed profinite subgroup in the

affine algebraic group A0ðGÞ and, hence, finite. It follows that there is a finite index

normal subgroup D1 of D such that F \ D1 is the identity. It follows that A0ðGÞ � D1 is

a semidirect product and is a finite index normal subgroup of AðGÞ.
Let D0

¼ D0 \ D1. Then A0ðGÞ � D0
¼ A0ðGÞ 	 D0 is a finite index normal subgroup

of AðGÞ. Let G0 ¼ G \ ðA0ðGÞ 	 D0
Þ (we identify G with its image in AðGÞ). G0 is of

finite index in G. The injective map AðG0Þ ! AðGÞ has image in A0ðGÞ 	 D0 and indu-

ces an isomorphism A0ðG0Þ ! A0ðGÞ. It follows that AðG0Þ=A0ðG0Þ ¼
cG0 maps
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injectively to D0
¼ ðA0ðGÞ 	 D0

Þ=A0ðGÞ. We replace D0 by this image, and sum up the

result in the first assertion of the following theorem:

THEOREM 5. let G be a finitely generated linear group and suppose that its proal-

gebraic completion AðGÞ is finite-dimensional. Then there is a normal subgroup G0 of

finite index in G such that AðG0Þ ffi A0ðG0Þ 	
cG0.

ð1Þ Let p be the composite G0 ! AðG0Þ ! A0ðG0Þ, the second map being projection.

The kernel of p is finite. G0 may be chosen so that p is injective.

ð2Þ Let r: G0 ! GLnðkÞ be any representation of G0. Then there is a representation

ra : A
0ðG0Þ ! GLnðkÞ and a finite index subgroup G0

1 of G
0 such that r ¼ ra � p

on G0
1.

ð3Þ Let r: G! GLnðkÞ be any representation of G. Then there is a representation
ra : A

0ðG0Þ ! GLnðkÞ and a finite index subgroup G1 of G such that r ¼ ra � p
on G1.

Proof. As noted, the isomorphism AðG0Þ ffi A0ðG0Þ 	
cG0 is a consequence of the

analysis preceding the theorem.

The kernel of p is N ¼ G0 \ D0 (we identify G0 with its image in AðG0Þ). The pro-

finite subgroup D0 of AðG0Þ has finite image in every affine quotinet of AðG0Þ, which

means that N has finite image in every representation of G0, including a faithful one.

So N is finite and there is a finite index normal subgroup of G contained in G0 and

meeting N in the identity. Replacing G0 by this subgroup makes p injective. This

proves (2).

Now suppose r is a representation of G0, and let G denote the Zariski closure of

the image of r. Let ra denote the map AðG0Þ ! G induced from r. raðD0Þ is finite. r,

and ra, factor as

G0 ! A0ðG0Þ 	 raðD0Þ ! G:

We take G0
1 to be the inverse image of A0ðG0Þ under the first map; it has the proper-

ties claimed in (2).

Finally, (3) is an obvious consequence of (2). &

5. Rigid Groups with Large Prounipotent Radical

5.1. CONSTRUCTION

Let

Gi4Gi ði ¼ 0; 1Þ ð1Þ

be super-rigid embeddings of finitely generated infinite groups. Let

M ¼ a Z½G0�-module, free of finite rank over Z: ð2Þ

and satisfying

M=ðG00;MÞ is finite for all G00 of finite index in G0: ð3Þ
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Here M=ðG00;MÞ ¼ H0ðG00Þ ¼M=JM, where J is the augmentation ideal in Z½G00�.
The commutator notation applies inside M	jjG0.

Now put

Gþ ¼ G0 	 G1

U ¼M�Z Z½G1�; a finitely generated Z½Gþ�-module, and

G ¼ U	jjGþ; a finitely generated group.

ð4Þ

We will show that G is rigid, that Q0ðGÞ ¼ G0 	 G1 (so finite dimensional) and

that UðGÞ is infinite dimensional. (See Theorem 6 below for a precise statement.)

LEMMA 1. ðFAbÞ If G0 <F G, then ðG0Þab
¼ 1.

Proof. We are at liberty to replace G0 by a smaller finite index subgroup. First

replace G0 by U0 	jjG0þ, where G0þ ¼ G0 \ Gþ <F Gþ and U0 ¼ G0 \U <F U, a G0þ -

invariant subgroup. We can then further reduce to the case G0þ ¼ G00 	 G01 where

G0i ¼ G0þ \ Gi for i ¼ 0; 1. Then we have

ðG0Þab
¼ ðU0	jjG0þÞ

ab
¼ ðU0=ðG0þ;U

0ÞÞ 	 ðG0þÞ
ab:

Since the Gi are rigid, so is Gþ ¼ G0 	 G1. Thus it satisfies (FAb) and so ðG0þÞ
ab is

finite.

It remains to show that ðU0=ðG0þ;U
0ÞÞ is finite. The finite group U=U0 is a G0þ mod-

ule and so is annihilated by a finite index two sided ideal K of Z½G0þ�, whence

K �U4U04U:

Since U ¼M�Z Z½G1�, and Z½G1� is a finitely generated (free) Z½G01� module,

U=KU ¼M�Z ðZ½G1�=KZ½G1�Þ is the tensor product over Z of a finitely generated

and a finite Abelian group and, hence, is itself finite. Thus K �U <F U, so it suffices

to show that KU=ðG0þ;KUÞ is finite.

Let J0i denote the augmentation ideal of Z½G0i�. Z½G0þ� ¼ Z½G00� �Z Z½G01� has

augementation ideal J0 ¼ J00 �Z½G01� þZ½G00� � J
0
1. Since KU ¼M�Z KZ½G1�, we

have

KU

ðG0þ;KUÞ
¼
KU

JKU
¼

M� KZ½G1�

J00M� KZ½G1� þM� J
0
1KZ½G1�

¼ ðM=J00Þ �Z ðKZ½G1�=J
0
1KZ½G1�Þ:

By assumption, M=J00M ¼M=ðG00;MÞ is finite. Since K=Z½G01� is finite and

G01 <F G1, KZ½G1� is a finitely generated G01 module. It follows that

KZ½G1�=J
0
1KZ½G1� is a finitely generated Abelian group, and therefore its tensor pro-

duct with the finite group M=J00 is finite as well. This proves that KU=ðG0þ;KUÞ is

finite, as required. &
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5.2. REPRESENTATIONS

Let r:G! GLnðCÞ be a finite C-dimensional representation of G and let G, H, and

W denote the Zariski closures of the images under r of G, Gþ, and W, respectively.

Then W is an Abelian normal subgroup of G and G ¼WH. W, being Abelian, is a

product W ¼ V	 T	 S where V is a vector group (the unipotent radical of W), T is

a torus (the unique maximal torus of W	 T so that V	 T is the identity component

W0 of W, and S is a finite group. Both W0 and T are characteristic in W and, hence,

normalized by G. Since the automorphism group of T is discrete, T is centralized by

the identity component G0. Thus T is a central torus in G0. Suppose that T 6¼ 1. Then

G0 has a nontrivial character w:G0 ! Gm. Let G0 ¼ r�1ðG0Þ. Then wðrðG0ÞÞ is

Zariski dense in Gm, and in particular infinite Abelian. Since G0 is of finite index

in G, which is (FAb) by Lemma 5.1, this is impossible, so in fact T ¼ 1 and

W ¼ V	 S ð5Þ

where V is a vector group and S is finite. (Note that S, being the torsion subgroup of

W, is also characteristic in W and hence normalized by G and centralized by G0.)

H, and hence Gþ, is represented on the vector space V. In the proof of Lemma 5.1,

it was shown that for G0þ <F Gþ and U0 <F U, U0=ðG0þ;U
0Þ is finite. It follows that

ðH0;VÞ ¼ V: ð6Þ

The action of C½G1� on V factors through some ideal K of finite codimension so

that there is a C½Gþ� module surjection

ðC�Z MÞ �C ðC½G1�=KÞ ! V: ð7Þ

Let

MC ¼ C�Z M and UC ¼ C�Z U ¼MC �C C½G1�: ð8Þ

Finally, let

C½G1� ¼ lim
 �
K

ðC½G1�=KÞ ð9Þ

where K varies over two-sided ideals of finite codimension in C½G1�.

Since the representation r here is arbitrary, we draw the following conclusions

about proalgebraic completions:

AðGÞ ¼ A ðUÞ	jjAðGþÞ;

A ðGÞ ¼ ImageðAðUÞ ! AðGÞÞ;

AðGþÞ ¼ A0ðGþÞ 	cGþ;
A0ðGþÞ ¼ G0 	 G1;cGþ ¼ bG0 	 bG1:

ð10Þ
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Further,

A ðUÞ ¼ A
0
 ðUÞ 	U

 ̂; where

A0ðUÞ ¼MC �C C½½G1��4UðGÞ

U ̂ ¼ lim
 �
U=U0;U0 ranging over finite index sub Gþ-modules of U.

ð11Þ

If U=U0 is a finite Gþ module as above, then as in the proof of Lemma 5.1 above,

the G1 action factors through a finite quotient G1=G01, and hence U=U0 is a quotient of

M�Z Z½G1=G01� and, hence, for some integer N > 0, of the finite Gþ module

ðM=NMÞ �Z Z½G1=G01�. Taking the inverse limit of these gives

U ̂ ¼ M̂�
Ẑ

Ẑ½½bG1��; ð12Þ

where

Ẑ½½bG1�� ¼ lim
 �
ðZ=NZÞ½G1=G01� as N!1 and G01 ! 1:

Summarizing this section’s discussion, then, we have the following class of

examples of finitely generated rigid groups with infinite-dimensional prounipotent

radical.

THEOREM 6. Let Gi4Gi, ði ¼ 0; 1Þ, be super rigid embeddings, and let

Gþ ¼ G0 	 G1 4G0 	 G1 ¼ Gþ. Let M be a Z½G0� module, Z free of finite rank such

that for all G00 <F G0, M=ðG00;MÞ is finite. Finally, let U ¼M�Z Z½G1� regarded as a

Gþ module, and define G ¼ U	jjGþ: Then G is a finitely generated rigid group, whose

prounipotent radical UðGÞ is infinite-dimensional, and whose maximal connected

reductive quotient Q0ðGÞ is finite-dimensional. If, moreover, Gþ is reductive, then UðGÞ
is Abelian.

5.3. ADDITIONAL EXAMPLES

We conclude this section with a short discussion without details of another type of

example of a rigid group with an infinite dimensional prounipotent radical.

Let L ffi Zr be the free Abelian group on t1; . . . ; tr, and let A ¼ Z½L� ¼

Z½t1; t
�1
1 ; . . . ; tr; t

�1
r � be its integral group algebra. G0 ¼ SLrðZÞ acts as a group of

automorphisms of L and, hence, of A, and L acts on A by multiplication. These

actions are compatible and lead to an action of G1 ¼ L	jjG0 on A. This action pre-

serves the augmentation ideal A0 on A, and we can form the semidirect product

G ¼ A0	jjG1 ¼ A
0	jj ðZr

	jj SLrðZÞÞ:

For r5 3, G1 is a rigid group [2], and it follows from [2] as well that G will be

rigid as long as its finite index subgroups have finite Abelianization. We omit that

calculation.

The prounipotent radical of AðGÞ maps onto a prounipotent group containing

A0	jjZr Zariski densely.
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6. Representation Reductive Groups with Finite or Infinite Multiplicity of

Simple Factors in their Proalgebraic Completions

6.1. WEAK PRODUCTS

Let fGng, n5 1, be a sequence of groups. In the product P ¼
Q

n5 1 Gn we iden-

tify each Gn as a subgroup, in the nth component as usual. Then the weak direct

product

P0 ¼
Yweak

n51

Gn4P

¼
[
n51

Gn

* +
is the subgroup generated by these component subgroups.

We also consider the condition

Gab
n ¼ 1 for all n! 1: ðAb1Þ

PROPOSITION 6. Assume ðAb1Þ. Then we have natural isomorphisms

AðP0Þ !
Y
n51

AðGnÞ; ðAÞ

A0ðP0Þ !
Y
n51

A0ðGnÞ; and ðA0Þ

bP0 !Y
n51

bGn: ðð^ÞÞ

If each Gn is connected split, then so is P0.
Proof. (A) easily implies the other two assertions. To prove (A), we introduce the

notation

P0nþ1 ¼
Yweak

m>n

Gn ¼
[
m>n

Gn

* +
and make the observation that (A) will follow if, for r:P0 ! L ¼ GLðVÞ any finite-

dimensional C representation, r must vanish on P0nþ1 for some n, or in other words,

that r must factor through a projection

P0 ! G1 	 � � � 	 Gn ð13Þ

with kernel P0nþ1.

For U4L, let U denote Zariski closure, and let H ¼ rðP0Þ and

Hn ¼ rðG1 	 � � � 	 GnÞ for n5 1, so H ¼ [nHn. By (Ab1), we can choose n0 so that

Gab
n ¼ 1 for n > n0: ð14Þ
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On centralizers, we have

ZðHÞ ¼
\
n

ZHðHnÞ ¼ ZHðHn1
Þ

for some n1. Let N ¼ maxðn0; n1Þ:

We claim that

rðP0Nþ1Þ ¼ 1: ð15Þ

and, hence, (13) and (A). For (15), it suffices to show

rðGmÞ ¼ 1 for m > N: ð16Þ

But for m > N, Gm centralizies G1 	 � � � 	 GN, so

rðGmÞ4ZHðrðG1 	 � � � 	 GNÞÞ ¼ ZHðHNÞ: ð17Þ

Since N5 n1, ZHðHNÞ ¼ ZðHÞ, so rðGmÞ is Abelian. Since m > n0, by (14) G ab
m ¼ 1.

Thus rðGmÞ ¼ 1. Thus (16) and, hence, (A), follows. &

6.2. GROUP TOWERS

In this section we consider an ascending chain (‘tower’) of groups

G1 < G2 < G3 . . . ð18Þ

and put G1 ¼
S
n5 1 Gn:

As in Section 6.1 above, we have the weak products

P0 ¼
Yweak

n5 1

Gn4P ¼
Y
n5 1

Gn: ð19Þ

Let x ¼ ðxnÞn5 1 2
Q

; xn 2 Gn. We call x eventually constant if, for some n0 ¼ n0ðxÞ,

xn ¼ xn0
for all n5 n0. In this case we put

p1ðxÞ ¼ xn ð8n5 n0Þ: ð20Þ

Put

D ¼ fx 2 P j x is eventually constantg: ð21Þ

Then D is a group and we have an exact sequence

1! P0 ! D! G1 ! 1 ð22Þ

where the second map is inclusion and the third is given by p1.

For n5 1, we can write P ¼ ðG1 	 � � � 	 GnÞ 	Pnþ1 with Pnþ1 ¼
Q

m>n Gm. We

put P0nþ1 ¼ P0 \Pnþ1 and Dnþ1 ¼ D \
Q

nþ1. Then we have

D ¼ ðG1 	 � � � 	 GnÞ 	 Dnþ1; ð23Þ

and

p1: Dnþ1=P0nþ1 ! G1 is an isomorphism.
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6.3. G0 ACTIONS

We retain the notion of the preceding sections.

Let G0 be a group an suppose there is an action

sn: G0 ! AutðGnÞ ð24Þ

for each n5 1. We denote the actions

s �n x ¼ snðsÞðxÞ for s 2 G0; x 2 Gn:

We do not assume that the inclusions Gn < Gnþ1 are G0 equivariant. However, we will

need the following ‘stable equivariance condition’:

For s 2 G0 and x 2 Gn there is an N ¼ Nðs; xÞ5 n such that

s �m x ¼ s �N x for all m5N: ð25Þ

We then write

s �1 x ¼ s �m x for all m5Nðs; xÞ: ð26Þ

It is then easily seen that (26) defines the unique action of G0 on G1 so that

ð22Þ is an exact sequence of G0 groups: ð27Þ

We can thus form the semi-direct direct product sequence

1! P0 ! D	jjG0 ! G1	jjG0 ! 1 ð28Þ

In our next result, we will use the following hypotheses:

For all finite-dimensional C representations r of D1	jjG0;

we have rðG1Þ ¼ 1: ðrG1 ¼ 1Þ

For all n5 1; the action of G0 on Gn factors
through a finite quotient of G0: ðjsnG0j <1Þ

PROPOSITION 7. Assume ðAb1Þ and ðrG1 ¼ 1Þ. Then any finite dimensional C

representation of G ¼ D	 G0 factors through some quotient G=Dnþ1 ¼

ðG1 	 � � � 	 GnÞ	jjG0. Hence we have a natural isomorphism

AðGÞ ! lim
 �
n

AððG1 	 � � � 	 GnÞ	jjG0Þ: ðAÞ

Further assume (jsnG0j <1). Then we have a natural isomorphism

A0ðGÞ !
Y
n50

A0ðGnÞ ðA0Þ

and a natural isomorphism

Ĝ!
Y
n51

bGn !
	 bG0; ð �̂ Þ
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where the action of cG0 on each cGn is defined because of ðjsnG0j <1Þ.

Proof. Let r: G! GLðV Þ be a finite-dimensional C representation. Because

of (Ab1) and (.2) (A), on P04D the restriction of r factors through a pro-

jection P0 ! G1 	 � � � 	 Gn, with kernel P0nþ1. So r factors through G=P0nþ1 ¼

ðD=P0nþ1Þ	jjG0. Because of (.3)(7),ðD=P0nþ1Þ ¼ ðG1 	 � � � 	 GnÞ 	 G1. The hypoth-

esis ðrG1Þ applied to ðG1Þ	jjG0Þ4 ðD=P0nþ1Þ implies that r vanishes on G1, so

that r factors through G=Dnþ1 ¼ ðG1 	 � � � 	 GnÞ	jjG0. This establishes assertion

ðAÞ.

Now assume ðjsnG0j <1Þ. Then the G0 action on G1 	 � � � 	 Gn factors through

some finite quotient G0=G
ðnÞ
0 . So the (direct) product ðG1 	 � � � 	 GnÞ 	 GðnÞ0 has finite

index in the semidirect product ðG1 	 � � � 	 GnÞ	jjG0, which implies that they have the

same A0:

A0ððG1 	 � � � 	 GnÞ	jjG0Þ ¼ A
0ðG1Þ 	 � � � 	 A

0ðGnÞ 	 A0ðG0Þ: ð29Þ

Passing to the inverse limit over n in (29) we obtain assertion (A0).

Next, we observe that the action of the finite group G0=G
ðnÞ
0 on Gn extends to an

action on cGn (every finite index subgroup of Gn contains a G0 invariant finite index

subgroup). It follows easily from this that there is a natural isomorphism

½ðG1 	 � � � 	 GnÞ	jjG0�b¼ ðbG1 	 � � � 	 bGnÞ	jj bG0: ð30Þ

Passing to the inverse limit over n in (30) we obtain assertion (�̂). &

6.4. FILTERING G0

Let G0 be a finitely generated residually finite infinite group with a finite generating

set S01 such that

G0 ¼ hS
0
1i; 1 2 S01; S01 ¼ ðS

0
1Þ
�1; jS01j5 3: ð31Þ

We inductively construct finite sets

S01 
 S1 
 S2 
 � � � 
 G0 ð32Þ

and normal subgroups of G0

G0 > Gð1Þ0 > Gð2Þ0 > � � � ð33Þ

such that for all n5 1 we have

Sn! G0=G
ðnÞ
0 is bijective ð34Þ

and

S0nþ1 
 Snþ1; where S0nþ1 ¼ S1 � Sn: ð35Þ

It will follow from (35) that ðS01Þ
n

 Sn, and so, in view of (31), we have
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G0 ¼
[
n5 1

Sn: ð36Þ

It then further follows from (36) and (34) that\
n5 1

GðnÞ0 ¼ 1: ð37Þ

The construction proceeds as follows: for n5 1, we first choose Gð1Þ0 < G0 normal

and of finite index, and so that S01 ! G0=G
ð1Þ
0 is injective (the later is possible because

G0 is residually finite). Then we enlarge S01 to a set of coset representatives of G0=G
ð1Þ
0 .

Now assume, inductively, that S1; . . . ;Sn and Gð1Þ0 ; . . . ;GðnÞ0 have been chosen

as above. Then let S0nþ1 ¼ S
0
1 � Sn and, using residual finiteness again, choose

Gðnþ1Þ
0 < GðnÞ0 normal of finite index in G0 such that S0nþ1 ! G0=G

ðnþ1Þ
0 is injective.

Finally, enlarge s0nþ1 to a set of representatives of G0=G
ðnþ1Þ
0 .

We will use the following notation:

For s 2 G0; define sðnÞ 2 Sn by s�1sðnÞ 2 GðnÞ0 : ð38Þ

6.5. THE CASE Gn ¼ LSn

We fix a group L and consider the set of L valued functions on G:

LG0 ¼ fx: G0 ! Lg: ð39Þ

For x 2 LG0 , we define support by

suppðxÞ ¼ fs 2 G0 j sðxÞ 6¼ 1g: ð40Þ

For a subset S 
 G0, we define

LS
¼ fx: LG0 j suppðxÞ 2 Sg: ð41Þ

From the sequence (32)

S1 
 S2 
 � � � 
 G0; ð42Þ

we obtain the tower of groups

G1 < G2 < � � � < LG0 where Gn ¼ LSn ð43Þ

and the group

G1 ¼
[
n5 1

Gn ¼ LðG0Þ; ð44Þ

where

LðG0Þ ¼ fx 2 LG0 j suppðxÞ is finiteg:

G0 acts on LG0 via left translations on G0. We denote this action as follows:

For s 2 G0; x 2 LG0 and t 2 G0; ðs �1 xÞðtÞ ¼ xðs
�1tÞ: ð45Þ
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Under this action G1 is G0 invariant (and the groups Gn are not). However, the bijec-

tion Sn! G0=G
ðnÞ
0 defines an isomorphism LðG0=G

ðnÞ
0
Þ
! LSn ¼ Gn so by transport of

structure a G0 action on Gn. To describe the action, we make the convention that

for u 2 G0, uðnÞ 2 Sn denotes its representative modulo Gð0Þ0 . Then s 2 G0 acts on

x 2 Gn by

ðs �n xÞðtÞ ¼
xððs�1tÞðnÞÞ; for t 2 Sn;
1; for t =2 Sn.

�
ð46Þ

Now let s 2 G0 and x 2 Gn. Choose N ¼ Nðs; nÞ large enough so that sSn 
 SN.

Then we claim that

s �m x ¼ s �1 x; for m5N: ð47Þ

By definition, for t 2 G0, ðs �1 xÞðtÞ ¼ xðs
�1tÞ, and this is 6¼ 1 only for

t 2 sSn 
 Sm. On the other hand, ðs �m xÞðtÞ ¼ 1 for t =2Sm and, for t 2 Sm,

ðs �m xÞðtÞ ¼ xððs
�1tÞðmÞÞ. If t 2 sSn, ðs

�1tÞðmÞ ¼ s�1t. It remains to consider

t 2 Sm � sSn. Then ðs�1tÞðmÞ $ s�1t ðmodGðmÞ0 Þ so sððs�1tÞðmÞÞ $ tðmod GðmÞ0 Þ. If

ðs�1tÞðmÞ 2 Sn, then sððs�1tÞðmÞÞ 2 sSn 
 Sm. Since t 2 Sm, the congruence implies

that t ¼ sððs�1tÞðmÞÞ 2 sSm, contrary to assumption. Thus ðs�1tÞðmÞ =2Sn, so

ðs �m xÞðtÞ ¼ 1 ¼ ðs �1 xÞðtÞ, and (47) is proven.

6.6. THE GROUP GðL;G0Þ

We retain the notation of 6.4 and 6.5. For n5 1, l 2 L, and s 2 G0, we define

ln;s 2 Gn ¼ LSn by

ln;sðtÞ ¼
l; if t ¼ sðnÞ;
1; otherwise.

�
ð48Þ

Similarly, we let Ln;s denote the sðnÞ factor L in LSn . Define

dðnÞ;s:L! Pn ¼
Y
m5 n

Gn ð4P ¼ P1Þ

dðnÞ;sðlÞ ¼ ðlm;sÞm5 n:
ð49Þ

Note that, with respect to the inclusion

Gn ¼ LSn < G1 ¼ LðG0Þ;

the formula in (48) is valid for all t 2 G0. Moreover, in case that s 2 Sn, then sðnÞ ¼ s,

so that the formula no longer involves n. Thus relative to Gn < Gnþ1 < � � � < G1

If s 2 Sn; then ln;s ¼ lm;s for all m5 n: ð50Þ

For any s 2 G0 we have s 2 Sm for m sufficiently large. Hence

dðnÞ;sðLÞ consists of eventually constant sequences in Pn: ð51Þ

Let u 2 G0 then ðu �n ln;sÞðtÞ ¼ 1 if t =2Sn. If t 2 Sn, then ðu �n ln;sÞðtÞ ¼ ln;sðu�1tÞ,

and this equals 1 unless u�1t ¼ sðnÞ; that is, unless t ¼ u � sðnÞ. Since t 2 Sn, this latter

means that t ¼ ðu � sðnÞÞðnÞ ¼ ðusÞðnÞ. Thus we have:
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u �n ln;s ¼ ln;us; and u � dðnÞ;sðlÞ ¼ dðnÞ;usðlÞ ð52Þ

where, in the latter, u acts on Pn by the product action on factors.

Now let

d ¼ dð1Þ;1: L! P ¼ P1 ð53Þ

and put

G ¼ hdðLÞ;G0i4P	jjG0: ð54Þ

Clearly

G ¼ D0	jjG0;

where

D0 ¼ G \P

¼ the G0 subgroup of P generated by dðLÞ:
ð55Þ

In 6.2 (21) we defined the group

D ¼ feventually constant sequences in Pg: ð56Þ

In view of the G0 invariance of D and (51), we have

D04D: ð57Þ

Now assume that L satisfies ðAB1Þ:

Lab
¼ 1: ð58Þ

Then we claim:

D0 ¼ D: ð59Þ

We begin the proof of (59) by showing that

P0 ¼
Yweak

Gn

 !
4D0: ð60Þ

For l 2 L and s 2 G0 we have s � dðlÞ ¼ ðs �n ln;1Þn5 1 ¼ ðln;sÞn5 1. Choose

s 2 Gð1Þ0 � Gð2Þ0 , so sð1Þ ¼ 1 and sðnÞ 6¼ 1 for n5 1. Then, for n > 1 l0 2 L, l0n;1 and

ln;s belong to different factors of Gn ¼ LSn , and thus commute. Thus

ðln;s; l
0
n;1Þ ¼

ðl; l0Þ1;1; for n ¼ 1;
1; for n > 1:

�
Since L ¼ ðL;LÞ by (58), it follows that D0 contains L1;1 4G1 4LS1 . Since L1;1 gen-

erates G1 as a G0 group, this implies that G1 4D0.
Now suppose that we have shown that G1; . . . ;Gn4D0. Modulo G1 	 � � � 	 Gn�1,

we can modify dðLÞ ¼ dð1Þ;1ðLÞ to obtain dðnÞ;1ðLÞ4D0. Choose s 2 GðnÞ0 � Gðnþ1Þ
0 .

Then, arguing as above, for l; l0 2 L and m5 n we have
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ðlm;s; l
0
m;1Þ ¼

ðl; l0Þn;1; for m ¼ n,
1; for m > n.

�
As before, since L ¼ ðL;LÞ we then have that D0 contains Ln;1, and it follows by G0

invariance that Gn4D0. Thus (60) follows by induction.

To complete the proof of the claim (59), we recall the exact sequence of G0 groups

6.2 (22):

1! P0 ! D �!
p1

G1 ! 1:

In view of (60), it suffices to show that p1ðD
0
Þ ¼ G1. We have

p1ðdðLÞÞ4G1 ¼ LG0

where

p1ðdðlÞÞðtÞ ¼
l; for t ¼ 1,
1; for t 6¼ 1.

�
Thus p1ðdðLÞÞ is the copy of L in the 1-coordinate of LðG0Þ. Since this clearly gener-

ates G1 as a G0 group, p1ðD
0
Þ ¼ G1, as required, and (59) follows.

From (54) and (55), combined with (59), we have

G ¼ hdðLÞ;G0i ¼ D	jjG0: ð61Þ

We will sometimes write

G ¼ GðL;G0Þ:

Note that its construction depends on the group L (which is required to satisfy ðAb1Þ

(58) and on the residually finite group G0, as well as on the filtrations ðSnÞn5 1 and

ðGðnÞ0 Þn5 1 of 6.4.

From (61), we note that

If L is finitely generated, so is G: ð62Þ

6.7. AðGðL;G0ÞÞ

We are going to describe the proalgebraic completion AðGÞ for the group

G ¼ GðL;G0Þ defined in 6.6 (61), using the Proposition 7. We begin by verifying

the hypotheses ðAb1Þ, ðrG1 ¼ 1Þ, and ðjsnG0j <1Þ of that proposition.

Condition ðAb1Þ requires that Gab
n ¼ 1 for all n sufficiently large. This follows here

because Gn ¼ LSn and because Lab
¼ 1 by assumption.

Condition ðjsnG0j <1Þ means that G0 acts on Gn through a finite quotient for

each n. This holds here since G0 acts on Gn ¼ LSn through the permutation action

on Sn ffi G0=G
ðnÞ
0 :

Finally, the condition ðrG1 ¼ 1Þ requires that for any finite dimensional C repre-

sentation r: G1	jjG0 ! L ¼ GLðVÞ we have rðG1Þ ¼ 1. Since G1 ¼ LðG0Þ, it follows

from the fact that Lab
¼ 1 and from Proposition 6 that rðLðG0�SnÞÞ ¼ 1 for some n.
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Since KerðrÞ \ G1 is a G0 invariant subgroup, and since rðLðG0�SnÞÞ clearly generates

G1 ¼ LðG0Þ as a G0 group, we conclude that rG1 ¼ 1 as required.

We now state the conclusions of Proposition 7 as a theorem:

THEOREM 7. Let G0 be a finitely generated residually finite group, filtered as in 6:4,

and let L be a group satisfying Lab
¼ 1. Let G ¼ GðL;G0Þ ¼ hdðLÞ;G0i.

Then there are natural isomorphisms

AðGÞ ffi lim
 
n

AððG1 	 � � � 	 GnÞ	jjG0Þ; ðAÞ

A0ðGÞ ffi
Y
n5 0

A0ðGnÞ; ðA0Þ

Ĝ ffi
Y
n5 1

bGn !
	 bG0: ð�̂Þ

If L is finitely generated, then so is G.

6.8. REMARKS

(1) For Gn ¼ LSn , we have

AðGnÞ ¼ AðLÞ
Sn ; A0ðGnÞ ¼ A0ðLÞSn ; and bGn ¼ bLSn : ð63Þ

Thus, putting

S ¼ S1 q S2 q S3 q . . . ð64Þ

we have, from Theorem 7 (A0) and (�̂),

A0ðGÞ ffi A0ðLÞS 	 A0ðG0Þ ð65Þ

and

bG ffi bLS
	jj bG0: ð66Þ

From (65) we see that, for suitable choice of L, simple groups can occur with infinite

multiplicity in QðGÞ. It follows that, if G is rigid, it is not connected split. (Otherwise,

it would have infinitely many irreducible representations in a single dimension.)

(2) To illustrate this last point, we could take L ¼ G0 ¼ SLdðZÞ with d5 3.

Then

AðLÞ ¼ A0ðLÞ 	bL;
A0ðLÞ ¼ SLdðCÞ;bL ¼ SLdðbZÞ:
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Hence, A0ðGÞ is an infinite product of copies of SLdðCÞ. It follows that G is not rigid.

(3) If L and G0 are rigid, then so is G, since representations of G factor through a

quotient ðG1 	 � � � 	 GnÞ	jjG0, and ðG1 	 � � � 	 GnÞ 	 GðnÞ0 is a rigid finite index sub-

group of this quotient.

6.9. THE GROUPS Ln ¼ ZSn

We now make a construction like that of 6.5, but now with L ¼ Z (in contrast with

6.6 where we assumed from (59) on that Lab
¼ 1). We recall the notation and results

of 6.5 in this context. We have the additive group

ZG0 ¼ fx: G0 ! Zg: ð67Þ

For x 2 ZG0 ,

suppðxÞ ¼ fs 2 G0 j xðsÞ 6¼ 0g: ð68Þ

For S 
 G0 we identify

ZS
¼ fx 2 ZG0 j suppðxÞ 
 Sg; and ZðSÞ ¼ fx 2 ZS

j suppðxÞ is finiteg

ð69Þ

From the sequence 6.4 (32) of finite sets

S1 
 S2 
 S3 
 � � � ð70Þ

we obtain the tower of finitely generated free modules Z modules

L1 
 L2 
 L3 
 . . . ;Ln ¼ ZSn ð71Þ

and

L1 ¼
[
n5 1

Ln ¼ ZðGÞ ¼ fx 2 ZG0 j suppðxÞ is finiteg: ð72Þ

G0 acts on ZG0 by

ðs �1 xÞðtÞ ¼ xðs
�1tÞ for s; t 2 G0; x 2 ZG0 ð73Þ

and L1 is G0 invariant in this action.

G0 acts on Ln by

ðs �n xÞðtÞ ¼
xððs�1tÞðnÞÞ; if t 2 Sn,
0; if t =2Sn.

�
ð74Þ

As before, the inclusions Ln 
 Lm 
 L1 are not G0 invariant. Nonetheless, if

s 2 G0, x 2 Ln, and N ¼ Nðs; nÞ is large enough so that sSn 
 SN, then

s �m x ¼ s�1; for m5N: ð75Þ
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6.10. THE GROUPS Gn ¼ SLðLnÞ

The free Abelian group L1 ¼ ZðG0Þ has an evident basis indexed by G0. We write

GLðL1Þ ¼ AutðL1Þ;

and

GLf
ðL1Þ ¼ fg 2 GLðL1Þ j g fixes all but finitely

many basis elementsg:
ð76Þ

The determinant is defined on GLf
ðL1Þ, and we have the exact sequence

1! SLf
ðL1Þ ! GLf

ðL1Þ ! f&1g ! 1: ð77Þ

For S 
 G0, we can write

L1 ¼ ZðSÞ 'ZðG0�SÞ ð78Þ

and we identify g 2 GLf
ðZðSÞÞ with

g' Id
ZðG0�SÞ 2 GLf

ðL1Þ: ð79Þ

When S is finite,

ZðSÞ ¼ ZS; GLf
ðZðSÞÞ ¼ GLðZS

Þ; and SLf
ðZðSÞÞ ¼ SLðZS

Þ:

We have the tower of groups

G1 < G2 < G3 . . . ;

Gn ¼ SLðLnÞ ¼ SLðZSn Þ; and G1 :¼
[
n5 1

Gn ¼ SLf
ðL1Þ:

ð80Þ

The actions 6.9 (73) and (74) of G0 on Ln and L1 (permuting bases) correspond to

homomorphisms s0:G0 ! GLðL1Þ, 14 n41. These define actions of G0 on Gn as

follows: for s 2 G0 and g 2 Gn, define

s �n g ¼ snðsÞgsnðsÞ
�1
ð14 n41Þ: ð81Þ

For n <1, this action factors through G0=G
ðnÞ
0 .

Here, g operates only on Ln ¼ ZSn and is the identity on ZðG0�sÞ. In L1 ¼ ZðGÞ,

s �1 g is like g, but transferred from the basis Sn of Ln to the basis sSn of ZsSn .

Choose N ¼ Nðs; nÞ large enough so that sSn [ Sn 
 SN. Then:

s �m g ¼ s �1 g for all m5N: ð82Þ

LEMMA 2 ðG0 generation of GnÞ. For 14 n41, Gn is generated by G1 as a G0

group.

Proof. We have Gn ¼ SLf
ðZðSnÞÞ, where we can identify Sn with G0=G

ðnÞ
0 , taking

Gð1Þ0 ¼ 1 when n ¼ 1, and the action of G0 on Gn is via the translation action of Sn
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on itself. Now G1 ¼ SLðZS1 Þ, so the G0 group generated by G1 is the group generated

by all SLðZsS1 Þ (s 2 Sn).

Consider the graph with vertex set Sn and edges the pairs fs; tg such that

sS1 \ tS1 6¼ ;. It is easily seen that the connected component of 1 2 Sn in this graph

is hS1iSn; that is, the graph is connected. The lemma now follows from the following

lemma: &

LEMMA 3. Let S ¼ U [ V be finite sets with U \ V 6¼ ;. Then SLðZS
Þ is generated

by its subgroups SLðZU
Þ and SLðZV

Þ.

Proof. SLðZS
Þ is generated by the matrices xs;t ¼ Iþ es;t (s 6¼ t) where es;t has a

single nonzero entry, 1 in the ðs; tÞ position. Moreover, we have the commutator

formula:

xs;u ¼ ðxs;t; xt;uÞ for s; t; u distinct:

If s; t 2 U then xs;t 2 SLðZU
Þ. If s; t 2 V then xs;t 2 SLðZV

Þ. If neither is the case,

say s 2 U and t 2 V, we can choose u 2 U \ V ( 6¼ ;, by assumption). Then s; t; u are

distinct, so

xs;t ¼ ðxs;u; xu;vÞ 2 ðSLðZU
Þ; SLðZV

ÞÞ;

and the lemma follows. &

The next proposition affirms the hypotheses of Preposition 7, in preparation for its

application, and also prepares for the proof of the finite generation of D	jjG0. We

also find it convenient to introduce some additional terminology.

DEFINITION 10. We call two groups A and B estranged if they have no nontrivial

isomorphic quotient groups. In other words, if A!! Q  B are epimorphisms, then

Q ¼ 1.

PROPOSITION 8. The groups Gn, 14 n41 satisfy.

ðAb1Þ Gab
n ¼ 1:

ðjsnG0j <1Þ the action of G0 on Gn factors through the finite quotient G0=G
ðnÞ
0 ,

ðn <1Þ.

ð rG1 ¼ 1Þ For any finite-dimensional C representation r of G1,
rðG1Þ ¼ 1:

ðEstÞ

For 14 n < m41; Gn and Gm are estranged:

Proof. (Ab1) follows since SLðZS
Þ
ab
¼ 1 whenever jSj > 2. The condition

(jsnG0j <1) follows from our construction.

Since jSnj5 3 for all n, it follows from the Congruence Subgroup Theorem that

the quotients of Gn ¼ SLf
ðZðSnÞÞ are all of the form SLjSnjðZ=qZÞ=Z, for some integer
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q5 0, and where Z is a central subgroup. It is immediate that succh groups

cannot be isomorphic for n < m (since jSnj < jSmj), and so condition (Est)

follows.

Finally, we note that, for m ¼ 1, SL1ðZ=qZÞ has trivial center, and cannot be

embedded in any GLNðCÞ (which implies condition (rG1 ¼ 1)). When q ¼ 0, this

follows since SLdðZÞ (d <1) has no faithful representations of dimension less than

d. When q > 0, SL1ðZ=qZÞ is an infinite, locally finite group. If it were linear, by

Jordan’s Theorem it would have a normal Abelian subgroup of finite index. This

is obviously not the case for SL1ðZ=pZÞ for p prime, and the case for

SL1ðZ=qZÞ, q, reduces to the prime case by passage to a quotient. &

6.11. FINITE GENERATION OF G ¼ D	jjG0

Recall from 6.2 that D is the group of eventually constant sequences in

P ¼
Q

n5 1 Gn, and it is generated by the groups dnðGnÞ, where dn is the diagonal

embedding of Gn into Pn ¼
Q

m5 n Gn.
Put

G0 ¼ hd1ðG1Þ;G0i4P	jjG0: ð83Þ

We show that G ¼ D	jjG0 is finitely generated by showing that G0 ¼ G. Clearly

G0 ¼ D	jjG0; where D ¼ the G0 group generated by d1ðG1Þ: ð84Þ

We must show that

the inclusion D4D is an equality. ðClaimÞ

For 14 n41, the projection pn:D! Gn maps D to the G0-group generated by

pnðd1ðG1ÞÞ ¼ G1 in Gn. From Lemma 2 we can conclude that

pnðDÞ ¼ Gn; for 14 n41: ð85Þ

In view of the above discussion and Proposition 8, the next proposition will imply

that (Claim) obtains, and hence that

G :¼ D	jjG0 ¼ hd1ðG1Þ;G0i; a finitely generated group. ð86Þ

PROPOSITION 9. Let D4D be a subgroup such that pnðDÞ ¼ Gn for 14 n41.
Assume that

ðAb1ÞGab
n ¼ 1

and

ðEstÞ For 14 n < m41; Gn and Gm are estranged:

Then D ¼ D.

Before starting the proof, we first establish a lemma:
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LEMMA 4. Assume ðEstÞ.

ð1Þ For 1 < n <1, G1 	 � � � 	 Gn�1 and Gn are estranged.
ð2Þ If E4G1 	 � � � 	 Gn and piðEÞ ¼ Gi for each projection pi, 14 i4 n then

E4G1 	 � � � 	 Gn.

Proof. Let p: G1 	 � � � 	 Gn�1 ! Q Gn: q be epimorphisms. For (1), we must

show that Q ¼ 1. If pðG1Þ ¼ Q, this follows because G1 and Gn are estranged. In

general, since G1 is normal in G1 	 � � � 	 Gn�1, pðG1Þ is normal in Q, so that Q=pðG1Þ

is a common quotient of G2 	 � � � 	 Gn�1 and Gn, so Q=pðG1Þ ¼ 1 by induction on n.

To prove (2), we also argue by induction on n, the case n ¼ 1 being trivial. For

n ¼ 2, put Ei ¼ E \ Gi ¼ Kerð p2�ijEÞ, which is a normal subgroup of E for

i ¼ 1; 2. We have E=Ei ffi G2�i since piðEÞ ¼ Gi. Thus E=ðE1 � E2Þ is a common quo-

tient of G1 and G2 and, hence, trivial by (Est), so E ¼ E1 � E2. Clearly E1 \ E2 ¼ 1, so

E ¼ E1 	 E2. Since Ei ¼ piðEÞ ¼ Gi (i ¼ 1; 2), we have E ¼ G1 	 G2.

For n > 2, G1 	 � � � 	 Gn�1 and Gn are estranged by (1), and E projects onto

G1 	 � � � 	 Gn�1 by induction. Hence, E ¼ ðG1 	 � � � 	 Gn�1Þ 	 Gn by the case

n ¼ 2. &

Now we prove Proposition 9.

Proof. We have a commutative diagram with exact rows (see 6.2)

1 ! P0 ! D ! G1 ! 1
[ [ k

1 ! D0 ! D ! G1 ! 1
ð1Þ

where D0 ¼ D \P0, and D! G1 is onto since p1ðDÞ ¼ G1 by hypothesis. More-

over, by hypothesis pnðDÞ ¼ Gn for 14 n <1, so it follows from Lemma 4 that

D projects onto G1 	 � � � 	 Gn for 14 n <1: ð2Þ

Since D0 is normal in D, it follows from (2) that

D03P0 ¼
Yweak

Gn;

and hence that D0 is normal in P, since all normal subgroups of P0 are. In particular,

D03D ð3Þ

Next put

Dn ¼ D \ Gn ð¼ D0 \ GnÞ; 14 n <1

D ¼
Yweak

n5 1

4D0:
ð4Þ

In view of (3),

Dn; D
 3D: ð5Þ
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Put �D ¼ D=D ; for H4D, let �H denote the image of H in �D. Thus �Gn ¼ Gn=Dn and

P0 ¼
Qweak

n5 1 Gn. We claim that

�D \ Gn ¼ 1; for 14 n <1: ð6Þ

For if g 2 Gn and �g 2 �D \ �Gn, then gd 2 D for some d ¼ ðdmÞm5 1 2 D
 . It follows

from the definition of D that dn 2 Dn and gdn 2 D, whence g 2 D \ Gn ¼ Dn, so

�g ¼ 1.

Now from (6) and the fact that �D03P0, we have

ðGn; �D0Þ4 �D0 \ Gn ¼ 1;

hence �D0 centralizes Gn for all n, and so

�D04 �Z
0
: ¼

Yweak

�Zn; �Zn ¼ ZðGnÞ

¼ ZðP03 �DÞ: ð7Þ

The inverse image Z0 of �Z
0

modulo D has the form

Z0:¼
Yweak

Zn; Dn4Zn4Gn; D04Z04P0: ð8Þ

Put

~D ¼ D=Z0 ¼ �D= �Z0 and H ¼ the image of H in ~D for H4D: ð9Þ

From (1), (8), and (9), we have

~D ffi D=D \ Z0 ¼ D=D0 ffi G1 ð10Þ

For 14 n <1, the projection pn:D! Gn induces a projection epn : eD!
Gn=pnðZ0Þ ¼ Gn=Zn. Restricting to eD ffi G1 (see (10)) and recalling that

pnðDÞ ¼ Gn by hypothesis, we obtain an epimorphism G1 ! Gn=Zn. Since G1
and Gn are estranged by assumption, we have Gn ¼ Zn. Now Gn ¼ Zn=Dn ¼

�Zn ¼ ZðGnÞ, so Gn is Abelian. By assumption, Gab
n ¼ 1. Thus Gn ¼ 1; that is,

Gn ¼ Dn. Hence

D ¼
Yweak

Dn ¼
Yweak

Gn ¼ P04D:

In view of (1), this implies that D ¼ D, as claimed. This completes the proof of Pro-

position 9. &

Now we combine (86), Proposition 8, and Proposition 7 to obtain the following

theorem:

THEOREM 8. Let G0 be finitely generated, residually finite, and filtered as in 6:4:

Let
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G1 < G2 < G3 . . .

Gn ¼ SLðZSn Þ; S < S2 < S3 < _<G0;

Sn ! G0=G;ð0Þ

be as in 6:10, with G0 acting on Gn via translation on Sn ðidentified with G0=G
ðnÞ
0 Þ, hence

also on P ¼
Q

n5 1 Gn. Let

d:G1 ! P; dðqÞ ¼ ðq; q; q; . . .Þ

be the diagonally embedding, and put G ¼ hdðG1Þ;G0i4P	jjG0. Then G is finitely gen-
erated, and G ¼ D	jjG0, where D is the group of eventually constant sequences in P.
Every finite-dimensional C representation r of G factors through some quotient

G=Dnþ1 ¼ ðG1 	 � � � 	 GnÞ	jjG0: We have

AðGÞ ¼ lim
 �

n
AððG1 	 � � � 	 GnÞ	jjG0Þ: ðAÞ

A0ðGÞ ¼
Y
n5 0

A0ðGnÞ ðA0Þ

and

Ĝ!
Y
n5 1

bGn !
	 bG0; ð�̂Þ

Put dðnÞ ¼ jSnj for n5 3. Then for n5 1, we have

AðGnÞ ¼ A0ðGnÞ 	 bGn;
A0ðGnÞ ¼ SLdðnÞðCÞ;bGn ¼ SLdðnÞðbZÞ

(The final assertions, about AðGÞ, for n5 1, follow from the strict congruence sub-

group theorem and rigidity properties of SLdðZÞ for d5 3; see [4].)

7. Concluding Remarks

The results of this paper show that a number of sets associated to a finitely gen-

erated residually finite representation rigid group G are finite or finite dimen-

sional, for example SnðGÞ (the isomorphism classes of simple n-dimensional

representations of G), or AnðGÞ. Thus we have a number of numeric sequences

associated to G. We list them in this section. It should be of interest to relate

these numer–theoretic functions to each other, and to consider their growth

and/or other structural properties.

In addition to the objects previously defined, we also refer in the definition of the

sequences to SSnðGÞ, the isomorphism classes of semi–simple n dimensional represen-

tations of G; and to VnðGÞ, the commutator quotient of UnðGÞ.
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DEFINITION 11. Let G be a finitely generated residually finite rigid group.

Associated to G are the following numeric sequences:

ð1Þ snðGÞ ¼ jSnðGÞj
ð2Þ ssnðGÞ ¼ jSSnðGÞj
ð3Þ anðGÞ ¼ dimðAnðGÞÞ
ð4Þ pnðGÞ ¼ jAnðGÞ=AnðGÞ

0
j

ð5Þ qnðGÞ ¼ dimðQnðGÞÞ
ð6Þ unðGÞ ¼ dimðUnðGÞÞ
ð7Þ vnðGÞ ¼ dimðVnðGÞÞ

One may also speculate about the relation of these sequences to the sequence anðGÞ
which counts the number of subgroups of G of index n. If G has (FAb), anðGÞ grows

strictly slower than nlog n, for example, one can conclude that G is super rigid: for this

condition implies that for every prime p the pro-p completion of every finite index

subgroup of G is p-adic analytic, and this latter condition implies dimðQðGÞÞ <1.
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