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Integral Equations
and Operator Theory

Spectrum of the Kerzman–Stein Operator for
Model Domains

Michael Bolt

Abstract. For a domain Ω ⊂ C, the Kerzman-Stein operator is the skew-
hermitian part of the Cauchy operator acting on L2(bΩ), which is defined
with respect to Euclidean measure. In this paper we compute the spectrum
of the Kerzman-Stein operator for three domains whose boundaries consist of
two circular arcs: a strip, a wedge, and an annulus. We also treat the case of
a domain bounded by two logarithmic spirals.
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1. Introduction

For a smooth domain Ω ⊂⊂ Cn, Kerzman and Stein studied in [8] a certain
compact operator A in relation to the Szegő projection. Let C be the Cauchy
operator on Ω, defined for an integrable function f according to

Cf(z) =
1

2πi

∫
bΩ

f(w) dw

w − z
for z ∈ Ω,

then using the nontangential limit of the integral for Cf(z) when z ∈ bΩ. For rather
general domains (eg., piecewise-smooth boundary), C is a bounded projection from
L2(bΩ) onto the Hardy space H2(bΩ). Moreover, if the boundary is smooth and has
finite length, then the operator A = C −C∗ is compact, and the Szegő projection
can be expressed as the composition of bounded operators S = C(I + A)−1.1

A problem, suggested by Kerzman in [7], is to relate the spectrum of A to the
geometry of bΩ. It is known that A is identically zero precisely when the boundary

The author thanks Professor Sidney Webster for supervising the work of his doctoral dissertation,
from which this originated, and also David Barrett for many helpful conversations.
1The Szegő projection is the orthogonal projection from L2 to H2, where H2 is the space of
square-integrable functions that extend holomorphically to Ω. A measures how close is C to
being the Szegő projection.
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has constant curvature. This happens since the Kerzman-Stein kernel, defined by

A(z, w) =
1

2πi

[
Tw

w − z
− T z

w − z

]
for z, w ∈ bΩ,

is zero precisely when there exists a circular arc that is tangent to the curve at
both points. Here, Tw is the unit tangent vector at w ∈ bΩ, so if the arclength
measure is ds, then dw = Tw dsw.

Here we extend the result and compute the spectrum of A for domains
bounded by either two circular arcs, or by two loxodromes that meet only at their
poles. Since A(z, w) vanishes for z and w on a common circular arc, it follows that
A acts diagonally for the circular arc domains—it maps a function supported on
one circular arc to a function supported on the other. For the domains bounded by
two loxodromes, A can be expressed using convolutions in the inversive arclength
coordinates. If the domain is bounded by more than two arcs, then A is a sum of
operators, and the interference prevents us from writing A in a concise fashion.

Since A is Mobius invariant we restrict our attention to the strip, wedge,
annulus, and logarithmic sector. In [12], Singh treated the case of an annulus for
a problem that is equivalent to ours. For completeness we include that example
here as well. The equivalence between problems was outlined by Burbea in [2].

There is also closely related work by Feldman, Krupnik, and Spitkovsky in [4].
They computed the norm of the Cauchy singular operator for contours that include
the case of finitely many parallel lines or concentric circles. In those situations, they
obtain matrix representations that are essentially the same as ones given here for
the strip and annulus. Moreover, there is a general relationship between the norm
of a projection operator and the norm of its skew-hermitian part. This is described
by Gerisch in [5], for instance.

We remark that there is another general symmetry in the kernel, namely,
A(z, w) = A(z, w)Tw Tz. From this it follows that if f is an eigenfunction of
A corresponding to +iλ, then f T is an eigenfunction corresponding to −iλ. In
general, the imaginary spectrum of A is symmetric with respect to the origin. A
final symmetry occurs between a domain and its complement. The spectrum is
the same for each, since reversing the orientation of the boundary corresponds to
multiplying A(z, w) by -1.

We hope that the examples given here will help initiate a study of the spec-
trum of A which is analagous to the theory for the Fredholm eigenvalues. See the
work of Schiffer and others in [1, 10, 11, 13], for instance.

2. Strip

The boundary of the strip consists of the two lines Im z = ±1, which can be param-
eterized by s ∈ R→ s± i, respectively. Notice that if z = s± i, then Tz = ∓1. We

identify f and g = Af ∈ L2(bΩ) with the vectors
[
f+

f−

]
,

[
g+

g−

]
∈ L2(R)× L2(R),

where, for instance, f±(s) = f(s± i) for s ∈ R.
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Im z = +1

Im z = −1

Since the kernel A(z, w) vanishes if z and w belong to the same line, the
value of g±(s) depends only on the values of f∓(t) for t ∈ R, respectively. We then
compute,

g±(s) =
1

2πi

∫
R

( ±1
(t∓ i)− (s± i)

− ∓1
(t± i)− (s∓ i)

)
f∓(t) dt

=
±i

π

∫
R

(
s− t

(s− t)2 + 4

)
f∓(t) dt.

So A involves convolution with the function k(s) = (±i/π) s (s2 +4)−1. The trans-
form of this function can be found using residues, but since the integral is standard,
we refer to formula 3.723–3 from [6], page 418, and find

±i

π

∫
R

s

s2 + 4
e−isξ ds =

±2
π

∫ ∞

0

s · sin(sξ)
s2 + 4

ds = ±sgn ξ · e−2|ξ|.

Let F and F−1 be the Fourier and inverse Fourier transforms, defined for
h ∈ L2(R) by

F h(ξ) =
1√
2π

∫
R

h(s) e−isξ ds,

and
F−1h(s) =

1√
2π

∫
R

h(ξ) e+isξ dξ.

If φ ∈ L2(R) is the real function φ(ξ) = sgn ξ · e−2|ξ|, then the Kerzman-Stein
operator acts according to[Fg+

Fg−

]
=

[
0 +φ
−φ 0

]
·
[Ff+

Ff−

]
=

[
+φFf−
−φFf+

]
,

where Ag = f , and we are using the identifications of f, g with f±, g± described
above.

For a fixed ξ ∈ R, the eigenvalues of the 2 × 2 matrix are ±i|φ(ξ)|, so the
continuous spectrum of A is precisely the range of these two functions, that is, the
interval along the imaginary axis [−i, +i]. The L2-operator norm of A is precisely
maxξ |φ(ξ)| = 1, and since φ vanishes only at zero, the nullspace of A is trivial.

3. Wedge

The boundary of the wedge consists of the rays arg z = ±θ (0 < θ < π/2),
which can be parameterized by s ∈ R+ → s e±iθ, respectively. Notice that if
z = s e±iθ, then Tz = ∓e±iθ. We identify f and g = Af ∈ L2(bΩ) with the
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0

arg z = +θ

arg z = −θ

vectors
[
f+

f−

]
,

[
g+

g−

]
∈ L2(R+)× L2(R+), where, for instance, f±(s) = f(s e±iθ)

for s ∈ R+.
Then, since the kernel A(z, w) vanishes when z and w belong to the same

line, the value of g± depends only on the values of f∓(t) for t ∈ R+, respectively.
We compute,

g±(s) =
1

2πi

∫ ∞

0

( ±e∓iθ

t e∓iθ − s e±iθ
− ∓e∓iθ

t e±iθ − s e∓iθ

)
f∓(t) dt

=
±e∓iθ cos θ

πi

∫ ∞

0

t− s

s2 + t2 − 2st cos 2θ
f∓(t) dt.

Next, the change of coordinate s = eu induces an isometry Λ : L2(R+) → L2(R)
given by h→ h′ where h′(u) = h(eu) eu/2. In terms of the new coordinate,

g±(eu)eu/2

=
±e∓iθ cos θ

πi

∫ +∞

−∞

ev − eu

e2u + e2v − 2 eu+v cos 2θ
· e(u+v)/2 · f∓(ev)ev/2 dv,

and the kernel is again a convolution kernel since

(ev − eu) · e(u+v)/2

e2u + e2v − 2 eu+v cos 2θ
=

− sinh[(u− v)/2]
cosh(u− v)− cos 2θ

.

In particular, A involves convolution with the function

k(u) =
±e∓iθ cos θ

πi

− sinh(u/2)
cosh u− cos 2θ

,

whose transform can be found using residues, or by referring to formula 3.984–3
from [6], page 506. We find

±e∓iθ cos θ

πi

∫
R

− sinh(u/2)
cosh u− cos 2θ

e−iuξ du =
±e∓iθ sinh[ξ(π − 2θ)]

cosh(ξπ)
for ξ ∈ R.

So if F and F−1 are the Fourier and inverse Fourier transforms, as in the
previous section, and if φ ∈ L2(R) is given by φ(ξ) = e−iθ sinh[ξ(π−2θ)]/ cosh(ξπ),
then the Kerzman-Stein operator acts according to[FΛg+

FΛg−

]
=

[
0 +φ

−φ 0

]
·
[FΛf+

FΛf−

]
=

[
+φFΛf−
−φFΛf+

]
,

where Ag = f , and we are using the identifications of f, g with f±, g±, and the
isometry Λ, described above.
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Again, for fixed ξ ∈ R, the eigenvalues of the 2×2 matrix are ±i |φ(ξ)|, so the
continuous spectrum of A is precisely the range of these two functions. In Figure
1 we show a graph of the real-valued function (ξ, θ) → eiθφ(ξ). Since φ vanishes

ξξ

θ

eiθφ(ξ)

−10−10

1010 0

π

2

−1

1

Figure 1. Graph of (ξ, θ)→ eiθφ(ξ) for the wedge, 0 < θ < π/2.

only at zero, it follows that the null-space of A is trivial for all θ. We also point
out that the L2 operator norm of A approaches 0 as θ → π/2, and it approaches
1 as θ → 0.

There is an interesting continuity property suggested by these limiting cases.
As θ → π/2, the wedge tends toward a half-plane, and as mentioned above, the
norm for the wedge tends to 0, which is precisely the norm for a half-plane. Like-
wise, as θ → 0, the wedge tends toward a strip, and as mentioned above, the norm
for the wedge tends to 1, which is precisely the norm for a strip. The manner in
which the wedge becomes a strip can be pictured as follows—for θ > 0, let the
vertex Vθ of the wedge lie on the negative real axis, so that the boundary of the
wedge also passes through ±i. Then as θ → 0, we have Vθ → −∞, and the wedge
tends toward a strip.

4. Annulus

The boundary of the annulus consists of the circles |z| = r±1 (0 < r < 1), which are
parameterized by s ∈ [0, 2π]→ eisr±1, respectively. If z = eisr±1, then Tz = ∓i eis.

We identify f and g = Af ∈ L2(bΩ) with the vectors
[
f+

f−

]
,

[
g+

g−

]
∈ L2([0, 2π])×

L2([0, 2π]), where f±(s) = f(eisr±1) for s ∈ [0, 2π].
The kernel A(z, w) vanishes when z and w belong to the same circle, so the

value of g±(s) depends only on the values of f∓(t) for t ∈ [0, 2π], respectively. We
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r
r−1

compute,

g±(s) =
1

2πi

∫ 2π

0

( ±i eit

eitr∓1 − eisr±1
− ±i e−is

e−itr∓1 − e−isr±1

)
f∓(t) (r∓1dt).

The kernel in this expression can be rewritten as

±r∓1

2π

[
1

r∓1 − ei(s−t)r±1
+

1
r±1 − ei(s−t)r∓1

]

=
±r∓1

2π

∞∑
j=0

r2j+1
[
eij(s−t) − e−i(j+1)(s−t)

]
.

For n ≥ 0, consider the function fn,1 ∈ L2(bΩ) given by fn,1
± (s) = e±iπ/4 r∓1/2 eins.

We find

g±(s) =
±r∓1

2π

∫ 2π

0

∞∑
j=0

r2j+1
[
eij(s−t) − e−i(j+1)(s−t)

]
e∓iπ/4r±1/2 eint dt

= ±r∓1 r2n+1 e∓iπ/4 r±1/2 eins = −i r2n+1 fn,1
± (s),

so fn,1 is an eigenvector of A corresponding to the eigenvalue −i r2n+1.
Having found one eigenfunction, the symmetry of the annulus provides an-

other. In general, linear transformations µ : Ω → Ω′ induce isometries L2(bΩ) ←
L2(bΩ′) according to h(µ(z))

√
µ′(z) ← h = h(z), and these isometries commute

with A = AbΩ and AbΩ′ . So for an annulus, the map µ(z) = 1/z determines
an eigenfunction fn,2 according to fn,2(z) = fn,1(1/z)

√
1/z2. Then, using these

eigenfunctions, we find two more using the involution described in the introduction.
In particular, fn,3 = fn,1 T and fn,4 = fn,2 T are eigenfunctions corresponding to
+i r2n+1. For n ≥ 0 these are all recorded in the following table.

Eigenvalue Eigenfunction

−i r2n+1 fn,1
± (s) = e±iπ/4 r∓1/2 eins

−i r2n+1 fn,2
± (s) = e∓iπ/4 r∓1/2 e−i(n+1)s

+i r2n+1 fn,3
± (s) = e±iπ/4 r∓1/2 e−i(n+1)s

+i r2n+1 fn,4
± (s) = e∓iπ/4 r∓1/2 eins
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Notice that as n ranges over the nonnegative integers and k = 1, 2, 3, 4, the fn,k

form a complete basis for L2(bΩ), so we’ve determined all the eigenvectors. As
before, the null-space of A is trivial.

5. Logarithmic Sector

The boundary of the logarithmic sector consists of the logarithmic spirals that can
be parameterized by s ∈ R+ → z(s) = s eia log se±iθ/(1 + ia), respectively, where
a > 0 and 0 < θ < π/2 are fixed. Notice that if z = z(s), then Tz = ∓ eia log se±iθ.

Again, we identify f and g = Af ∈ L2(bΩ) with
[
f+

f−

]
,

[
g+

g−

]
∈ L2(R+)× L2(R+),

where f±(s) = f(s eia log se±iθ/(1 + ia)) for s ∈ R+.
In this case, A(z, w) does not vanish for z and w on the same spiral, so when

computing g± we consider contributions from both f± and f∓. Moreover, it will
be simpler to work in the inversive arclength coordinate u =

√
a log s, rather than

the Euclidean arclength coordinate s.2 So, as for the wedge, we use an isometry
Λ : L2(R+) → L2(R) given by h → h′ where h′(u) = h(eu/

√
a) eu/(2

√
a)/ 4
√

a.
The effect of this coordinate change on the kernel is the multiplicative factor
e(u+v)/(2

√
a)/
√

a.
After simplifying, we find

Λg±(u) =

±
∫ +∞

−∞

e−i
√

a(u−v)/2

2π
√

a
· Im

[
1 + ia

sinh[(u− v)(1 + ia)/(2
√

a)]

]
Λf±(v) dv

∓
∫ +∞

−∞

e−i
√

a(u−v)/2∓iθ

2πi
√

a
· Re

[
1 + ia

sinh[(u− v)(1 + ia)/(2
√

a)± iθ]

]
Λf∓(v)dv.

So A involves convolution with the functions

k1(u) = ± 1
2π

e−i
√

au/2

√
a

Im
[

1 + ia

sinh[u(1 + ia)/(2
√

a)]

]
,

2For a nice study of the inversive geometry of plane curves, see Patterson [9] or Cairns and
Sharpe [3].
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and

k2(u) = ∓ 1
2πi

e−i
√

au/2∓iθ

√
a

Re
[

1 + ia

sinh[u(1 + ia)/(2
√

a)± iθ]

]
.

The transform of k1 can be found using formula 4.111–1 from [6], page 511. We
omit the lengthy computation, but, after simplifying, we find

φ1(ξ)
def=

1
2π

∫ +∞

−∞

e−i
√

au/2

√
a

Im
[

1 + ia

sinh[u(1 + ia)/(2
√

a)]

]
e−iuξ du

=
i sin(2πad)

cosh(2πd) + cos(2πad)
,

where d =
√

a(ξ+
√

a/2)/(1+a2). The transform of k2 can be found using formulas
3.983–5,6, page 506. After simplifying, we find that

φ2(ξ)
def=
−1
2πi

∫ +∞

−∞

e−i
√

au/2−iθ

√
a

Re
[

1 + ia

sinh[u(1 + ia)/(2
√

a) + iθ]

]
e−iuξ du

=
e−iθ

2

[
e(π−2θ)d(1−ia)

cosh(πd(1− ia))
− e−(π−2θ)d(1+ia)

cosh(πd(1 + ia))

]

= e(2θ−π)iad−iθ · e
πiad sinh 2(π − θ)d− e−πiad sinh 2θd

cosh 2πd + cos 2aπd
,

where d =
√

a(ξ +
√

a/2)/(1 + a2).

We summarize what we have shown so far. Let φ1 and φ2 ∈ L∞(R) be defined
as above, and let F and F−1 be the Fourier transforms, as in the previous sections.
Then the Kerzman-Stein operator acts according to

[FΛg+

FΛg−

]
=

[
+φ1 +φ2

−φ2 −φ1

]
·
[FΛf+

FΛf−

]
,

where Ag = f , and we are using the identifications of f, g with f±, g±, and the
isometry Λ, described above.

Notice that φ1 is purely imaginary. So, for fixed ξ ∈ R, the eigenvalues of the
2× 2 matrix are ±i

√|φ1(ξ)|2 + |φ2(ξ)|2, and the continuous spectrum of A is the
range of these functions as ξ spans R. Since φ1 vanishes only at discrete points,
we know that the null-space of A is trivial. In Figures 2 and 3 we illustrate the
spectrum for certain values of a and θ. In Figure 2 we show a graph of (ξ, θ) →√|φ1(ξ′)|2 + |φ2(ξ′)|2 for a = 4, using ξ′ = ξ −√a/2, and in Figure 3 we show a
graph of (ξ, a)→√|φ1(ξ′)|2 + |φ2(ξ′)|2 for θ = π/4.

Observe that large values of a correspond to large operator norms for A. In
particular, if ξ is chosen so that πad = π/2, then |φ1(ξ)| = 0, and

|φ2(ξ)| =
sinh π−θ

a + sinh θ
a

cosh π
a − 1

=
cosh π−2θ

2a

sinh π
2a

.



Vol. 50 (2004) Spectrum of the Kerzman–Stein Operator 313

ξξ

θ

√|φ1|2 + |φ2|2

00

2020 0

π

2

0

2

Figure 2. Graph of (ξ, θ)→√|φ1(ξ′)|2 + |φ2(ξ′)|2 with a = 4.
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Figure 3. Graph of (ξ, a)→√|φ1(ξ′)|2 + |φ2(ξ′)|2 with θ = π/4.

It follows that

‖A‖ = max
√
|φ1|2 + |φ2|2 ≥

cosh π−2θ
2a

sinh π
2a

≥ 1
sinh π

2a

.

This estimate is best for large values of a.
We also point out the continuity property of the spectrum at the endpoint

a = 0. If a = 0, then in fact, the logarithmic sector is a wedge. Following a linear
change of coordinate, ξ → d =

√
a(ξ +

√
a/2)/(1 + a2), we find from the first
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expression for φ2 that φ2(d)→ φ(d) as a→ 0, where φ was defined for the wedge
in the previous section; we also find that φ1(d) → 0. So the description given in
this section passes continuously to the one given for the wedge, as a→ 0.

To finish, we show a graph of (a, θ)→ ‖A‖. This function was computed by
numerically solving for maxξ

√|φ1|2 + |φ2|2 for an array of pairs (a, θ).

aa

θ

‖A‖

11

1010
π

10

2π

5
0

6

Figure 4. Graph of (a, θ)→ ‖A‖ for logarithmic sectors.
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