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PREFACE

This is the thirty-fifth in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presenmtly in
process of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being
in good agreement with experiment. It is believed that by and large this
aim has been achieved.

In continuing this study, the objective is to determine means for com~
pubting the radar cross section of objects in a variety of different environ-
ments. This has led to an extension of the investigation to include not
only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and
phenomena connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify
data determined theoretically; (b) investigation of antenna behavior and
cross section problems not amenable to theoretical solution; (c) preblems
associated with the design and development of microwave absorbers; and (d)

low and high density ionization phenomena.

Ke M. Siegel
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SUMMARY

The problem, with boundary condition either U= 0 or 8U/9 r=0,
is solved by a method different from those already given by other
authors. The fundamental idea is analogous to that introduced by the
present writer to treat diffraction by a circular cylinder, and is
carried out by means of an infinite Legendre integral transform and
its inverse. Useful integral representations for the field, previously
obtained by other means, are rederived. First, a discussion of the
radiation part of the scattered field is given; this includes the two
special cases of forward and back scattering, the former of which yields
the total scattering cross-section. Subsequently, the field at a finite

distance is considered.
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l. Introduction

The purpose of this paper is to treat the problem of diffraction by
a large sphere by a method analogous to that recently used by the present
writer (Clemmow 1959 a, hereinafter referred to as I) to solve the problem
of diffraction by a large circular cylinder. For the cylinder, an infinite
Fourier integral transform and its inverse were used; for the sphere, an
infinite Legendre integral transform and its inverse (Clemmow 1959 b, here-
inafter referred to as II) are appropriate. Otherwise, however, the tech~
nique in the latter case is closely parallel to that in the former. The
present paper, therefore, follows much the same lines as I, and may con-
veniently be read in conjunction with it.

In the cylinder problem, the use of infinite Fourier transform analysis
seems first to have been exploited by Friedlander (1954), though there is
a hint of it in an early work by Debye (1908). On the other hand, an
infinite Legendre transform analysis for the sphere problem appears to
be new*, unless it be traced back in the history of the theory of radio
propagation around the surface of the earth to papers by March (1912) and
Rybezynski (1913). Admittedly, March introduced an integral representation
involving Legendre functions, but the connection, if any, with the present

theory is sufficiently disguised to make a pursuit of the comparison certainly

* Though there is some similarity to the techniques used by Felsen;
see, for example, Felsen (1957).
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tedious and probably unprofitable. It may, however, be remarked in
passing that the justification of the dismissal of March's work by

Love (1915) and Watson (1918) is perhaps questionable, For the criticism
was chieflylevelled at the fact that March's representation was invalid

at all points on the radial line from the center of the earth pointing
directly away from the transmitter; and yet this in itself, as the present
treatment, for example, bears witness, is no evidence of the unsoundness
of the theory.

There is no need here, then, to add further to the discussion given
in I of the general background to the problem and of the relevant literature.
References in the body of" the paper draw attention to previous work mainly
for the sake of avoiding duplication of specific calculations.

The incident field is taken to be a plane wave, and for the most part
the development is presented in terms of the Dirichlet problem, in which
the wave function vanishes on the surface of the sphere. In § 2 the
fundamental idea is stated and expressed mathematically by means of an
infinite Legendre integral transform and its inverse. In § 3, the radia-
tion field is considered; the discussion includes both that in the forward
direction, from which the total scattering cross-section is obtained, and
that in the backward direction, which happens to be a special case as
regards the mathematical treatment. In § Ly attention is turned to the

field at any finite distance from the center of the sphere. In §5, the
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closely analogous Neumann problemy in which the normal derivative of
the wave function vanishes on the surface of the sphere, is briefly

discussed.

2. The General Nature of the Solution

The problem considered is that of the scalar plane wave specified

by

i ~-ik G
o e ikr cos (1)

falling on the sphere r = a, where (r, 6, @) are spherical polar

coordinates (see Fig. 1).. The convention adopted is that the physical

Figure 1

The configuration

space is embraced by the range of values of © between O and 7T, and the
analysis is evidently independent of @ The Dirichlet boundary condition

U=0 on r=a is chosen, where U is the wave function of the total field.

*The suppressed time factor is exp(iwt).

3
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Following the argument of I, the aim is to obtain a convenient
form of the solution by expressing it in terms of functions which are
not individually periodic in 6. This is easily dqne with the use of
the infinite Legendre integral transform defined and discussed in II.

In the notation of II, the function

00
-4%_— S vV p (91, 92; V) cot (mmy) Eu_%(e) dy, (2)
00

where
o
i ~-ika cos ¢
o - 1 .
D (Gl, 62, y)= - r— S e E—-v-%( ¢ )sinydy, (3)
®
is equal to
-ika cos ©
e for 61 <98<K86
-ika cos @ 2
ie for8 =6, 86=10, (4)
1 2
0 for e< 61’ 9792,

for arbitrary values of el, 92 (62> 61). Two supplementary remarks have
to be made. First, (2) is meaningless when € has one of the values

O, o, 39, ..., because E l(e) is then logarithmically
y-3
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singular. Secondly, the path of integration in (2) avoids the poles at
v =2%1,%2,+3, ... by running parallel to the real v axis; whether
it lies entirely above or entirely below the real axis is immaterial,
since the residue of the pole at = n cancels that of the pole at v= -n.

Then, likewise, the function

o) H,, (kr) cot (WU)EN_%(e)du (5)

00

5 p(6)s 835 V) (2)
)

o Hy, (ka)

has the value minus (4) on r = a. It is thus an outgoing field which
on the surface of the sphere cancels the incident field for © between

61 and 92, and is zero there for 6 less than 61 or gregter than 62.
Clearly, then, an exact representation of the scattered field is given by
the superposition of all functions (5) corresponding to non-overlapping
ranges [61, 62] which together span the full range -oo to oo.

Again following the argument in I, it may be said in general terms
that for ka>>1 the scattered field is given to a good approximation by
the expression (5) with the range [61, 62] roughly spanning that of
physical space, namely [O, Tf] ; and that the further the range [el, 92]
is from some such "primary" range, the smaller, gt a given point in

physical space, the expression (5) becomes. Furthermore, for n=0%*1,% 2,%3,...,
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E l(e +2nTr)=in ei"n”E (8) (6)

V=5 U"'%

(see IT, equation (8)), and it follows from (3) that

' . n RiTny
p(el-znﬂ',e -2nmyv)=(-) e p(® ,0 ;v ). (7)
2 1 2

A decrease of 2n 7T in both 61 and © is therefore equivalent in (5) to
2
an increase of 2nm in €, so that an interpretation in terms of rays

travelling around the sphere becomes evident if the solution is built

up by teking successive [el, 62] ranges to be of width 2 T,

3. The Radiation Field

3.1. The Case 8 F 0

In this section the radiation field, that is, the part of the
scattered field of order 1/(kr) for kr 3> 1, is considered for all
directions other than that in which the incident wave is travelling.

For any fixed VY, as kr -»oo

Dimyer |/ (2) Fim Fir
V(kr)

ikr

(8)
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and (5) is consequently asymptotic to

(0 0]
-ikr ] s
/(2 ka) him S ) PO, %iv) yimr (rY)E  (8)dv.
,,r\/,T kr (2) V-2
-00 (ka)

(9)

The justification for substituting (8) into the integrand in (5), where
the variagble of integration p runs to infinity, is essentially that given
for the corresponding step in I.

The behaviour in the complex y -plane of the integrand in (9) is
now considered. As note:d in II, the only simgularities of E_u_%(e)
are simple poles at ¥ = 1/2, 3/2, 5/25 «ee; and it is evident, from (3),
that p(el, 62; Y ) can have no others. But the integrand in (9) contains
the factor cos( TV ), so that its only singularities in addition to the
irrelevant poles at =0,%1,%2,%3, ... are simple poles arising
from the zeros of H(yz)(ka). Furthermore, for any fixed value of
® (sin & %#0), and any fixed value of argy in the range -Tr < arg v <,
as IVI -» 00

ive

g (8)~ l/(ﬁr) l/(ev sin 9) 10)

»_

where /¥ has a positive real part, and l/(sin ®) is positive for real

values of 8 between O and T .
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Tt follows that the path of imtegration in (9) may be replaced,
if 8, < - T/2, by one enclosing the poles of l/Hiz)(ka) in the upper
half-plane, and if 61 > 3 T /2, by one enclosing the corresponding
poles in the lower half-plane. For any range [91, 92] outside

[— m/2, 3 17'/2] » the integral (9) can therefore be evaluated by
the calculation of residues.

The main contribution to the scattered field is contained in the
expression (9) with 81 = -‘ /2, 92 =3 T/2, In this case the appropriate
method of evaluation is that of steepest descents. In order to apply this
method, p(-7r/2, 3 /2; L) is expressed as the sum of terms whose indi-
vidual behaviour can be i'epresented, for the most part, by exponential
functions with comparatively simple exponents. As a first step in
achieving this (cf. I) the Y path of integration in (3) is distorted
in the way indicated in Figure 2, where the regions of convergence at
infinity are shown shaded. The contribution to p(-T/2, 3 m/2; v ) of

the curved portions of the new ¥ path of integration is*

1iqr .14
_ /(;1'_) o AT E{S)(ka) —Hff)(ka)] L)
a

% In essence, this result is to be found in Watson (1944) p. 175. But
since the integration is now in the complex ( -plane, in contrast to
the more standard complex cos Y -plane used by Watson, it seems
worthwhile to give a direct derivation. This is done in Appendix A.
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%
Z,
- m/2 3m/2
- 0 ™ 2
L/ v,
MW 2%

Figure 2
Distortion of the Y path of integration

in p(- /2, 3M/2; v) defined by (3)

Furthermore, the contributions from the straight portions of the
path are conveniently taken in conjunction with the functions
p(-')T/Z'-’-'2n1T’, 3“/2:21111'; b4 ), n =l, 2; 3, eee o In effect, thel’l,

these functions can be replaced respectively by

(12)

The radiation part of the scattered field now appears in the form

g ~ikr
U° =P(8) 2 , (13)
kr
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where
00 (1)
$ H, (ka)
P(e) =3 Y | ———-1]cot (mov) Eu-l(e) dv
-00 Hgf)(ka) *
= 3 H(l)(ka) . .
+_%:Z (_)n S” AR 1 cot('n'u)(e-zlwnu+e21ﬂny)Eu_l(S)du.
n=1 oo HLZ)(ka) 2

(14)

Equation (14) should be compared to equation (12) of I. In both
cases complete rigour has been sacrificed because the integrals involved
are not strictly convergent. However, there is no fear of error if a

procedure analogous to that in I is adopted, and equation (14) is replaced

by
% 1M (ka)

Pe)=2 \v —— cot (TV)E (6) dv

Hiz)(ka) V-z
00
(1)
H k . .
- ";"i7': f (-)n S y J—E—ﬂ cot (Trov) e'2lwn“[E ge)+e—211n% ge):ldv.
n=0 —o0 Hgf)(ka) ~y-3 V-5
(15)

10
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As far as the stages in its derivation are concerned, equation (15)
corresponds to equation (13) of I. 1In contrast to the latter, however,
equation (15) must undergo a further slight transformation before it can
be evaluated by standard techniques, because the factor cot (4r v) in the
integrand of the first integral spoils an immediate application of the
method of steepest descents. The difficulty is overcome by writing in

that integrand

cot (ry) =i+ [l - i tan (TTU)] cot (V)

00 .
=i-2cot (TTY) Z (--)n e-21‘n‘nvfor Imv<0; (16)
n=1

so that, if the path of integration is now definitely specified to run

below the real axis, the result is

o (1)
P(g) = - -+ qu (8) dw
™ (2) V-3
-o0 H,, (ka)

RS 1 . .
+"7::’Z -)" Hy (ke) cot (W) e-zmnuI}-zma% (0)-E ge)] dv.
=0 2 () R

(17)

11



THE UNIVERSITY OF MICHIGAN

R778-6~T

The integral in the first term of (17) can be evaluated by the
method of steepest descents. If (10) is used, together with the Debye
| asymptotic form for the Hankel functions, the saddle-point is seen to
be located at Y = ka cos (6/2). The steepest descents path is somewhat
as shown in Figure 3, being asymptotic at infinity to the lines of zeros

of Hg})(ka); and it should be observed that the poles of E 1(9), which
Y

-2

l

/
/

/

ka cos (% 8)

Figure 3
The steepest descents path in the complex V ~plane

for the first integral in equation (17)

lie along the negative real axis, do not interfere with the path distortion.

The resulting contribution to P(8) is (see Appendix B)

o : -2
1k otikasin(30) J, 1 +0 [ () :l . (18)
2 ka sin3(36)

12
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Derivations of (18) by different methods have been given by Franz and
Depperman (1954) and by Keller, Lewis and Seckler (1956).

The integrals in the sum in (17) can be evaluated by closing the
contours around the poles in the lower half-plane, these being at the
zeros, V= Us says S =1y 25 35 eees OF H)(Jz)(ka). If it is noted that o

(cfo equations (9) and (11) of II)

=21V ~iTryV
e E  (8)-E (8) = -i7re tan(Tm2)P  (-cos 8), (19)
\ ) v

the resulting contribution to P(8) is seen to be

(1)
Q0 x Hy ' (k :
-2Ti Z (-)n VY Ys (ka) e—177(2n+l) Ys Pv _l(-cose).
n=0 s=1 _‘L[H(z)(ka)] 3
dav L ¥ .y
S (20)

Expression (20) agrees with the analogous one given for a point source by
Franz (1954).

Tt is worth making a further remark in connection with the particular
case @ = T (back scattering). As it stands, the first integral in (17) is
meaningless at ® = T, because of the logarithmic singularity there of
E (8). Furthermore, in the steepest descents evaluation described, the

v-3

13
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asymptotic representation of E  (8) requires l VY sin SI to be much greater

1
than unity at the saddle-point):)ika cos (8/2). It would seem, therefore,
that as @ approaches T, the calculation is only valid for increasingly
large values of ka. Nevertheless, the result (18) is well behaved at 6=,
and on physical grounds no startling variations of field-strength would

be expected in the vicinity of the back scattering direction. It may there-
fore be plausibly anticipated that (18) does, in fact, hold for 2ll values
of 8, other than those too close to zero. To establish this by a rigorous
mathematical treatment of the first term of (17) would appear to be quite
difficult. On the other hand it is possible to rewrite this term in a form
which remains valid at ® = 7, and it is then a relatively straightforward
matter to evaluate it for this particular case. For if the path of integra-

tion, shown in Figure 3, is displaced so that it runs "symmetrically"

through the origin, a sign change of the variable of integration & gives

the form
(1),
-1 yw [E (8) - ATVg (e)} dv, (21)
2T H(z)(ka) V-3 -V-3
Y
which from (19) is
(1)
: H, “(ka)
1 ifutan (m) e”w _‘_’.__.a_ Pu , (~cos ) dw . (22)
K e ¥

14
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And at 8 = 1T the expression (22) is

(1)
. H W (k
i i§u tan (TV) elﬂu —i’-——aﬂ dv. (23)

12 (1)

A direct steepest descents evaluation of (23) is spoilt by the presence of
the factor tan(7v V) in the integrand. But a modified steepest descent
treatment can be spplied, and the expression (18) with 8 =T recovered
(see Appendix C). This gives added support to the contention that the
result of a direct evaluation of the first term of (17) holds uniformly up

to e =T .
3020 The Case 6 =0

The analysis of the previous section is now supplemented by a considera-
tion of the radiation field in the forward direction. This gives the total
scattering cross-section, o~say, through the relation

= - -‘%‘1 In P(0). (21)

k

The required modification to the treatment in § 3.1 is analogous to
that made at the corresponding stage in I. The symmetry now present in the

problem is preserved by taking the original primary range for [Sl, 92] as

15
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[-3 ™/2, 3 Tr/2] rathér than [- /2, 37r/2] , and the ¢ path of
integration in the integral (3) for p (-37/2, 3 7/2; V) is distorted

as shown in Figure 4. The result is

00 (1)
5 iTTY H,, (ka)
P(8) = = YV | (1-e ) ————— -1 cot (TTYV)E _(8) dv
i S { (2) V-3
o0 Hy (ka)
00 1
+ = Z (_)n g Y Hu (ka) - e-Zi‘lTnu
T p=1 % (2)
- H), (ka
. H(l)(k )
- [1 -i-eZlTn) v ¥ gL nY cot(TML)E  (8) dw
(2) v-

(25)

In order to put & = 0, (25) must be transformed so that the only
Legendre functions appearing are P 1(cos ©). The procedure is similar

to that which converts (15) into the sum of (22) and (20). Since (equa-

tion (12) of II)

16
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%7777
3m/2 |21
2w 32 M o
%7/ 7,77

Figure 4

Distortion of the Y path of integration

in p(~3 /2, 3T/2; V) defined by (3)

EV_%(e) - E_,,_%(e) = - Ttan (7 D)PU-%(cos 8), (26)

the aim must be to make the factors multiplying E 1(9) in the integrands
odd functions of ¥ + This is achieved by using t:e-:?Ldentity (16) in that
part of the integrand of the first integral in (25) which does not have
this character, namely the part not involving the Hankel funections. If,
then, the paths of integration are taken to run below the real axis, (25)

can be written

17
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(1)
(0 o]
. 21T Y iy (ka)
P(g) = = L | (1-e ) 2y, . cot (rrv)-i| E (8) dv
™ H),” (ka) V-1
-00
(1)
00 H,, (ka) .
+-1—Z (_)n Y —5———-—--)-1 e-21'rrnu
™ (2)
n=1 -00 HU (ka)

21Ty H(l)(ka) 2iT ny
- {1+ e X e cot(TTV)E ‘1_(9) dyv .« (27)

U—Z

Hiz)(ka)

Consider, first, the summation part of (27). A sign change of vV in

part of the integrands, and use of (26), shows that it is

00 oo H(l)(ka) )
= s
-17 (--)n g yi]|l+ _(ZZT_ e Y P ~» (cos®) dv ; (28)
— H))(ka) V-3
n=1 ~00 v

and (28) in turn can be evaluated by closing the path of integration around

the poles ) 5, s =1, 25 35 eeey OF 1/HS,2)(ka) in the lower half-plane, with
S

18
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N HE}l) (ka)

00
-21T Z )" Z )/S 2 , ATV, Py _%(cose)
n=1 s=1 - [Hf)(ka)} ;

dav

yv=y
s

(29)

as the resulting contribution to P(8).

The isolated integral in (27) is handled as follows. It is noted
that, by changing the sign of V , it can equally well be written with
E u~%(9) replaced by E-V_%(e), provided the path of integration runs
above, instead of below, the real axis. If, now, half the sum of the
two integrals is formed, each path of integration can be taken to run
"symmetrically™ through the origin from the third to the first quadrant
in the complex p -plane; for only the poles of cot (7TL ) are thereby
crossed, and the contributions of the residues of those at V =% n are

easily seen to cancel. Again appealing to (26), the resulting contribution

to P(8) can be written

B (ce)

%1j V[i tan (TTY) - (1 - e2i7'l‘u) ] P” (cos8) dv.

Hg)(ka)

(30)

19
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The combinabion of (30) and (29), with & = 0, gives

(1)
. H k
P(0) = % 1 jy [i b (77 0) o (1T o ) ] v

Hgi)(ka)

HS*’)(ka)
S

=21W n
s

[¢)

00 (ex0]
a
- 277 (=) % Y e
Z or (4 T2, )]
- — [% (ka)
av Y Do
(31)

This is just the form obtained by Franz and Beckmann (1957), who derive
from the integral several terms of the asymptotic approximation in inverse

powers of kao

Lo The Field at an Arbitrary Distance From the Sphere

In this section the problem is considered for unrestricted values of
kr, so that (5) cannot be approximated by (9). Two methods are given for
obtaining expressions for the field, corresponding respectively to those

designated I and IIT in §4 of Reference I,
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In the first method the scattered field is deduced directly from
the final expression obtained for the radiation part in §'3.1. This
expression is given by (13) and (17), where the path of integration in
the first integral in (17) is that shown in Figure 3, and the summation
part of (17) is replaced by (20). Loosely stated, the procedure is to

write

/ ) - iTI'V (2)
) SHT e i, (kr), (32)
(% Sy

with the appropriate value of ¥V, in place of exp (-ikr)/(kr), which is
the asymptotic approximation to (32) as r <»o0o. In the region where the
result converges, it is an outgoing solution of the wave equation free

of singularities for r\ a, whose asymptotic form for kr-»o00 is precisely

that of s, It must therefore be Us, which thus appears in the form

dim 1) (a)
S=_¢8 1 Y, Z H(j)(kr) e-% Y . (8) dw
V™) 1% (ka) V-4

77/(271') %:171' 00 no ¢ ilWVsH(l)(k ) H)(J (kr) -i'n'(2n+l)vs
e

) Z()Z { [ ] v,

_%(-cose).

(33)
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The path of integration in the integral is that shown in Figure 3, and
the integral is only convergent for T/2< 6 < 37v/2. Hence, (33) gives
the scattered field in the half-space on the illuminated side of the plane
through the center of the sphere perpendicular to the direction of propaga-
tion of the incident wave.

The half-space & < 7/2 includes the shadow region, where the total
field can become very small. This suggests that a consideration of the
total field, rather than the scattered field alone, might yield an ex-
pression which is valid for points of observation not catered for by (33).
The inclusion of the incident field, in a suitable representation is the
basis of the second method. The representation is obtained merely by
writing r for a in (2), (3) and (4). If © is allowed to lie in the
range 0 to T, the primary range for [91, 92] is [— /2, 377'/2] » and

the corresponding contribution to the total field is

I (-7T 2,3T/2; )
L S»{ o (m/2umas w)-(2) LT ) (kr)} cot(TE_(e)a,
—00 HS)(ka) -
(34)
where
3T/2
: -ik
o (-7'_/2’371_/2“)):_?]‘:— S . rcoswE—v-%(SV)sinl,U dy .
- T/2
K (35)
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The analysis can now proceed in a manner closely parallel to that
of §3.1. The ¢ path of integration in p (-T/2, 3T/2; L ) and
pr(- T/2, 3T/2; V) is distorted as in Figure 2, and the contributions
to (34) associated respectively with the curved and straight portions of
the ¥ path can be treated separately without giving divergent integrals.
For the former, p(- /2, 37/2; V) in (35) is replaced by (11), and
pr(- T/2, 3T/2; V) by (11) with r written for a. The latter is taken
in conjunction with the contributions arising from ranges [61, 62] |

outside the primary range. The total field thus appears in the form

-iir 00 (1)
- ”-%iw[‘*(l)(k) B 290 W2, >] t(mV)E  (8)d
=" e r) ="y kr) | co v
Y(2m) (k) SR P v}

18

pim ¢ O 1P

1 ] a

- ...LZ (-)" S ve'ﬁl"u[}{u (kr)- -’-’(—-—- Hf)(kr)}
v(2m) /(kr) — Hyz)(ka)

-2ifrny ATy
+e

x  cot(Tr v)(e B (8)dv. (36)
yl

=2
The evaluation of (36) can proceed in either of two ways, useful
respectively if the point of observation is outside or inside the shadow

regione.
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For points outside the shadow region, the technique is essentially
the same as that employed in § 3.1 for the evaluation of (15). The
paths of integration are taken to run below the real axis, and the identity
(16) is used for the factor cot( ¥ ) in the integrand of the first

integral of (36). The result is

-iim C v [ (1) H(l)(ka)
= L S vt [ (kr) - ¥~ HEJZ)(kr) B _(6) dv
/(21r) /(kr) (2) V-3
-00 (ka)
| 0 Q0 211ru ( ) (2)
_Tr/(zﬂ)e%lﬂ' 1 Z (_)n Zv e (k )H (kl") e—iﬂ(zn*'l)l'sl:;‘__?OSe).
s=1 s72

(kr - ®
/) na 0 -—-[Hiz)(ka)J }
dy )):Vs

For T/2 <6 ¢ 3 Tr/2, the path of integration in the integral in (37)

(37)

can be taken to be that shown in Figure 3, and the result then evidently

agrees with (33) provided

- L
-:iTY (1) -ikr cos ©
(kr) B (8) dv = e .

3 g ye H
Yiom) k) y =
(38)

2,



THE UNIVERSITY OF MICHIGAN

2778-6-T

Equation (38) is the analogue of equation (33) of I. It can be shown
to hold for those values of © for which the integral converges, namely
/2 to 3T0/2.%
For 0 6 < ™/2 (but still outside the shadow region), the path
of integration in the integral in (37) can be deformed so that both
terminations at infinity are in the lower half of the complex y ~plane.

The corresponding contribution to U is then conveniently written

- H(;)(ka) 1
- 8 y — H(2)(kr) e 2TV g (8) dw,
(2m) /(xr) (2) y-3
C (ka)
(39)

where the path C (Figure 5) traverses two saddle-points; one near
= ka cos (8/2) associated with the reflected wave, and one near
YV = kr sin & associated with the incident wave (Franz and Beckmann, 1956).
For points inside the shadow region the evaluation of (36) is more
straightforwarde The sign of Y is changed in the parts of the integrands

of the integrals in the sum which contain the factor exp (2i7rn » ), and

the identity (26) then leads immediately to the well known result

o0 o HT uSH(l)(k )H( )(kr) e
e sPy (co

v=-/(2m)e ‘*“r Z( )“Z
Vi) [H 2) (k) ]} v=y, (40) .

%A proof of (38) can be constructed with the help of the infinite Legendre
integral transform and its inverse.

I\)I'-‘O

25
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saddle-points

Figure 5

The path C in the complex w-plane for the integral in (39)

5+ The Neumann Problem

The foregoing analysis needs only slight modification for the case
when the boundary condition is 9U/ @ r =0 on r=a. The contribution

to U° analogous to (5) is

(0,0]
67653
o1 S y 3ty i, (ir) cot (V)8 (8) dw,
(i) -00 L H(z)(ka):l | "
[./(ka> g

(41)

where the dash denotes differentistion with respect to the argument of the

Hankel function, and

Q(ela 92:11) =~ 1( W )sin Yay .

L
Tr -Y-3
(42)
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' s
For it is clear that on r = a the part of @ U /O r corresponding to
(41) cancels the normal derivative of the incident field for 61<e<92’
and is zero for 6(61, 6792.

Furthermore, from (3) and (42),

(6:9; = 9 (939; ]- 43
(e, 6,3 ) a<ka>[pl2”) (13)

Evidently, then, the analysis for the Dirichlet problem applies also to

the Neumann problem if H)(Jl)(ka)//(ka), Hgf)(ka)//(ka) are throughout
'

replaced respectively.by[HS})(ka)//(ka)J ', [Hj()z)(ka)/ I/(ka)J .
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Appendix A

The object of this Appendix is to show that

)
S T @mapay s -/ ‘*1"62”” (D@, )

(-1)
(2)

-1
S ehlz cos¥ F 1(V))sinl,Ud 17 =_/(-%—) e%j_‘rr =

(1)

-

Hsjl)(z), (A.2)

i

where the paths of integration run between certain regions of convergence

at infinity in the complex l,U—planev. For real positive values of z the
situation is depicted in Figure (A-1), where the regions of convergence at
infinity are shown shaded. It is tacitly understood that the paths of
integration do not intersect the branch cuts of E y ('-F), which start from
the branch points at 0, £ T, X 27, t 31w, ... anz travel to infinity
along straight lines parallel to the negative imaginary axis,

Now an expression for E (‘-P) valid in the upper half of the complex

Y -3
Y -plane is (see equation (7) of II)
W) iwes .
E l(‘)”)* yr ———— - el(v raY F(3, v+d; v +1; e219U )
SE PSS (d)! (end)] 2iny
=@ e . (A.3)
Z n! (v+n)!
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(-2) (1)
T/
-2 v w\ 217

N
N

W),

(-1) (2)

Figure A-1
Paths of integration and regions of convergence

at infinity in the complex ¥ -plane

Al so

w

S elV'f) e-lZ cos Y sin® a4
(-2)

(Sl) ivy q -iz cos Y ) d ¥
e 4 (e

L

e e ay

(Aod)
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Hence, from (A.3) and (A.4),
W
-_:7_1'._._. 5 e-:LZ COS(’DE B (P )sin¥ a @

I\)l

s 00
b S )] )]
— e & (=) (v+ 2n+ ) g (z)
i n! (v+n)! Y+2n+3
—§i7|'U
1s
=/em T (2),

where the last identity is a special case of the Gegenbauer addition
theorem (Watson (1944), pe 370, equation (9)).

But (A.5) can be written

(-1) (1)
__%: g 5 e--;1zc>os‘)UE I(HU)sinde‘f"
(-2) () Y2

___/ e N L), @), ]
(—E-) e -\7-Z—- [Hu Z)+H)/ z) .

30
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Now allow z to be temporarily complex, z=|2z| exp (i ; ) say, where

0< ; & 7. Then it is not difficult to see that the path of integra-
tion of the first integral on the left hand side of (A.6) can be chosen

so that, for all values of ¢ on it, exp (-iz cos /) becomes exponentially
small as | z[ —> oo (it is simplest to consider ; = T/2). The first
term on the left hand side of (A.6) is thereby identified with the first

term on the right hand side. Thus

(-1) . ~Limy (1)
. -iz cosy LT o - 1
_%S e Eu-%(W)sin¢dW=A%) S 9—\/7 Hy (z),  (a7)
(-2)
(1)

; -iz cosy . e\ AT e—%ﬁry(g)
-z S e Ev_%((P) s:Ln‘Pd‘,V:\/(-z-)e — H,,"(2). (A.8)
(-1)

Finally, (A.1) follows from (A.8) by changing the sign of ¥ ; and

(A.2) follows from (A.7) by changing the sign of »/ and changing the varisble

of integration from Yto Y+ 2T,
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Appendix B

The object of this Appendix is to show that, for ka3»1,

(ka
- L E y _l(e) dv
ww °

2ik sin (3 © i
O i AP P Svofe”]h, @)
2 ka sm3

(

where the path of integration is that shown in Figure 3.

If a new variable of integration & is introduced via the relation
Y = ka cos & , (B.2)

the first two terms of the Debye asymptotic forms for the Hankel functions

give
(l) 2
(ka) o [1 i(5 - 2 sin” o ) 2ika (sinax - xcos o )
-1 - e ’
E2}(ka ) 12 ka sind &
(B.3)
and the first two terms of the relation (see equation (6) of II)
1. l) | ive ie
15 Vv-3). e ie
B0 = /(F)T F(3 330+ 15 - ——) (B.4)
-2 /(sin 6) 251n8
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give

Lir icot © s
E l(e)m/(I) e” X 1m o 7 |etka B cosa
V-3 2 I/(ka sin 6 cos X ) 8 ka cos X

(B.5)

When (B.3) and (B.5) are substituted into the left hand side of (B.l),

the exponential part of the integrand is exp [ika f(d)] s where

£l ) = 2(sino(- xcosk) + 8 cos X (B.6)
The saddle-point, then, is evidently at « = 8/2, and with the notation

B = -%99 (B.7)

s =sin (3 8), ¢ = cos (} 8), (B.8)

it is adequate to write

olka £(ot) _ 2ikas [1 ike (-cF 3_3spt)- 2 12,22 6] ikas B° ’ (5.9)
2~-3 10 -9
Sind/(coso() - Sl/c [l"" ) > p - -——8——2—8—— p 2] » (BolO)
sc c

. . 2
sine |/(cos«)elkaf(°< )= s‘/cezlka1S [l- lo—'—%i P 2+ ika (i— - _9/3&_ gk2 242 6].
8c
(B.11)
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The procedure is now standard. Expressions (B.3), (B.5) and (B.1l)
are substituted into the integral of (B.l), the path of integration for
B is taken from -oo exp (i1t/h) to oo exp (i™/4), and the integration
is performed term by term. To the accuracy required, the second term in
the square brackets in (B.3) and (B.5) need only be taken in conjunction
with the first term (unity) in the square bracket of (B.11). The result

appears explicitly in the form

2 2 2

i . i . 12 5-2s

_%kae21kas _ i 10—982 _ 34 —2 _ .5.3 + Sic _ i ( S + )J ,
2kas g¢2 Lkas?\ 38 4 12kas?® Lka A4e2s 383

(B.12)

which simplifies to the right hand side of (B.1l), the order term in (B.l)
being evident from inspection.

The algebra in this derivation has been written out at some length for
two reasons. First, to show how the terms which would individually blow up
at 8 = T, namely those in (B.12) with c2 in the denominator (which originate
in (B«5) and (B.10)), in combination remain finite there. Secondly, to give
an indication of the labourinvolved. Since a simple answer is obtained as the
sum of a considerable number of terms, it might be thought that a better
technique would be available, and it is interesting to question whether the

completely different approach of Keller, Lewis and Seckler (1956) has here
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an advantagé. The author understands, however, from private conversation
with J. Be Keller, that their Luneberg-Kline method, which obtains the
asymptotic form for ka »> 1 without recourse to an exact solution, also

becomes laborious if higher order terms are sought.
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Appendix C

The object of this Appendix is to show that

.o, By ' (ka) 03k
my ika . _
%ijutan('rrv)el X av= i kae 1--L 40 [(ka) 2] ’
2ka

Hz(jz)(ka)

(c.1)

where the path of integration is that shown in Figure 3, but with 8= T so
that it runs through the origin.

The method adopted is based on an argument of the steepest descents
type, but direct application of the standard technique in the manner of
Appendix B is spoilt by the factor tan (7 ») in the integrand, However,
in view of the symmetry in v of the integrand, only one half of the path
of integration need be considered. If this is taken as the portion for
which Im V £ 0, the identity

o0 ~2iqv
tan (T2 )=-1-20 5" (=)t T Y (c.2)
n=1

can be used, and the left hand side of (C.l) written as

R (¢.3)

n=1
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where

0 (1)

imy H), (ka)
I= Ve —_ 4V (Cek)

° (2)(ka)

0 (1)

n iTVH (ka) -2i1‘rnu
= ( ) 25 (2) n=1,2535e00, (005)
n

(ka)

the lower limits of integration being at infinity in the third quadrant
of the complex Y -plane.

To evaluate I0 and In, the new variable of integration ok is introduced
as in Appendix (B) (equation (B.2)), and the asymptotic form (B.3) used for
the quotient of the Hankel functions. The evaluation of Io then follows
closely the pattern of Appendix B, the calculation being, in fact, considerably
less laborious since, effectively, s =1, ¢ = 0, and the function Ey_%(e) is
absént. The result is

2ika 51

I ~-3%kae (1 -

. b
° 12 ka) (€.6)

For I 5 n =152535e00s the same type of argument gives, in the first
n

place,

2
k 17 k
Inru(-)n 21e (ka) :1.a/3 ezm.n *p d/g. (C.7)

0

Here, /5=0<- T/2 (cf. equation (B.7)), and the factor exp (-2iTn v ),

which distinguishes the integrand of Irl from that of Io, has been replaced
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by exp (2i1m ka,ﬂ )o Tt can be seen, though hardly without some further
working, that the inclusion of the next approximation to exp (-2i7rn /),
which would introduce the further factor l-iqr n'ka/33/3, would only yield
terms negligible to the present order of approximation.

Now in (C.7) write

T =8+ T 1, (c.8)
to obtain
i
n ika -ika 17 )
Inru (=) 2ie (ka) e & n (¥-1n)e dy
an
n+l . 21k
(=) —— e 2, (¢.9)
21T2n
Since
OO (-)n""l 71_2
E = ’ (c.10)
n=1 n2 12
the substitution of (C.6) and (C.9) into (C.3) gives
" ,
PR (S (c.11)
2ka

which is in agreement with (C.1).
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