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Abstract. The adipose tissue-derived hormone leptin 
regulates energy balance and neuroendocrine function.
Resistance to the appetite-suppressing effects of leptin is
associated with common forms of obesity. Here, we 
review the mechanisms by which leptin activates intra-
cellular signals and the roles that these signals play in 
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leptin action in vivo. Furthermore, we discuss potential
mechanisms of leptin resistance, specifically focusing on
data regarding the neuroanatomical locus of leptin resis-
tance and potential mechanisms by which expression 
of the suppressor of cytokine signaling-3 may impair 
leptin action.
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Leptin

The adipose tissue-derived hormone leptin is produced in
proportion to fat stores. Circulating leptin serves to com-
municate the state of body energy repletion to the central
nervous system (CNS) in order to suppress food intake
and permit energy expenditure (fig. 1) [1–3]. Leptin fits
the criteria for a feedback signal from body energy stores
to the brain as defined by Kennedy [4] in 1953: leptin 
levels drop during starvation, when fat depots are depleted
to support the organism’s basic energy needs, and leptin
levels rise during refeeding where fat depots are replen-
ished. Furthermore, many of the physiological adapta-
tions triggered by prolonged fasting can be prevented by
exogenously administered leptin during the fast, which
falsely signals to the brain that energy stores are replete
[3, 5, 6]. Adequate leptin levels permit energy expendi-
ture in the processes of reproduction and growth and sim-
ilarly regulate the autonomic nervous system, other ele-
ments of the endocrine system and the immune system [3,
5, 6]. Conversely, lack of leptin signaling due to mutation
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of leptin (e.g. ob/ob mice) or the leptin receptor (LR) (e.g.
db/db mice) in rodents and humans results in increased
food intake in combination with a reduced energy expen-
diture phenotype reminiscent of the neuroendocrine star-
vation response (including hypothyroidism, decreased
growth, infertility and decreased immune function) in
spite of their obesity [1, 2, 7, 8].

LRs and sites of leptin action

There are multiple LR isoforms, all of which are products
of a single lepr gene [9, 10]. The lepr gene contains 17
common exons and several alternatively spliced 3¢-exons.
In mice, the six distinct LR isoforms that have been iden-
tified are designated LRa–LRf. In all species, LR iso-
forms can be divided into three classes: secreted, short
and long. The secreted forms are either products of alter-
natively spliced messenger RNA (mRNA) species (e.g.
murine LRe, which contains only the first 14 exons of
lepr) or proteolytic cleaveage products of membrane-
bound forms of LR. These secreted forms contain only
extracellular domains that bind circulating leptin, perhaps
regulating the concentration of free leptin [11]. 
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Short form LRs (LRa, LRc, LRd and LRf in mice) 
and the long form LR (LRb in mice) contain exons 1–17
of lepr and therefore have identical extracellular and
transmembrane domains as well as the same first 29 in-
tracellular amino acids, but diverge in sequence there-
after due to the alternative splicing of 3¢ exons. Short-
form LRs contain exons 1–17 and truncate 3–11 amino
acids after the splice junction. LRc-, LRd- and LRf-
specific sequences are not well conserved among
species. However, LRa (the most abundantly expressed
isoform) is reasonably well conserved, as is LRb, which
has an intracellular domain of approximately 300
residues [9, 10].
LRb is crucial for leptin action. Indeed, the originally 
described db/db mice lack LRb (but not other LR forms)
as a consequence of a mutation that causes mis-splicing
of the LRb mRNA; these mice display a phenotype that is
indistinguishable from that of db3J/db3J mice (which are
deficient in all LR isoforms) and of leptin-deficient
ob/ob animals [3]. The function of short-form LRs is less
clear, although proposed roles include the transport of

leptin across the blood-brain barrier and the production of
circulating LR extracellular domain to complex with 
leptin. 
Many of the effects of leptin are attributed to effects in the
CNS, particularly in the basomedial hypothalamus, a site
of high LRb mRNA expression [12–15]. Here, leptin acts
on neurons that regulate levels of circulating hormones
(e.g. thyroid hormone, sex steroids and growth hormone)
[12, 16, 17]. Leptin action on these hypothalamic neurons
also regulates the activity of the autonomic nervous sys-
tem, although direct effects of leptin on LRb-containing
neurons in the brainstem and elsewhere probably also
have an important role [18]. The effects of leptin on the
immune system appear to result from direct action on T
cells that contain LRb [6]. Leptin might also regulate glu-
cose homeostasis independently of effects on adiposity;
leptin regulates glycemia at least partly via the CNS, but
it might also directly regulate pancreatic b cells and in-
sulin-sensitive tissues [19–22].

Leptin regulation of neural networks and 
neurophysiology

LRb is present in several tissues, with the highest levels
in neurons of several nuclei of the hypothalamus, includ-
ing the arcuate (ARC), dorsomedial (DMH), ventrome-
dial (VMH) and premammillary nuclei [12–14]. Other
sites within the brain that have been shown to express
LRb by in situ hybridization histochemistry for LRb
mRNA or by detection of leptin-mediated signaling 
include the brainstem [nucleus of the solitary tract
(NTS) and dorsal motor nucleus of the vagus (DMX)],
periaqueductal gray matter and hippocampus. LRb
mRNA is highly expressed in the ARC, and LRb signal-
ing is most readily detectable here, as well; LRb is found
in at least two distinct populations of ARC neurons. One
population synthesizes neuropeptide Y (NPY) and
agouti-related peptide (AgRP), and the other synthesizes
pro-opiomelanocortin (POMC) [12,15]. POMC is
processed to produce a-melanocyte-stimulating-hor-
mone (aMSH) in LRb/POMC neurons, which signals
anorexia (decreased appetite) by activating the
melanocortin-4 receptor (MC4R) and to a lesser extent
the melanocortin-3 receptor (MC3R) [23–28]. LRb stim-
ulates the synthesis of POMC and activates/depolarizes
LRb/POMC neurons [15, 29]. NPY is an orexigenic (ap-
petite-stimulating) hormone that also suppresses the
central LRb-mediated growth and reproductive axes.
AgRP is an antagonist of aMSH/MC4R signaling as
well as an inhibitor (inverse agonist) of endogenous
MC4R activity. Leptin acts via LRb to inhibit NPY/
AgRP neurons and suppress expression of these neu-
ropeptides [15, 29]. Thus, LRb signaling stimulates the
production of anorectic neuropeptides and suppresses

Figure 1. Regulation of feeding and neuroendocrine function by
leptin. Leptin is secreted from adipocytes as a signal of energy (fat)
stores. Circulating leptin activates the long form leptin receptor
(LRb) on target cells to regulate energy intake and energy expendi-
ture. Within the brain, two distinct sets of neurons in the arcuate 
nucleus of the hypothalamus (ARC) are known to be regulated by
leptin. The ARC POMC-expressing neuron (an anorexogenic/
appetite-suppressing neuron) is activated by leptin, while the Arc
NPY/AgRP neuron (an orexigenic/appetite-stimulating neuron) is
inhibited by leptin; the combination of leptin effects on these and
other unidentified neurons (labeled ‘?’) mediates the anorectic 
actions of leptin. The ARC POMC and NPY/AgRP neuron as well
as some direct actions of leptin stimulate the TRH neuron to enable
the full elaboration of thyroid hormone to permit energy expendi-
ture by modulating the basal metabolic rate (BMR). Leptin also 
permits energy expenditure by increasing the activity of the sympa-
thetic nervous system (SNS), and stimulating the growth and 
reproductive axes. Additionally, leptin enables the proliferation of
cells required to mount an effective immune response. Thus, leptin
sufficiency acts to permit energy expenditure by systems through-
out the body, as well as to modulate appetite. 
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levels of orexigenic peptides. Conversely, a decrease or
deficiency in leptin activity (e.g. during starvation and in
ob/ob and db/db mice) stimulates appetite by suppress-
ing synthesis of anorectic neuropeptides (e.g. POMC)
and increasing expression of orexigenic peptides (e.g.
NPY and AgRP). In the ARC, neurons that express LRb
mRNA plus NPY/AgRP and/or POMC also regulate en-
ergy expenditure and other elements of neuroendocrine
function. 
Although the detailed mechanisms by which the ARC
NPY/AgRP and POMC neurons function continue to
emerge at an astounding rate, numerous questions remain
regarding the contributions of each circuit to the regula-
tion of feeding in general and in response to leptin under
physiologic conditions. In spite of the dramatic orexi-
genic effect of NPY and AgRP administration or of sub-
stances that activate the NPY/AgRP neuron (e.g. ghrelin)
[15, 29–31], genetic ablation of AgRP or NPY minimally
impacts ad libitum feeding and body weight [31, 32].
While the minimal phenotype of NPY or AgRP deletion
on body weight has led some to suggest a minimal con-
tribution of these neuropeptides to energy homeostasis, it
is likely that they substantially affect the response to
caloric deprivation, e.g. in fasting or in low-leptin states,
as shown for ob/ob and diabetic animals [33, 34]. It is
also likely that additional strong counter-regulatory
mechanisms act to prevent underfeeding and may com-
pensate for the lack of these neuropeptides.
Although ablation of POMC or central melanocortin 
receptors results in severe obesity [24, 35], deletion of
LRb from POMC neurons results in only modest weight
gain [36]. Thus, while melanocortins generally effect a
powerful anorectic signal, they may not constitute the 
majority of the leptin-mediated anorectic signal, which
may be mediated by other, potentially unrecognized, pop-
ulations of LRb-expressing neurons. Indeed, histochemi-
cally leptin-sensitive POMC neurons represent only a
small subpopulation of the total ARC POMC neurons;
conversely, POMC neurons represent only a small frac-
tion of the total leptin-regulated neurons within the ARC
[37], suggesting the presence of significant leptin-
independent melanocortin signals and melanocortin-in-
dependent leptin function. The functional and neuro-
chemical properties of LRb-regulated neurons in the
DMH, VMH and elsewhere (including the brainstem) are
poorly characterized.

LR signaling

LRb belongs to the interleukin (IL)-6 receptor family of
class 1 cytokine receptors, which contain an extracellular
ligand-binding domain a single transmembrane domain,
and a cytoplasmic signaling domain [9, 38]. Like other 
cytokine receptors, LRb does not contain intrinsic enzy-

matic activity, but instead signals via a non-covalently 
associated tyrosine kinase of the Jak kinase family (Jak2
in the case of LRb) [39–41]. Unliganded LRb exists as a
pre-formed homodimer; leptin binding alters the confor-
mation of the LRb dimer, enabling transphosphorylation
and activation of the intracellular LRb-associated Jak2
molecules [9, 42, 43]. The activated Jak2 molecule then
phosphorylates other tyrosine residues within the LRb/Jak2
complex to mediate downstream signaling [44, 45].
Signaling by cytokine receptors requires a proline-rich
‘Box 1’ motif critical for Jak kinase interaction and acti-
vation; additional less-conserved sequences COOH-
terminal to Box 1 (sometimes referred to as ‘Box 2’) are
also important for Jak kinase interactions and likely func-
tion in Jak kinase isoform selectivity [38, 39, 41,  46]. In
the case of LRb, intracellular residues 31–36 (i.e. imme-
diately downstream of the alternative splice junction 
following amino acid 29) compose Box 2 [41, 46], which
is absent from all described short LR isoforms– consistent
with the inability of these molecules to mediate leptin 
action in db/db animals [9, 41, 44].
Tyrosine kinase-dependent signaling generally proceeds
via the phosphotyrosine-dependent recruitment of signal-
ing proteins that contain specialized phosphotyrosine
binding domains (e.g. SH2 domains) [47]. Each SH2 
domain isoform recognizes phosphotyrosine in a specific
amino acid context. Thus, while tyrosine phosphorylation
acts as a molecular switch to recruit SH2-containing pro-
teins, each tyrosine phosphorylation site recruits only
specific SH2 isoforms, since they recognize the surround-
ing amino acids as well as the phosphotyrosine residue.
For instance, the SH2 domain of the latent transcription
factor, STAT3, is recruited to phosphotyrosine in the 
context of a Y(P)XXQ motif [48, 49]. 
Understanding signaling by the LRb/Jak2 complex thus
requires defining the tyrosine phosphorylation sites on
LRb and Jak2 and the SH2 proteins that they recruit.
There are three conserved residues on the intracellular
domain of LRb–Tyr985, Tyr1077, and Tyr1138 [9, 44, 45].
Tyr985 and Tyr1138 are phosphorylated upon leptin binding,
while Tyr1077 is not phosphorylated and does not contribute
to leptin signaling [45]. 
There are thus three primary intracellular signaling path-
ways that emanate from LRb (fig. 2): those originating di-
rectly from Jak2 tyrosine phosphorylation sites, from
Tyr985 of LRb and from Tyr1138 of LRb. The phosphoryla-
tion of Tyr985 creates a binding site for the COOH-terminal
SH2 domain of the tyrosine phosphatase, SHP-2, leading
to the activation of the canonical p21rasÇÆERK signal-
ing pathway in cultured cells. While Tyr985 thus mediates
the majority of ERK stimulation during LRb signaling in
cultured cells, a portion of leptin-stimulated ERK activa-
tion is regulated independently of LRb phosphorylation- 
presumably via tyrosine phosphorylation sites on Jak2
[41, 45, 50]. 
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Phosphorylation of Tyr1138 recruits STAT3 to the LRb/Jak2
complex, resulting in the tyrosine phosphorylation and
subsequent nuclear translocation of STAT3 to mediate
transcriptional regulation [44, 45]. Among other genes,
STAT3 mediates the transcription of the SH2 domain-
containing feedback inhibitor, suppressor of cytokine
signaling (SOCS)-3 [45, 51]. SOCS3 binds to Tyr985 of
LRb to mediate inhibition of LRbÆSTAT3 signaling [52];
SOCS3 also binds to a separate site on Jak2 itself [53,
54]. The relative importance of these two binding sites
and the contribution of the Tyr1138ÆSTAT3 pathway to
the generation of SOCS3 levels in LRb-expressing tis-
sues in vivo are not known at this time. 
Jak2 tyrosine phosphorylation during LRb stimulation
mediates some signals independently of tyrosine phos-
phorylation sites on LRb (e.g. a portion of ERK activa-
tion) [45]. The individual tyrosine phosphorylation sites
on Jak2 are beginning to be enumerated [55–59], but
many more remain to be identified, and the binding part-
ners and signals mediated by many sites are not known,
limiting our understanding of the mechanisms by which
Jak2-dependent signals are mediated. LRb stimulation
mediates the tyrosine phosphorylation of insulin receptor

substrate (IRS) proteins and activation of the phospho-
inositide (PI) 3¢-kinase pathway [60], presumably via
tyrosine phosphorylation sites on Jak2. Although the 
exact mechanisms by which Jak2 mediates activation of
the IRS-proteinÆPI 3-kinase pathway is not under-
stood, it is clear that this pathway represents an impor-
tant component of leptin action in vivo as well as an 
important area of crosstalk with insulin signaling
[60–64].

LRb signaling in the regulation of physiology

Thus far, two LRb signaling pathways have been impli-
cated in leptin action: STAT3 (see below), and the IRS
proteinÆPI 3¢-kinase pathway. First described as insulin
receptor substrates, the IRS proteins (IRS-1–4), are mem-
bers of a class of intracellular signaling molecules termed
docking proteins that are phosphorylated by several tyro-
sine kinases (e.g. insulin receptor and some cytokine 
receptors) [65]. Docking proteins, including the IRS, 
are devoid of enzymatic activity, but are phosphorylated
on multiple tyrosine residues to mediate SH2-protein 
recruitment and downstream signaling. Although IRS
proteins contain tyrosine phosphorylation sites in numer-
ous motifs that recruit several different SH2 proteins,
most sites lie in YMXM motifs that bind and activate PI
3¢-kinase. 
The first, albeit indirect, evidence for a potential role of
the IRS proteinÆPI 3¢-kinase pathway in leptin action
came from the phenotype of the IRS-2 null (IRS-2–/–)
mouse [66, 67]. In addition to other defects, IRS-2–/– ani-
mals display increased feeding and decreased metabolic
rate in the presence of increased adiposity and circulating
leptin, suggesting functional leptin resistance (although it
is not as severe as in db/db animals) [67]. No such phe-
notype has been noted in animals null for any of the other
three IRS proteins [68], suggesting a specialized role for
IRS-2 in anorectic signaling. 
Blockade of PI 3¢-kinase activity abrogates leptin-
mediated hyperpolarization/inhibition of (presumably)
LRb/NPY/AgRP hypothalamic neurons [69, 70]. Fur-
thermore, leptin stimulates IRS-2-associated PI 3¢-
kinase activity in the hypothalamus, and pharmacologi-
cal blockade of PI 3¢-kinase activity in the hypothala-
mus blocks the anorectic effect of leptin in vivo [60]. 
PI 3¢-kinase activity is also required for leptin-regulated
sympathetic nervous system function [71]. It will be 
interesting to determine both the role of this pathway 
in leptin resistance and the neuropeptide phenotype 
of the neuronal population(s) in which PI 3¢-kinase 
activity is required for the anorectic actions of leptin
and insulin, as well as the role of PI 3¢-kinase in other
leptin functions (e.g. neuroendocrine and immune regu-
lation).

Figure 2. Signaling by LRb. Leptin binding to LRb activates the
LRb-associated Jak2 tyrosine kinase, in turn promoting the au-
tophosphorylation of tyrosine residues on Jak2 and the phosphory-
lation of Tyr985 and Tyr1138 on the intracellular tail of LRb. While the
physiologic function of Tyr985 and its binding partner (SHP-2) in
signaling is not clear, the recruitment of the transcription factor,
STAT3, by phosphorylated Tyr1138 mediates the transcriptional reg-
ulation of a variety of critical satiety signals in vivo (e.g. POMC).
STAT3-dependent mechanisms mediate the actions of LRb on SNS
and thyroid function to control energy expenditure as well. Impor-
tantly, phosphorylation sites on Jak2, independently of LRb tyro-
sine phosphorylation sites, activate the IRS-proteinÆPI 3-kinase
pathway. This and perhaps other Jak2-dependent pathways are the
primary leptin-stimulated regulators of NPY neuronal function, re-
production and growth, as well as contributing to satiety and energy
expenditure. 
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LRb signaling via STAT3 mediates a subset 
of leptin actions

We have directly addressed the contribution of the LRb-
STAT3 pathway to physiology by studying homologously
targeted ’knock-in’ mice in which LRb is replaced by a
mutant molecule (LRbS1138) that contains a substitution
mutation of Tyr1138 (the STAT3 binding site) [72]. 
Although LRbS1138 fails to mediate activation of STAT3
during leptin signaling, this mutant regulates all other
LRb signaling pathways normally. The use of the ‘knock-
in’ approach ensures that the expression pattern and 
levels of LRbS1138 mirror that of wild-type LRb. This 
system has several advantages over other approaches
such as the ablation of STAT3 using neural-specific 
expression of Cre recombinase in combination with con-
ditional alleles of STAT3 [73], as STAT3 is required for
signaling by numerous receptors (other than LRb) critical
to brain function, and the approach of STAT3 ablation
cannot be specific for LRb action even if it were specific
for LRb neurons. 
Similar to db/db animals, mice homozygous for LRbS1138

expression (s/s) display hyperphagia and decreased 
energy expenditure, resulting in profound obesity that is
associated with increased serum leptin levels. The high
circulating leptin levels in s/s animals not only correlate
with increased adipose mass in these mice, but also indi-
cate resistance to the energy homeostatic effects of leptin
[72]. Feeding is similarly high in s/s and db/db mice, and
energy expenditure is decreased identically in these two
mouse strains [74]. There is evidence that leptin regulates
thyroid function via both direct and indirect pathways
[17, 75–78]; each of these appear to be STAT3 dependent,
as the thyroid function of s/s and db/db mice is similarly
depressed [74]. Similarly, energy expenditure mediated
by the activity of the sympathetic nervous system is sim-
ilarly depressed in s/s and db/db mice by the assay of 
uncoupling protein-1 expression in brown adipose tissue
[74]. 
Important differences exist between the phenotypes of s/s
mice (missing only the LRb-STAT3 signal) and db/db
mice (devoid of all leptin signals), however [72]. Whereas
db/db animals are floridly diabetic, infertile and demon-
strate decreased linear growth, s/s mice demonstrate
greatly improved glucose tolerance compared to db/db
mice, retain relatively normal gonad function and demon-
strate increased linear growth compared with wild-type
animals. 
Analysis of hypothalamic neuropeptide expression reveals
that, similar to db/db mice, s/s mice have decreased
POMC and increased AgRP mRNA levels in the hypo-
thalamus [72]. By contrast, whereas db/db animals dis-
play dramatic induction of hypothalamic NPY mRNA,
levels of NPY message are near normal in s/s animals.
These data suggest that LRb-STAT3 signaling is a crucial

regulator of hypothalamic melanocortin action, and that
dysregulated melanocortin signaling (as opposed to alter-
ations in NPY) contributes to the obesity of s/s animals.
Hence, non-STAT3 LRb signals are critical regulators of
NPY expression in the LRb/NPY neuron. Additionally,
STAT3 is not likely to be involved in the regulation of
membrane potential in ARC neurons, since leptin-regu-
lated membrane potential is too rapid to be mediated by
the transcriptional action of STAT3 [29, 69].
Clearly, LRbÆSTAT3-independent pathways regulate
glycemic control, reproduction, growth and NPY levels
in response to leptin. It is also important to note, however,
that the phenotype of the s/s animals does not suggest the
irrelevance of non-STAT3 pathways in energy balance,
only that STAT3 signaling is important for the regulation
of energy homeostasis. Thus, Tyr1138ÆSTAT3-independent
signals mediated by Tyr985 or Jak2 may contribute to 
energy balance as well as to glycemic control, growth and
reproductive function. Indeed, PI 3¢-kinase activity as
well as STAT3 signaling is required for the regulation of
feeding and sympathetic nervous system activity by 
leptin [60, 61, 71, 72, 74]. Interestingly, mice mutant for
Tyr985 of LRb display no obvious defects in leptin action,
suggesting that Tyr985-mediated signals do not mediate
important positive leptin signals [M. G. Myers et al., 
unpublished], implying a crucial role for Jak2-dependent,
LRb tyrosine phosphorylation site-independent signals in
leptin action in vivo. We speculate that the Jak2-IRS pro-
tein-PI 3¢-kinase pathway represents a major STAT3-
independent mediator of LRb action. Data from numerous
laboratories suggest that PI 3¢-kinase action regulates
membrane potential in the LRb/NPY neuron [70, 79]; PI
3¢-kinase action might similarly control membrane 
potential in the LRb/POMC neuron. We cannot rule out
the possibility that other uncharacterized signals acti-
vated by Jak2 tyrosine phosphorylation sites could con-
trol NPY expression and/or membrane potential, however.

Leptin resistance and obesity

Obesity is a growing health problem in the western world
and is a major risk factor for type 2 diabetes and cardio-
vascular disease [80]. Following the discovery of leptin,
it was initially hoped that exogenous leptin therapy might
induce satiety and weight loss in humans [1, 2, 9, 12, 16].
Indeed, as in rodents, leptin administration results in re-
duced appetite and neuroendocrine normalization in
(rare) obese leptin-deficient patients [81–83]. Further-
more, leptin was found to be efficacious for the treatment
of the hyperphagia and endocrine abnormalities that re-
sult from the reduced leptin levels in rodents and humans
with very low body fat content due to a number of lipody-
strophic [84–86] and eating disorders [87]. Indeed, leptin
therapy appears to ameliorate the reduced energy expen-
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diture and increased hunger associated with weight loss
in humans [82, 88–92]. Unfortunately, the scale of the
weight loss achieved with leptin therapy in most obese
humans was modest compared to the expectations of
most observers. While this limited response may result in
part from the modest doses of leptin that can be adminis-
tered to humans (in contrast to obese rodents) due to the
induction of a local inflammatory reaction by subcuta-
neous leptin injection, it is also clear that most obese
individuals exhibit elevated circulating levels of leptin as
a consequence of their increased fat mass, but do not 
adequately respond to this elevated leptin with reduced
food intake. This under-responsiveness to endogenous
and exogenous leptin in most forms of human obesity has
given rise to the idea that obesity is associated with or
even caused by a state of relative leptin resistance, simi-
lar to the insulin resistance of type 2 diabetes.

Leptin resistance – transport defects versus 
signaling defects

Some investigators have argued against the validity of the
concept of leptin resistance, as the physiologic and evo-
lutionarily selected role of leptin is believed to signal 
undernutrition at low levels rather than preventing over-
nutrition at high levels. While the evolutionary basis of
this argument appears sound, there are examples in nature
of temporary leptin resistance, e.g. in seasonal mammals
and during pregnancy conditions where food intake must
be increased despite elevated body fat and leptin levels
[93, 94]. Furthermore, the finding that high doses of 
leptin can somewhat reduce feeding in rodents with diet-
induced obesity suggests that increased leptin action can
be obtained with superphysiolgic doses of leptin and that
leptin action does not reach an upper limit within the
physiologic range of concentrations [95]. With regard to
the pathology of human obesity the major goal therefore
is to understand the mechanism(s) triggering leptin resis-
tance, the nature of the processes and molecules that limit
action in hyperleptinemic states, and how to bypass these
limitations on leptin action. 
The identity of the crucial mediator(s) of leptin resistance
still remains unclear, but possibilities that have received a
good deal of attention include the failure of circulating
leptin to reach its targets in the brain and inhibition of the
intracellular LRb signaling cascade. The mechanism(s)
by which leptin gains access to the brain is still a matter
of debate; some have proposed that the movement of 
leptin into the brain to regulate energy balance is medi-
ated via a specific transport mechanism across the blood
brain barrier (BBB) and/or via the circumventricular 
organs (CVO) [e.g. the median eminence (ME)]. Leptin is
clearly transported across the BBB by a saturable trans-
port system that may be in part mediated by short LR

forms [96]. In rats lacking all leptin receptor isoforms,
there is a marked decrease in leptin transport rate from
the circulation into the brain [97]. Consistently, db/db
mice that lack only LRb but have intact short LRs show
normal leptin transport rates into the brain [98]. Decreased
leptin transport across the BBB has also been demon-
strated in diet-induced-obese (DIO) rodents – a classical
model of obesity and leptin resistance in which rodents
are made obese by high fat feeding [99]. Furthermore, 
although leptin-induced signaling to STAT3 is decreased
in response to administration of peripheral leptin in 
DIO animals, central injection of leptin at least partially 
restores STAT3 activation [100]. While it is possible that
the observed differences in the efficacy of central and 
peripheral leptin injection in DIO could reflect the diffi-
culty of selecting doses of leptin that are directly compara-
ble via these disparate routes of administration, it is also
possible that central injection of leptin effectively bypasses
a defect in leptin transport across the BBB in DIO.
Whether or not defective leptin transport across the BBB
contributes to leptin resistance, it is clear that the ability
of leptin to activate hypothalamic signaling is decreased
in DIO. A number of investigators, including us, have
thus begun to examine mechanisms of LRb signal atten-
uation in cultured cells and in vivo. At this juncture, a
wealth of data supports roles for two inhibitory molecules
in the regulation of LRb signaling: SOCS3 and the pro-
tein tyrosine phosphatase, PTP1B [51, 52, 95, 100–104].
Overexpression of each of these proteins in cultured cells

Figure 3. Mechanisms of LRb signal attenuation. A number of path-
ways limit leptin action in vivo. Leptin is transported across the
BBB to access some regions of the brain, and this may limit the ac-
cess of leptin to some target cells. Furthermore, STAT3 signaling by
LRb induces the expression of the inhibitory SOCS3, which atten-
uates LRb action by binding to Tyr985 and to Jak2. Other factors may
also promote the expression of SOCS3. SOCS3 and the tyrosine
phosphatase PTP1B have been shown to limit leptin action in vivo,
but other proteins, such as SOCS1, may also contribute to LRb sig-
nal attenuation. 
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attenuates leptin signaling, and there are data from genet-
ically altered mice to suggest roles for these molecules in
the inhibition of LRb signaling. Mice null for PTP1B are
not only insulin sensitive, as first reported, but are lean
and somewhat hypophagic with no noted neuroendocrine
abnormalities [101–103], suggesting increased leptin
sensitivity may actually underlie the metabolic phenotype
of these animals. Indeed, several lines of in vivo data 
suggest that at least part of the lean phenotype of these
animals is secondary to enhanced hypothalamic leptin 
action. A role for SOCS3 in limiting LRb action in vivo
has been implied by the finding of elevated SOCS3 in
some rodent models of obesity, as well as the recent
demonstration of leanness and leptin sensitivity in mice
haploinsufficient for SOCS3 and in mice lacking SOCS3
in the CNS [51, 95, 104] (complete knockout of SOCS3
is lethal due to the role of SOCS3 in limiting signaling by
multiple cytokine receptors) [105–109]. Clearly, these
data suggest that PTP1B and SOCS3 are important phys-
iologic determinants of LRb signal strength, although
their potential dysregulation in obesity is not known.
While no in vivo data are available to examine the poten-
tial role of the related SOCS1, expression of SOCS1 in
cultured cells also interferes with LRb signaling [104].
While LRb has not been shown to regulate the expression
of PTP1B, the LRbÆSTAT3 pathway stimulates SOCS3
expression [45, 51, 52], prompting the suggestion that
high levels of leptin may induce SOCS3 expression and
thus the attenuation of LRb signaling in obesity. Indeed,
hypothalamic expression of SOCS3 is elevated in several
rodent models of obesity [51], suggesting that some sig-
nal related to obesity induces the expression of SOCS3 in
leptin-sensitive neurons. The idea that leptin itself would
stimulate SOCS3 expression to induce leptin insensitivity
in vivo has met with resistance on theoretical grounds:
this increase in SOCS3 should inhibit LRb signaling, in
turn decreasing the expression of SOCS3. Thus, how
could inhibitory levels of SOCS3 be maintained if leptin
itself induces them? Certainly, however, leptin does 
induce the expression of SOCS3 in cultured cells and in
vivo, and leptin-mediated induction of SOCS3 does cor-
relate with the attenuation of LRb signaling in cultured
cells [45, 51, 52]. We hypothesize that the function of this
LRbÆSOCS3 pathway in vivo could explain the dimin-
ishing effectiveness of increasing leptin concentrations in
obesity. This hypothesis suggests that at low baseline con-
centrations of leptin, incremental changes in leptin would
be almost fully translated into increased LRb signaling,
while at high circulating levels (as in obesity), the 
increased expression of SOCS3 would mitigate most of
the increase in LRb signaling. Indeed, numerous data
from cultured cells suggest that chronic high-level LRb
activation induces its own feedback inhibition, probably
via SOCS3 [45, 51, 52], effectively limiting the efficacy
of high concentrations of leptin during chronic exposure.

It is certainly possible that other signals may increase
SOCS3 expression of and/or other mediators of leptin 
resistance in vivo, however; these other potential inducers
of SOCS3 expression include inflammatory mediators
and cytokines such as IL-6 and tumor necrosis factor a
(TNFa), fatty acids and other lipids, and activators of
counter-regulatory signals such as corticosteroids.

Insights from the anatomic specificity 
of leptin resistance

The anatomic distribution of leptin insensitivity was 
recently investigated in DIO mice by examining the acti-
vation of STAT3 signaling by peripheral leptin [110].
Both by immunohistochemistry and in microdissected
nuclei from the hypothalamus, it was clear that this leptin
signal was primarily attenuated in the ARC, whereas
other hypothalamic and extra-hypothalamic sites remained
leptin sensitive. In addition, this site-specific resistance
correlated with increased expression of SOCS3 in the
ARC relative to other hypothalamic nuclei (e.g. the
VMH/DMH), suggesting a role for SOCS3 expression in
the ARC in the development of leptin resistance. These
findings are consistent with previous findings that sug-
gest a selectivity of leptin resistance: Correia et al. [111]
showed that obese leptin-resistant Ay mice appropriately
increased their sympathetic nervous system activity in re-
sponse to exogenously applied leptin, but failed to decrease
their body weight or food intake in response to leptin.
ARC-restricted leptin resistance in the brain has also
been observed in two natural and reversible models of
leptin resistance – pregnant rats and seasonal hamsters
(which exhibit a natural annual body weight cycle) [93,
94]. In each of these models, increased body fat and food
intake are important for survival, and leptin resistance in
these models is therefore beneficial. In both cases the
ARC seems to be the major site showing leptin resistance,
suggesting the ARC as the most important site in the de-
velopment of leptin resistance. Furthermore these data
suggest that leptin resistance can represent a regulatory
rather than a pathological event in response to specific
energy needs. 
How might the ARC leptin signaling system be singled
out for leptin resistance? While the brain is generally 
protected from circulating factors by the BBB, secretory
neurons in the hypothalamus must be in open communi-
cation with blood capillaries in order to effect the secre-
tion of their hormones, and this contact with the circula-
tion may also allow these neurons to sense blood-borne
factors [112]. Furthermore, the ME, part of the CVO,
lacks the typical BBB [113], and the ARC is closely 
apposed to the ME. Indeed, the ARC of young mice is
specifically sensitive to the neurodegenerative effects of
peripherally applied monosodium glutamate (MSG), sug-
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gesting that the ARC is accessible to circulating mole-
cules, at least in juveniles [114]. Some authors have sug-
gested that leptin does not pass through the BBB in order
to gain access to the basomedial hypothalamus [115]
By extension, the finding of selective leptin resistance in
the ARC, where the movement of leptin or other media-
tors across the BBB may not be required in order to 
access LRb-expressing neurons, suggests that leptin 
resistance may not be secondary to defective leptin trans-
port. Indeed, it is possible that the limitations of the trans-
port of leptin and/or other stimulators of leptin resistance
across the BBB into sites other than the ARC could 
protect these sites from leptin resistance, while the ARC
is continually exposed to them.

Summary

The function of leptin as we currently understand it is to
de-emphasize feeding and permit energy expenditure
when body energy stores are replete. We have learned a
great deal about the mechanisms of leptin action via LRb
signaling and are beginning to understand a variety of
neural circuits regulated by leptin. There remain, how-
ever, a number of substantial voids in our knowledge 
regarding LRb signals that likely control important 
aspects of mammalian physiology and regarding numer-
ous poorly characterized populations of leptin-regulated
neurons in the CNS. Furthermore, although we are be-
ginning to understand some of the mechanisms that limit
LRb action in vivo (e.g. PTP1B, SOCS3), the relevance
of these molecules to common obesity is not clear; nor is
the function of these molecules and/or the BBB to the de-
velopment of leptin resistance. The elucidation of these
mechanisms over the next few years will hopefully reveal
molecular details of the processes that contribute to the
development of obesity.
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