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Abstract. Empirical protein folding potential functions should have a global minimum near the nat-
ive conformation of globular proteins that fold stably, and they should give the correct free energy of
folding. We demonstrate that otherwise very successful potentials fail to have even a local minimum
anywhere near the native conformation, and a seemingly well validated method of estimating the
thermodynamic stability of the native state is extremely sensitive to small perturbations in atomic
coordinates. These are both indicative of fitting a great deal of irrelevant detail. Here we show how
to devise a robust potential function that succeeds very well at both tasks, at least for a limited set
of proteins, and this involves developing a novel representation of the denatured state. Predicted free
energies of unfolding for 25 mutants of barnase are in close agreement with the experimental values,
while for 17 mutants there are substantial discrepancies.
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1. Statistics and Decoys fail to Stabilize the Native Conformation

One way to model protein folding is to start with a detailed all-atom representation
of the protein and solvent, calculate the potential energy of any configuration with a
classical empirical energy function based on the customary classification of energy
terms [20], and then estimate free energies by extremely lengthy molecular dynam-
ics or Monte Carlo simulations having poorly understood convergence properties
and in any case falling orders of magnitude short of simulating the experimentally
known time spans for such events. In the most ambitious undertaking of this sort to
date [46], a fraction of the molecular dynamics trajectories of a 36-residue protein
start at an extended conformation and reach conformations resembling the native
in an average sense. Here we are concerned with the alternative approach of a
simplified representation of the protein, an implicit solvent model, and a much
more empirical potential that includes rapid and small spatial scale entropic effects
implicitly as a function of the explicit large scale conformation of the protein. The
goal is to establish stability of the native state under appropriate conditions and to
reproduce the experimental thermodynamics of unfolding.

One approach to devising such an empirical potential involves an extensive
survey over known protein crystal structures. There have been many variations
on this theme [12, 25, 26, 16, 37, 36, 19], and resulting potentials are known to be
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incorrect in some sense [39, 40], but they do give worse (higher) values for impress-
ive numbers of incorrect folds compared to those for hundreds of corresponding
correct native conformations. We will refer to this as the structure recognition task.
While these potentials have no adjustable parameters per se, they do depend on the
procedure and on the proteins surveyed. One might be concerned that the outcome
depends on some inconsequential details rather than general underlying principles
of protein folding. As an example of this type of potential, we will consider the
more recent potential by Miyazawa and Jernigan [26], denoted by MJ. It was
developed from a training set of 1168 proteins, and has been extensively tested
against threaded decoys, which are contiguous pieces of chain taken from larger
crystal structures and assigned the residue types of the native protein in question.

In optimization-based methods, native and nonnative (or decoy) structures are
compared for a training set of proteins, and the parameters in the potential are
explicitly adjusted to improve performance in structure recognition according to
some objective. Once again, there are many variations in functional form, repres-
entation of the protein, and optimization objective [24, 39, 13, 21, 43, 44, 41, 42,
10, 27, 28, 8, 32, 3, 29]. Concerns about overfitting are aroused by such extreme
examples as 80,000 adjustable parameters [29]. A more subtle concern is alternat-
ive methods of generating especially challenging sets of decoys [43, 27, 23, 45, 17,
5, 28]. As an example of this type of potential, we will consider that of Tobi and
Elber [41], denoted by TE. It was developed from a training set of 572 proteins;
training and testing decoys are mostly from threading but also some generated by
the MONSSTER molecular dynamics program.

While MJ and TE are outwardly very successful at structure identification, we
have found that adjusting potential functions so that there is even a local minimum
near the native conformation is quite challenging [27]. First we checked that our
coding of these potentials from the published descriptions perform satisfactorily in
ungapped threading. (a) We selected a set of monomeric proteins from the original
set of proteins used by the authors. For the TE potential, 55 proteins were selected;
for the MJ potential, a set of 53 proteins was selected that contained 28 of their
test proteins. (b) The geometric center for each side chain in each protein was
determined directly from PDB atomic coordinates. These coordinates represent the
position of the corresponding residues in the chain as used by the authors during
their training and/or testing process. (c) Using this representation, a threading test
was performed and the rank of each native conformation was determined. Decoys
for each of the n proteins in the set are obtained by ungapped threading through
the n-1 others. For the TE potential, 54 native conformations were ranked 1. For
the MJ potential, of the 28 test proteins, Miyazawa and Jernigan report rank 1 for
27 of them whereas we got 25 of rank 1. Of the remaining 25 proteins, 23 native
conformations were ranked 1 in our case while no threading test results are reported
by the authors.

In order to minimize the potential functions with respect to conformation, we
needed to fit the whole set of proteins to standard local geometry [27], and while
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Table I. Monte Carlo minimization from the native conformation with Tobi
and Elber potentiala

Protein Native Maximum Minimum No. distant trajectoriesc

energy rmsd (Å) energyb

1bdo –265.3 11.8 –329.2 3

1mai –353.1 13.1 –397.4 17

1pdo –551.6 4.5 –581.5 0

1skz –447.4 15.8 –508.0 85

1whi –538.5 11.0 –576.0 9

2sns –339.3 17.7 –344.6 28

7rsa –306.1 12.8 –340.0 7

a Tobi and Elber [41].
b Energy of the final conformation in the MC simulation corresponding to
the maximal rmsd from the native.
c Number of Monte Carlo trajectories out of 100 total resulting in rmsd >

6Å.

that is generally a very close fit, threading might not work as well as with the direct
PDB coordinates. Since the fitting procedure produces coordinates only for the
backbone heavy atoms and the Cβ side chain atoms, we take the side chain center
to be the point along the Cα–Cβ vector at a distance from the Cα given by Hinds
and Levitt [16], or just the Cα for Gly. (d) Using the fitted conformations for the
natives as well as for the decoys, 34 of the natives had rank 1 for the TE potential
and 44 (23 from the test set) for the MJ potential. For both the potentials, proteins
which are ranked 1 in this test are also ranked 1 in the previous test.

Using seven proteins for each potential having rank 1 natives in both PDB and
fitted threading tests, we conducted a Monte-Carlo energy minimization with re-
spect to backbone torsion angles. Starting at the fitted native conformation, torsion
angles were randomly perturbed by at most ± 20◦, and the new conformation was
accepted only if the value of the potential function decreased, as in Metropolis
Monte-Carlo at 0 K. The intent was to find a rather continuous downward trajectory
of 50,000 steps on the energy surface, in spite of the potentials being discontinuous.
For TE, the seven proteins in Table I passed threading tests against 1000 to 3340
decoys, yet several trajectories out of 100 for each protein went far from the native,
extremely far in the worst case for each, except for 1pdo. While using the TE
potential, no two atoms are allowed to come closer than 2.5 Å. For MJ, the seven
proteins in Table II passed threading tests against 2800 to 5600 decoys, but almost
all of the 30 trajectories for each went at least 6 Å from the native and much further
than that in the worst case. While it is true that part of the reason for such unfolding
may be the absence of hard core repulsion in MJ potential, it cannot explain the
highly open state the native runs to.



174 M. CHHAJER AND G.M. CRIPPEN

Table II. Monte Carlo minimization from the native with Miyazawa and Jernigan
potentiala

Protein Native Maximum Minimum No. distant trajectoriesc

energy (kT) rmsd (Å) energyb (kT)

1fkf –660.7 17.1 –701.1 28

1fxd –343.6 11.3 –427.0 22

1paz –746.8 15.8 –858.4 28

1ycc –579.2 16.2 –693.0 29

3b5c –464.8 13.9 –606.0 28

5rxn –300.9 10.9 –372.7 21

7rsa –653.6 17.2 –680.7 29

a Miyazawa and Jernigan [26].
b Energy of the final conformation in the MC simulation corresponding to the max-
imal rmsd from the native.
c Number of Monte Carlo trajectories out of a total of 30 resulting in rmsd > 6Å.

Clearly success with threading decoys is a much weaker achievement than us-
ing energy minimized decoys. In contrast, by concentrating on energy minimized
decoys, we are able to construct a potential function [2] on the basis of six training
proteins such that there is a local minimum within about 4 Å rmsd of the experi-
mental native conformation for 42 proteins and within 6 Å for 71 proteins out of a
total of 91 test and training proteins. Furthermore, for 89 of these 91 proteins, the
native is ranked best in an ungapped threading test; the native was second best for
the other two.

2. Robust Prediction of Free Energy of Unfolding

Going beyond the structure recognition problem into modeling folding thermo-
dynamics, much less kinetics, introduces a whole new set of requirements for
potential functions. Consider simply the demand that under native conditions (tem-
perature, pH, solvent composition) the free energy of the native state (nat) should
be lower than that of the denatured state (den), i.e., �G = Gden − Gnat > 0.
Success at structure recognition does not imply thermodynamic stability and vice
versa [8]. Even assuming we can treat folding as a two-state process, the native
and denatured states must be modeled as ensembles of conformations. Does the
denatured state contain a significant amount of native folds, only a small amount
of native folds, or none at all, and if the last case, then is it in the random coil state
or some other state? Experimental evidence for different proteins is mixed [15],
and sometimes evidence for even the same protein from two different investigators
is contradictory (e.g., for barnase, see Freund et al. [11] and Takei et al. [38]).

One way to deal with disordered states is by enumerating all conformations in
lattice models, either 2-D [31] or 3-D [34]. An off-lattice model [7] for the two-
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state denaturation of the 110 residue protein, barnase, estimates the chain entropy
of the two states from lattice studies [6], and an all heavy atom potential for struc-
ture recognition [8] was modified to include solvation effects of urea so as to fit
the urea denaturation at 298 K for wild-type barnase and 66 mutants. To deal with
thermal denaturation, one additional parameter was required to adjust a model of
density of microstates within the native and denatured states. This then reproduced
the �G, �H, �S, Tm, and Cp(T ).

Another way to at least estimate �G of unfolding is to assess the fine details
of packing, hydrogen bonding, and a number of other factors in the given crystal
structure of the native protein, and use an empirically weighted sum of these factors
to calculate the free energy of unfolding [14]. By this method, 1A2P.A, a high-
resolution crystal structure of (wild-type) barnase, gives �G = 45.3 kJ/mol, in
reasonable agreement with experiment (see Table III). However, if all the atomic
coordinates are perturbed by adding independent random numbers uniformly dis-
tributed between 0 and 0.1 Å, the estimate changes to 39.8 kJ/mol. If the perturb-
ations are of magnitude 0.5 Å, which is still within the resolution of the crystal
structure, the estimate can change to –19.0 kJ/mol, i.e., the native is claimed to
be unstable at room temperature! Clearly, the method is very sensitive to small
perturbations in structure.

The motivation for this work is to obtain a potential function that is thermo-
dynamically more robust and consistent than the more conventional approaches
where the fold recognition problem and structural stability problems are treated
separately. This results in two largely uncorrelated potential functions even though
the two problems are highly correlated. Here, we propose a strategy to develop a
potential function which is thermodynamically more consistent by treating these
two problems simultaneously, as is the case in a natural process. Furthermore there
is only one additional parameter needed to adjust the energy scale.

3. The Free Energy of Unfolding Via an Explicit Denatured Ensemble

We use barnase and its mutants as our model system. Barnase is 110 residues long,
folds as a monomer in a two-state transition, has no disulfide bridges or large
ligands, and contains all residue types but Cys and Met. The �G of unfolding
at 298 K for barnase and its 65 mutants have been obtained by urea denaturation
[33] though the crystal structures have been determined for only the wild-type and
11 of the mutants. Even though most of the mutants have been changed only at
one position out of 110 possible places, there is a significant change in �G values,
as shown in Table III. At 298 K, �G is 36.9 kJ/mole for the wild-type but is only
17.9 kJ/mole for the mutant where leucine has been replaced by alanine at the 14th
position (L14A), thus reducing its stability by more than 50%. This is a rather
surprising result even though residue 14 is in the middle of α-helix-1 and is a part
of the biggest core in the folded state. None of the currently available potential



176 M. CHHAJER AND G.M. CRIPPEN

Table III. Free energy of unfolding for barnase and its mutants

proteina �Gexp (kJ/mole)b �Gcal (kJ/mole)

Wildc 36.9 36.9

I88Ac 20.1 19.6

I88Vc 30.0 30.5

S91Ac 26.8 26.2

T26Ac 29.9 30.6

Y78Fc 32.1 32.2

L89Vc 34.9 34.5

L14Ac 17.9 18.3

I76Ad 30.0 26.6

I76Vd 32.8 32.9

I96Ad 23.7 25.8

I96Vd 32.6 32.5

I04V 33.5 29.5

I04A 33.8 40.0

N05A 30.2 10.3

T06G 34.3 35.2

T06A 28.4 35.9

D08A 33.3 37.0

V10T 28.6 13.1

V10A 22.4 32.6

D12A 35.3 37.1

Y13A 24.3 40.3

T16S 31.2 35.4

T16R 40.0 38.5

Y17A 29.9 36.9

N23A 27.7 28.8

Y24F 37.3 34.2

I25V 33.4 37.9

I25A 21.5 36.4

T26G 32.7 37.0

K27G 35.3 38.0

E29G 28.3 35.0

Q31S 37.2 36.5

S31A 36.6 36.6

L33Q 31.0 35.9

V36A 29.9 39.3

V36T 32.5 36.6

N41D 25.9 32.5

V45A 32.0 34.1
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Table III. Continued

proteina �Gexp (kJ/mole)b �Gcal (kJ/mole)

V45T 27.6 23.5

I51V 32.2 30.1

I51A 17.2 28.0

D54A 24.9 37.9

D54N 29.4 27.5

I55V 34.3 28.7

I55A 30.7 29.5

N58A 28.5 28.9

N58D 38.2 25.4

V55T 31.7 24.5

K62R 35.6 30.9

N77A 30.8 21.0

N84A 30.2 26.3

V89T 23.2 –8.0

S92A 23.4 22.1

T99V 24.7 31.9

Y103F 36.1 36.8

T105V 27.9 28.0

I109V 33.5 33.2

I109A 31.6 21.3

R110A 37.2 19.4

D8A_D12A 31.0 37.3

D8A_R110A 32.2 20.9

D8A_D12A_R110A 37.6 23.1

D12A_R110A 38.5 21.6

Y13A_Y17A 20.3 45.4

T16A_Y17A 28.9 30.0

a XnnY represents a mutant where X in the nn position in the wildtype barnase has
been replaced by Y.
b Serrano et al. [33].
c Training set.
d Test set with known experimental crystal structure.

functions can account for such dramatic changes in �G and at the same time place
the native conformation at the global minimum of the potential function.

The crystal structures [1] of barnase and its 11 mutants for which the experi-
mental crystal structures are available are fitted [27] to a standard geometry con-
tinuous state model [9] where each residue is represented by five interacting sites
(united atom types), located at the Cβ , Cα, N, C, and O atoms. All peptide bonds
are kept in the trans conformation so only the 220 (φ, �) backbone torsion angles
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are allowed to vary. The fitted model is within 0.5 Å rmsd in Cα coordinates [18]
of the PDB structure and is used as the native structure in our calculations. Thus,
the native state is a single energy, non-degenerate state in our calculations. For the
remaining 54 barnase mutants, the fitted wild-type structure is used for their native
states.

The potential function E = ∑
eij is a sum over pairwise interaction terms of

the form

eij (dij ) =
[

cos(C1dij )

(C0 + C1dij )
12

+ Aij cos(C3dij ) + Bij cos(C5dij )

]
.
(dmax − dij )

2

d2
max

(1)

where the first term takes into account the steric repulsion part, and the amplitude
of the other two terms, Aij and Bij , are the adjustable parameters and control
the depth and width of the potential well. This functional form allows significant
flexibility in the shape of the trained energy function while keeping the number
of adjustable parameters for a distance dependent interaction energy to just two
per interaction. This is in contrast to the TE potential which has 13 adjustable
parameters per interaction. We have taken the maximum interaction distance to be
15 Å = dmax beyond which eij = 0. The values of constants C0, C1, C3 and C5

are fixed and the same for all interactions, set at C0 = 0.56234133, C1 = π /24,
C3 = 3π /24 and C5 = 5π /24. These values of the constants ensure that there is at
most one minimum in the distance range of 0-12 Å from each of the cosine terms.
Furthermore, the second and third terms in the bracket are orthogonal to each other
in this range. Note that eij is a linear function of the adjustable parameters Aij and
Bij , is continuous and differentiable for 0 ≤ dij ≤ 15, eij (0) = 1000 + Aij + Bij ,

eij (12) = eij (15) = 0, and
deij

ddij

∣∣∣
dij =15

= 0. We consider 24 atom types: 20 side

chain atom types representing 20 different amino acids and the four main chain
heavy atoms. Hence there are 300 different types of interactions and a total of 600
adjustable parameters.

Using our earlier protocol [2], initially the parameters were adjusted by quad-
ratic programming [4] to minimize

∑
i,j (A

2
ij +B2

ij ) subject to −25 ≤ Aij , Bij ≤ 50
and

�E = Enon − Enat >

{
0.3 ρ > 0.3
ρ ρ < 0.3

(2)

where ρ is a scaled measure of conformational similarity [22] between the native
and a decoy, and ρ = 0.1 means very similar. The restricted ranges of Aij and
Bij are used to reduce the potential surface roughness by keeping these values
sufficiently small. Native sequences and structures are the first eight proteins listed
in Table III. Including some of the mutants in the training set is necessary because
training only with the wild type produces poor results on the mutants. Decoys were
generated by threading and by random perturbation of dihedral angles followed by
repeated minimization of Enon with respect to dihedral angles, using the current
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potential function. This cyclic process introduces many challenging inequalities
(2), resulting in a modified potential function, readjusted decoy structures, etc. until
finally no more violated inequalities can be found, and energy optimization does
not move the native structure far. There is no guarantee that the native is near a
global minimum of E, but it is difficult to find any lower energy conformation.
Denote the resulting parameters by A0

ij and B0
ij .

The free energy of unfolding is calculated using

�Gcal = −kBT


lnN + ln


n−1

n∑
j=1

exp

(
− Ej

kBT

)



 − Enat (3)

where N is total degeneracy of the denatured state, Ej is the energy of the jth con-
formation in the denatured state, n is the number of conformations in the denatured
state ensemble, T is the temperature, and kB is Boltzmann’s constant. Here we use
the total number of self-avoiding walks of length k = 110 on a cubic lattice [6]
estimated by lnN = 1.55k − 4.92136. The energy parameters are further adjus-
ted to give good calculated free energies of unfolding by the BFGS minimization
algorithm [35] applied to

F =
∑

k

(�Gexp,k − �Gcal,k)
2 + w

∑
i,j

[
(Aij − A0

ij )
2 + (Bij + B0

ij )
2] (4)

where weight w = 0.00001 and �Gs are in units of kJ/mole. While the first term in
equation 4 tries to match the experimental and calculated values of �G, the second
term stabilizes the adjustment process by keeping the changes in the parameters
small. This objective function ensures that the energy parameters are only mar-
ginally modified and, therefore, still assign the lowest energy to the native state.
A fixed set of 2000 structures is used to represent the denatured state in equation
(3). Assuming that the denatured state of barnase is not a completely random coil
state [15], we initially constructed the set of conformations by randomly resetting
the (φ, �) values of a random choice of 19 residues in the native conformation to
values randomly selected from a database of native conformations of 313 proteins.
During the �G matching process, if optimization with the current set of dena-
tured states is unable to meet the matching criterion, i.e., |�Gcal − �Gexp| < 1.0
kJ/mole, then some of these 2000 conformations are replaced by new randomized
conformations. After a few cycles no further substitutions were required. Even at
this stage, the parameter adjustment continued on for a matter of CPU months
on Sun Ultra 10 workstations, gradually building up a database of challenging
nonnative conformations by local energy minimization to add to the constraints
inequalities (2), while gradually minimizing the objective function (4). We denote
the final potential function by PF8.

Not surprisingly, PF8 places all the eight native conformations at its apparent
global minimum, and the estimated values of the �G are within ±0.7 kJ/mole of
the experimental values. Application of PF8 to the other four mutants for which
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the experimental crystal structures are available, listed in Table III, is also quite
successful. We find that with PF8, the experimental native conformations for these
four mutants are at least at a local minimum of the potential function, i.e., within
ρ< 0.1. The �G values for them are sufficiently close to the experimental values,
within ±3.5 kJ/mole, and the effect of residue substitution on �G is correct, i.e.,
putting Ala in place of Ile reduces stability more than substituting Val in place of Ile
(see Table III). While the crystal structures for various mutants are very close, the
value of ��G is significantly affected by the position of the mutated residue and
those surrounding it. The �G values for four test set mutants with experimentally
available crystal structures are well predicted by a denatured state of 2000 con-
formations obtained from the corresponding native. However, for other mutants
without available experimental native conformations, the positions of mutated and
surrounding atoms have greater error and therefore a somewhat larger denatured set
was used. We applied PF8 to the remaining 54 mutants using the crystal structure
of the wild-type as the reference native structure compared to the same denatured
ensemble consisting of the 2000 structures used in training plus an extra 8000
randomized structures. The results for all 66 mutants are shown in Figure 1 and
Table III. For the 58 test set mutants, the overall correlation coefficient is very poor
(R = 0.11), due to a combination of good predictions and outliers. Only one mutant
(V89T, not shown in Figure 1) is predicted to be thermodynamically unstable at
298 K. The twelve most conservative mutations (I→V, Y→F, T→S, K→R) have a
standard deviation of 3.2 kJ/mol between experimental and calculated values. The
worst results are obtained when the substitutions do not maintain the nature and
size of the residues, e.g. V→T and Y→A, although some of the best predictions
also involve nonconservative mutations. Possible causes for this puzzling behavior
include both shortcomings of the potential, representation of the native state, and
the model of the denatured state.

Even expanding the 2000 conformer denatured ensemble by another 8000 sim-
ilarly randomized conformations, the denatured states of the training set and the
58 test mutants were dominated by very few structures. For all the 66 chains, only
10 different conformations were ranked one and only 36 different conformations
appeared among the 10 best conformations for all chains out of the 10000 con-
formations. All the rank one conformations are fairly open and have pieces of
α-helices and β-strands. In particular, the presence of the first α-helix near the
N-terminus is very prominent. Some of these conformations are shown in Figure 2.
Furthermore, for 62 of the 66 sequences, the statistical weights of the rank one
conformations are greater than 0.5, thus justifying the choice of a small set of
quasi-native conformations to represent the denatured state.

Applying PF8 to a set of 20 proteins of varying lengths, sequences, and crystal
structures puts the native conformations of seven proteins to within 6 Å rmsd and
of 16 proteins to within 8 Å rmsd of a local minimum (results not shown). The
position of the local minimum near the native conformation is obtained by energy
minimizing the conformation of the native with respect to torsion angles. While this
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Figure 1. Correlation between experimental and calculated free energies. Correlation coeffi-
cient R = 0.11 for all 58 mutants, R = 0.59 without 17 worst outliers (open diamonds), and R =
0.89 with the 25 best performers (plus symbol). Crosses (X) represent the training set proteins.

is better performance than demonstrated for other potentials (see above), clearly
the training set is quite limited in scope and cannot be expected to be as broadly
applicable as our other potential of this type [2].

This work is an attempt to show that better potential functions which deal with
both the fold recognition and structural stability problems can be developed, though
the procedure needs to be improved. Apart from the computational time, some
of the other issues are the types of interactions such as pairwise vs. many-body
interactions, the nature of these interactions, and the determination of denatured
state by a more direct method rather than trial and error.

4. Conclusions

Constructing empirical protein folding potentials is fraught with hazards. Success
at discriminating between fixed native conformations of many different proteins
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Figure 2. Some conformations in the denatured state having highest statistical weight for
some barnase sequences.

and vast arrays of decoy structures does not imply there is even a local minimum
anywhere near the native, much less a global one. However, even ensuring an
apparent global minimum near the native does not imply that the potential can
be used to calculate the free energy of unfolding. Due to the large number of
conformational degrees of freedom and adjustable energy parameters, there is con-
siderable variation remaining in the potential function even after satisfying orders
of magnitude more constraints than there are adjustable parameters. In addition,
free energy of unfolding calculations require some explicit or implicit model for
the denatured state. Here we have developed a very computationally intensive
procedure for creating a potential function and an ensemble of conformations rep-
resenting the denatured state that both stabilizes the native conformation and gives
good calculated free energies of unfolding for a very limited set of proteins. This
suggests that the same approach may be extended to a broader range of proteins.
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