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ABSTRACT

A COMPUTER SIMULATION MODEL
OF ATTACK LEARNING BEHAVIOR IN THE OCTOPUS

by

John Crittenden Clymer

Chairman: Larry K. Flanigan

A quantitative model of attack learning is developed in the
dissertation based on J.Z.-Young's theory of memory in the octopus
brain. This theory suggests a binary neural element (the '"mnemon')
as the basis for memory, and says that circuits located in the animal's
upper lobe structures may function to write into and read out of these
mnemons. The model is subsequently used to generate leafning curves,
which compare favorably with behavioral data obtained from experiments
with real animals. The dissertation then looks at effects in the model
analogous to operations in which the upper lobe structures are aamaged
or removed, and at other degradations in performance caused by inter-
ference. Certain pattern recognition aspects and problems of design

are pointed out, and directions for additional studies are suggested.
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CHAPTER ONE

INTRODUCTION

1. Biological Background

Biological systems can be characterized as mechanisms which
maintain themselves by adapting to their environment. In viewing
biological systems this way, we are interested in how this adaptation
is accomplished, both in the short term life of a single plant or
animal, and in the long term life of an entire species. Short term
adaptation involves homeostasis and learning. Long term adaptation
involves the action of genetic mechanisms to preserve the coded
instructions for producing successful individuals.

Animals are provided with a spectrum of adaptive mechanisms
ranging from simple reflexes, tropisms, and instinctive behavior,
through various degrees of true learning capability. These mechanisms
enable the individual animal to survive an increasing range of environ-
mental situations. There are cases in which learning may prove maladap-
tive, but the ability to react in less stereotyped fashion generally has
survival value to an animal faced with a complex environment in which
it must find food and avoid danger. This advantage must be paid for
by increased dependency of the young during training, however, and
longer periods before maturity is reached. Therg is thus a heavier
investment in the survival of the individual as the complexity
of the individual increases, but the individual becomes increasingly
able to discriminate between and react to ''good" situations and '‘bad"
ones, and hence more likely to survive to propagate.

This increased learning capability is related to an increasing
complexity of the nervous system, and of the brain, in particular.

Perhaps the most challenging problem on the frontiers of modern science
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is to understand how brains work. The direct study of brains and
nervous systems faces many difficulties. The neurons of which they are
composed are exceedingly small, delicate, numerous and connected in
complex tangles. They can be viewed directly only after some type
of staining operation. Classification systems imposed upon them are
largely the subjective constructs of investigators due to the relatively
continuous variability observed in the sizes and shapes of the neural
cells. The tools at hand of micro-electrode recording, surgicél
lesions, and chemical analysis are still relatively crude. We have
made progress in understanding the action of single nerve cells and
of some small assemblies of nerve cells, but the complexity of even
very small brains makes the task of understanding their operation very
difficult. Their gross anatomy is often relatively simple, but so
little is really known about the connectivity and timing relationships
between elements that any theory of operation for something as complex
as the human brain seems a long way off.

The ideal of relating structure to function can be achieved to
some extent in certain areas of the nervous system. In other areas it
is next to impossible even to determine what the structure is. The
most p;omising approach seems to involve applying hypotheses of what
to look for based on biological knowledge of the animal and its environ-
ment. Horridge concludes, for example, that "The problems of what
one should look for when studying interneurons is thrown into the lap
of the biologist [who] will know the special features of the environmental
stimuli of interest to his subjects, and he is wise who studies special-
ized animals to which certain stimulus situations have great survival
value."1 Young makes a similar point: "If we are to understand how

a brain works we must first answer the rather obvious question 'what



does it do'"2

The approach taken by Young and his associates is to study an
animal of intermediate complexity in some detail. For this purpose
they have chosen Octopus vulgaris Lamarck, which is plentiful
near their Naples laboratory. Young and his colleagues have used the
octopus in numerous conditioning experiments, and have traced a good
many neural connections through anatomical studies. They nhave also
run comparative behavioral studies with lesions in parts of the nervous
system, and have studied the effect on behavior of removing various
lobes of the brain.

Despite its fairly simple nervous system, the octopus exhibits
a surprisingly complex range of behavior. For many cases of interest,
however, it can be considered to react to stimuli in only two ways--
by attacking or by retreating. The animal normally sits in its '"home"
among the rocks watching for a food object to pass nearby. Its visual
system is more rudimentary than that of vertebrate systems, but it
can discriminate among a wide range of forms. The horizontal and
vertical direction seem to play a special role in this discrimination.
Thus it easily distinguishes horizontal from vertical rectangles, but
has difficulty in distinguishing a square from a circle. Each of its
eight arms can also be considered a '"distance receptor', in the sense
that the animal can obtain tactile information on objects within its
reach. In this regard, it is interesting that there are tactile
centers in the central nervous system which appear to be functionally
quite similar to the higher centers of the visual system. In summary,
"The nervous system [of the octopus] serves to make decisions between
a relatively small number of things the animal can do. In particular,

a decision must be made whether to attack or retreat, to seize an



object and bite it, or to reject it by pushing and blowing it away.
Of course the nervous system must control other detailed processes ...
But the main central nervous system is concerned with deciding whether
to advance or retreat, and over 90 per cent of the central neurons
are concerned with this decision. It is this relative simplicity of
the action system that makes these animals so suitable for work on
the coding and learning mechanisms."3
The importance of this binary decision to the animal, as reflected
in the structure of its nervous system, leads to the belief that some
type of functional model might capture a significant portion of the
information processing going on in these centers, and that such a model
would provide some insight into the difficulties to be encountered in
designing such a system. That is to say, given the task of designing
the decision apparatus for an intelligent automaton to occupy the ecolog-
ical niche of the octopus, what design problems might one encounter,
and what solutions to these problems would perhaps suggest themselves?
As Young puts it, "In particular we are interested in a self-teach-
ing homeostat, that is to say, one whose information and instructions
are not entirely built in by heredity. Such a learning device alters its
performance as a result of experience so as to produce results that are
satisfactory for its self-maintenance. In order to do this it must
record certain features of the input in a code, recording also whether
they were accompanied by conditions that were 'good' or 'bad' for the
homeostat. We shall try to study the principles by which such a system
uses 'rewards' and 'punishments' to control its performance and how it
finds the optimal rate of change of behavior as it learns in any given
environment."4

A model of such a system reflects at a functional level some theory



of operation, in the sense that a theory concerning the internal
structure of the octopus nervous system can be reduced to a set of
model equations and programmed for a digital computer. The parameters
of such a model can then be varied so as to produce model behavior
patterns comparable to experimental behavior, and the implications

of the theory can be shown. The model can thus be considered as a
"black box" which produces behavior similar to that of the animal.
Chapter 4 will describe a learning model I have developed based on
Young's 'mnemon' theory and what is known about the octopus. The

following section gives some of the background for this model.

2. General Background of the Model

In a very general sense, biological systems can be said to perform
a mapping from the space of all possible stimulus situations to the
space of all possible alternative responses, as illustrated in figure
1.1. That is, the system adjusts itself in response to its perception
of the state of the world.

Figure 1.2 shows a schema for how this process takes place in
the higher animals. The process first involves an encoding of the
environment via several sensory modalities and possible pre-processing
of this sensory information before it reaches the decision making
centers of the brain. For example, Hubel and Wiesel (1962) found in
their work on cats that the visual image projected on the retinal rods
and cones was converted before reaching the cortex into small circular
excitatory fields with concentric inhibitory surroundings, or vice-versa.
After pre-processing, however, they found that in cortex cells these
fields had been converted into several quite different types of
fields, such as line or edge detectors with specific orientations.

Thus in the most general case, peripheral and cerebral pre-processing
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results in two sets of transformations being applied to each modality
of sensory information used as input to the decision centers of the
brain. With this input from all the sensory modalities and the memory
of past experiences, a decision is arrived at by the central process
from its repertoire of possible actions. This decision is passed on
to the lower control centers where it is elaborated into sequences of
instructions to the effector organs themselves and becomes a response.

The model discussed here will concern itself only with the center
boxes of figure 1.2. It will be assumed that sensory information has
been pre-processed and that output decisions can be converted by lower
centers into effective actions. That is, the decision box can receive
any combination of inputs from among all the possible stimulus features
of the various modalities, and on the basis of this input and memory
contents, it chooses one of the courses of actions open to it. (Refer
to figure 1.3) The decision process is thus a problem in pattern
recognition, but there are additional factors to consider.

In all real systems, memory contents are not static but change
with experience. Moreover, evidence indicates that more than one
level of memory is at work. After surveying numerous experiments,
Horridge distinguishes three periods of time in memory experiments
with mammals: '"First, an initial phase of seconds or a few minutes,
sensitive to electro-convulsive shock and analeptic drugs (strychnine)
but not to antibiotic drugs. A second phase, of a few minutes, is
inhibited by temporal lobe injections of puromycin in mice, but is
not sensitive to actinomycin or acetoxycycloheximide. This suggests
that growth or protein synthesis is involved but there is no direct
evidence as yet of the growth of nerve terminals. In the third period

the memory is in a more permanent form and is insensitive to cooling,
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drugs, shocks or anything except further training. This can be inter-
preted as a new distribution of synaptic effects, with neurons acting
as if they have new connections."5

Wooldridge also concludes there are different memory mechanisms:
"Thus a combination of subjective impressions and objective observations
has led us to a three-stage concept of memory. The brain automatically
preserves for a brief interval the description of the immediate external
environment provided for by the nerve impulses coming in over the external
neuronal receptors. In the absence of selection and reinforcing activi-
ties, this input information fades away quickly--probably within a few
seconds. Normally, however, partly consciously and partly unconsciously,
an attention-focusing mechanism, which may be the reticular activating
system, performs an initial sorting operation on the incoming data, some
of which is earmarked as being of special interest and thus is preserved
in what we call the medium-term memory. Once reinforced by this attention
focusing process, the memory trace can apparently persist in the
medium-term-memory status for a period of some minutes. In a brain incapaci-
tated by lesion, surgical excision, or electric stimulation, the memory
trace may be incapable of fixation and may be permanently lost after a
few minutes. In a normal brain, however, some kind of process goes on
by means of which the memory is made permanent. Here again, attention
focusing, perhaps by the same mechanism that selected the original
sensory data, seems to cause some recollections to go into permanent
memory in indelible fashion, and others to be stored so tenuously that
if they are not later reinforced by repetition or subsequent recall,
they may drop out of the storage system altogether."6

One of the problems solved by short-term memory is that of delayed

reward or punishment. After an attack has been launched, the stimulus
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will be viewed from a different perspective and some of the stimulus
components which were originally present may no longer be present. Yet
something must be read into permanent memory for each of these compon-
ents when the goal is eventually reached and leads to food or pain. The
octopus will also chase a prey which has disappeared from view, so it
seems clear that some form of short-term internal representation is
set up. Differences are observed, however, between short-term iearning
performance and long-term learning. Performance within learning sessions
improves rapidly and reaches a higher level than can be observed at
the beginning of the next session sometime later. In addition, animals
with lesions in the upper lobe structures can exhibit short-term learn-
ing at 4 minute intervals but not longer-term learning at 8 minute
intervals. Similar effects are observed in humans with certain types
of brain damage. Further, "After a few repeated shocks octopuses will
sometimes not attack crabs for several days. We can thus speak of
setting up some representations that prevent attack, but it is interesting
that these do not seem to destroy or replace the representations ensur-
ing attack that had been previously established. The new one seems to
be distinct from the old and if it is less well established it fades
more quickly, leaving the old tendency to attack unimpaired. This
suggests that the representations are embodied in some way in distinct
sets of cells in the nervous system."7

This is also suggested by reversal studies: '"... if training
with two rectangles is reversed, signs of the original responses
remain apparent for a long time ... Such reversal experiments suggest
that the effect is produced not by attaching a new condition (shock)
to the old representation, but by establishing, say, a crab with shock.

Being weaker than the original one this representation soon fades and
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the other is again revealed intact. ... Experiments in which the cues
were repeatedly reversed provide further insight into the problem ...
As judged by the percentage of errors the performance deteriorated to
a random level.”8 It is important for the learning model to take
account of these interacting memory mechanisms with different time
scales, therefore.

Another aspect of the model which will distinguish it frem standard
pattern recognition schemes is the attempt to portray incremental
changes taking place over real time, rather than performing a simple
quantum update at each "event'" or encounter with the environment. Thus,
memory is altered over a period of time rather than all at once, and
it is possible to study deficiencies in the mechanism for this reading
into memory. Similarly, the decision to attack involves a process of
build-up, and it is possible to interfere with the mechanism for reading
out of memory. Other interference effects should be seen whenever
events occur too closely together and conflict.

Finally, the model incorporates certain concepts derived from the
anatomy of the animals. Considerable study has been devoted to anatom-
ical relationships in the octopus nervous system and a good many neural
pathways have been traced. Much is thus known about this nervous
system, but a great deal is also unknown. The model is therefore con-
strained at the level of its basic structure, but not entirely defined
by our empirical knowledge. The approach will be to use what is known
in obtaining formal constructions which can be used as a basis for
simulation. A central feature of the model will be Young's concept
of bi-stable memory elements, or '"mnemons" which can be switched between
the "attack" and 'retreat" modes of behavior. Sensory input is assumed

to be separable into discrete components which connect into mnemons,
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and behavior patterns result from recruitment of these activated
mnemons. In particular, a threshold is applied to their weighted
output in order to determine attack or retreat.

The philosophical viewpoint adopted in this work is that biological
systems incorporate a high order of complexity, and models of these
systems serve as an aid to our understanding of their operation, just
as models can sometimes be used to advantage in studying other large
scale systems of considerable complexity. Modeling and simulation have
have long been used in technological applications and basic physical
research. As our detailed knowledge of local properties in complex
biological systems increases, we should also see an increasingly fruit-

ful area for collaboration between computer scientists and biologists.

3. Summazx

Nervous systems and brains have evolved which permit a wider
range of adaptive behavior patterns in animals and thereby increase
the chances of individual survival in complex environments. The
brains of even very simple animals present a challenging subject for
study, and our understanding of nervous systems is still very rudi-
mentary. One way of viewing the function of the brain is to note

that biological systems react to sensory input by selecting from a

repertoire of responses. In the octopus this repertoire can be

quantized into two principal components, attack or

retreat. The octopus thus provides a good subject for an attempt to
model some aspects of the operation of a relatively simple nervous
system. A basic assumption of the model is that sensory information
can be separated into a number of discrete, independent, and distinct
components, or features, and that the contribution from memory for
each of these features adds linearly to produce an overall response

pattern. Memory has three aspects, a short-term aspect, a medium-term
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aspect, and a long-term aspect, with short-term memory serving to

read into and out of long-term memory through the action of medium-term
memory. Reward or punishment, in the form of input from taste or

pain fibers, enters short-term memory for transfer into the long-term
store, assumed to consist of "mnemons.' Each mnemon behaves as a
bi-stable element which can be switched by the taste or pain inputs,
and which retains some memory of its past states. Attack or retreat
results from recruitment of large numbers of mnemons by one behavior
pattern or the other. The approach taken throughout is that models
developed with the aid of computer specialists can help provide

insight into the operation of biological systems, just as they sometimes

aid us in understanding other complex or large scale systems.



CHAPTER TWO

THE OCTOPUS

1. General Observations

The octopus is a cephalopod and exhibits perhaps‘the highest
degree of intelligence observed in invertebrates. It customarily
makes its home among the rocks or inside old pots found on the sea
bed. Fishermen, in fact, often catch the animals by lowering a string
of pots to the bottom for a few days, and then raising them again to
find that animals have made homes in some of the pots. They feed
chiefly on crabs and mussels, although in a laboratory situation they
will readily accept bits of fish which have been prepared as a reward
for correct responses. It is not known for sure whether this fondness
for crabs is innate or a learned behavior pattern, since Octopus vulgartis
is pelagic for a period after hatching and is difficult to raise from
birth.

As cold-blooded animals, octopuses are quite sensitive to water
temperature and become very sluggish in colder water. Because of their
chromatophore covering they can exhibit striking color patterns, and
these color changes often signal their intentions in the laboratory.
The ability to assume different color patterns or to "stipple'" their
skin allows them the advantage of being able to camouflage themselves
or appear fearsome to an attacker, however. When frightened, they can
disappear in a cloud of ink.

The normal situation is for the animal to sit in its home until
a food object appears in its visual field, and then to dash out and
grab the crab or other food object with its arms. The crab is passed
under the mantle and carried back to the home to be eaten. Outside

the home one usually finds a scattering of shells from crabs, lamelli-

15



16

branchs, and other animals that have been eaten by the octopus. If
the object in the visual field is unfamiliar, the attack will be cautious
énd slow. Later attacks will be faster and more sure if the object
yields food. 1If it yields a painful result, however, the octopus rapidly
learns not to attack it and retreats into the home.

In the laboratory, animals are kept in tanks with circulating
seawater which have a masonite home constructed at one end. They
can be trained to come out and attack figures cut from plastic by
providing a piece of fish for correct responses and a mild electric
shock for attacks on the wrong figure. Usually two sessions of sixteen
trials each are given per day, with positive and negative trials alter-
nating at about five minute intervals. According to Young, "The animal
learns very rapidly. Responses may begin to be correct within a first
session of sixteen trials and are sometimes quite good after the second
session. Retention is excellent for the time it has been tested, up
to five weeks. Learning can be reversed, if necessary repeatedly. In

fact the animal answers well to the questions we wish to ask.”1

2. Nervous System

The two chief modalities of sensory input in the octopus are
visual and tactile. Chemoreceptors also supply information, but are
of lesser importance. Visual information from the retinas of its
two slit eyes is mapped directly onto the surfaces of optic lobes
through optic nerves. These optic lobe surfaces are structured much
like the vertebrate retina. Inner and outer granule cell layers are
separated by an elaborately layered plexiform zone. Inside the 1lobe,
the inner granule layer merges into a medulla, which also receives
input from taste and pain fibers and has its output into an optic tract.

Figure 2.1 illustrates the pathways which have been found to
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exist in the visual system (the path from VUl to VL2 is questionable,
however). Output from the optic lobes is passed to higher motor centers
where it is elaborated into patterns of action. Optic lobe output

also goes to a set of higher centers (labeled in the figure as VL1,

VL2 for 'vertical lower", and VU1, VU2 for 'vertical upper"). This
vertical lobe system, which also receives inputs presumed to be taste
and pain fibers, is thought to mix and amplify signals before passing
them back into the optic lobe, so that these upper lobes perhaps function
as reverberatory pathways. In this regard they may resemble the Papez
circuit of the mammalisn limbic system. A similar set of paired centers
is also found in the tactile system. With all four upper lobes removed
the animal still puts out an arm to seize a nearby crab, but will

not follow nor launch an attack with the entire body.

The first pair of upper lobe centers (VL1 and VL2) appear to act
as an amplifying device, in the sense of increasing the effectiveness
of visual impulses in producing an attack. '"Fibres from the optic lobes
pass to the lateral superior frontal [VL1]. Here they meet fibres from
the inferior frontal [tactile system], and perhaps other chemotactile
sources and a large component from the vertical [VU2] and subvertical
[VL2] lobes. These and the optic fibres make a dense plexus through
which run the axodendritic trunks of the cells of the lateral superior
frontal lobe itself. These trunks are relatively large and carry many
long receptor branches as they pass through the neuropil. These
axons then proceed medially to the subvertical lobe and end there. From
the subvertical lobe large cells send axons back to the optic lobe."2
This structure of the lower circuit thus suggests the function of
spreading and amplifying impulses in a relatively few optic tract axons,

unless pain intervenes in the subvertical lobe. Animals from which

the two upper lobes are removed but the two lower ones are left intact
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will attack objects moving at a distance, but often slowly and irre-
gularly compared with a normal animal.

The upper set of lobes lie superficially and are easy to operate
on, so more information is available about them. 'The median superior
frontal [VU1l] receives its input mainly (? wholly) by fibres that have
passed through the lateral superior frontal [VL1] lobes. Many of
the fibres of the optic to superior frontal tracts do not end in the
lateral lobe but pass through its neuropil to the median lobe. Here
they break up into numerous bundles, which interweave with other
bundles that come from the inferior frontal lobe [tactile system] and
other chemotactile pathways. The bundles divide and recombine repeatedly
... This interweaving of bundles gives us a clue to the method of
functioning. The system allows fibres that were previously together to
separate and to have opportunity to interact with other fibres, with
which they were not previously associated. ... The median superior
frontal fibres carry collateral dendrite twigs as they pass through the
neuropil and are thus able to be stimulated by the combination of
impulses presented by the incoming bundles.”3

"The vertical lobe [VU2] has an entirely different structure. It
consists of five cylindrical lobules, each with a very thick cortex
composed mainly of masses of minute [amacrine] cells ... each having
a single trunk that breaks up in the neuropil into a bush of equal
branches, no one being distinguishable as an axon. The output of the
lobe is produced by a small number of larger cells. Their trunks turn
and twist about in the neuropil, carrying numerous dendritic side branches.
Finally, these fibres leave the lobe, passing downwards in bundles to
end in two destinations (1) the subvertical [VL2] and (2) lateral

superior frontal [VL1] 1obes."4
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In addition, large tracts of fibers from the arms and other regions
reach the subvertical (VL2) and some of these pass up into the vertical
lobes (VU2). These are presumed to carry nocifensor (pain) fibres,
either directly from the periphery or after synapse in VL2. In the
vertical lobe these run across the incoming fibres of the superior
frontal to vertical tract.

This upper pair of lobes thus provides an additional reverberating
pathway which can be interrupted by pain. Following damage to these
lobes, animals are slow to learn to attack an unfamiliar figure or to
learn not to attack crabs, which are a familiar food object. They are
slow to learn to discriminate objects shown successively, whether by
vision or touch. They are also unable to transfer learning from one
visual field to the other. After vertical lobe removal attacks become
much slower and more variable. The vertical lobe system is therefore
concerned with producing a strong and stable level of attack.

"Animals without vertical lobes do not appear, on superficial
observation, to differ in any way from normal ones ... The lobes are
evidently not necessary for any simple motor function. This agrees
with the fact that electrical stimulation ... produces no obvious effects
when applied to the superior frontal or vertical lobes. The deficiencies
that follow vertical lobe removal become apparent in some situations
in which the animal has to learn, or to perform an action learned
before operation ... the vertical lobes are especially concerned with
preventing attack, and ... they help in some way to preserve a record
based on events of the immediate past."5

There is some question whether the actual memory representations
might be located in the vertical lobe, but experiments indicate that

operated animals which show little discrimination with sequentially
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presented stimuli do reasonably well in discriminating stimuli shown
simultaneously. This shows that some memory must remain intact follow-
ing vertical lobe removal. They also do better in discriminating between
figures shown sequentially but without reward or punishment. In this
case, immediate effects do not overide long-term influences. '"One
function of the vertical lobe circuit thus seems to be to ensure a
proper balance of tendencies to attack and retreat, so that the immediate
effect of [food and shock] is not excessive. Only if the tendencies
of the animal are balanced in this way will the behavior be controlled
by the representations set up in the past, rather than by the effects
of immediately preceding food or painful stimuli. We can thus say that
the vertical lobe system is necessary for 'reading-out' of memory as
well as for 'reading-in'."6

A second set of paired centers has also been found in the tactile
system. The lateral inferior frontal [TL1] feeds into both the posterior
buccal [TL2] and median inferior frontal [TUl]. The latter feeds into
the subfrontal lobe [TU2] where fibres reach back into TL1 and TL2.
Taste input goes into TL1 and TUl whereas pain fibres enter TL2 and
TU2. The situation is thus quite similar to the paired centers of
the visual system.

A very large portion of the nervous system is distributed along
the arms. An isolated tentacle will still make writhing movements
when meat extracts are placed near it, and will pass a piece of fish
along the suckers toward the direction of the mouth, so that considerable
computation is actually carried on peripherally. Wells and Wells (1957)
have conducted extensive experiments on this tactile system by condition-
ing blinded animals to accept small, smooth bails of perspex plastic

and reject such balls with grooves cut in them, or Vice-versa.7 The
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animals rapidly learn to draw in one type of ball and push away the
other. The sophistication of these experiments has been further
increased by training the two sides of split-brain animals in opposite
directions.

One of their early findings was that a period of time was necessary
for learning that had taken place with one arm to spread to the other
arms. This spreading probably takes place through the inferior frontal
lobes of the tactile system. Another finding is that there is little
or no position sense in the arms and that tactile discriminations seem

to be based on degree of roughness or smoothness.

3. Young's Mnemon Theory

As noted earlier, a point to point mapping is maintained from
the retina to the surface of the optic lobe. Young postulates that
oriented dendritic fields within the plexiform zone of the optic lobe
serve for the extraction of visual '"features', and calls cells with
such dendrite fields '"classifying cells'". Tangential sections show
a preponderance of dendrites in the horizontal/vertical direction,
which is known to play a special role in the visual system of the
animals, so that this seems to be a reasonable hypothesis and fits
in well with the Hubel-Wiesel studies.

If each classifying cell can be switched between alternate path-
ways for "attack' and '"retreat' by the action of taste and pain signals,
then the entire assembly acts as a bistable element. Assuming some form
of memory to be retained whenever an element is switched, each visual
feature would acquire an associated memory value with experience.

Young calls such an assembly a '"mnemon.'" He postulates that the opera-
tion of such mnemons could come about through the action of recurrent

collaterals from the memory cells of each pathway upon minute amacrines.
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These, in turn, could block input to other memory cells by pre-synaptic
inhibition. Electron micro-graphs do show the presence of amacrines
and pre-synaptic inhibition in the optic lobes, and cells whose axons
have several branches are also observed. There is evidence for these
components, therefore. Such a mnemon assembly is shown diagramatically
in figure 2.2.

Under this hypothesis the optic lobes would be the seat of visual
memory and the upper lobes would function to 'address' the proper
mnemons, so that reading into and reading out of memory could be accom-
plished. Basically, these higher centers are thus thought to be associ-
ated with short-term memory and the process of reading to and from .
long-term memory. Whenever a set of classifying cells is activated by
a stimulus object and an attack is initiated, some mechanism must be
responsible for seeing that the taste or pain signals resulting from
the attack affect all those mnemons that were active but no others,
because the visual input itself will obviously have disappeared by then.
This is a critical function in any organism which must learn from a real
environment, and the mechanism involved is not known. Reverberation in
the upper lobes could perhaps accomplish this addressing by temporarily
keeping mnemons sensitized which had recently been active. Young postu-
lates that once a mnemon has been switched, it remains so permanently,

but the model described here assumes memory change can be incremental.

4. Summary

The octopus is aﬁ animal of intermediate complexity and has char-
acteristics which make it a convenient animal for laboratory study.
It can be conditioned to discriminate between a variety of stimulus

objects both visually and by touch. Extensive anatomical studies have



been conducted and a great many neural pathways have been traced,

with the visual system receiving particular attention. The latter
consists of two large optic lobes, which are felt to be the seat of
visual memory, and a two-tiered set of paired centers, thought to be
associated with addresssing memory and other higher functions. Output
from the optic lobes goes to motor centers where it is elaborated into
patterns of actions for attacking or retreating. A similar set of
centers is also found in the tactile system and is thought to function
similarly. Young postulates a bi-stable assembly which he calls a
"mnemon'' as the mechanism for memory. Such an assembly has a classifying
cell which extracts some visual feature and outputs into both the attack
and retreat paths through memory cells. These are mutually inhibitory
following an attack. Such an assembly could be kept sensitized by
feedback through the upper lobes until the signals of results arrive.
The next chapter discusses some approaches to modeling such learning

systems.



CHAPTER THREE

SOME LEARNING MODELS

1. Initial Approach

The creation of any model involves a choice of which aspects of
the problem to portray and which to ignore. The resolution of this
question of emphasis hinges on our state of knowiedge and interests
regarding the problem, and our repertoire of tools for dealing with
it. It is here that some element of art must enter the modeling process.
In its simplest terms, a model of learning will incorporate a
memory of past experiences and a method for altering that memory. The
initial approach here, therefore, involved a short pilot study of such
an elemental system. If one assumes each stimulus can be represented
as a set of component features and that the memory associated with
each stimulus feature is independent and continuously variable, then
the memory value of each such feature might be considered a weighted
sum of its past associations with rewards and punishments. Model memory
was simply taken to be a list of the last ten inputs which had been
received (positive values for reward and negative values for punishment),
each convolved with a linear weighting function. That is, the most
recent input was given a weight of one and the other weights fell linearly
to zero for the preceding inputs. This linear form was chosen for
simplicity. A separate memory list was kept for each stimulus feature,
or orthogonal set of features, and the output value read from memory for
each list was just this convolution or weighted sum of previous inputs.
A complex stimulus pattern could thus call forth an average of the
outputs from several different lists, each contributing in proportion
to its presence as a component of the stimulus pattern. Even such an
elementary model allowed for considerable complexity, therefore.

26
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The composite value read from memory in this fashion was equated
to a velocity and used to determine attack or retreat. Hence a feature
of this early model was a simulation of the attack itself. Position
and velocity were updated on each time step, so that the simulated
animal would decide which stimulus to attend if several were present,
and would actually '"follow" a prey around within its tank. Afterwards
it would return '"home'. This aspect of the model was dropped when it
was decided not to pursue "attention-focusing' mechanisms, but some of
the graphical outputs which showed intensity of attack increasing with

experience were rather interesting.

2. Two Stage Memory Model

This pilot study of behavior patterns in a learning automaton
was succeeded by a more advanced model of learning with somewhat
different emphasis, which was developed as a term project for a Computer
Science course in Biological Simulation (CCS 680). The learning auto-
maton had shown conditioning and interference, but was somewhat simplistic.
One of the first things realized was that the unwieldy memory lists
could be replaced by single numbers if exponential convolution functions
were used instead of linear convolutions. The results of convolution
for this case would be the old memory value multiplied by an exponeﬁtial
factor and added to the new input value. This change reduced storage
requirements by an order of magnitude.

A two stage concept of memory was then introduced. This incorpor-
ated a short-term component which changed rapidly with current experience,
but which tended to decay toward quiescence at the long-term value of
memory, and a long-term component which changed slowly but tended to
move in the direction of the short-term value. Each encounter with the

environment thus eventually produced a slightly altered quiescence value
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for memory, but long-term memory values could be temporarily masked

by recent experience. This allowed behavior to be entirely different
for a short period after an encounter from what it might later be, but
required that memory be updated on every time step rather than only
upon each encounter. This basic concept has remained present throughout
later versions of the model.

Another interesting feature was what might be called an "attention"
factor governing memory read-in and read-out. The amount of change
to long-term memory resulting from an encounter with the environment
depended on the value of this factor. If it were small there would
be little change to long-term memory, even though short-term variations
were not affected. The amount of read-out was also influenced by this
attention factor. It acted as a weighting for each stimulus component,
so that the contribution from each depended on the "attention'" devoted
to it. (The factors might alternatively be interpreted as arising from
non-uniformity of the visual field.) Thus both read-in and read-out
were under control of these attention factors, which entered the equations
as weightings and convolution scale factors.

The original pilot study had included a crude characterization of
hunger and digestion, but this characterization was extended and refined
somewhat in the two-stage memory model. Hunger tended to increase exponen-
tially toward its maximum, and was incrementally reduced as digestion
proceeded of food objects which had previously been attacked. The value
of hunger multiplied what was read from memory when a stimulus was
present to determine a probability of attack, which was then compared to
a random number drawn from a uniform distribution. If the attack or

retreat probabilities exceeded this random threshold, the simulated

animal would attack or retreat; otherwise it would take no action.
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The model was used to generate learning and extinction curves
which compared favorably with data taken from real octopus experiments.
It was not pursued further, however, as it was decided to make a
series of basic revisions which would create a model more closely tied
to the mechanics of the mnemon and the anatomy of the octopus nervous

system.

3. Single Mnemon Model

Chapter 2 discusses octopus nervous system anatomy and the theory
of mnemons in some detail. Figures 2.1 and 2.2 show what is known
about connections in the visual learning system and how a mnemon assembly
might be constructed. The idealizations of figures 3.1 and 3.2 were
arrived at from this information and were used as a basis for modeling
the operation of a single mnemon.

One of the first things noted, even in the earlier models, was the
greater convenience of normalizing all the variables, so that they can
take on only values in the range from zero to one. Thus a normalized
firing rate might range from zero for background level to one for the
maximum rate of firing which can be sustained. Similarly, hunger
levels between their minimum and maximum values can also be normalized
to the range from zero to one, and when this is done for all of the
variables, the model can be represented in terms of a normalized connec-
tion graph or matrix. Each node of the graph represents one of the
normalized state variables of the model and the edges give values of
the connection factors between them.

Within this general schema, the interactions between nodes can
then be written in terms of a set of difference equations as follows.
Let vj(t) represent the value of the normalized variable at node j,

and let wij be the weighting, or connection factor, from node i to
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(S = A+R)

Figure 3.2



to node j. Assume also a rate constant, ej, associated with each
variable. Then the general form of the difference equation transition

function can be written as:
= 2:
3.1 v.(t+l) = <6, ° w.. * v.(t) + (1-6.) - v.(t)>

where the pointed brackets are used to imply that the value of vj is
kept restricted to the range from zero to one. This shows that the
value of vj on the next time step depends on its current value and the
sum of its inputs. The amount of change to vj depends on the value of
the rate factor, 65. When ej is small, vj changes very slowly. As ej
approaches one, on the other hand, Vj tends toward the sum of its inputs.
If every variable of the model could influence every other variable
of the model, then n variables would require the specification of n2
parameters with this formulation. Fortunately, anatomical constraints
and other considerations reduce this number drastically, so that "tuning"
the model actually involves considering the values of only a few free
parameters.
The state variables corresponding to the simplified diagrams of
figures 3.1 and 3.2 would be the following: classifying cell input
(C), mnemon firing rate (M), attack path (A), retreat path (R), taste
(T), pain (P), attack and retreat memory (MA and MR), and a represen-
tation for each of the upper lobes (VL1, VL2, VU1, VU2). In fact, though,
the model was somewhat more complex, and its actual connection diagram
is shown as figure 3.3, Disregarding the details of this figure, the
chief point of interest is that mnemon structure and anatomy were
included as state variables in the model, and that an attempt was made

to identify such state variables with physical quantities (such as

firing rate in some cell or lobe) whenever possible.



Figure 3.3
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This version also incorporated the two-stage concept of memory,
with perturbations in short-term values causing changes to long-term
memory as they decayed back toward quiescence. The amount of this
read-in was dependent on upper lobe activity through the value of VL2,
which was assumed to control build-up and decay in the mnemon input.
The effect of individual parameters in the model was thus somewhat
complex, since each typically entered into more than one process. Rate
constants were constrained to realistic half-1life values, however.

The model did show octopus-like characteristics in many ways. The
latency before attack decreased with experience, for example, and recent
experience could mask longer term memory temporarily. In reversal
experiments, both attack and retreat memories would increase with
training so that the model would eventually tend to a random level of
performance, just as real animals do. (There is little evidence for a
specific "learning to reverse' in the octopus.) Performance following
simulated operations was also similar. Interfering with the upper
circuits would prevent read-in and read-out of memory from the mnemon.
Trials at short intervals would show apparent learning, due to the
short-term aspect of memory, but there would be little or no long-term
change to memory. Recent taste or pain input would show a dispropor-
tionate effect therefore.

Several features were incorporated into the simulation program
itself to increase its efficiency. One was a test for '"quiescence'.

If all the variables changed value on any time step by less than some
small fixed amount, then clock time was set forward to the next '"event'.
(This event might be presentation of the next stimulus or removal of
the current stimulus, for example.) Slowly changing variables were

also updated at this time using an exponential approximation. This
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technique, though less sophisticated than using a variable step size,
worked very well.

Another feature introduced was a flexible system for specifying
input sequences which allowed a set of experiments to be succinctly
defined by control cards. One control card would be required to specify
all the parameters of a singlekstimulus presentation, but once specified
in this way, it could be used in a repetitive sequence. If exponents
denote repetitions and parentheses delimit basic sequences, then this
"mini-language'" allowed such forms as: A B2 C, (A 82)3 C2, etc., where
A, B, and C are different stimuli. An experiment could also be repeated
with different initial values of the internal variables, or with a
different set of parameter values, if desired. Additional flexibility
was gained by providing the option of punching out final values for all
of the variables at the end of a run so that the program could read these

in and continue from that point at a later time. These features proved

useful during development of the program.

4, Maldonado's Octopus Model

One other model which should be mentioned is the block diagram
model of visual-learning circuits in the octopus brain developed by
Maldonadol, shown in figure 3.4. Many features of the models described
in sections 1-3 are similar in concept to Maldonado's view of brain
operation and draw inspiration from it. Classification units activate
memory units which also receive taste/pain signals and feedback from a
pair of higher level amplification systems. Output from the memory
units is summed and goes into these amplification systems, which also
receive taste and pain input. The output of the amplification systems
is called the "experimental parameter' (EP), and along with a 'hunger

parameter'" (HP) and '"unspecific effect parameter' (UEP) controls the
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command (C) to attack or retreat. This command passes to higher motor
centres where it is elaborated into a course of action. Very recent
experience has its effect through the unspecific effect parameter,

which raises or lowers the general tendency to attack irrespective of
which classification units are active. Positive feedback occurs through
the value of the experimental parameter returned to the memory units.
Maldonado postulated two identical sets of these classification and
memory units corresponding to the two optic lobes, with like units on
each side being connected through the ventral optic commissure. This
would account for transfer of learning from one eye to the other and

the necessity for the vertical lobe structures (corresponding to the
amplifier circuits) to remain intact in order for this transfer to occur.
The amplification system could be activated by signals from either eye,
so that results of an attack would alter memory in the corresponding

units of both optic lobes, thereby accomplishing transfer across the

mid-line.
5. Summazz

The development of tractable models of complex phenomena requires
that some aspects of the problem be given prominence and others ignored.
The most interesting aspect of octopus behavior in this regard is the
animal's ability to learn, and the interplay of short-term experience
with longer-term experience. An initial pilot study of a learning
automaton was conducted, and then followed by a term-project in which
a model incorporating separate long and short term values for memory
was developed. The next step was a general model in the form of a
network of state variables and connection factors, with a difference
equation specifying transitions. This was constrained to a reasonably

small number of free parameters by knowledge and assumptions regarding
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circuitry in the octopus nervous system, and an attempt was made to
relate model variables to identifiable portions of the real system
insofar as possible. A block diagram model by Maldonado provided
inspiration for some of the concepts in these models. Details

of the latest model verison are given in the following chapter.



CHAPTER FOUR

DESCRIPTION CF THE MODEL

1. Overview

Chapter 3 described some of the earlier approaches taken toward
developing models of learning. During the summer of 1971, I was
fortunate enough to spend some time at the Stazione Zoologieca in
Naples and to have an opportunity there to observe behavior of the
animals firsthand. Following my return, I began work on a multi-mnemon
model which was somewhat simplified and incorporated an extended version
of long-term memory. The model thus came to have the three levels of
memory described in quotations from Horridge and Wooldridge in section
2 of chapter 1. At the same time, certain simplifications were incor-
porated which shifted emphasis away from close conformity with the neuro-
anatomy in order to produce a multiple mnemon simulation model with
reasonable running times on the computer.

The general form of this multi-mnemon model is shown in figure
4.1. In concept it is quite similar to the models of chapter 3. Each
mnemon is activated by a particular classifying cell input, and can be
switched by its taste/pain inputs. Each incorporates the three levels
of attack memory and retreat memory mentioned above, and these control
its outputs. The attack outputs of all mnemons are summed to produce
an overall attack strength (AS), and the retreat outputs are likewise
summed to produce a retreat strength (RS). These strengths are then
combined and used to determine whether the model will attack or retreat.
Inputs activate the upper lobe structures to generate a value (Q) which
is necessary for ''reading'" into or out of the mnemon memories.

The operation of an individual mnemon is shown in more detail

with figure 4.2 and will be discussed next. Input (C) activates an
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internal variable (CC), which then enablies the outputs of the attack
(A) and retreat (R) paths. These, in turn, are produced by read-out
from the attack and retreat memories, which are enabled by feedback
from the upper lobes (Q). These attack and retreat paths are mutually
inhibitory, and the attack path also receives a bias from hunger (H).
In addition, there are random factors (RNA and RNR) which enter the
attack and retreat paths.

The value of short-term attack memory (AMS) is influenced by
positive feedback from A, and as AMS increases, it also tends to increase
medium-term memory (AM). Likewise, changes in AM tend to cause the
level of long-term memory (AML) to rise. An analogous situation obtains
for the retreat path, with feedback from each type of memory influencing
the type preceding it. Taste (TA) or pain (PA) inputs to the attack
or retreat paths can override the influence of memory temporarily and
cause the mnemon to switch modes until these inputs decay below the level
of memory influences once again. The exact time course of events thus
depends on memory levels at the time of attack and values of the decay

constants, and can be somewhat complex.

2. General Form of the Equations

All of the equations are similar in form. On each time step (taken
as equivalent to one second of real time), a set of '"final values"
toward which each of the normalized state variables would tend in the

absence of other influences is computed:

4.1 F(xj) = fj(xl,xz, cees xm)

The xj are state variables (such as A, R, Q, etc.), and F(xj) is the
"final value" of variable xj, which may in general be some function

dependent on all the other variables.
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Once these final values have been found, a "modified difference"
is then computed. Let Ej be the exponential rate constant (previously
denoted as ej in chapter 3) associated with state variable xj, and

let:

ER, F(x,) 2 x,
4.2 E. = ) ] J

EF. F{x.) < x.
J ( J) J

where ERj and EFj are model parameters. That is, variable x. may have
different rate constants for rise and for fall. The modified difference
is then simply the difference between the final value and the current

value, modified by this rate constant:

4.3 D(xj) = [F(xj) - xj] . Ej

Notice that although xj is normalized to the range from zero to one,
there is no such restriction on the modified difference. The new values
of the state variables must therefore be checked and possibly truncated

following update:

4.4 x.(t+1l) = x. + D(x.
J( ) j (J)
0 x. <0
J
4.5 X. = X. 0 <x. <1
J J ]
1 1 < x.
J

Truncation creates the danger that some variables may artificially be
"Jocked" at their extreme values, but this possibility can be checked
during the '"tuning' phase of model development.

The basic sequence of operations defined by equations (4.{) - (4.5)
is carried out on each time step, with new values of variables replacing

the old. The exact form of the transition equations is given in detail

in the following section.
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Descrigtion

internal input variable
short-term attack memory
short-term retreat memory
attack path output

retreat path output
medium-term attack memory
medium-term retreat memory
upper lobe feedback

taste

pain

classification input
hunger level

long-term attack memory
long-term retreat memory
attack strength

retreat strength

Table 4.1a
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1}
@]

[AMi + Ai] - Q

[RM. + R.] - Q

1 1

= [AMS, + TA + H .

= [RMSi + PA + RNR -

CMAX + TA + PA

= 0

= 0

other variables:

RMLi

AS

RS

input

constant during session
updated between sessions
updated between sessions
sum over Ai

sum over Ri

Table 4.1b

HC + RNA -

AMS
i
AMS.
i
RMS.
i
RMS.
i

(CMAX

>

IA

<

RC - A,]

=

RC - R,] - CC.
1 1

+ CC,
i

max Ci)
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3. Model Equations

Using the notation developed thus far, let i range over the set
of mnemons and let j index the state variables. A description of these
variables is given in table 4.la and the actual equations used in the
model are given as table 4.1b. The constants HC and RC which appear in
equations 4 and 5 are weighting factors, or parameters which determine
the relative importance of hunger and random influences in the model.
(The random numbers RNA and RNR are taken as cubes of values drawn
from a distribution which is flat from -1 to +1.)

These final values of table 4,1b are used to compute modified
differences and new values for each of the variables, as discussed in
section 2. Once new values have been computed for all of the state
variables, a test is made for attack/retreat. This involves use of the

sum AS and RS in a threshold function:

M

4.6a AS
i1
4.6b RS = ESIL
i i
4.6¢C CS = Z:C.
i i
4.7 AS * (1 + AS - RS) > CS => ATTACK
4.8 RS * (1 + RS - AS) > CS => RETREAT

If neither condition obtains (or if no stimulus is present), then
no action is taken on that time step. This will become clearer as the
structure of the program is discussed.

The update of long-term memory takes place between training sessions

and on a different time scale. The equations for this update are as

follows:
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4.9 AML, {AML. + DF -+ (AM. - AML.) AM, > AML,
1 1 1 1

A

AML, AM AML,
i i

4.10 RML. {RML. + DF * (RM. - RML.) RM. > RML.
i i i i i

A

RMLi RM RML

The factor DF is an important parameter of the model which determines
the amount of read-in to long-term memory from the training received
during each session.

As mentioned in chapter 3, a test for quiescence is used in the
program to eliminate unnecessary computation. If the change in every
variable is less than some small amount, ¢, on a given time step, then
clock time is advanced to the time of the next event and slowly changing
variables are updated with an exponential approximation. That is, if for

all j:
4.11 D(xj) < EPS => QUIESCENCE
then, for example:

4,12 H(t'") =1 - {1 - H(t)] < e eH(t"t)

and so forth. The value of EPS is a parameter of the model, but not

a very critical one.

4. Description of the Program

This model was used as the basis for a simulation program which
was coded in Fortran and run on an IBM 1800 computer at the Logie of
Computers research group. Later it was converted to run on an IBM
360-67 under the University of Michigan Terminal System (MTS). A
simplified flow chart is given in figure 4.3. A discussion of this

figure follows.
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Free parameters and initial conditions are read from cards.

(A1l state variables are normally initialized to zero unless otherwise
specified.) After initialization, the basic sequence of operations
begins. Clock time is tested to see whether a new stimulus situation
should be read in, or whether there is currently a stimulus present
which should be removed. A system of indicators is used to show whether
a stimulus is present or not, and if so, whether the model is in retreat
state or not. Whenever an "event" occurs, the indicators are altered to
reflect the event. |

After all the variables have been updated, as discussed in section
3, a test is made for attack or retreat. In the case of attack, indica-
tors are reset to show the absence of a stimulus, and TA or PA is set
equal to the stimulus value for that variable. (This TA/PA value then
begins to decay toward zero in accordance with equations 9 and 10 of
table 4.1.) 1In the case of retreat, an indicator is set to show this
fact. If no stimulus is present or if the model is already in retreat
state, the test for attack/retreat is skipped.

Clock time is incremented by one unless there is quiescence, and
the basic sequence is then repeated. This loop continues until a blank
card is encountered, which terminates the run. A switch controls the
entry point for the next run so that it can either begin an entirely new
experiment, or repeat the preceding experiment (with different random
factors), or simply continue.

Printouts of various types can be obtained at a number of points in
the program, and these printouts are under the control of a set of
print switches which are entered on a control card at the beginning of
the run. (It is also possible for debugging purposes, to alter the

switch settings from the computer console during the run.) Any combin-
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ation of these fifteen or so different printouts can be obtained, which
allows a great deal of flexibility in the microscopic/macroscopic

level at which program operation is being viewed. This becomes of
special importance due to the wide range of time scales encountered.

It is sometimes of interest to view the changes in every variable at
each step, and at other times only gross summary data is required.

It should be noted that the actual code for the program encompasses
more complexity than that shown in figure 4.3, but this diagram indicates
the basic conceptual structure of the program fairly well. Certain
subtleties force complications in the program logic which would probably
be more confusing than helpful if they were included in the figure.

Another point to be made is that I have striven over the course
of the past three years to simplify the structure of the program and
the notation of the model to the greatest degree possible, and that each
revision provided an opportunity to profit from the mistakes of the
previous version. The extent to which the notation is natural and
easily understandable and to which_the program logic contains a minimum
number of epicycles, is a result of this constant process of revision
and simplification. In computer programming, as in mathematics, a

succinct result often conceals a multiplicity of cumbersome attempts.

5. Summazz

The approaches described in chapter 3 were simplified in some
respects, and extended to include three layers of memory and multiple
mnemons. All of the update equations in the model have a common form
which involves computing a final value, a modified difference, and a
new normalized value for each state variable. The actual update equa-

tions are given in table 4.1 and equations 4.3, 4.4, .and 4.5. The
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structure of the simulation program is shown in figure 4.3. It in-
volves an initialization and an iterative loop in which tests for

attack or retreat are made following update, whenever a stimulus object
is present. A flexible set of printout switches allow model behavior
to be viewed at a variety of levels and time scales. The degree to
which the representation of the model has been simplified and made

more powerful reflects the extent to which past mistakes have proved
instructive. Operating characteristics of the model and results derived

from the simulation are presented in the next two chapters.



CHAPTER FIVE

LEARNING PERFORMANCE

1. Characteristics g£ the Model

Details of the model equations and simulation program were given
in the last chapter. This chapter takes a look at model operation in
typical learning situations, and compares some of its results with
experimental results. It may be useful in reading this section to refer
back to figure 4.2 and table 4.1 for a summary of the model.

A list of the parameter settings used in obtaining the results
of this section is given as table 5.1. Rate constants not equal to
one in the table are half-lives in seconds. As noted in chapter 4,
the rates of rise and fall may differ. From these parameter settings
it may be seen that one mnemon was involved (N=1), normalized hunger
level was set to one-half (except in figure 5.7), and that random
effects played no part (RC=0) except in figure 5.5. The initial
value of all variables was set to zero unless otherwise noted.

Figures 5.1 through 5.5 show values for several model variables
over time during encounters with the environment. A stimulus object
is presented on the initial time step in each figure by setting stimulus
input to one (C=1). This stimulus then remains present until attacked.
Each unit of time corresponds to one iteration of model operation and
may be taken to represent approximately a second of real time. The
ordinate for each variable shows its normalized range from zero to one.
(A magnified scale is used to show small changes more clearly in the
case of attack memory.)

Figure 5.1 illustrates the simplest case of an attack on a neutral
stimulus. The stimulus is represented by setting classification input
(C) to one until attack occurs (on time step 26). Following attack, C

52
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[H = 0 for figure 5.7]

[RC = .7 for figure 5.5]

Rise Fall
1 60
1 1
1 1
1 1
1 1

900 --
900 --
1 30
1 30
1 60

Table 5.1
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is reset to zero. From equation 1 of table 4.1 it can be seen that
mnemon input (CC) "follows'" C, so that CC then begins to decay toward
zero with the rate constant shown in table 5.1 after attack. Likewise,
the upper lobe feedback factor (Q) also "follows' C, and thus also
decays toward zero with a rate constant which is given in table 5.1.
Since the stimulus object is neutral in this case, the values of taste
and pain remain zero throughout. From equations 2 and 4 of table 4.1
it can be seen that attack strength (A) and short-term attack memory
(AMS) interact with one another in the presence of both CC and Q to
drive A above the threshold for attack eventually. The rate at which
this increase occurs depends on the level of attack memory (AM) and
hunger (H). Since a naive mnemon is assumed here (AM = 0 initially),
the slope of this rise in A and AMS is determined only by hunger level
and the hunger factor (HC). Once CC and Q begin their return to zero
after attack, A and AMS decay rather quickly, causing only the very
small change of 0.01 in attack memory.

The next figure (5.2) shows exactly the same situation, but with
a positive stimulus rather than a neutral one. In this case, taste
(TA) goes to one following attack, and its presence forces A and AMS
to one also. In addition, the presence of taste also slows the decay
of Q. A becomes ''locked" at its maximum value for about 30 time steps,
and these high values of A and Q keep AMS from decaying. This in
turn causes more "'read-in'' to AM than in the neutral case, so that AM
eventually increases to a value of 0.04. (Refer to equations 2, 4, and
6 of table 4.1).

Figure 5.3 shows what happens when the same stimulus is then
presented a second time. Attack buildup is much faster (16 seconds

vs 26 seconds) because attack memory now combines with hunger to
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influence the rate of increase in A and AMS. Otherwise, the form of
the curves is much the same as before, and AM increases from 0.04 to
0.07 during the return to quiescence. The rate of attack buildup would
continue to increase for subsequent attacks as AM grew larger.

Figure 5.4 shows the results of an attack on a negative object.
Attack buildup is the same as in figure 5.2, but pain (PA) rather than
taste goes to one following attack and this ''switches' the mnemon to
the retreat state. R and RMS (shown dotted) are driven to one by PA
(equations 3 and 5 of table 4.1), and this forces A and AMS to zero.
The presence of PA also slows the decay of Q, and keeps R and RMS at
high values. Retreat memory (RM) thus increases from zero to 0.04 during

this time when RMS is high.

In actual experimental situations there are, of course, many sources
of variation from these idealized results. Extraneous noises and small
variations in light level or temperature may have some effect on behavior,
and stimuli with overlapping components may add to the animal's confusion.
There may also be past associations with some stimulus components, so all
of these effects are acknowledged in the model by inclusion of a random
factor (RC). Figure 5.5 shows the same situation as figure 5.2, except
that such a random factor has been introduced (RC = .7). The buildup of
attack is much more erratic and takes much longer in this case, because both
A and R receive random inputs according to equations 4 and 5 of table
4.1, and hence tend to cancel one another out. Only the effect of
hunger adds a small bias in the direction of attack, and this even-
tually leads to an attack on time step 37. (Note: R and RMS are
non-zero prior to attack but were not shown to prevent cluttering the
figure.) Once attack occurs, the curves strongly resemble the

no-noise curves of figure 5.2, but with minor perturbations. The end
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results are equivalent, in the sense that AM eventually goes to 0.04
in both cases.

It is true in general, as a matter of fact, that once all the
transient effects of an encounter with the environment have died out
and the mnemon has returned to a quiescent state, the overall result from
this encounter will be a change in the values of attack or retreat memory
(AM or RM). The amount of change to AM is roughly proportional to the
area under the short-term memory curve for AMS, as can be seen from
figures 5.1 and 5.2. In figure 5.1 the stimulus is neutral and AMS
drops rather quickly following attack, so that the change to AM is small.
In figure 5.2, however, the positive result of the attack keeps AMS
from decaying immediately, and AM thus changes by a greater amount.

Memory continues to increase with repeated attacks on the same
type of stimulus, and figure 5.6 shows the shape of the resulting
curves for AM-RM when the stimulus is positive, neutral, or negative.

The curves show a characteristic exponential growth because change is-
proportional to the difference in AMS and AM (RMS and RM) rather than
to AMS (RMS) alone, according to equations 6 and 7 of table 4.1.

A portion of the negative curve is shown dotted to indicate that
this is the shape it would have were it not for the fact that attacks
cease after two encounters. Positive encounters insure continuing attacks
on the positive figure, but RM becomes sufficiently large after two neg-
ative encounters to cause retreat every time, in the case where there
are no random effects. The necessity for introducing some random element
thus becomes clear. Information about the environment is only acquired
during attacks, but the environmental feature represented by a mnemon
may not always have the same value. In some cases it may be positive

and in other cases negative. The desire to avoid pain must therefore be
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balanced against the necessity for obtaining additional information about
the environment. The problem can be resolved by using memory as a bias in
the random selection between attack and retreat. In this case, the probability
of retreat from a negative stimulus continues to increase with each attack

that is made on it, and therefore the interval between attacks on a

negative stimulus will also increase with each attack that is made
on it. The probability of attack never goes completely to zero,
however. (Unless retreat memory were pre-set to one, corresponding
perhaps to an innate, instinctual response.)

In any event, figure 5.6 shows how memory changes with each attack
during a session. Corresponding to equations 4.9 and 4.10, however,
there is also a permanent change in long-term memory (AML or RML) that
takes place between sessions and is controlled by the parameter DF.
With DF = .3, figure 5.6 also shows this final long-term result for
the twenty-five attacks. Clearly, '"within session' improvement in
response will occur as memory increases, and performance will be better
towards the end of a session than at the beginning of the next session.
On the other hand, there will also be some overall 'between-session'
improvement. This seems to be a characteristic of real animals.

Another characteristic of real animals is that the time delay
before attack tends to decrease with experience. Figure 5.7 shows
latency of the model as a function of attack memory (in the absence
of hunger effects). At very low values of memory the latency is
quite large, but it decreases rapidly as AM becomes larger. This
delay is related to the slope of the buildup curves for A and AMS,
as noted earlier in the discussion of figure 5.1. As AM increases,
the rate at which AMS and A build up becomes much faster, and this fact
is reflected in the shape of the latency curve of figure 5.7.

Since the effect of hunger in the model is simply to add a bias
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in the direction of attack, it can be seen from equation 4 of table 4.1
that hunger level becomes somewhat equivalent to attack memory. Figure 5.7
would thus have the same form if attack memory were zero and H+HC
were the abscissa instead of AM. Normalized hunger lies between
zero and one, so that a choice of 0.1 for HC assures that the most
variable portion of the latency curve is encompassed by the range of
H. This is the value listed for HC in table 5.1.

One additional characteristic of the model is shown in figure
5.8, which illustrates the effect of upper lobe feedback on the ability
of the mnemon to learn. In the discussion of section 2.2, it was noted
that the octopus has a set of upper lobe structures which are thought to
be involved in reading to and from memory through the action of rever-
beratory pathways, and that various operations which interfere with
these pathways tend to reduce learning performance. In section 4.1,
these lobes were incorporated in the model as the feedback variable, Q.
Hence operations which interfere with this feedback circuit can be
characterized by limiting the maximum value which Q can take on. When
this is done for several values of QMAX, a set of learning curves
corresponding to the positive curve of figure 5.6 can be obtained, and
these are given as figure 5.8. They show a rather continuous degradation
in learning as QMAX is progressively eroded. (Another way in which the
effect of operations might be modeled is by altering the rate constants
for Q. This was tried once or twice and seemed to have about the
same effect as the simpler procedure of limiting QMAX, so that it was
not investigated further.) Clearly, the value of QMAX is an important
determinant of learning and the effect of QMAX on group performance

will be discussed later in section 3.
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2. Comparison to Animal Learning Behavior

Section 1 was concerned with demonstrating the basic operating
characteristics of one mnemon in various idealized learning situations,

and in illustrating the effect of certain parameters. In order to

compare model performance with that of real animals, however, it is
necessary to look at statistical trends in group data. Animals tend
to exhibit a wide variability in their individual performances, but
when averaged together their behavior shows a characteristic form.

Typical "training'" sessions consist of sixteen trials with two
alternating figures. That is, positive trials (attacks on the positive
figure rewarded) alternate with negative trials (attacks on the negative
figure punished). During '"extinction' sessions the figures are regarded
as neutral, and attacks are neither rewarded nor punished. After each
session the number of attacks on the "positive'" figure and the number
of attacks on the 'megative' figure are noted and used to compute some
performance measure for the session. A plot of this performance measure
against sessions can then be regarded as the learning curve for an indi-
vidual animal, and when the performance measures for a group of animals
are averaged together in some fashion, the result is a group learning
curve.

As a slight digression, it might be noted that two processes are
involved here, viz, defining a performance measure for an individual
animal based on its raw ''score', and combining these individual measures
to produce an overall measure for the group. Many different types of
performance measures might be considered and each could have slightly
different characteristics. For purposes of discussion here, however,
the relatively straightforward difference in percentage attacks on the
positive minus percentage attacks on the negative figure will be used.

(Note, for example, that this implies both types of errors are equally
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"had". In the more general case, a relative weighting factor might be
introduced to represent differences in "cost" between errors of different
types.) For the second process (of combining these), the simple average
of individual measures will be used to obtain a combined group measure.
This simple average may be regarded as the special case of equal weights
in the more general scheme of weighted averaging. (In general, all
the animals are equal but some could be more equal than others, and
weightings might be based on such things as average levels of attack
or information content of the scores, for example.)

Table 5.2 shows the behavior of a typical animal1 and of the
model over a comparable set of experimental trials, consisting of two
initial extinction sessions in which there was no reward or punishment,
eight training sessions, and two final extinctions. Stimuli were
presented for 20 seconds, and then removed if no decision to attack or
retreat had been reached by that time. The interval between presenta-
tions was 5 minutes (300 seconds). Each attack is denoted by the letter
"A'", Slots are left blank in case of retreat or if no action was taken
befdre the stimulus was removed. Raw scores and performance measures
for each session are given to the right. Performance improves during
the experiment for both the real animal and the model, but with a great
deal of random variation in both cases. In addition, the model seems to
learn more slowly and maintain a higher level of attack during the

extinction sessions. In particular, animals learn retreat from the

negative stimulus much more quickly.
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The parameter settings for this experiment and the following
figures are given in table 5.3. The magnitude of the stimulus values of
taste and pain for the positive and negative figures were set equal,
but the effect of pain is slightly greater than that of taste due to
the somewhat slower decay rate for pain (see figure 5.6). A random
factor (RC = .75) is also incorporated, and the curves of the next
figure (5.9) represent an average of six repetitions of the experiment.

Figure 5.9a shows the performance of the model over the twelve

sessions in terms of its percentage attacks on the positive and
negative figures. Figure 5.9b shows the corresponding performance
measure (difference in these two curves). Notice that the average
attack level is about 60% for both the positive and negative figures
prior to training, but eventually rises to about 90% for the positive
figure and drops to about 20% for the negative figure as a result of
the eight training sessions. The performance measure thus rises from
around zero to about 70%. With continued training the performance
measure asymptotically approaches, but never fully realizes 100%.
Comparable results for a set of nine octopuses1 are shown in
figure 5.10. Conditions of the experiment were about the same, except
that there was only one initial extinction session. The training figures
used were white and black vertical rectangles. Attacks on the positive

figure rise from an original level near 50% to about 75%, while

attacks on the negative figure fall to about 10%. The performance
measure thus increases from near zero to about 65%. (The relatively
poorer performance in the final extinction sessions may be due to the
fact that animals had just received dummy operations. Performance

resumed at its previous level during additional training that was then

conducted.)
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3. Effect of Operations

A central focus of much current work on the octopus is the attempt
to elicit functions of the upper lobe structures of the brain, and of
the vertical lobe in particular. The fine structure of this lobe has
recently been explored by Gray2 using the electron microscope. Previous
work of Young and others in describing its structure and function was
discussed in Chapter 2. There it was noted that the paradigm for most
behavioral work was the isolation or removal of one or more lobes and
the observation of changes in learning that resulted.

One of the primary objectives in designing the model has been
to test the hypothesis that deterioration in learning performance
following damage to the vertical lobe system results not from the loss
of memory units themselves, but rather from interference with the
circuits for reading and writing memory. Thus the model incorporates
the upper lobes as the feedback variable, Q, which appears as a necessary
ingredient in the equations for short-term memory buildup (equations
2 and 3 of table 4.1). The discussion of figure 5.8 in the first section
of this chapter pointed out that learning performance is progressively
degraded as Q is reduced.

This section takes a look at the effect of QMAX on group performance
and compares these results with the behavior of animals from which the
vertical lobe has been removed. In these experiments the model is
first trained and tested through a set of training and extinction sessions,
as before, and then operation is simulated by reducing the value of
QMAX, while leaviﬂg memory in whatever state it has already achieved
through training. A second set of training and extinction sessions
is then conducted, and the ''post-operative'" performance noted. When

the data from several repetitions of this experiment have been averaged
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together, the result is analogous to the group learning curve for a
comparable set of experimental animals.

Figure 5.11 continues figure 5.10. It shows further results in
an experiment1 where nine animals were first trained, then given a
"dummy' operation (in which the brain was exposed but nothing removed),
and then retrained. Figure 5.11a gives average attack level for the
positive and negative stimuli and figure 5.11b shows the corresponding
performance measure as before. Figure 5.11c, which plots the ratio of

mean performance to standard deviation of the performance distribution
for the nine animals, gives an indication of the level of significance

to this learning. Notice that the standard deviation is always less than
the mean after the first training session. Performance tends to approach
some final value of around 70% for these animals, and the dummy operation
appears to have no lasting effect on performance.

Figure 5.12 is an analogous set of curves for a group of eleven
animals with vertical lobe removal.1 The difference is striking. The
effect of the operation seems to be immediate and permanent. Performance
drops drastically following operation, and never improves very much
with retraining. Positive attacks remain above negative attacks (except
in session E4), but by a small amount. The ratio of mean performance

to dispersion in figure 5.12c is always less than one after operation,

even though the performance measure itself does remain positive.

The results obtained when the corresponding experiments were run
with the model are shown in figures 5.13 through 5.16. The first of
these shows the case where QMAX remains at one, corresponding to a
""dummy' operation. It is apparent that mean performance continues to
improve throughout and remains much greater than the standard deviation

of the four repetitions of the experiment, as it should. The next
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figure shows what happens when operations are simulated by setting QMAX
to zero after the first set of training sessions. Performance immediately
drops to a random level near zero, and the dispersion is much greater
than the mean for the eight simulated animals, in spite of the fact
that memory levels remain the same. The memory value is still there, but
it can no longer be ''read-out' in the absence of Q.

An intermediate condition is shown in figure 5.15. In this figure,
an operation involving incomplete removal is simulated by setting QMAX
to some small value ofter operation (QMAX = .3). The result is an
intermediate case where mean performance falls, but not entirely to
zero. It remains greater than dispersion for the six repetitions, in
fact (except for T9), and seems to improve slightly with retraining.

When an experiment is conducted with part of the simulated animals
having complete removal (QMAX = 0) and some having partial removal
(QMAX = .3), the combined results are shown in figure 5.16 for six
simulated animals. In this figure the mean performance remains positive
but less than the standard deviation (except for E7). These results are
qualitatively reminiscent of those in figure 5.12 for eleven real animals
with vertical lobes removed. It thus seems reasonable that the degrada-
tion in performance as a result of operation could be due to interference

with the read-write mechanism of memory, as hypothesized.

4. Summarz

Section 1 surveys basic operating characteristics of the model
in the absence of random influences, and follows the time course of
variable values during a single encounter with the environment. Three
typical model responses are examined, corresponding to positive, negative,

and neutral stimuli. It is seen that the ultimate effect of an encounter
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with the environment is a small memory change in AM or RM after return to
quiescence. Random influences are important for insuring continued sampling
of the environment as experience 1is accumulated. Latency is shown to
decrease rapidly with experience. Figure 5.8 shows the effect of QMAX
on memory changes, and it can be seen there that interference with this
pathway through simulated operations will drastically reduce the ability
to learn.

The next section compares statistical data from the model with
group performance data of real animals. Learning takes about the
same form in both cases, except that real animals more quickly learn
to avoid the negative stimulus, and attack a bit less often generally.
A short discussion of performance measures and methods for combining
individual scores concludes that the ones adopted are simple but probably
adequate.

Operations were simulated in section 3 by reducing the value of
QMAX while leaving memory contents unaltered. The effect of simulated
operations was seen to be much like the effect of real operations. It
was concluded, therefore, that the deterioration in performance observed
when the vertical lobe is damaged or removed could well be due to inter-
ference with the mechanism for reading and writing memory, rather than

from loss of memory itself.



CHAPTER SIX

ADDITIONAL MODEL CHARACTERISTICS

1. Attack and Retreat Probabilities

The previous chapter dealt with model performance in certain learning
situations and with comparisons to animal behavior. This chapter continues
that development by looking at additional characteristics of the model
and further experiments having to do with un-learning, time interference,
and stimulus overlap.

In the absence of random influences and hunger, a single encounter with
a positive stimulus would be sufficient tc tip the balance toward subsequent
attacks on such a stimulus. Likewise, a single encounter with a negative
stimulus would also be sufficient to ensure subsequent retreats by the model.
A plot of probability of attack vs memory value thus rises from zero to 100%
as memory goes from negative to positive values. When a random factor
(RC) is introduced, however, this curve of attack probability vs memory
value begins to depart from such a sharp step, and figure 6.1 shows
its empirically determined shape with RC = .7. Each circle represents
approximately 400 trials and gives the percentage attacks at that value
of memory. Crosses give 100 minus percentage retreats. To a first
approximation the curve shows a linear rise over the range from -.30
to +.30. The difference between the attack and retreat curves near
zero represents the percentage of trials in which the stimulus was removed
after twenty seconds because no action had been taken in that time, and
can be understood in terms of the latency plot of figure 5.7, which shows

that latency drops off rapidly with learning.

85
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2. Un-learning

When a long-term memory value of about .30 (AML - RML = .3) has
been attained, the model may be said to be fully trained in the positive
direction, based on figure 6.1. If training is then reversed, so that
it receives PA input for attacks on the formerly positive stimulus, then
it should begin to "un-learn'" its former training. This is somewhat
analogous to experiments in which animals receive shocks for attacks on
crabs placed in their tanks, and eventually learn not to attack them.
Figure 6.2 shows the results of this experiment with the model. Attack
levels near 95% occur in the two initial extinction sessions, but drop
throughout a series of training sessions to a level near 50% in the two
final extinctions. A similar curve obtained when the initial memory

value was set to .5 is also shown for comparison (dotted curve).

3. Repeated Reversals

Figure 6.3 shows the performance of the model when training is
repeatedly reversed in this fashion for one simulated animal. Real
animals show an ability to reverse repeatedly, although there is a
residual bias in favor of the direction of initial learning, and an
eventual disintegration of performance. In this experiment, (which
consists of an extinction session, eight training sessions, another
extinction and then reversal) it is clear that the model was never
really able to overcome its initial training. At the end of the first
two reversal series attacks on the two stimuli are about equal, but
attacks on the initially positive stimulus always exceed attacks on
the initially negative stimulus elsewhere.

Figure 6.4, which gives the value of long-term memory after each
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session, shows the reason for this failure. The memory associated
with stimulus 1 (initially positive) increases and decreases throughout
each reversal series by about the same amount. The memory associated
with stimulus 2, on the other hand, continues to decrease, even through
those sessions when stimulus 2 is trained to be positive.

The explanation for this effect is that once the model has been
trained negative the attack level becomes very low, and this small
number of attacks during positive reversal periods is then not sufficient
to overcome the effect of its initial training. Compounding this difficulty
is the problem of too much read-in to negative memory from simply being
in the retreat state (refer to the discussion of figure 5.1). The
principal difficulty with the model, however, is that results of the
recent past do not have sufficient effect.

Notice that the highest level of memory attained for stimulus 1
in each positive portion of the reversal cycle is progressively less
than that attained in the previous cycle. This comes about because
attack memory (AML) increases during the positive portion of the cycle
and retreat memory (RML) increases during the negative portion of the
cycle. The difference thus shows a periodic fluctuation. As each
approaches its maximum normalized value of one, however, this difference
becomes smaller on each cycle. The result is that if the memory associated
with stimulus 2 were behaving properly, as discussed above, then the overall
performance would follow the cycle of reversals. The maximum performance

on each cycle would deteriorate just as that of real animals does, however.

4. Conditional Learning

One of the earliest experiments conducted by Boycott and Young

was to teach animals not to attack crabs presented along with some
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special signal, such as a white square. The animals soon learned that
they could catch crabs given alone, but that they would receive a mild
electric shock for attacking crabs when the white square was present
in their tank at the same time.

This suggests an analogous experiment with the model, and figure 6.5
shows the results when this experiment is performed. (Values shown
in figure 6.5 are averages over twelve simulated animals with equal
numbers at hunger levels of 0, .5, and 1.) Attacks on stimulus 1 alone
continue at a high level throughout the experiment, but attacks on the
combination fall to about 20% during training. The memory value of
stimulus 1 does increase somewhat from its initial value of .3, but when
combined with the increasingly negative value of stimulus 2, yields

a low memory value for the combination.

5. Overlapping Stimuli

A generalization of the crab/white square type experiment is the
case of multi-component, overlapping stimuli. Everything which has
been done so far has assumed that for modeling purposes the stimuli
could be considered to consist of orthogonal elementary components,
in the Hubel-Wiesel sense. In this case, the average output from the set
of mnemons comprising each stimulus could be represented as the output
of a single "average" mnemon, and this has been done throughout the
text thus far. In the non-orthogonal case, however, some mnemons from
each set may also be present to some extent in the other set, so that
there is an '"overlap'" between stimuli.

Figure 6.6 shows the results of a standard experiment averaged

over two simulated animals when such stimulus overlap is present.
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Each stimulus is assumed to activate five mnemons with input constants
of 1Ci =1,.75,.5,.25,0 and 2C.1 = 0,.25,.5,.75,1 respectively. All
mnemons overlap except the first and the fifth, therefore, and will

be influenced to some extent by both taste and pain. Figure 6.7 shows
the memory values acquired by each of the mnemons during training.

The overlapping mnemons acquire intermediate values related to the
extent of their overlap, as expected, but with some bias in the positive
direction. (This results from the fact that there are more attacks

on the positive stimulus than on the negative one.)

Figure 6.7 gives some insight into what might be expected from
additional experiments with complex stimuli. A different linear
combination of mnemons 1 through 5 after training (corresponding to
some new stimulus object) could produce attack, retreat, or indecision,
depending upon the relative values of the weighting factors. For
example, suppose some new stimulus consisted of an untrained mnemon 6
in mild association with the somewhat negative mnemon 4. The model's

reaction to this new stimulus could be expected to be mildly negative.

6. Time Interference

In all of the experiments which have been described thus far, the
interval between stimulus presentations during each session has been
set at five minutes (TMAX = 300). This has given sufficient time for
slow changes to memory through the action of the upper lobe read/write
mechanism (Q) to be completed, for the time constants chosen, and in

most cases for the model to reach a quiescent state before each new
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stimulus presentation. As this interval between presentations is reduced,
however, interference effects begin to appear, because the writing into
memory of results of the previous encounter has not been completed

by the time the next presentation is made.

Figures 6.8 through 6.12 show a series of standard experiments in
which the period between trials was set at 6, 4, 2, 1.5, and 1 minute
respectively. (Note: Different numbers of simulated animals were
averaged together for each figure, so there is some variation in
smoothness between the curves. Figure 6.8 represents an average of
two, figure 6.9 an average of six, figures 6.10 and 6.12 an average
of five each, and figure 6.11 an average of four.) Notice the progressive
deterioration in performance as TMAX is reduced. The results in figures 6.8
and 6.9 for TMAX = 360 and 240 closely resemble the TMAX = 300 results
seen in various figures previously. With inter-trial times less than
this, however, the performance deteriorates rapidly.

The explanation for this behavior can be seen from the set of memory
curves, which show that the memory value (AML - RML) associated with
the positive stimulus after each session tends to decrease as TMAX is
reduced. For TMAX less than 90, this positive memory becomes negative,
in fact. The net result is that attacks on the positive stimulus fall.
The effect of time interference in the model, therefore, is that
read-in to positive memory is reduced. This comes about in the following
way. When the inter-trial time is small, short-term conditions following
an attack on the positive figure make an attack on the negative figure
quite likely. This results in some negative read-in to the mnemon
associated with the positive stimulus, however, because this positive

mnemon is still partially active. The less the inter-trial time, the
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greater this effect will be. The exact opposite occurs in the inverse
situation, however. An attack on the negative stimulus will make a
following attack on the positive stimulus Zless likely, so there will
be little interference to learning in the negative mnemon. The net
result, which can be seen in figures 6.8 through 6.12, is a tendency

for both mnemons to become negative as the intertrial time is shortened.

7. Summary

This chapter continues the development begun in chapter 5 of
describing a series of experiments conducted with the model. The
first section describes an empirical determination of attack probability
as a function of memory value. Sections 2 and 3 deal with
reversal-learning situations and shortcomings in the model which these
reveal. Sections 4 and 5 describe experiments with multi-component,
non-orthogonal stimuli, which give some indication of pattern recognition
capabilities in the model. The final section deals with interference
effects resulting from inter-trial times which are small with respect

to memory time constants.



CHAPTER SEVEN

DIRECTIONS FOR FURTHER MODEL STUDIES

1. Discussion of Results

This chapter summarizes the results obtained from the series of
experiments described in chapters 5 and 6, and suggests directions for
further work.

Because the model contains a random factor, it is often necessary
to repeat an experiment several times to produce curves which are smooth
enough to indicate model behavior satisfactorily. Additionally, there
is a wide disparity between the basic time scale over which changes
occur in the model and periods encompassed by actual animal experiments.
Each iteration of model update is taken to represent a time frame of
approximately one second, but the experiments to be simulated may last
several hours per day for a half-dozen days or more. Once the initial
phase of detailed study into operation of the model was completed,
therefore, it became important to keep the model as simple as possible
and to seek ways in which unnecessary computation could be reduced,
such as by using separate update procedures at quiescence.

Even within such constraints the model appears to exhibit many
desirable characteristics. The curve of figure 5.9 shows typical
performance in a standard learning experiment, and figure 5.13 shows
average performance over four repetitions of the experiment. These
results are generally similar to learning curves for real animals,
except that the attack level is too high and the model is slower in
learning to retreat. When operations on the vertical lobe structures
are simulated by reducing the value of QMAX, performance collapses for

the model in proportion to the extent of this reduction, as shown in
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figures 5.14 and 5.15. Real animals suffer a corresponding deficiency,
as seen from figure 5.12. Latency also decreases with experience as in
real animals, and figure 5.7 shows the form of this dependence for the
model.

Reversal studies, on the other hand, point up some deficiencies
in the model and its parameter settings. Reversal generally occurs
too slowly in comparison to real animals, and mnemons initially trained
negative never reverse at all, in fact. The reasons for this are discussed
in chapter 6. One basic problem is that the parameters are set for
insufficient "within session" learning to occur, so that long-term
memory exerts too great an influence in comparison to recent experience.
The shape of the memory curve for stimulus 1 in figure 6.4 indicates
that otherwise the behavior of the model would have been similar to
what is actually observed.

Another apparent problem is that neutral stimuli have a somewhat
positive effect. The relatively simple answer to this problem is to
define 'meutral" stimuli as those which cause no net memory change.

These will need to be mildly negative in order to cancel the small
positive change from the attack buildup itself, but the problem is only
one of terminology.

The interference experiments of figures 6.8 through 6.12 predict
a deterioration in performance as the time between trials is reduced
in a training experiment. This comes about bzcause previously active
mnemons are still active during the next trial, and thus false information
can get entered into them. The model results show these effects appearing
at inter-trial times of about three minutes or less, but the exact

time scale depends on model parameter settings and is less important
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than the question of whether such effects exist at all or not. Any

system which updates memory by gating taste or pain into storage on the
basis of whether an element is currently active or has been active in

the recent past should necessarily show such interference. It would

be impossible to account for the short-term memory effects discussed

in section 2 of chapter 1 if this were not the case, since the distinétion
between delayed reward or punishment and interference is only one of
viewpoint.

The model does show one serious flaw in this respect, however.

It should not be possible to '"backward condition' a mnemon, but this
does occur. That is, in any real system only elements which were active
before the signals of results arrived are conditioned. Those which
become active after the signals of results arrive are not altered.

In the model however, memory in newly active mnemons can be changed by
taste or pain signals which are still present from events that occurred
previously.

The experiments with stimulus overlap {figures 6.5 through 6.7)
are perhaps the most potentially interesting, although also the most
costly experiments to run. They show that mnemons which are components
of more than one stimulus take on intermediate memory values, as might
be expected. More complex associations of mnemons into stimuli should
yield interesting results, especially since changes to memory only
occur if an attack is actually launched, and this provides a bias in
the positive direction over the long run. Some results obtained with
a simplified form of the model in such pattern recognition situations

are discussed in section 3.
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2. Changes to the Model

One difficulty in designing a model which will produce results
comparable to experimental observations is that different experiments
sometimes suggest different directions for changes to the parameter
settings. This makes it necessary to use one version of the model
equations and one set of parameter values through a complete series of
simulated experiments in order to evaluate their adequacy. That is
what has been done in the work reported here. A version of the model
equations and a set of parameter values was arrived at by a series of
initial tests, and these were then used for the complete set of experiments
reported in chapters 5 and 6. The results of these experiments were
discussed in section 1, and this section will discuss the changes which
should be made if they were to be repeated.

The most important change should be to increase the value of recent
experience over longer term influences. My recommendation for the best
way to accomplish this would be to add A; within the brackets of equation
4 in table 4.1b, and to add Ri within the brackets of equation 5. The
time constant half-lifes for equations 2 and 3 should then be set to
about 1 minute for rise and 5 minutes for falil, and the random factor
(RC) should be increased slightly. The half-life constants for
equations 6 and 7 should then be increased to about half an hour as
compensation. The effect of these changes would essentially
be to loosen the coupling between AMSi and A;, and between RMSi and Ri’
so that the influence of memory on attack buildup could be separated
from the influence of attack level on memory change somewhat.

The results to be expected if this were done is that within session

learning should show considerable improvement while overall performance
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remained about the same. This would correct problems that the model

shows with reversal learning, but wouid not materially affect the other

results. It would also bring the model more into line with real animals

in another respect. During actual training sessions animals must be

given a small piece of fish initially in order to start them attacking.

With these changes to the model, a similar procedure would be necessary

to bring AMS up to the level of AM before it could have any effect in

the equation for A. That is, the model would also have to have an

initial taste input before memory would begin to influence attack buildup.
Another change which could be tried in the parameter settings is

to introduce time constants for A and R. (Values of 1 for time

constants in tables 5.1 and 5.3 essentially mean that those entries

do not enter the model as parameters.) This change should have the

effect of lowering overall attack level and increasing latency somewhat.
Rather than pursuing speculation further about improvements that

could be made to the current model, however, attention will now be turned

to other lines of study suggested by this work.

3. Other Model Work

Two directions for further research along these lines are of special
interest. One is the study of more general networks of learning elements,
and the other involves pattern recognition capabilities in mnemon-1like
sets of basic elements. Some preliminary investigations have been con-
ducted into both of these areas, and this work will be discussed next.

For the pattern recognition studies, consider an input grid which
is connected to a set of memory elements by classifying units. These

classifying units perform a feature extraction function by collecting
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their input as a weighted sum of grid elements. The grid elements to

which they connect and the values of the corresponding weights determine
the type of feature extraction. One classifying unit might connect

with the grid units in a single horizontal row, for example. This could
be considered analogous to a neuron with approximately horizontal dendritic
branches in the plexiform layer of the optic lobe, and the weighting
factors might represent the relative density of dendrite arborization.
Similarly, classifying units could connect to vertical sets of grid
elements, or in general, to arbitrary sets of elements.

Corresponding to each classifying unit is a mnemon-like memory
unit which contributes to an attack/retreat decision, and which is
altered by the results of an attack in proportion to this contribution.
An arbitrary stimulus pattern might excite numerous memory elements
in varying degrees, and thus there should be interference, even between
patterns which are orthogonal with respect to the grid elements.

These preliminary studies consicdered a 10 x 10 grid with 40 class-
ifying and memory units. Half the units connected symmetrically about
the vertical centerline and half connected symmetrically about the
horizontal centerline with weights of .16, .13, .10, .06, .03 and the
reverse of these. Weights were the same for all units. Twenty units
were thus devoted to covering each horizontal row and column, and the
other twenty covered the symmetric variations of half-rows and half-columns.
Two stimulus patterns were considered, a vertical bar two columns wide
and a horizontal bar two rows wide. These were presented alternately
for eight trials each, with one as the positive figure and the other as
the negative figure. On each presentation a probability of attack

was computed for comparison to a random number to determine attack or
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retreat.1 Figure 7.1 shows the resulting curve of attack probability.
The rate of learning is controlled by a memory smoothing factor, which was
set to the intermediate value of .3 in these trials.

Another direction for research which was undertaken in a preliminary
study concerns the behavior of arbitrary networks of normalized learning
elements which change in accordance with an equation such as 3.1. The
approach taken was motivated by the fact that neural material can be
conditioned and an association pathway built up. It exhibits a
"plasticity" in this sense. In the basic paradigm used here, an input
is applied to one element of a randomly connected network on the initial
time step, and another input is applied to a different element some n
time steps later. After several repetitions of this procedure, the
question is whether or not an increase can then be seen in the output
of the second element after n time steps when the second external signal
is not applied. Under certain conditions this can be seen to occur.2
Table 7.1 shows some sample values of this second node before and after

ten conditioning trials at two values of the delay, n.

4, Summary

The model performs reasonably well in the standard experimental
situation. It reacts to simulated operations just about as real animals
do, thus demonstrating that performance fai.ure can be due to interference
with the memory read/write mechanism even though memory itself remains
intact. Reversal studies point up difficulties with the model, however.
The time interference and stimulus overlap experiments predict deterioration
in performance with short intertrial times and non-orthogonal stimuli.

Model performance could be improved, especially in the reversal case,
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by the changes outlined in section 2. These would loosen the coupling
between short-term memory and attack or retreat outputs, and should thus
increase the influence of recent experiences over longer memory.

Two directions for further study of networks with learning elements

are described in section 3, and illustrative example: are given.



CHAPTER EIGHT

SUMMARY AND CONCLUSIONS

1. Review

Biological systems exhibit an astonishing degree of complekity.
Nervous systems and brains, in particular, confront researchers with
an extremely difficult subject for study. Their basic element, the
neuron, is both fragile and complicated in its operation, so that even
gross functional relationships are often difficult to determine.

These nervous systems permit organisms a wider range of adaptive
capabilities, and thus one approach to their study is through hypotheses
about what they may be doing, based on the needs of the

animal in its environment. The octopus, like most other animals, must
concern itself principally with discriminating objects which are likely

to yield taste and food value from those likely to lead to pain and
harmful effects. One primary function of the higher levels of its nervous
system, therefore, must be to learn to make this distinction.

After considerable study of the octopus and the anatomy of its
nervous system, Young has proposed an idea for how this discrimination
might be made in the visual system. He suggests that classifying cells
with dendritic fields in the plexiform layer of the optic lobe are inputs
to memory circuits in these lobes, which he terms "mnemons'. These
mnemon circuits can be switched through the action of taste or pain
signals into either an "attack'" pathway or a '"retreat" pathway, where
the outputs are then elaborated into patterns of action at lower motor
levels. Each active mnemon is assumed to retain a memory of the direction

in which it was switched, so that later recurrences of the same stimuli

1i4
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will yield surer responses. He further postulates that the action of
circuits located in the vertical lobe structures of the brain is necessary
for this '"writing into" and ''reading from" memory to occur. Similar
functions are inferred for inferior lobe structures and the tactile
learning system.

Chapters 3 and 4 describe a series of models I developed on the
basis of this mnemon concept, and chapters 5 and 6 give a summary of the
results obtained from a set of experiments conducted with the model
described in chapter 4. The model itself is a compromise between a
desire to incorporate as many details of the postulated circuitry as
possible while still being able to conduct large scale experiments
within reasonable run times on the computer. It thus includes three
layers of memory in the mnemon, for example, but reduces the entire
action of the upper lobe structures to a single feedback variable, Q.
Even this minimal version often required long run times on the 360-67
to produce the curves of chapters 5 and 6.

Figure 4.2 shows my conceptualization of a mnemon and table 4.1
gives the basic set of model update equations. The general form of the
equations is spelled out in 4.1 through 4.5, and figure 4.3 outlines
program operation. Details concerning the behavior of the model and some
insight into its operational characteristics are provided in section 1
of chapter 5. The rest of chapter 5 and chapter 6 are devoted to a
description of various experiments. Chapter 7 discusses the results of
these experiments and suggests changes which might be made in the model
to improve its performance. Some possible directions for further

theoretical work are then given.
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2. Conclusions

A simple model of learning and memory based on Young's mnemon
concept can produce behavior patterns comparable to experimental behavior
in many learning situations. The model shows both short-term effacts
which fade over time, and also more lasting long-term changes to behavior.
The model can be conditioned to discriminate between two stimuli and its
performance will approach, but not attain, 100% in this discrimination.
Its performance within each training session improves and reaches a
higher level than can be measured at the beginning of the next session
sometime later.

Operations which interfere with the upper lobe structures can be
simulated in the model with the result that performance deteriorates
in proportion to the extent of this interference, even though memory
levels remain unaltered. This degradation in performance results from
interference with the memory ''read/write" mechanism rather than from the
loss of memory itself. When interference exists but is less than complete,
then performance shows the proper direction of learning but at a level
which is not statistically significant.

Training can be reversed and the model will learn the new direction
of training, but it will still show a strong bias in the direction of its
original training. If training is repeatedly reversed, then the model
fails to respond properly because its parameters are not set to allow
sufficient influence from recent experience. With this deficiency
corrected the model would show an ability to reverse repeatedly, but
with an eventual approach toward a random level of performance.

The model shows considerable interference when trials are placed

close together. Performance falls because attacks on the positive
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figure are reduced. The model thus predicts a fall in overall attack
level as the time between trials is reduced in a training experiment.
It also predicts an improvement in overall performance at short intertrial
times from other training disciplines than alternating trials, buf says
that these effects will decrease as the time between trials becomes
longer. An experiment could be conducted with real animals in which
the time between trials is shortened to deterﬁine if this has an effect
upon performance. If so, the model predicts improvement by changing
the training discipline to some form of non-alternating trials.

The model says nothing about the very interesting question of
innate stimulus perferences and how these are affected by operations
on the upper lobe structures. All memory values are initially set to
zero in the model and each stimulus component is given equal weight
in the attack/retreat calculations.

Latency of response falls off rapidly with training in the model,
and also varies with hunger level. The effect of taste as a short-term
reward is separated from its long-term influence in reducing hunger.
Following simulated operations which reduce memory influences, recent
taste or pain input has a greater effect in determining model response
than in the un-operated condition.

In experiments with overlapping stimuli the model shows a form of
stimulus generalization. Net memory change is dependent on the degree of
association which each mnemon has had with positive and negative stimuli,
so that performance with similar stimuii is similar.

Transfer across the mid-line was not discussed, but would be accounted
for by the model in the same way that it was accounted for by the
Maldonado model discussed in chapter 3.

The model itself shows many shortcomings, but as the simplest
version I could conceive which would follow the basic anatomical constraints

and utilize realistic half-life values for the memory constants, it
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displays a surprising number of characteristics observed in real animals.
The work has been motivated by a belief that there is fertile ground

for cooperation between computer scientists and biologists. Biological
organisms are enormously complex, but models and computer simulations
are one more tool to aid in their study, and we should see models of
increasingly powerful descriptive capability emerging as our knowledge

of local properties in biological systems continues to increase.
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2, When other cycles do not develop in the network first.



Arkacev, A.C. anc sraverman, t.M. Computers and Patterm Recognition,
Thompscn, 1967.

Boycott, B.B. and Young, J.Z. "A memory system in Octopus Vulgaris
Lamarck," Proec. Royal Society B, 143:449-480, 1955.

Gordon, Geoffrey, System Simulation, Prentice-Hall, 1969.
Gray, E.G. '"The fine structure of the vertical lobe of the Octopus

brain," Phil. Trans. of the Royal Society of Londovn B, 258,
379-395, 1970.

Horridge, G.A. Interneurons, W.H. Freeman, 1968.

Hubel, D.H. and Wiesel, T.N. '"Receptive fields, Binocular interaction,
and functional architecture in the cat's visual cortex," Journal
of Physiology, 160:106-123, 1562.

Lettvin, J.T.; Maturana, H.R.; McCulloch, W.S. and Pitts, W.H. 'What
the frog's eye tells the frog's brain," Proceedings IRE,
47:1940-1951, 1951.

Maldonado, H. '"The visual learning system in Octopus Vulgaris,"
J. Theoretical Biology, 5:470-488, 1963b.

Minsky, Marvin, 'Steps toward artificial intelligence,'" Proceedings
IRE, 49:8-30, 1961.

Mize, J.H. and Cox, J.G. FEssentials of Simulation, Prentice-Hall, 1968.

Samuel, A.L. '"Some studies in machine learning using the game of
checkers," IBM Journal of Research cnd Development, 3:211-229, 1959.

Selfridge, C.G. '"Pandemonium: A paradigm of learning," Mechanization
of Thought Processes, Her Majesty's Stationery Office, 513-526, 1959.

Sutherland, N.S. "The visual system of Jczorus (3) Theories of shape
discrimination in Octopus," Nature, 186:840-844, London 1960.

Wells, M.J. "A touch-iearning center in Octopus," J. Exp. Biology,
36:590-612, 1959a.

, "Proprioception and visual discriwinatios
Octopus,” J. Exp. Bloiogy, 37:489-499, 1960a.

» 'Centres ror tactile and visual learning -n the brain of Octopus,"
J. Exp. Biology, 38:811-826, 1961k,

pocd
N
[



122

Weils, M.J. and Wells, J. 'Repeated presentation experiments and the
function of the vertical lobe in Octopus," J. Exp. Biology,
34:469-477, 1957a.

"The function of the brain of Octopus in tactile discrimination,"
J. Exp., Biology, 34:131-142, 1957b.

Wells, M.J. and Young, J.Z. 'Learning at different rates of training
in the Octopus,'" Animal Behavior, 17:406-415, 1969.

___» "The effect of splitting part of the brain or removal of the median
" inferior frontal lobe on touch learning in Octopus,” J. Exp. Biol.
50:515-526, 1969.

"Split-brain preparations and touch learning in the Octopus,”
. Exp. Biol., 43:565-579, 1965.

Wooldridge, D.E. The Machinery of the Brain, McGraw Hill, 1963.

Young, J.Z. "The failures of discrimination learning following removal
of the vertical lobes in Octopus,”" Proc. Royal Society B,
153:18-46, 1960c.

__ s '"Learning and discrimination in Octopus," Biological Revue,
T 36:32-96, 1961.

"Reversal of learning in Octopus and the effect of removal of the
“vertical lobe," Quarterly J. Exp. Psychology, 14:193-205, 1962f.

___s '"Memory mechanisms of the brain," J. of Mental Science,
T 453:120- 132, 1962.

""Some essentials of neural memory systems; paired centres that
" regulate and address the signals of the results of action,'":
Nature, 198:626-630, 1963,
» A Model of the Brain, Oxford Press, 1964,

___s 'The organisation of a memory system," Proc. Royal Society B,
T 163:285-320, 1965.

» The Memory System of the Brain, California Press, 1966.
"Influence of previous preferences on the memory of Octopus
vulgaris after removal of the vertical lobe," J. Exp. Biol.,

43:595-603, 1965.

____» ''Short and long memories in Octopus and the influence of the vertical
" lobe system," J. Exp. Biol., 52:385-393, 1970.






NNNNNNNNNNNNNNNN

IR

3 9015 02



