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AMtraet. We define the higher eta-invariant of a Dirac-type operator on a nonsimply-connected closed 
manifold. We discuss its variational properties and how it would fit into a higher index theorem for 
compact manifolds with boundary. We give applications to questions of positive scalar curvature for 
manifolds with boundary, and to a Novikov conjecture for manifolds with boundary. 
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1. Introduction 

The eta-invariant is a spectral invariant of Dirac-type operators on closed manifolds. 
It was introduced by Atiyah, Patodi and Singer [2] in order to prove an index 
theorem for elliptic operators on manifolds with boundary. Let W be an even- 
dimensional compact smooth spin manifold with boundary M. Give W a Rieman- 
nian metric which is a product near M. Let V be a Hermitian vector bundle with 
connection on IV, also a product near the boundary. Denote the Dirac-type operator 
on W, acting on spinors which satisfy the APS boundary conditions, by Qw, and the 
Dirac-type operator on M by QM. Suppose, for simplicity, that QM is invertible. Then 
the index theorem states 

Index(Qw) = A(W) A Ch(V) - ~ ~/(QM). (1) 

Note that while the left-hand side of (1) is a deformation-invariant, being the index 
of a Fredholm operator, neither term of the right-hand side of (1) is topological in 
nature. The integrand in (1) is a specific differential form on W. It is only the 
combination of the two terms on the right-hand side of (1) which has topological 
meaning. 

By considering eta-invariants of Dirac-type operators coupled to flat vector 
bundles on M, one can also form the rho-invariant, an analytic expression with 
topological meaning [3]. We review some of this theory in Section 2. 

*Partially supported by the Humboldt Foundation and NSF grant DMS-9101920. 
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The index theorem (1) is a 'lower' index theorem, in that it does not involve the 
fundamental group of W. A 'higher' index theorem for closed manifolds is due to the 
work of Mischenko, Kasparov, Connes and Moscovici, and others. To state it, 
suppose X is a closed spin Riemannian manifold with fundamental group F. Let 
v: X ~ BF be the classifying map for the universal cover of X, defined up to 
homotopy. If one takes the fundamental group into account, one can refine the index 
of the Dirac-type operator to become a higher index 1Mng in the K-theory of the 
reduced group C*-algebra C*(F). Under favorable conditions on F, such as F being 
hyperbolic [18], one can pair the higher index with the group cohomology of F, and 
the higher index theorem states 

(Index(Qx), ~) = (A(X) u Ch(V) w v*(T))[X], (2) 

for all r e H*(BF; C). 
In this paper we consider the 'higher' version of (1). That is, we want an index 

theorem for manifolds with boundary which involves the cohomology of the 

fundamental group of W. 
Due to the nontopological nature of the integral in (1), it is clear that one first 

needs a way of proving (2) which gives the right-hand side as the integral of an 
explicit local expression over X. Using Quillen's theory of superconnections [36], we 
gave such a local expression in [31]. 

The next problem is to define a higher eta-invariant, an object which pairs with 
group cohomology. Our main interest is in the possible geometric and topological 
applications. There are some hints as to the right approach to the higher eta. First, 
there is an L2-eta-invariant [15], which should be the pairing of the higher 
eta-invariant with H°(BF; C) ~ C. The analog of (1) has been proven in this case 
[37]. Second, a higher rho-invariant has been defined for the signature operator by 

purely topological means [43]. 
An early approach to the index theorem of (2) when F is free Abelian, due to 

Lusztig, was to apply the families index theorem to a certain fibration which is 
canonically associated to X [34]. In the first half of this paper, we use this method 
to define the higher eta-invariant in some cases in which F is virtually Abelian i.e. 
has an Abelian subgroup of finite index. We have two reasons for using this 
approach. First, it involves 'commutative' analysis which may be more familiar to 
readers, thereby giving some justification for the noncommutative approach of the 
second half. Second, one obtains stronger results this way than for more general F. 
We initially consider the case when F --- F x Z k, with F finite. The base of the above 
fibration is then ~" x T k. An eta-form f/, a differential form on the base of a fibration, 
was defined by Bismut and Cheeger [8]. In Sections 3.111-3.1.6, we analyze in detail 
this eta-form in the case of Lusztig's fibration. We look at how ~ changes under 
conformal variations of the metric, and under arbitrary variations of the input data. 
In Section 3.1.7, we state a higher index theorem for manifolds with boundary, based 
on the results of [9], and give an application to the question of whether a closed 
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positive-scalar-curvature (p.s.c) manifold can be the boundary of a p.s.c, manifold 
with a product metric near the boundary. 

In Section 3.2, we consider the case when F is the semidirect product of Z k and a 
finite group F. The space on which the eta-form lives turns out to be an orbifold of 
the type used in [5] in order to define 'delocalized' equivafiant cohomology. In 
particular, the higher rho-invariant is a delocalized element of equivariant eoho- 
mology. 

The second half of the paper is concerned with more general F. The idea is to work 
with a fibration as above, except that now the base is a noncommutative space B 
whose algebra of 'continuous functions' is C*(F). If ;~ is a subalgebra of C*(F) 
consisting of 'smooth' functions, the 'homology' of B is taken to be the periodic cyclic 
cohomology of ~2. The vector space of 'differential forms' on B is taken to be the 
universal graded differential algebra of N, modulo its commutator. We start by 
reviewing some results on the cyclic cohomology of the group algebra CF in Section 
4.1. We relate the results on semidirect product groups to cyclic cohomology in 
Section 4.2. 

The main idea of this paper, along with [31], is to use superconnections in the 
context of noncommutative geometry. The paper [31] was concerned with express- 
ing the Chern character of the higher index as an explicit closed differential form on 
B. In Section 4.3, we review some of the needed results of [31]. The higher 
eta-invariant ~ is defined as a differential form on B in Section 4.4. To show that the 
formal expression for ~ actually makes sense, we assume that the Dirac-type operator 
on the F-cover M' of M is invertible and that F is virtually nilpotent, i.e. of 
polynomial growth [21]. These technical conditions arise because unlike the Chern 
character, the higher eta-invariant involves heat kernels at arbitrarily large time, and 
unlike the LZ-eta-invariant, it involves heat kernels between arbitrarily distant points 
on M'. We use finite-propagation-speed methods to control these problems. The 
algebra ,N is taken to be the natural 'smooth' subalgebra of C*(F). In Section 4.5, we 
look at how ~ changes as one varies the input data. As with the lower eta- 
invariant, we find that the variation is given by the integral of a local expression. 

We define the higher rho-invariant to be the part of F/corresponding to nontrivial 
conjugacy classes in F. It is a closed differential form on B. In Section 4.6, we discuss 
the properties of the Chern character and the higher rho-invariant with respect to 
the periodicity operator in cyclic homology. 

In Section 4.7, we consider the case of signature operators, and show how the 
higher eta- and rho-invariants can give a wider range of definition by making the 
signature operator on M' effectively invertible. Modulo technical conditions on F, 
our analytic higher rho-invariant is defined under the same circumstances as the 
topological higher rho-invariant of [43] and takes value in the same group. We 
propose, but do not prove, a higher index theorem for manifolds with boundary in 
Section 4.8. In Section 4.9 we use the higher eta-invariant to formulate a Novikov 
conjecture for manifolds with boundary. In Section 4.10 we look at the pairing of~ 
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with 0-cocycles and 1-cocycles, where the formulas can be made more explicit. 
Finally, we conclude with some remarks. 

2. The Lower Eta-lnvariant 

Let M" be a connected closed smooth manifold. For purposes of exposition, suppose 
that the fundamental group F of M is finite. Then given a representation 
p: F ~ U(N), there is an associated flat Hermitian CN-bundle E o = ~ ®p C N on M. 

The input information needed to define the eta-invariant consists of 

(i) 
(2) 

A Riemannian metric on M, 
A Clifford module over M. For simplicity, we will assume that M is spin, n is 
odd and that the Clifford module is of the form S ® V, where S is the spinor 
bundle over M and V is a Hermitian vector bundle with connection. 

There is a self-adjoint densely-defined Dirac-type operator Qo acting on LZ-sections 
of S ® V @ E o, with discrete spectrum. 

DEFINITION 1 [2]. The eta-invariant is 

~/~ fo ~ -s~Q~ - TR(Qp e ~) ds ~ R. 
qP N 

(3) 

The integral in (3) is absolutely convergent [11]. Formally, 

An important point about ~/p is that if Qp is invertible then as one varies the input 
information, the variation of ~/p is given by the integral of a local expression on M 
[3]. (More generally, it is enough to assume that dim(Ker(Qp)) is constant during the 

variation.) 
A special case of geometric interest is when V is a vector bundle associated to the 

principal Spin(n)-bundle of M by some representation a of Spin(n). Then the Chern 
character Ch(V) is a polynomial in the Pontryagin classes and the Euler class of M, 
which can be computed from a. Suppose that Ch(V) is a polynomial in the 
Pontryagin classes of M, i.e. does not involve the Etfler class. Then the same is true 
for the index density A(M) A Ch(V), and it turns out that the local expression for the 
variation of t/p vanishes for conformal deformations of the Riemannian metric [3]. 

For general V, the locality of the expression for the variation of t/p implies that the 
variation is independent of p. Thus if pt and Pz are two representations of F such 
that Qp, and Qp2 are invertible, then the rho-invariant ~Ip~ - t/p~ is a deformation- 
invariant. 
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Sometimes it is more convenient to look at the reduced eta-invariant 

t/p + 1 dim(Ker(Qp)) / 1 

t/~, = ~ ~mod ~ Z) .  

Then ~/~ has a local expression for its variation, without qualifications, and so 
t/~,l - t/~,~ is a smooth invariant of the pair (M, V). It follows from the index theorem 
of [2] that if V is associated to the principal Spin(n)-bundle of M then ~/~ - ~/~,~ gives 
a map from the bordism group f}~Pi"(BF) to R/(1/N1N2)Z. (As ff2~,Pin(BF) is torsion, 
this map actually takes values in Q/(1/N1N2)Z.) However, in this paper we will 
always take rho-invariants to be real-valued. 

Instead of considering representations of F, it will turn out to be useful to think of 
the eta-invariant as something computed on the universal cover M of M. Let 7 ~ F act 
on ]~t on the right by a diffeomorphisrn R~ ~ Diff(~). Let P" be the pullback of V to _~r. 
Let O be the Dirac-type operator on L2-sections of S ® V. Suppose that Q is invertible. 
Then we can define an equivariant eta-invariant on ]~f, a function from F to C, by 

; TR(R*0 e-s a ) ds s C. (4) 

The relationship between tlo and the tkfunction of (4) is simply that if Zo is the 
character of the representation p then 

1 

-~eF 

The evaluation r/(e) of t/ at the trivial element e has a local variation, and the 
variation of I/(7) vanishes for 7 ~ e. 

Alternatively, we can define an element of the group algebra by 

n = E ,7(r)r e o r .  (5) 
;~eF 

The cyclic cohomology group HC°(CF)  is simply the vector space of traces on CF, 
and decomposes according to the conjugacy classes of F: 

HC°(CF) = (~ C~x>, (6) 
(x) E ( r )  

where for a conjugacy class ( x )  e ( F ) ,  the trace 3-~<~> is given by 

~,e(x) 

We can think of the cohomology group H°(F;  C) = C as being the summand CJ~<~> 
in (6); although this identification may seem artificial at the moment, it is the 
zero-dimensional case of a general statement about the cyclic cohomology of group 
algebras, as will be discussed in Section 4.1. Then we can summarize the variational 
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properties of the eta-invariant by saying that the pairings of the t/ of (5) with the 
elements of H°(F; C) have a local variation, while the pairings of t/ with the 
remaining elements of HC°(CF) (i.e. those corresponding to a nontrivial conjugacy 
class) have vanishing variation. These statements are what we will generalize from 
the zero-dimensional case to higher dimensions in the second half of this paper. 

3. Virtually Abelian Fundamental Groups 

3.1. PRODUCT GROUPS 

3.1.1. The Basic Setup 

Let M" be a connected closed smooth manifold with first Betti number k. The 
Albanese variety A of M is the k-torus Hi(M; R)/H~(M; Z)modror [34]. Given a basis 
{e~}~=l of Hl(M;Zk)modTor ~ HI(M;Rk), let {v~}~=t be an integral dual basis to 
{ei}~=t in (H~(M; R))*. The 1-forms {dvi}~=l in A 1(Hi(M; R)) descend to forms on 
A. Fix basepoints mo ~ M and ao ~ A. There is a canonical homotopy class of 
basepoint-preserving maps from M to A constructed as follows: If {co~}~= o are dosed 
1-forms on M which represent {v~)~= 1 in Hi(M; R) g (H1 (M; R))*, there is a map v,o 

from M to A given by 

ao ~ m 

The desired canonical homotopy class is that of vo~. Given a basepoint-preserving 
map f :  M -~ A in this homotopy class, if we choose co ~ = f *  dv ~ then we recover f as 

We will denote the dual torus to A by P, for Picard variety. 

Note. The k-tori A and P will play very different roles in what follows. One should 
think of A as the classifying space BZ k, whereas P should be thought of as the dual 

A 

group Z k. 

There is a double fibration 

M~_Z_MxP ~2, p 

and a canonical line bundle Eo on M × P given as follows: Let H be the Hermitian 
line bundle over A x P which is the quotient of R k × (Rk) * x C by the action of 
Z k x (zk) *, where (7,V*)~ Z k x (zk) * acts by 

(v, v*, z) ~ (v + 7, v* + 7*, e2~*(~)z) • 

There is a canonical Hermitian connection on H given by the 1-form -2niV~. d~ ~* on 
R k x 0Rk) *. Let Eo = ( f  x Id)*H be the pulled-back line bundle over M x P, with 

the pulled-back connection. 
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Let F be a finite group. Suppose that the fundamental group of M is F = F × Z k. 
Let p: F ~ U(N) be a unitary representation of F. Let Ep be the flat Hermitian 
CN-bundle over M specified by p. Then we put Lp to be n~Ep @ Eo, a CN-vector 
bundle over M × P. 

The input information needed to define the eta-form consists of 

(1) 
(2) 
(3) 

A Hermitian connection on Eo, specified by the map f :  M ~ A. 
A Riemannian metric on M. 
A Clifford module over M. For simplicity, we will assume that M is spin, and 
that the Clifford module is of the form S ® V, where S is the spinor bundle over 
M and V is a Hermitian vector bundle with connection. (The analogous results 
when M is not spin will be straightforward.) If n is even then the Clifford 
module is Zz-graded by the grading on S, while if n is odd then the Clifford 
module is ungraded. 

For each p E P, the restriction of L o to n2 l(p) is a flat Hermitian bundle Wp over 
M, with twisting specified by p and p. Thus, we have a family of fiat bundles over M 
parametrized by P. 

Let gp be the infinite-dimensional vector bundle on P such that C~(go)= 
C°~(n*S ® n ' V ®  Lo). That is, the fiber of go over p ~ P is C~(S ® V® Wr). The 
Hermitian connection on n*S ® n* V ® L o gives a Hermitian connection on ego, by 
horizontal differentiation, which we will denote by V. For each p e P, there is a 
vertical Dirac-type operator Qp acting on C~(S® v ®  14~), with discrete real 
spectrum. These vertical operators fit together to give an operator Q acting on 
C~(go). Fix a constant fl > 0. We will abbreviate fil/2d by d. Suppose that U o is an 
open subset of P such that Ker(Qp) forms a vector bundle over Up as p varies 
in Up. 

3.1.2. The Higher Eta-Invariant 

In what follows we use the superconnection formalism of Quillen [36], along 
with its extension to the odd-dimensional case [36, §5]. For the relevant notions, 
see [6, 7,8,36]. As for notation, an infinite-dimensional (super)trace will be 
written as (S)TR, while a finite-dimensional (super)trace wilt be written as tr(~. 
We will write the Chern character of a (super)-vector bundle V as ChB(V ) = 
tr(~)(e-PFv), where Fv is the curvature of a connection on V, and put Ch(V)=  
Chl(V). 

DEFINITION 2. The superconnection D~: C ~0(gp) ~ C ~°(d°p ® A*(P)) is given by 

= fsQ + V, if n is even, 
D~ (s~rQ + V, if n is odd. (7) 
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DEFINITION 3 [7]. For s > 0, the Chern character chp(s) ~ A*(P) of gp, a dosed 
form, is given by 

I ~  STR(e-aD~), if n is even, 
chp(s)  = (8) 

TR~,(e-PDg), if n is odd. 

DEFINITION 4 [8, 19]. The eta-form ~/p e A*(Up) is given by 

I~l--~-~fo°STR(Qe-¢Dg)ds, if n is even, 

qP = ~o (9) (~-~-~foYRo(aOe-pl'~)ds, if n is odd. 

Note. The integral in (9) is well-defined, as is shown in [6]. The reason for dividing 
by N in the definitions will become clear. 

Let Np be the rescaling operator on A*(P) which is multiplication by flj/2 on 
A~(P). We will let g" and g'* be the local coordinates on A and P, respectively, from 
Section 3.1.1. 

PROPOSITION 1. The differential forms chp(s) have a limit as s ~ O, given by 

~-~olim cho(s)= ~t¢(fu ' i t (M)A Ch(V)A e2~i6^a~'*). (10) 

Proof. From [7], we have that 

~olim chp(s)= ~ ( f u  A(TV~"(MxP))A Ch(n*V®L°))" 

As rvm(M x P) = n*rM, 

A(TYert(M ;: P)) = n'~ft(M). 
Now 

Ch(n*V ® Lo) = rc*Ch(V) A rc*Ch(E o) A Ch(Eo). 

As E v is flat, Ch(Eo) = N. It remains to compute Ch(Eo). As in [34], the curvature of 
H is 

d(-2nig*" dg'*) = - 27ri dg ~ A dg'*. 

Then the curvature of E0 is 

-2hi f* dg ~ A dg'* = --2~zic~ A d~*, 

from which the proposition follows. [] 
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Note. The right-hand side of (10) is a polynomial in the forms d~*. The 
coefficients are higher indices. The index theorem for families [1, 6, 7] says that for all 
s > 0, chp(s) represents the Chern character t IN Chp(Index(Q)) of the index bundle 
Index(Q), and a fortiori so does the right-hand side of (10). 

Let VKer<e) denote the Hermitian connection on Ker(Q) induced from its embed- 
ding in the Hilbert space L2(~) = L2(Tr*S @ ~ V @ Lo). 

PROPOSITION 2 [8, 19]. The differential of gtp on Up is given by 

~t~ A(M) A Ch(V) A e 2~i~Ad~* - ~tr~(e-~V~.Q~), i fn is even, 

aOo = [  ,(fMA(M) A Ch(V) A ), if n is odd. 

(11) 

Proof. If n is even, then 

d(chp(S))ds - ~dfl STR(Qe-PD~). 

Integrating with respect to s, we obtain 

a0o = lim cho(s ) - lim chp(s). 
S'~ 0 $-*o0 

(12) 

In the s --* oo limit, only the kernel of Q contributes to the supertrace in chp(s), and 
one has 

1 2 
lim chp(s) = ~ STR(e-~V~o"e~). 
$-*09 

Along with Proposition 1, this proves the even case. If n is odd, Equation (12) still 
holds, but 

2 
lim chp(s) = ~ TR~(e -~v Ko~Q~) = O. [] 

s-~oo 

We now look at what conclusions can be drawn about the eta-forms without 
having detailed information about the vector bundle Ker(Q). We will make success- 
ively weaker hypotheses, and will naturally get successively weaker conclusions. 

We will want to see how f/o changes as we vary the input data. The method to 
compute this is to consider the product bundle R x M x P ~ R x P. The R factor 
represents the parameter e which controls the variation. Let us denote the cor- 
responding eta-form on R x P by 6p. Then 6 0 ~ A*(R x P) can be written as 

6p = ~/o(e) + fl 1/2 de A ~p(e), 
where ~/p and ~p are forms on P. The differential of 6 0 on R x P is given by 
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~ p  = ~ + fll/2 de/X (~JT~ - ~q~). (13) 

Thus, the formulas for the differentials of eta-forms, applied to 6 o, will allow us to 
compute ~ p  up to an exact form on P. If a quantity is independent of e, we will say 
that it is a deformation invariant. (The reason that we do not say simply that it is an 
invariant is that there may be some restrictions on the operators parametrized by e, 
such as invertibility.) 

3.1.3. Qp Invertible for all p ~ P 

In this section, we assume that the operators Qp are invertible for all p ~ P. We take 
vp=P. 

PROPOSITION 3. The eta-form flp is closed. 
Proof In this case Index(Q) is trivial, and so the higher indices of (10) vanish. The 

result then follows from Proposition 2. [] 

Thus Op represents a cohomology class [~/p] in H*(P; C). A priori, this class 
depends on all of the choices made, namely 

(1) The map f :  M ~ A. 
(2) The Riemannian metric on M. 
(3) The Hermitian connection on K 

PROPOSITION 4. Suppose that the vector bundle V is associated to the principal 
Spin(n)-bundle on M. Suppose that the index density/I(M) A Ch(V) is a polynomial in 
the Pontryagin classes of M, i.e. does not involve the Euler density. Then for fixed 
f :  M -~ A, [~p] is a conformal-deformation invariant. 

Proof Let g(s) be a 1-parameter family of conformally equivalent metrics. Let ~" be 
the corresponding vector bundle on R × M. Let ~p be the eta-form on R × P. By 
Proposition 2, 

Thus 

By hypothesis, A(R x M ) A  Ch(V) is a polynomial in the Pontryagin classes 
Pk~ A4k( R x M), and it is known that this implies that i(O~)(A(R × M ) A  Ch(V)) 
vanishes identically [-16]. 

(To see this last point, it is enough to consider the Pontryagin forms tr ~'~2k 
on R × M. If ~o(e) denotes the Riemannian connection 1-form, its curvature on 

R x M i s  
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f2 = R(e) + de A O,o), 

where R(e) is the Riemannian curvature 2-form of M. Thus, i(0~) tr ~-)2k is proportion- 
ate to tr(3~co A R 2k- ~). In terms of a local orthonormal basis {zi}, the change in co 
under a conformal change of metric is of the form O~e)~i = h,~z i -h,jz~, for some 
function h on M [23]. Then tr(~e) A R 2k- 1) is proportionate to 

(h.izj - hjzi) A (R 2k- t)i j = 2 ~ h izj A (R 2k- x)ij. 
i j  i j  

However, Ejzj A (R 2k- 1)i j vanishes by the Bianchi identity.) 
Therefore, 0~f/o is exact on P. [] 

PROPOSITION 5. Suppose that Pl and P2 are two representations of F such that the 
corresponding families of Dirac-type operators are invertible on all of P. Then 
[~01] - [Ov2] is independent of the choice o f f  and is a deformation invariant with 
respect to the Riemannian metric on M and the Hermitian connection on V. 

Proof. Consider a 1-parameter family of choices. From the corresponding families 
of Dirac-type operators, parametrized by R x P, and let 8pl and ~Tp~ be their 
eta-forms. By Proposition 2, a#p, and a8,~ are the same local expression on R x P, 
and so ~(~,1 - #p2) = 0. Then by (13), ~(~01 - ~02) is exact on P. Thus [~m] - [~,2] 
is a deformation-invariant with respect to the choices made. As any two choices of f 
can be joined by a path, and the invertibility of the operators Qp is independent of 
the choice of f ,  the independence with respect to f follows. [] 

Note. In Proposition 5 we are interested only in the difference between [~p~] and 
[Op~]. It is not really necessary to assume that both p~ and P2 are such that the 
corresponding families of Dirac-type operators are individually invertible on all of P. 
To be more general, suppose that {Pi} are the irreducible representations of F and 
{@ is a set of complex numbers such that Zjcj = 0 and for all p ~ P, Z~(cj/Nj) 
TR(e-S~Qg (°A) decreases exponentially as s 2 ~ or. Then the same argument as in the 
proof of Proposition 5 gives that Zicj[Oo~] is a deformation invariant. 

An important class of examples for which this more general invertibility sometimes 
holds is given by signature operators. The paper [43, §1] considers simple manifolds, 
meaning that if M' is the finite F-cover of M, the group F acts trivially on 
the twisted cohomology groups H*(M';QT~I(M')). The analogous condition in 
our case would be that Y,j(c~/Nj) TR(e-S~e~(PJ )) decreases exponentially as s 2 ~ oo 
provided that the coefficient of the trivial representation vanishes. This condition 
is independent of the Riemannian metric on M. If in addition 2;jcj = 0 then 
Zjcj[Opj] is a deformation invariant. As any two Riemannian metrics can be 
joined by a path of Riemannian metrics, the deformation invariance implies 
complete invariance of Z~ci[~/J. That is, we have defined a smooth topological 
invariant of M. To put it another way, we have defined a higher rho-invariant 
which lies in KF(pt.)/{trivial and regular representations} ® H*(P; C). Presumably 
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this coincides with the higher rho-invariant defined in [43,§1]. To show this, 
one would have to prove a families index theorem for fibrations whose fibers 
are singular spaces of the type used in [43]. 

EXAMPLE. A class of operators that fulfill the hypotheses of this section is given by 
Dirac operators on manifolds of positive scalar curvature. To see that ~p can be 
nontrivial, let L be a spin spherical space form with fundamental group. F. Take M 
to be L × T z, with the product metric and a spin structure induced from the given 
spin structure on L and any spin structure on T I. Take the vector bundle V to be 
trivial, so that one is considering the Dirac operator acting on spinors on M. The 
metric on M has positive scalar curvature, and so the Lichnerowicz formula implies 
that Qp is invertible for all p E P [29]. By separation of variables, it is easy to see that 

[Op(M)] = 4 t/p(L). Chp(T t) m H*(P; C). 

Here q0(L) m C is the usual twisted eta-invariant of L and Chp(T t) m H*(P; C) is the 
Chern character of the index bundle for the family of twisted Dirac operators on T t. 
In particular, L and p can be chosen so that ~/p(L) is nonzero [20], and it follows from 
(10) that Cha(T l) is a nonzero element of Hi(P; C). 

3.1.4. Ker(Qp) Forms a Vector Bundle on P 

In this section we assume that the kernels of the operators Qp form a vector bundle 
on P as p varies in P. If n is even then we cannot say anything without detailed 
information about the vector bundle Ker(Q). For example, one sees from Proposition 
2 that there is no reason that f/p should be dosed. However, if n is odd then all of the 

results of the previous section go through. 

PROPOSITION 6. I f  n is odd, the eta-form flp is closed. 
Proof In this case the right hand side of (11) is a polynomial in the variables d~'*. 

However, the existence of ~p means that this polynomial is an exact form on P. Thus, 

its coefficients must vanish. [] 

The proofs of the following propositions are virtually the same as in Section 3.t.3. 

PROPOSITION 7. Suppose that the vector bundle V is associated to the principal 
Spin(n)-bundle on M. Suppose that the index density A(M) A Ch(V) is a polynomial in 
the Pontryagin classes of M. I f  n is odd then for fixed f: M-~ A, [~/p] is a 

conformal-deformation invariant. 

PROPOSITION 8. Suppose that Pl and P2 are two representations of F such that the 
kernels of the correspondino families of Dirac-type operators form vector bundles on P. 
If  n is odd then [~/ol] - [qo~] is independent of the choice of f and is a deformation 
invariant with respect to the Riemannian metric on M and the Hermitian connection 

on 1I. 
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3.1.5. Qp is InvertibIe for p ~ U o 

In this section we assume that the operators Qp are invertible when p lies in an open 
subset [1, of P. We can no longer conclude that ~/o is closed on Up. 

Let i: Up ~ P be the embedding of U o in P. The relative de Rham cohomology 
H*(P, Uo; C) is isomorphic to the homology of the complex 

... a Ak_l(P, Vp) a__~ Ak(P, Up) a_a_~ Ak+~(p, up) a .. 

where 

Ak(P, Up) = A~(P) O Ak-~(Up) and ~(e, e') -- (~e, i*(~) - de() [12]. 

Let C denote 

N p ( f ~  A(M)A Ch(V)A eZ~m^av*)e A*(P). 

PROPOSITION 9. The pair (C, tlp) is a closed element of A*(P, Up). Its class in 
H*(P, Up; C) is independent of the choice of f and is a deformation invariant with 
respect to the Riemannian metric on M and the Hermitian connection on V. 

Proof. It is always true that ~C = 0, and it follows from Proposition 2 that (if, r/p) 
is closed. Let e parametrize a 1-parameter family of choices, and consider the forms 

r g =  ~P( fM A ~ ×  M ) A  Ch(V)A eZ~aI*~(v'av*))~A*(RxP) 

and ~p ~ A*(R x Up). Decompose cg as 

cg = C(e) + flllZ de A ~(e). 

Then the equations C]~ = 0 and a~p = i*cg give 

O~(~ - a ~  = 0 and 8:~/p - ~ p  = i*~.  

Thus 0J~, ~/p) = ~(~, - go)" [] 

EXAMPLE. Take M = S 1. We will identify M with its Albanese variety A. Take Q 
to be the (tangential) signature operator: JOy, acting on A°(M). Let us use the local 
coordinate v* ~ [0, 1) on P, with v* = 0 being the untwisted situation. Then Qp is 
invertible for v*~ (0, 1). So r/is a 0-form on (0, 1), which to v*~ (0, 1) assigns the 
corresponding twisted eta-invariant. A computation gives that 

?/(v*) = - ~ ( 2 v *  - 1). 

Also ~ = x / ~ d v * ,  a 1-form defined on all of P. It is easy to check that (~,~/) 
represents a generator for H ,(p, (0, 1); C) ~ C. 
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PROPOSITION 10. Suppose that the vector bundle V is associated to the principal 

Spin(n)-bundle on M. Suppose that the index density f l(M) /~ Ch(V) is a polynomial in 

the Pontryagin classes of M. Then for fixed f : M ~ A ,  the class of tlp in 
A*(Up)/Im(~) is a conformal-deformation invariant. 

Proof. The proof is the same as that of Proposition 7. [] 

PROPOSITION 11. Suppose that Pl and P2 are two representations of F such that 

the corresponding families of Dirac-type operators are invertible on U o. Then ~lpl - ~lp2 

is a closed form on Up. Its class in H*(Uo; C) is independent of the choice o f f  and is a 
deformation invariant with respect to the Riemannian metric on M and the Hermitian 

connection on V. 
Proof. By Proposition 2, ~o, and ~/p2 have the same differential on Up. The proof of 

the deformation invariance of [f/o, - ~/o2] is the same as in Proposition 5. [] 

3.1.6. Ker(Qp) Forms a Vector Bundle on Up 

In this section we assume that the kernels of the operators Qv form a vector bundle 
on Up as p varies in Up. If n is even then we cannot say anything without detailed 
information about the vector bundle Ker(Q), but if n is odd then all of the results of 
the previous section go through. 

PROPOSITION 12. I f  n is odd then the pair (C, ~lo) is a closed element of A*(P, Up). Its 

class in H*(P, Up; C) is independent of the choice o f f  and is a deformation invariant with 
respect to the Riemannian metric on M and the Hermitian connection on V. 

PROPOSITION 13. Suppose that the vector bundle V is associated to the principal 

Spin(n)-bundle on M. Suppose that the index density A(M)/~ Ch(V) is a polynomial in 

the Pontryagin classes of M. I f  n is odd then for fixed f :  M --* A, the class of ~lp in 

A*(Up)/Im(~) is a conformal-deformation invariant. 

PROPOSITION 14. Suppose that Pl and P2 are two representations of F such that 

the kernels of the corresponding families of Dirac-type operators form vector bundles 

on Up. I f  n is odd then tlo, - tlp2 is a closed form on U o. Its class in H*(Uo; C) is 
independent of the choice of f and is a deformation invariant with respect to the 
Riemannian metric on M and the Hermitian connection on V. 

3.1.7. Higher Index Theorem for Manifolds with Boundary 

Note that to define f/, the group F does not really have to equal ~I(M). It is enough 
just to have a homomorphism from rq(M) to F and a map f from M to the 
corresponding torus in the canonical homotopy class, and all of the previous steps go 
through. 

We now suppose that M is the boundary of a compact spin manifold W, with a 
product metric near the boundary. (We no longer assume that M is connected.) Let 
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V be a Hermitian vector bundle with connection on W which is a product near the 
boundary. Take the map f :  W ~ A from W to its Albanese variety to be constant in 
the normal direction near the boundary of W. 

We will denote the fundamental group of W by F, and assume that it is the 
product of a finite group F and a free Abelian group. Then the inclusion of M into W 
gives a homomorphism from rc~(M) to F, and f restricts to a map f~t: M ~ A. Let 
p: F ~ U(N) be a representation of F. Suppose that the twisted Dirac-type operators 
on M are all invertible. Then we can define the eta-form ~/p(M)s A*(P). 

Let Qw, p denote the family of twisted Dirac-type operators on W, para- 
metrized by P, with Atiyah-Patodi-Singer (APS) [2] boundary conditions. Then 
the index bundle Index(Qw, o) lies in K*(P) and from [9], its Chern character is given 
by 

1 
Chp(Index(Q~;o)) 

=~P(fw A(W)A Ch(V)A eZ'~i~wAa~)-~ip(M)~H*(P; C). (14) 

(This only seems to be proven when dim(W) is even; for remarks on the odd case, see 
[10J.) 

In particular, suppose that W has positive scalar curvature and that V is trivial, so 
that we are looking at the pure Dirac operator. Then M also has positive scalar 
curvature. The Bochner argument [29J, applied to the manifold W with boundary, 
gives that Index(Qy, p) = 0. Thus if {p~} are the irreducible representations of F and 
{cj} is a sequence of numbers such that Zjc~ = 0 then Z~cj~pj(M), which is a sort of 
higher rho-invafiant, vanishes in H*(P; C). So [Zjcj~lp~(M)J is an obstruction to 
realizing M as the boundary of a manifold W with a positive-scalar-curvature metric 
which is a product near the boundary. 

To see that this is a nonvacuous statement, let L be as in the Example of Section 
3.1.3. Then L represents a torsion element in the bordism group .Q~Pin(BF), and so 
there is a positive integer c such cL is the boundary of a spin manifold W with 
fundamental group F; take any such W. Take M to be isometrically cL x T ~. Then 
M bounds W x T z and 

~lp(M) = c--~tlo(L)'Cha(Tt). 

If L has a nontrivial rho-invariant in the ordinary sense [20] then we conclude that 
W x T ~ cannot have a positive-scalar-curvature metric which is a product near the 
boundary, with the boundary metric being the given one on M. (This example 
shows why we do not consider reduced rho-invariants. As cL is a boundary, its 
reduced rho-invariant vanishes, and we would not detect any obstruction to positive- 
scalar-curvature this way.) 
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3.2, SEMIDIRECT PRODUCT GROUPS 

In this section we extend the results of the previous section on product groups to the 
case of a semidirect product of Z k and a finite group F. That is, we assume that the 
fundamental group F of M fits into a split exact sequence 

I ~ Z k ~ F ~ F ~ I .  

Let M'  be the F-fold normal covering of M. We will let q5 ~ F act on the right on M', 
by R~ ~ Diff(M'). Let A and P be the Albanese and Picard varieties of M'. The 
action of F on M'  induces an action on P. We will denote the subset of P which is 
fixed by ~b ~ F by P ~. 

It is known that the irreducible representations of F all arise as follows. Think of P 
as the dual group to Z k. Given p E P, let r~ be the corresponding representation of 
Z k. Let Fp be the subgroup of F which fixes p. Let pp be an irreducible representation 
of Fp. Then one forms the representation of F induced from the representation rp. pp 
of Z k" Fp [28]. 

This motivates looking at the following space. (Unlike the preceding sections, we 
no longer look at representations of F.) 

DEFINITION 5 [5]. /~ c P x F is given by 

/3 = {(p, qS) ~ P x F:p~b = p} = L[ (P~, qs). 

F acts on P by (p, 4~)" q~' = (P4', q5'-1~9')  • We will denote the space of F-invariant 
differential forms on P by A*(P/F), and the associated cohomology theory, the 
'delocalized equivariant cohomology' [5] by 

• G c)l ~. 
Fix f :  M'  ~ A in the canonical homotopy class. Let V be a Hermitian vector bundle 
with connection on M, and let V' be its pullback to M'. 

Let Wp be the fiat Hermitian line bundle on M'  whose' twisting is specified by 
p e P. Let Q~, be the Dirac-type operator acting on L2-sections of S' ® V' @ Wp. 
Suppose that U is an open F-invariant subset of P such that Ker(Qp) forms an 
F-vector-bundle on U as p varies in U. Define /_? and U ~ as for P. If n is even, the 
Chern-Weil construction goes through to give a closed form tr~(e-aV],o~(Q'))e 

A*(U/F). 
Let g~ be the infinite-dimensional vector bundle on (P~, ~b) c P whose fiber over 

(p, ~b) is C~°(S ' @ V ' ®  Wp). The Dirac-type operators {Q'p}p~p~ fit together to give 
an operator Q;: C ~o(g~) ~ C ~(8~). Let 

be the natural Hermitian connection, Using V; and Q;, form the superconnection 

D~,~ as in (7). 
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DEFINITION 6. For s > 0, the Chern character ch(s) s A*(P/F) of g, a closed 
form, is given on (P+, 4)) by 

fSTR(R~e-a°~,~), if niseven, 
ch(s) = [TR,(R~e-PD~.~:), if n is odd. 

DEFINITION 7. The eta-form ~/e A*(0/F) is given on (U ~, ¢) by 

f t fill2 

~ c10 

fll/2 
k j o  

STR(R~ Q' e-P"'~, ,~) ds, 

TR~(R ~aQ'e -PD~, ~ ) ds, 

if n is even, 

if n is odd. 

The same arguments as in Section 3.1.2 give 

PROPOSITION 15. The differential forms ch(s) have a limit as s-~ 0, given on 
(PC, ¢) by 

~-~olim ch(s)= 6 ¢ , ~ ( f u ,  A(M')A Ch(V')A e2=~Ad~*). (15) 

PROPOSITION 16. The differential of ~t is given on (U ¢, ¢) by 

- tr~(e-~ ~o~')), if n is even, 

if n is odd. 

(16) 

It is now straightforward to extend the results of Section 3.1 to the case of 
semidirect products. For example, we given the extensions of Propositions 3-5. 
Assume that Q~ is invertible for all p ~ P. 

PROPOSITION 17. The eta-form ~1 is closed. 

Thus 7/ represents a class [~] in H*(P/F; C). 

PROPOSITION 18. Suppose that the vector bundle V is associated to the principal 
Spin(n)-bundle on M. Suppose that the index density A(M') A Ch(V') is a polynomial 
in the Pontryagin classes of M'. Then for fixed f :  M' ~ A, [~/] is a conformal- 
deformation invariant. 

PROPOSITION 19. The 'delocalized' part of [~], that is, the part in [@¢~ H* 
(PC; C)] F, is independent of the choice o f f  and is a deformation invariant with respect 
to the Riemannian metric on M and the Hermitian connection on V. 
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Note. Suppose that M is a Riemannian spin manifold with positive scalar 
curvature. The same argument as in Section 3.1.7 gives that the delocalized part of 
[~/] is an obstruction to realizing M as the boundary of a spin manifold of positive 
scalar curvature with the same fundamental group, which is a product near the 
boundary. 

Note. The ~iv of Section 3.1.2 is related to the ~ of the present section by a Fourier 
transform on the group F. More precisely, suppose that F = F x Z ~. Let ( F )  denote 
the conjugacy classes of F. Then F acts trivially on P and 

j6 = p x F, A*(fi/F) - (~  A*(P), H*(16/F; C) --- ~ H*(P; C). 
(F) (F) 

Let us write ~/e A*(/5/F) as ~ = @<¢)~<F) ~((¢)) ,  with each ~/((¢)) in A*(P). Given a 
representation p: F ~ U(N), let ~p denote its character. Then ~/p is given by 

1 

eeF 

4. Noncommutative Eta-Invariants 

4.1. CYCLIC COHOMOLOGY OF GROUP ALGEBRAS 

Let ~ be an algebra over C with unit 1, As a vector space, the universal graded 
differential algebra of N is ~ , ( ~ )  = ~ ) ~ = 0 ~ k ( ~ ) ,  with ~2k(~ ) = N ® (®k(~3/C)). As a 
graded differential algebra, g~,(N) is generated by N and dN with the relations 

dl  = 0, d 2 = 0, 

= (d k)co  + ( -  1)% k(dco3 for ok e e 

It will be convenient to write an element C0k of g~k(N) as a finite sum Zbo dbl ...dbk. 
The reduced cyclic homology HC,(N) is the homology of the complex 

-~...  C** + 1(~) ~, C~,(~) b C**_ 1(~) - ~ " ,  

where C~,(~) is the quotient of the space of cyclic chains C~(~)  by the subspace 
span{bo ® ... ® b, :  bi = 1 for some i}. One has [26] 

HC ,(d~) "~ Cok(HC,(C)--* HC,(dB)). (17) 

The homology/-7,(~)  of the differential complex ~ , ( ~ )  = ~ , ( ~ ) / [ ~ , ( ~ ) ,  ~ , ( ~ ) ]  
is isomorphic to the subspace Ker(B) of HC,(~I) for * > 0 [17, 26]. (In the case 
• = 0, Ro(~)  - Ker(B: HCo(~) (= ~ / [ ~ ,  dA]) __+ HI(~,  ~)).) Thus there is a pairing 
between the reduced cyclic cohomology HC*(d~) a n d / ~ , ( ~ )  f o r ,  > 0. This pairing 
comes from a pairing between ZC*(~) and ~ , ( ~ ) ;  if ~-- e ~--~k(~) is a reduced cyclic 
cocycle and Zbo db~...db~ e f ~ ( ~ )  is a k-form then their pairing is E~--(bo, bl ..... b~) 
[17]. (For • = 0, there is a pairing between HC°(~) ,  the space of traces on ~,  and 

n o ( N )  = 
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Now let F be a discrete group. Let CF be the group algebra of F. Let <F> denote 
the conjngacy classes of F, and <F>' (<F>") those represented by elements of finite 
(infinite) order. For x s F, let Z~ denote its centralizer in F and put N~ = {x}\Z~, the 
quotient of Z,  by the cyclic group generated by x. If x and x' are conjugate then N~ 
and Nx, are isomorphic groups, and we will write N<~> for their isomorphism class. 
Let C[zJ be a polynomial ring in a variable z of degree 2. Then the cyclic 
cohomology of CF is given by [13] 

HC*(CF) = 
\ <x)~(r>' / <x>~<F>" 

Let S: H*(N<x>; C) ~ H*+2(N(~>; C) be the Gysin homomorphism of the fibration 
S t ~ BZ~ ~ BN~. We will abbreviate even, odd by e, o. Put 

T~'°(<x>) = lira(.-- -o H*-E(N<~>; C) ~ H*(N~x>; C) s ~  H ,  +2(N~>; C) -0 -.-), 

the inductive limit. Then the periodic cyclic cohomology of CF is given by [13] 

= (  (~  ) (~ (~ Te'°(<x)). (19) PHC~'°(CF) He'°(N<~>; C) 
<x> ~ <F>' <x> e <r>" 

In particular, H°'°(F; C) is a direct summand of PHC°'°(CF), corresponding to 
<x> = <e>. Similar results hold for cyclic homology. 

Note. T*(<x)) often vanishes, for example if N<,> has fnite virtual cohomological 
dimension. 

We will need explicit cocycles for HC*(CF). Fix a representative x e <x). Put 

C~ = {z: F ~+ 1 _0 C: z is skew and for all (1'o, ?~,-.-, 7k) e F k+ 1 and z e Z~, 

z(ZTo, z71 .... , zTk) = Z(7o, 71 ..... 7k) and z(X7o, 71,..., 7k) = r(7o, 7~ .... ,7k)}. 

Let 5 be the usual coboundary operator: 

k + l  
j -". 

&0'o,7~ .... ,7~+~)= ~ ( -1 )  ~(~'o,71 .... ,Tj,.-.,Tk+~). 
j = O  

Denote the resulting cohomology groups by Hi .  Then Hkx is isomorphic to 
Hk(N<~>;C) and for each cocycle z e Z~, there is a cyclic cocycle ~-~e ZCk(CF) 
given by 

0, /f 70... 7~ ¢ <x>, 
5'~(YO,7,,---,Tk) = z(g,g?o ..... gYo...Yk-1), /fTo.-.Vk = g-lxg.  (20) 

For k > 0, these are in fact reduced cyclic cocycles. 

4.2, PAIRING OF [f/] WITH CYCLIC COHOMOLOGY 

We relate the results of Section 3 to the cyclic cohomology of CF. Suppose that F is a 
semidirect product as in Section 3.2. If the operators Qp are all invertible, 
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we defined [~I]~H*(P/F;C). Thus to obtain numbers, we should pair [~/] with 
u,(P/F; C). 

If F happens to be trivial then we are talking about H.(P; C). In this case, the 
relationship between P and the group F is given by Fourier transform. Namely, CF 
corresponds to certain analytic functions on P and the reduced group C*-algebra 
C*(F) is isomorphic to C(P). The algebra C°~(P), which can be considered as a 
subalgebra of C*(F), has the same periodic cyclic cohomology as its subalgebra CF, 
namely PHCe'°(C ~(P)) = H~,o(P; C). 

For general F, CF is the cross-product CZ k • F. The periodic cyclic cohomology of 
CF will be the same as that of the cross-product algebra C ~(P)* F, and one has that 
PHC~'°(C~(P),F) = Ho,o(/~/F;C) [41]. As seen in (19), PHC°'°(CF) breaks up 
according to the conjugacy classes of F. 

Thus in this case we obtain numbers by pairing [~/] with PHC°'°(CF). The 
'delocalized' part of [~/] pairs with the part of PHC°'°(CF) coming from nontrivial 
conjugacy classes. 

4.3. NONCOMMUTATIVE SUPERCONNECTIONS 

The formal expressions for the higher Chern character and higher eta-invariant are 
the essentially the same as those of Section 3. However, the meanings of the symbols 
are somewhat different. We first review and extend some of the results of [3 t]. 

Let M" be a connected closed oriented Riemannian manifold and let F be a finitely 
presented group. Let M' be a normal F-cover of M, with 7 E F acting on the right by 
R~, ~ Diff(M'). Let v: M ~ BF be the classifying map (defined up to homotopy) for the 
fibration F ~ M' ~ M. Let E be a Clifford module over M with Hermitian 
connection. For simplicity, we will assume that M is spin and that E = S ® V, where 
S is the spinor bundle of M and V is a Hermitian vector bundle with connection. If n 
is even then the Clifford module is Zz-graded by the grading on S, while if n is odd 
then the Clifford module is ungraded. Let E' be the pullback of E to M', with the 
pulled-back connection. Let Q' be the Dirac-type operator acting on LZ-sections of 
E', a densely-defined self-adjoint operator. 

The results of [31] are valid for any finitely presented group F. However, in this 
paper we will assume hereafter that F has a finitely-presented nilpotent subgroup of 
finite index. Let q['[[ be a right-invariant word-length metric on F. The assumption 
on F is equivalent to saying that F is of polynomial growth with respect to It" tt [21]. 
We will need this assumption in order to show that the formal expression for the 
higher eta-invariant is well-defined. The results from [31] which are given here are 
slightly modified in order to take this assumption on F into account. 

Let ~ be the subalgebra of C*(F) consisting of elements whose entries die faster 

than any power in ]l" ]1. That is, 

~) = {f: F ~ C: Vq ~ Z, sup ((1 + I[ 7 [[)qbc(7)[) < oo} 



HIGHER ETA-INVARIANTS 211 

It is a Fr6chet locally m-convex algebra with unit, in the sense of [35]. One can define 
a completion ~,(N) of f~.(N) which is a Fr6chet graded differential algebra. The 
homology/~.(N) of the differential complex f i . (N)=  ~2.(N)/[fi,(N), fi.(N)] pairs 
with the (topological) cyclic cohomology HC*(N) of N, and in fact with the reduced 
cyclic cohomology for * > 0. It is shown in [24] that the periodic cyclic cohomology 
PHC~'°(N) is isomorphic to PHC~'°(CF). 

DEFINITION 8. g = (M' xr N) ® E, a vector bundle over M. 

The fibers of g are fight N-modules, and there is a right N-action on the space C°(g) 
of smooth sections of & If Y is a Fr6chet algebra containing N, one can form the 
M-vector bundle g Qe ~. We define Hom~(g, g ~e  i f )  to be the algebra of integral 
operators T: C~(~) --+ C°°(N ~e  i f )  with smooth kernels T(ml, m2) e Home(Nm2, 
N,~, Qe ~-). That is, for s e C~°(g), 

f u T(ml, m2)s(m2) dvot(m2) ~ g,,, (Ts)(ml) 

We denote Hom~(d ~, g) by End~(g). 
A M-connection on g is a map V: C°~(g)--* C°°(g~  ~I(N)) with smooth integral 

kernel such that V(sb) = V(s)b + s @e db for all s ~ C~(g) and b ~ N. 
One can define a Dirac-type operator acting on C°~(d~), which we will denote by Q. 

Then for all T > 0, there is a heat kernel e-rQ~ ~End~(g). 

DEFINITION 9. The superconnection D~ is given by 

= ~sQ + V, if n is even, (21) 
D~ (saQ+V,  i fn  is odd. 

For fi > 0, we define e-aD~ e Hom~(g, g ~e  ~),(N)) by a Duhamel expansion in V. 
If n is (even) odd, one can define a (super)trace (S)TR: Hom~(E, g @~ fi,(N)) ~ 6,(N). 

DEFINITION 10. For s > 0, the Chern character ch(s) s fi,(N) of g, a closed form, 
is given by 

~STR(e-aD~), if n is even, 
ch(s) = [TR~(e_aDg) ' if n is odd. (22) 

To make things more explicit, it will be convenient to work on M', We now give 
the covering-space versions of the preceding definitions, which are adaptions of the 
results in [311. Fix a basepoint x0 ~ M' in each connected component of M'. For a 
multi-index c~, let W denote repeated covariant differentiation on E'. 

PROPOSITION 20 [31]. There is an isomorphism between C~(g) and 

{ f  ~ C~°(M ', E'): Vq ~ Z and all multi-indices ~, 

sup((l + d(xo, x))q[Wf(x)f) < oo). 
x 
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PROPOSITION 21 [31]. There is an isomorphism between the algebra End~(g) and 
the algebra of F-invariant integral operators T on La(M ', E') with smooth kernels 
T(x, y) ~ Hom(E~, E'~) such that for all q ~ Z and all multi-indices ~ and fl, 

sup ((1 + d(x, y))qiV~V~rT(x, y)[)< ~ .  
x~y 

It follows from finite propagation speed estimates (see Equation (30))that e-TO'~ 
defines an element of End~(8). 

Let tr(s) denote the local (super)trace on End(E~). Fix a function q~ ~ C~(M') with 
the property that E.~rR*q~ = 1. 

PROPOSITION 22 [31]. The (super)trace of an element To f  End~(g), represented 
as in Proposition 21, is given by 

(S)TR(T)=~r[fu~(x)tr(~)((R*T)(x,x))dvol(x)3?(m°d[~,~]).  

Similarly~ an element f of C~(8@~ ~k(~3)) can be written as ~f~.~...~d?'l ...dTk, with 
each f~,...rk ~ C~( M', E') a smooth rapidly decreasing section of E'. An element K of 
Hom~(~, g~)~k(~) )  can be represented by smooth rapidly decreasing kernels 
K~...ek(x , y)~ Hom(E'y, E~,) such that K = EKr~.. ~d71 ...d?k is F-invariant. Then 

(S)TR(K) = ~. [fMO(x)tr(~,((R*oK,,...,~)(x,x))dvol(x)l,odT~...d,~ 
70, . . , , T k  =-F * 

(rood [~,(~),  ~*(~)]). 

PROPOSITION 23 [31]. For each function h~ C~(M') such that 

there 

given 

R*h = 1, 
7~F 

is a connection 

v: c°(e) 

by 

(23) 

Vf  = ~ hR*f ~ d? 
y~F 

for all f ~ C°~(g). 

PROPOSITION 24 [31]. Define ch(s) using the connection of Proposition 23. Then 
ch(s) has a limit as s ~ 0 given by the integral of a local expression on M. That is, there 
is a biform eJ ~ A*(M)Q ~.(.~), closed in both factors, constructed from h such that 

lira ch(s) -- f A(M) A Ch(V) A o s fi.(N). (24) 
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We refer to [31] for the exact expression for c~. The important term in o9 of degree 
k (with respect to M) is a closed form on M with values in fi~(~), whose pullback to 
M' is given by 

ilk~2 
(--1)k~,y 2 R*odh A ... A R*o...,~_~dh;~odT~.,.dTke Ak(M')@fik(~.@). 

~O..,Tk=e 

There are other terms in degree k which are lower order forms on M, and arise 
because of the S operation in cyclic homology, as will become clear in Section 4.6. An 
important point is that the right-hand side of (24) has support on the forms spanned 
by {~od71 ...dT~: 7o---°A = e}. 

COROLLARY 1 [31]. Let ~ be a cyclic k-cocycIe of  CF constructed as in (20). 
Suppose that ~ extends to a cyclic cocycle of Y). Then for all s > 0, the pairing 
(ch(s), 4 )  is well defined and independent of  s. I f  x ~ e, then (ch(s), Y~) = 0. I f  x = e, 
let [z] e Hk(BF; C) denote the cohomoIogy class represented by -c. Then 

(ch(s), N )  = ( -  1)~/~ k/2 f~ A(M)/x Ch(V) A v*[~]. (25) 

Note. The right-hand side of(25) is a higher-index. The factor ( -  1) k arises because 
we are using a slightly different definition of ~ than [31]. 

4.4. THE HIGHER ETA-INVARIANT 

We now wish to define the eta-form as a differential form on the noncommutative 
base space. In line with Section 4.2, the goal is to come up with a form which can be 
paired with the cyclic cohomology of CF. In order to understand what are 
reasonable hypotheses under which to define ~, it is worth reconsidering the 
discussion of Section 4.2. Suppose for simplicity that F is trivial. We have seen that 
the periodic cyclic cohomology of CF corresponds to the homology of P. Now a 
reasonable condition to define the pairing of a form with the homology of P is that 
the form should be defined on all of P. For the eta-form, this means that we need for 
Ker(Qp) to form a vector bundle on P. This is equivalent to saying that dim(Ker(Qp)) 
is constant in p. In other words, we rule out the possibility that an eigenvalue of Qp 
goes from a nonzero value to zero, as p varies. 

The way to generalize this condition to arbitrary fundamental groups can be seen 
by performing a Fourier transform over P. Namely, an element of the space Ca(g) of 
Section 3.1.1 corresponds under Fourier transform to a section of the vector bundle 
E' of Section 4.3. One finds that the above condition on dim(Ker(Qp)) is equivalent to 
the condition that Q,2 has a Green's operator, i.e. that there is a gap between 0 and 
the nonzero L2-spectrum of Q,2. (The proof of this statement is similar to the 
arguments in [32, Section VII.) This last condition makes sense for arbitrary 
fundamental group. 
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Thus a reasonable requirement to define ~ is for Q,2 to have a Green's operator. In 
this case, there are general reasons to believe that (26) should make sense [6, Section 
9.1]. However, in this paper we will look at the simpler situation in which Q,z 
actually has a bounded LZ-inverse i.e. that the infimum of the L2-spectrum is strictly 
positive. 

DEFINITION 11. Suppose that Q,2 has a bounded La-inverse. The higher eta- 
invariant ~ e 6 , (N)  is 

I fll/z f ;  STR(Q' e -t~°~) ds, 

~= 

(B~/2 f;  TR~(~Q' e-~'~)ds, 

if n is even, 

if n is odd. 

(26) 

It will easily follow from the proof of Proposition 25 that the integrand ~(s) of (26) 
is integrable on any compact interval of (0, oo). The problem is to show that it is 
integrable both near 0 and near oe. The proof of the next proposition is slightly 
technical, and the reader may wish to omit it at first reading. 

PROPOSITION 25. ~/(s) is absolutely integrable for large s. 
Proof. Let # > 0 be such that [ - # ,  #] c R\Spectrum(Q'). Let ® be a smooth even 

1 & function on R such that ® is 0 on [ - ~ ,  2] and 1 on R \ ( -  1, 1). The idea of the proof 
is that for any function g, g(Q') = g(Q')®(Q'/#). This observation, along with finite 
propagation speed estimates, will allow us to prove the proposition. 

For the purposes of the proof, we can assume that M' is connected. Let us recall 
the finite propagation speed estimate of [14]. Put N = [n/4] + 1. Let e~ be a fixed 
sufficiently small positive number. If x and y are two points in M', put 
R(x, y ) =  rain(0, d(x, y ) -  e). Let f(r) be a Schwartz function on R, with Fourier 
transform ~(p). Then Theorem 1.4 of [14] says 

lf(Q')(x, y)l <~ const. ~ lf(zJ)(p)l dp. 
j=O Pt>~R(x,Y) 

(27) 

Now for any integer L >~ 0, 

b T(z~)( p)[ = const. I(r2Jf)( p)] 

<~ const.(1 + p2)-L -~  1 -- ~r2) (r2Jf(r))dr 

~ < c o n s t . ( l + p 2 ) - L f ~  I (1 - -  d2\L -~  ~r2) (rENr)) dr. 
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Thus 

If(Q')(x, y)l 

~< const. 2 (1 + p2)-Ldp 1 - 5Y25_z I (r2Jf(r)) dr. (28) 
j=O (x,s) - o o  

In particular, suppose that fir) = ra®(r/#)e-rr2 for some integer a ~> O. Put 

FL(R) = (1 + p2)-L dp. 

(Note that FL(R) is O(R -2L+ 1) as R ~ oo.) Then we obtain 

f(Q'" e -  re'2)(x, y) l 

f; const.fL(R(x,y)) ~ rA IO(B)(r/#) f TC e-  r'2 dr, (29) 
A,B,C 

with A, B, and C being nonnegative integers and the sum over A, B and C being finite. 
If instead we apply (27) with fir) = r ~ e - r,2 then we obtain [32, eqn. (9)] 

I(Q'" e -  r¢=)(x, y) l 

const.(R(x--Y)2y " m  <~ \ T ] [R(x, y)-~ + R(x, y ) -~- '~  + R(x, y)~T -~ + 

[ + R(x,y)"+*UT-"-4UJexp - 4T J (30) 

As the integration in the Duhamel expansion involves aH time, we will also need 
small-time bounds for the heat kernel. It follows from standard methods [40] that 
there is a To > 0 such that for 0 < T ~< To and d(x, y) ~ 2e, 

[ y)]. 
I(Q"e-r¢2)(x,y)l <~ const. T-("+~/2) exp 4.01T _1 (31) 

The strategy will be to use the estimate (29) when T > To, the estimate (30) when 
T ~< To and d(x, y) > 2e, and the estimate (31) when T <~ To and d(x, y) ~< 2a. 

Consider the Duhamel expansion of ~(s). For simplicity, consider the case when n 
is even; the arguments are the same when n is odd. We have that 

D 2 = s2Q '2 -4- s(VQ' + Q'V) + V 2, 

where for f ~ C~(M ', E'), 

(1) (VQ' + Q'V)(f) = Z (Oh)R*f Qe d?, with Oh = [Q', h] and 

(2) VZ(f) y '  * * ^ = h(R.~ h) R , , , f  ®e d? de. 
y,v' ~F 
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To show that ~(s) is integrable, it is enough to only consider the component of a fixed 
degree, say k. Only a finite number of terms of the Duhamel expansion wilt 
contribute to this degree, Consider a typical term, such as 

' e-"°s2q'2s(VQ ' + Q'V) x fll/2STR((- 1) k ... c5 - u s 
j =  

e-""2a'2s(VQ ' + Q'V)...s(VQ' + Q'V)e-"~2¢:)dUk...duo. (32) 

Written out explicitly, this will be 

;Tjo( /~/2 ~ ( - 1 )  ~ ... a / ~ -  uj ~(Xo) × 
YO, ...,2k J ' 

tr~[R'goQ* ' e-"°~Q'~s(Oh) R* I e-"'~e'2s(~h) R*2.. . s(dh) R'g~* e-"k~2(2~] 

(Xo, Xo) dvol(xo) duk.., duoTo dyl .-. dTk (33) 

=~/~ ~ ( - 1 )  ~ ... a - uj q~(Xo) X 
"go, .-.,Yk J=  ' 

tr~[Q' e-"°*2¢~{sR*o(&)} e-"'*=¢= {sR*o~,,(&)} ...s{R*o.,.'g~_~(ah)} × 

e -"~*=¢= R*o...'g J (Xo, Xo) dvol(xo) dUk.., duo Yo d71...dyk (34) 

__flt/z ~.o~v(_ 1)k f :  ... f :  6(8--  ~=o~UJ) £,,.... f~(Xo)tr= 

[Q' e-"°~2e'~(Xo, x ~) {s(t?h)(x, Yo)} e -  "**~q'2(x ~, x2) {s(&)(X27oY 0}... 

{s(Oh)(xk7o ... 7k- 1)} e-"~*~O'~(Xk20... Yk, X0)] 

dvot(xk) ... dvol(xo) duk.., duo }'o d;~l ..-dTk. (35) 

Let us change variable to vj = uis 2, to obtain 

fl 1/2S-k-2 2 ( - 1 ) k  " ' "  (~ f i - s  -2 vj ... q~(xo)tr~ 
) ' o , . . . , ' g ~  J =  ' " 

[Q' e-'°ff~(Xo, Xl) {(Oh)(xtyo)} e-"Q'~(xl, x2) {(~3h)(x27o70}... 

{(&)(XkYo ... 7k- 1)} e-'~e'~(xk7o... 7k, Xo)] 

dvol(xk) ... dvol(xo) dvk.., dvo ~;o dye-., d~k- (36) 

It is enough to show that the coefficient of ~o dYt...dTk in (36) decays faster than any 

power of 1 + ~=o11~11. 
{v~}i=o into 2 j+ pieces according as We will divide the integration domain of the k 1 

to whether each vj is less than or equal to, or greater than To. First, consider the 
{vj}j=o contribution to the coefficient of yod'~, 1... dyk from the piece having all of the k 
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greater than To. Using (29), its norm will be bounded above by 

c°nst" {~o, ,~ f .  "" fM lC(Xo)lFL(R(xo, xO)lOh(x~'o)'FL(R(x, x2)) 

J Oh(xzyo71) [ ... I~h(xkTo... Yk- 1)IFL(R(XkTo... 7k, XO)) dvol(Xk).. • 

dvol(xo)} x 

{ ;o fifo ;:( s-k-2 . . . . . .  ~ ~ -  s-~ E uj 2 r)'J O¢" 
o o j=o / X,~,~ 

U cj  ~-- v jr2 3 r  " " . }~ j ¢ u k...oroaVk ..duo (37) 

where the sum over X, K, C" is a sum over a finite set. 
Let S be a compact set which contains supp(¢) and supp(h). Then the first factor in 

(37) is 

,~o,.Z fM "" ~u)¢(Yo)II~'dR(yo%, YO)tSh(Yl)IFL(R(YF/. Y2)) x 

]~h(Y2) [ ... lSh(yk) lFL(R( YkTk, YO)) dvol( Yk)... dvol(Yo) 

2 f "" fl¢(Yo)lFL(R(yoYo, Yl))f~h(yt)IFL(R()'l?,'~, Y2))IOh(y2)t,.. 
YO, --.,~k .Is J s  

[Oh( yk) IFL(R( YkYk, YO)) dvol( Yk)... dvol(Yo). (38) 

The fact that F is of polynomial growth implies that for large enough L, (38) is finite. 
1 1 As t9 and its derivatives vanish on [-~-,  ~], the second factor in (37) is bounded 

above by 

const, s -k-2 6 - s -2 v~ ~ r-r ..A~ .CJe-~- q . . . . . .  [ I  l j  Vj 
, J r o  o /2 j = 0  A_C_ j=O 

drk.., drodVk.., dvo 

~<const. s -k-2 . . . . . .  ~ - s  -2 ~ v s 
o o j = 0  A,d, j = 0  

(xj  + I~'~aJvcJ ex ~) j p [ - v j ( ~  +pxj)ldxk...dxodUk...du o 

'F u F4 ~<const. s -k-2 ... f l - s  -2 vj ~ 11 J ~ +  
o j = O  2 , 4  j = O  \ j 

e x p ( -  uj#2\ --~-) dVk ... dvo 
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= eonst, s -k-2exp 4 ] ~ r o " "  f l -  s-2 vj ~ v~ 
j=0 A,C, j=0 

For large s, the exponential term in (39) will dominate the rest, which will grow at 
most polynomially in s. Thus the contribution of the piece with all v;s greater than 
To will decay rapidly in s. 

Now let us look at the contributions from the pieces with vj ~< To for some v i. For 
simplicity, let us consider the piece with Vo ~< To and vj > To for j > 0; the estimates 
of the other pieces will be similar. Its contribution to (36) is 

fl 1/2S-k-2 2 ( - - 1 )  k . . .  6 f l -  s -2 vj ... ~b(xo)tr~ 
yo,...,~k dO .]To o j=0 ' ' 

[Q' e-V°~'2(Xo, xl){(~h)(xl~o)} e-Vle2(xl, x~){(0h)(x2~o~l)} ... 

{(Oh)(XkTo... ?k- 1)} e-~Q'2(XkYo... ?k, X0)] dvol(Xk) • • • 

dvol(xo) d v k . . ,  dvoTod?l ... dyk. (40) 

Using (29), the norm of the coefficient of ?o d?l ...dyk in (40) will be bounded above 
by 

c°nst.{,o,..~.,,~fM...fM,(ff°lQ'e-°°e'~'Xo, Xl'ldvo)l(°'Xo)l]Oh(xl?o" 

F L ( R ( x  i ,  x2))](]h(x27071) I... ] ~h(XkYo .. . 7k - 1) I F L(R(XkTo  ' ' '  Yk, XO)) 

dvol(Xk).., dvol(xo)} 

{ ; fo ° fo( s -k-2 sup . . . . . .  c5 fl -- s -2 vj ~ rJj ®(Bj) 
voefO,To] o o j=O X,B,~, 

vj cj e -  ~J~ drk ... dr1 dVk.., dvl} (41) 

Integrating (31) gives that for d(xo, x 0  ~< 2e, 

fo r° e-  o°Q'~(Xo, xl) l dvo IQ' 

f/° ~< const. T-t(n+ l)/2) e-(a2/4"°lT) dT= const, r("-a)/2 e -ra~/4°~ dr 
o 1 

foo [ (To 1_ +_x)d2.1 
= const. (To ~ + x) ("- 3)/2 exp dx 

ro ~ 4.01 J 
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1 ( 1 4.01) ~n-3)/2 e_{e~/4.olro), 
~< c o n s t . ~  To + ~ , ]  (42) 

where d = d(xo, x~). Similarly, integrating (30) gives that for d(xo, X1) > 2e, 

fO r° .,,3, e - voQ '2[  x "z t o, xu ldvo  

t ( . ~  4 ~-5/2[ R ( _ ~  ° 4 )  R,+4 N 
~< const. ~-5 + R--y// R-  * + R-* -4N + + ~ + x 

4 \i +4N7 
1 ~ | e -(R2/4T°), (43) 

J 
where R = d(xo, xl) - e. Equations (42) and (43) show that j0fT° in,w_, e-v°Q'2/X~.- o, xl)l dvo 
is locally integrable in Xo, and decays faster than any power in d(x0, xl) as 
d(x0, xl) - ,  oo. Then for large enough L, the first term in (41) is finite. The second 
term in (41) can be bounded as in Equation (39), and so we obtain that the 
contribution of the piece with Vo ~< To and vj > To for j > 0 is integrable for large s. 
It should be clear that the same arguments will apply to rest of the 2 j+ 1 pieces of the 
integration domain. Also, one can check that the same arguments apply to the other 
terms in the Duhamel expansion. []  

PROPOSITION 26. ~(s) is absolutely integrable for small s. 
Proof The method of proof will be as in [6, Section 10.5]. (Our labels s and t are 

the opposite of [6].) We will cross the noncommutative base space with R. That is, 
we consider the algebra ~ = C~°(R)®de and the graded differential algebra 
A*(R) ® ~. (~) .  Let d / b e  C°°(R) ® C~°(g), a ~-module. Let t be a coordinate for R 
and consider the superconnection/52, acting on d{, given by 

ff)~ = Dis + dt A Oz. 

Define c~'h(s) e A*(R) ® f i , (~)  as in Definition 10. Then it follows as in [6, Section 
10.5] that 

ch(s) = ch(ts) - ill/as dt A ~l(ts). (44) 

As in (24), one can compute the asymptotics of the left-hand side of (44) as s ~ 0. One 
finds that there is a Taylor's series expansion with s°-term given by the right-hand 
side of (24). In particular, the dt-term of (44) starts at order s ~, and so fl(ts) has a finite 
limit as s -* 0. Taking t = i, the proposition follows. [] 

4.5. VARIATIONAL PROPERTIES OF q 

A priori, ~ depends on the choices made in its definition, namely 

(1) the function h, 
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(2) the Riemannian metric on M, and 
(3) the hermitian connection on V. 

To understand this dependence, first let us do some formal calculations. For simplicity, 
suppose that n is even. Consider a smooth 1-parameter family of input information, 
parametrized by a real number 8. As elements of fi,(~), we have the equalities 

d ch(s) 
ds = _ fll/E dO(s) (45) 

and 

d ch(s) 
d~ 

= _fl d STR(dD~ e-OD~). 
\ de ] 

(46) 

Then 

d0(s) 1/2 d / [dD~ _aD2"~\ 
d---~-e = dfl ds ~STR ~a-a e "))" 

This makes it plausible that 

(47) 

d0(s) = fll/2 d (STR(dD~e_aD~) (mod Ira(d)), 
d~ as \ \ de J// 

which is in fact true, as one can check that 

(48) 

d~(s) ]71/2 d [dD~ ~D~ 
d~ dss STR~--a e-p ~) 

= d  t~ ( fo  STR( e-"°~Q e-(/~-u)D~ dD~'~de] du~.j (49) 

(Recall that in defining fi,(N) we quotient out by the commutator.) 
From (49), we obtain that 

/dD~ ~ \ .  
d~--~de = fll/2(,.~lim~o - sli~mn'~ STR~-~-~ e - o /  ~)(rood Im(d)). (50) 

One can justify the formal manipulations in Equations (45)--(50) by the estimates 
used in the proof of Proposition 25. With our assumption that the operators Q'(e) are 
all invertible, we have 

lim S T R ( ~  e-~D~) = 0. 
$ -'* c:O 

Thus 

d~l _fll/2 (dDs e-~°~'~ (rood Im(d)), d--~ = ~im ° STR\ de ) 
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which, being a small-time limit, is given by the integral of a local expression on M. 
Note that this is essentially the same argument as was used at the end of Section 
3.1.2. The small-time limit can be calculated as in [31], and we will simply state the 
result. 

PROPOSITION 27. Consider the product bundle R × M, with vertical metrics given 
by g(e), and pulled-back vector bundle V. Let ~ be the function on R x M' corresponding 
to h(e). There is a biform co' e A*(R × M)® ~.(M), closed in both factors, constructed 
from h such that 

dee - i(~=)(,3(R x M) A Ch(~') A ¢o') (mod Ira(d)). (51) 

The important term in co' of degree k (with respect to N) is a closed form on R x M 
whose pullback to R x M' is given by 

ilk~2 ~ R ,  ° d~ A, . .  A Rr*....~_ 1 d~'7od71 .... d7k 6 Ak(R x M') ® ~k(~). 
"]o . . ,  T k  = e 

The fight-hand side of (51) has support on the forms spanned by 

{7od71 ... dT~ (rood Im(d)): 7o.-.7k = e}, 

COROLLARY 2. Let ~ be a cyclic cocycle of CF constructed as in (20). Suppose 
that ~ extends to a cyclic cocycle of ~.  Suppose that the vector bundle V is associated 
to the principal Spin(n)-bundle on M. Suppose that the index density A(M) A Ch(V) is a 
polynomial in the Pontryagin classes of M. Then jbr fixed h, (~h 4 )  is a conformal- 
deJbrmation invariant. 

Proof As in the proof of Proposition 4, i(a=)(.3(R x M) A Ch(V)) vanishes iden- 
tically. [] 

COROLLARY 3. Let ~ be a cyclic cocycle of CF constructed as in (20). Suppose 
that ~ extends to a cyclic cocycle of ~.  I f  x ~ e then (fh ~ )  is independent of h and is 
a deformation invariant with respect to the Riemannian metric on M and the Hermitian 
connection on V. 

Proof. This follows directly from Proposition 27. [] 

EXAMPLE. Take M as in the Example of Section 3.1.3, with the Dirac operator. 
Then the cyclic cohomology of CF is given by 

HC*(CF) = G HC*(CZ'). 

Under Fourier transform, an element o#~ of HCk(CZ l) becomes a sum of a closed 
k-current on T * and lower-dimensional homology classes on T ~ [17]. Let q~ denote 
the corresponding total class in H,(T~). Let ( f )  be a conjugacy class in F. Let ~ b e  
the cyclic cocycle on CF formed from ( f )  and 9"~. It follows from separation of 
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variables that 

(~1, 3~2 = Bk/Z ~ tlL(f)(~, IT ' ] ) .  r 2 

Here ~h.(f) is the eta-invariant of (4) and [T ~] is the fundamental class of T ~ in 
cohomology. 

4.6. P A I R I N G  W I T H  P E R I O D I C  C Y C L I C  C O H O M O L O G Y  

We saw in Corollary 3 that we obtain deformation invariants of (M, V) by pairing fl 
with certain cyclic cocyctes of N. This gives a generalization of the rho-invariant of 
[_3], which corresponds to the special case of pairing with 0-cocycles. More precisely, 
f i , (N)  breaks up into a sum of subcomplexes labeled by the conjugacy classes of F, 
and we can write 

@ rT(<x>). 
(x>~( r>  

We define the higher rho-invariant by 

G rT((x)). 
<x> ~s <e> 

Integrating (45) with respect to s, we have 

(52) 

(53) 

fll/2 d~/= - ( lim - lim'] ch(s). 
",,s m s O /  

As Q' is invertible, lim~.~o ch(s) = 0. From Proposition 24, lim~_~0 ch(s) has support 
on the subcomplex correspondingto the trivial conjugacy class. Thus ~ is closed, and 
so represents an element of /~,(N). By Proposition 27, the class of /~ in 
/~,(a~) is a deformation invariant of (M, V). The pairing of t~ with reduced cyclic 
cocycles of CF was described in Corollary 3. It does not immediately pass to a 
pairing with the periodic cyclic cohomology,  mostly because of a problem with 
numerical factors. 

First, let us discuss periodicity in reduced cyclic cohomology. From the dual 

equation to (17), 

HC *(N) ~ Ker(HC*(N) ---, HC*(C)), (54) 

the S-operator on cyclic cohomology passes to an operator on reduced cyclic co- 
homology. However, it does not generally have a simple expression as an operator 
on reduced cochains. Of course, if N is an augmented algebra then there is a simple 
expression. More generally, suppose that N is an algebra with a trace Tr. Given 
q5 e C~.(~), define Tr" q~ e ck+ 1(~,-~*) by 

(Tr. qS)(bo,..., bk + 1) = Tr(bo)q~(bl, ..., bk+ 1). 



HIGHER ETA-INVARIANTS 

Using the notation of [17], define Sq5 ~ C~+2(N) by 

$4~ = A ~ (at~b) + b'(Tr" (b) 

and define S~ s C~+Z(,~) by 

223 

(55) 

1 
g¢ = S4,. (56) 

(k + 1)(k + 2) 

Note that because Ab' = bA, the term that we have added to the usual expression for 
the S-operator is a cyclic coboundary. Then one can check that S and g extend to 
operators on reduced cyclic cohomotogy. Similarly, there are operators S and S in 
reduced cyclic homology. Periodicity in reduced cyclic homology will refer to 
invariance with respect to the ~-operator. In particular, for the various group 
algebras which we consider, there is a trace Tr given by evaluation at the identity 
element. 

We now consider the relationship between the Chern character and periodicity. 
(We will loosely speak of the Chern character of a module as an element of HC.(¢~), 
although this is not strictly true for the term of degree zero.) In general, the Chern 
character is not S-invariant. For example, in the case of a finite right projective 
Zz-graded module g, putting Q = 0, we have 

Ch~(g) = ~ ( -  1)~trs((V2)k), (57) 
j = 0  

which as an element of HC,(aM) is not S-invariant. However, one can easily modify 
this expression by defining ChP~*(E) to be 

ChP~(g) = e-eCho2 dfl. 

Then 

ChPer(g) = ~ ( -  1 ) J ~  trs((VZ)k), (58) 
j=  O 

which is ~/invariant [26]. 
Similarly, in the case of an ungraded finite right-projective module, assume that 

the self-adjoint operator Q is invertible. Give the module a Z2-grading by the 
positive and negative spectral subspaces of Q, Then f/a(S) is closed, and its class in 
HC,(~) is (x/-n/2)Chp(8) [8, 30]. Thus 

is ~-invariant. 
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D E F I N I T I O N  12. 

ch~e~(s) = e-Pch¢ffs) d/3 ~ /~ , (N)  

and 

~p~r = e-Pjbp~ dfl e /~ , (N) .  

As the dependence of chaffs) and fi¢~, as elements o f /~ , (~) ,  on fl is simply given by a 
nonnegative power of/3 in each degree, it is clear that the/3-integral makes sense. 

P R O P O S I T I O N  28. As an element of HC,(N),  chP~(s) is S-invariant. 
Proof. First suppose that n is even. With our assumption on F, the index theorem 

of [31] applies, and so cha(s) = Chp(Index(Q)). The S-invariance of chpe~(s) then 
follows from the above discussion of the finite-dimensional case i.e. equation (58). In 
fact, the Proposition is true for all finitely-presented F, regardless of the existence of 
an index theorem, and so we now give an alternative proof. The class of chaffs) in 
HC,(N) equal to the s ~ 0 limit, which was given in Proposition 24. Let us write 
chpff0) as 

chaff0) = ~ ( -  l)i/3ZJch[2Jl(O), 
j=0 

with cht2g](0) e HC2~(~). Using the expression for o~ derived in [31], one can check 

that 

S chtZJ](O) = ch t2J- z](O). 

We will not give the (uninteresting) computation here. It follows that 

(59) 

i 
chtZil(o) = chtZ~- 2~(0), (60) 

( 2 j  - 1 ) (2 j )  

and so 

chper(o) = ~ ( -  1)J(2j)! ch[2jl(O), 
j=o 

and, hence, also chP*r(s), are g-invariant. 
If n is odd, consider S 1 x M. Now rcl(S t x M) = Z x rq(M), and the algebra 

of rapidly decaying elements of C*(Z x ~ ( M ) )  is isomorphic to C~(S 1) ® ~3. A 
SIxM separation of variables argument shows that the image of chp~ (s) under the natural 
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map t: HC,(C~°(S:) ® ~) ~ HC,(C~(S1)) ® HC,(d). is given by 

S t x M  t(chp2 (s)) = fir/® ch~{(s) = ~ fit/® ( -  1) i+ :fl2j+ :ch~2j+ :l(s), (61) 
j=0 

where ,/is a generator of HCI(C°°(S:)) and we put 

chfi(s) = ~ ( -  1) j+ :flzj+ ,ch~2J+ q(s). (62) 
j=0 

As the S operator is simply obtained by taking tensor products with the cyclic 
homology of C, it commutes with t, and 

S(r/® ch r2~+ :~(s)) = r/® S(ch :2J+ 1J(s)). 

Applying (59) to S: x M then gives 

S(ch :2j+ :~(s)) = ch TM- :l(s), (63) 

and so 

1 
g(ch :2j+:~(s)) - (2j)(2j + 1) ch~Z~- 1J(s)" (64) 

It follows that the periodic Chern character of M, 

chP~(s) = ~, ( -1 ) J+ : (2 j  + 1)! chlZi+:l(s) 
1=0 

is ;~-invariant. []  

We expect that as an element of HC,(N), fiv°~ is also S-invariant. In view of the 
truth of this statement in the finite-dimensional case, this seems likely to be true, but 
we do not see how to prove it. 

4.7. HIGHER ETA-INVARIANTS FOR THE SIGNATURE OPERATOR 

We now consider the case when Q' is the signature operator on M'  if n is even, or the 
tangential signature operator if n is odd. We have only defined the higher eta- 
invariant for invertible operators in this paper, and so as it stands, the higher 
eta-invariant for a signature operator would probably never be defined. However, 
there are various ways to make the obstructions to invertibility cancel, in order 
to obtain an effectively invertibte operator. This is somewhat similar to how 
the Ray-Singer torsion becomes a topological invariant for a pair of homotopy- 
equivalent manifolds (the Whitehead torsion) or for a flat acyclic bundle (the 
Reidemeister torsion). 

To be more precise, suppose that M:  and M2 are closed smooth oriented 
Riemannian manifolds with a smooth orientation-preserving homotopy equivalence 
ccM2 ~ MI.  Let F be a finitely presented virtually nilpotent group and let 



226 JOHN LOTT 

a': M~--, M]  be a rift of e to normal F-covers. First, suppose that a is a submersion. 
Consider the complex 

... ~ d  Ak_t(Mi,M~) d Ak(Mi,Mi) d ~  Ak+t(M, ,Mi )__~d "", 

where 

Ak(Mi, Mi )  = Ak(M'i) 0 A k- i(M~) and d(col, 092) = (dot, (e')*e)l - dcoz). 

Then the homotopy-equivalence of Mt and M2 implies that the relative (tangential) 
signature operator is LZ-invertible on A*(M'i, Mh) [33]. If h e C ~ ( M ' ~ )  satisfies (23) 
then we can form a superconnection from the pair (h, (e')*h) as in Section 4.3, and 
define a relative higher eta-invariant ~/(Mt, M2). As the invertibility of the relative 
signature operator is independent of the Riemannian metrics, it follows that the 
relative higher rho-invariant fi(Mt, M2) is independent of all choices made. 

If ~ is not a submersion then there are technical problems with the above 
definition, as the operator (~')*, defined on smooth forms, may not be L2-bounded, 
or even closabte. However, as in [22], one can put N 2  = M 2  x B N, where B N is a ball 
of large dimension, and find a submersion o-: Nz ~ M1 such that o-(m2,0)= 
e(m2). Then (a')* is a bounded operator from A*(MI) to A*(N;). However, we will 
want to consider forms on N~ which satisfy absolute boundary conditions, and the 
forms in the image of (o-')* may not satisfy these. But there is a bounded F-homotopy 
T from the smooth forms on N~ to those which satisfy absolute boundary conditions. 
So we consider the complex 

d Ak_ l(Mi, Ni) d_~ Ak(Mi, Ni) d .... , .... , ... ~ , A k + i ( M i ,  N i )  d 

where 

Ak(Mi, Ni) = Ak(Mi) @ ~- t , Aabs (N2) and d(oi, 02) = (dol, T(a ' )*o) l  - do)z). 

We then define the relative higher rho-invariant as before. In any case, we get a 
smooth topological invariant of the pair of homotopic manifolds. This can be 
compared with the higher rho-invariant defined for a homotopy equivalence in 
[43, §23 by means of an analysis of the surgery exact sequence. 

Another possible cancellation mechanism can be seen from the fact that the 
lower signature of an even-dimensional manifold can be computed from A"/2(M), and 
the lower eta-invariant of an odd-dimensional manifold can be computed from 
Im(d*) c A("-I)/Z(M). That is, there is a cancellation outside of a certain subspace 

of A *(m). 
To extend this cancellation mechanism, suppose first that M is a smooth closed 

oriented Riemannian manifold of even dimension n. The integrand ~(s) of (26) is 
always integrable near s = 0, and the question is the large-s integrability. Suppose 
that the Laplacian has a bounded LZ-inverse on A"/Z(M'). (This condition is a 
homotopy invariant of M [22], and as F satisfies the Strong Novikov Conjecture 
[273, it implies that the higher signatures of M vanish.) Then there are no 
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integrability problems in defining ~. To see this, let P be the projection operator 
onto A"/2(M ') G d A"/2(M ') @ d* A"/2(M'). Then Q' commutes with P, but the connec- 
tion V will not commute with P, and so we cannot say that ~ can be computed from 
Im(P). However, as the question of large-s integrability is independent of the choice 
of connection, we can homotop our superconnection from D~ to D; = PD~P + 
( 1  - P)D~(1 - P), without affecting the integrability question. Now ~, defined using 
D~ decomposes as ~m(V) + ~/~(e). AS Q' is invertible on Ira(P), there is no problem 
with the large-s integrability of q~m(e). However, f/Ke~(v) vanishes for algebraic reasons. 
To see this, define the operator W on Ker(P) to be multiplication by sign(k - (n/2)) 
on Ker(P) c~ Ak(M ') [38]. Then W is an invertible odd operator which commutes 
with Q' and D;. Thus 

STR(Q' e-  pol) 

= STR(W - 1W Q' e - pol) = _ STR(WQ' e -aD~ W - 1) 

= -- STR(W W-  tQ' e-PDI) = _ STR(Q' e-aD~) = 0. (65) 

This implies that O~:er(P) vanishes. 
Again, the higher rho-invariant ~ is independent of all choices made, and is a 

smooth topological invariant of M. 
If n is odd, a similar argument shows that it is enough to assume that the 

Laplacian has a bounded LZ-inverse on Ira(d*) c A t"- 1)/2(M')o 
Finally, suppose that F = F x Fo, with F a finite group. In analogy to Section 

3.1.3, suppose that the Laplacian has a bounded L2-inverse on the orthogonal 
complement to the F-invariant forms in A"/Z(M ') or Im(d*)c  A(n-1)/Z(M'). Then 
will be well-defined as long as we only look at it away from the trivial representation 
of F. 

4.8, CONJECTURAL HIGHER INDEX THEOREM FOR MANIFOLDS WITH BOUNDARY 

We now suppose that M is the boundary of a compact spin manifold W, with a 
product metric near the boundary. Let W' be a normal cover of W with virtually 
nilpotent covering group F. Let V be a Hermitian vector bundle with connection on 
W which is a product near the boundary. Let h ~ C~(W') be a function which is 
constant in the normal direction near the boundary, such that Z/~rR*h = 1. Let 
M'  = 0W' be the F-cover of M. Suppose that the Dirac-type operator on M'  is 
invertible. Using the restriction of h to M', we can define TLu e fi ,(N).  

Let Q~v be the Dirac-type operator acting on a C*(F)-Hilbert module of spinors 
on W', with APS boundary conditions. The analysis of [37] shows that Qie gives 
an unbounded KK(C, C*(F))-cycle in the sense of [4]. Thus Index(Q~v) is well- 
defined in K,(C*(F)).  As K , ( C * ( F ) ) ~  K , ( ~ )  [25], there is a Chern character 
Chp(Index(Q~v)) ~/~,(N).  
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CONJECTURE 1. 

Cha(Index(Q~v)) = fy ,4(W) A Ch(V) A co - @M e /~ , (2 )  (66) 

As evidence for this conjecture, we note that it follows from Proposition 27 that 
the right-hand side of (66) is deformation-invariant. Furthermore, (66) has been 
proven when paired with the trivial 0-cocycle [37] for general finitely-presented F. It 
should be possible to prove the conjecture by combining the methods of [31] and 
[37]. 

As an application, consider the case when V is trivial, so that one has the pure 
Dirae operator. As in Section 3.1.7, a consequence of the conjecture would be that 
the higher rho-invariant gives an obstruction to extending a positive scalar curvature 
metric from the boundary of a compact spin manifold to the entire manifold, so as to 
have a product metric near the boundary. 

4.9. HIGHER SIGNATURES FOR MANIFOLDS WITH BOUNDARY 

We refer to [44] for a survey of the Novikov conjecture, Let us just recall the 
statement. For simplicity, we will work with smooth oriented manifolds, and all 
homotopy equivalences will be assumed to be smooth and orientation-preserving. 
Let W be a closed manifold and let v: W~BF be a continuous map into the 
classifying space of a finitely presented group F. The L-class of W can be taken to lie 
in H*(W; C) and its Poincar6 dual , L  then lies in H,(W; C). One version of the 
Novikov conjecture is that v,(,L)eH,(BF;C) is a homotopy invariant of W. 
(Instead of considering all such F, one can equally well just take F to be nl(W), 
which is a more standard form of the conjecture.) 

If W is now a manifold with boundary M, there are various possible Novikov 
conjectures. For the simplest one, let F' and F be finitely presented groups with a 
homomorphism from F'  to F such that one has a commutative diagram of con- 

tinuous maps: 

m ~ ) W  

1 1 
BF'  .~ BF 

Let v: (W, M ) ~  (BF, BF') be the corresponding map of pairs. The L-class still 
defines an element of H*(W; C), and its Poincar6 dual , L  now lies in H,(W, M; C). 
Then one can conjecture that v,(*L)e H,(BF, BF'; C) is a homotopy invariant of 
the pair (W, M) [44]. This can be considered to be a relative Novikov conjecture, in 
that it involves two groups. As pointed out in [44], the relative Novikov conjecture 
would follow if one knew the truth of the Novikov conjecture for F and the Borel 
conjecture for F'. 
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That the relative Novikov conjecture is not completely satisfactory can be seen by 
considering the case when W and M have the same fundamental group F = F'. Then 
H,(BF, BF'; C) is the 0-vector space, and so v,( ,L)  vanishes. However, the ordinary 
signature is a nontrivial homotopy invariant of the pair (W, M). Thus there are more 
homotopy invariants than those detected by the statement of the relative Novikov 
conjecture. 

We wish to propose an absolute Novikov conjecture for manifolds with boundary, 
in that it only involves one group F. For the same technical reasons as before, we will 
assume that F is virtually nilpotent. So let v: W ~ BF be a continuous map. There is 
an induced map vM: M ~ BF and corresponding normal covering M'. Assume that 
M is such that the Laplacian, acting on middle-dimensional (or middle two- 
dimensional) forms on M' is invertible, as discussed in Section 4.7. (One could also 
consider the case when F = F x Fo, as discussed there.) Then ~u~f i , (N)  is 
well-defined. Let co be the biform of Proposition 24. Now 

fw L(W) A o) - 71M (67) 

represents a class in /~,(N) which is a smooth topological invariant of the pair 
(g/,M). Let ~eZ*(F;  C) be a group cocycle and form the corresponding cyclic 
cocycle ~ as in (20), with x = e. If ~ extends to a cyclic cocycle of the algebra 
then we obtain a higher signature a(W, M, [~]) e C by pairing the form (67) with 
via the pairing of Section 4.1. 

CONJECTURE 2. a(W, M, [r]) is a homotopy-invariant of the pair (141, M). 

Notes 
(1) Upon integrating (67) over fl as in Definition 12, one presumably obtains an 

element of PHCe,o(~), say Z. (One way to prove this would be to show that 
(67) is the Chern character of an index, as in the proof of Proposition 28.) As 
PHCe,o(~) is isomorphic to PHCe,o(CF) [241, the description of Section 4.1 
shows that Z breaks up according to conjugacy classes of F into a part in 
H,(F;  C) and a part outside of H,(F;  C). As co is concentrated on the trivial 
conjugacy class, the part of Z outside of H,(F; C) is simply the negative of the 
higher rho-invariant of M. By the higher signature a(W, M, F), we will mean 
the part of E in H,(F; C). Then one can rephrase Conjecture 2 as saying that 
o-(W, M, F) is a homotopy-invariant of the pair (W, M). 

(2) As a consequence of Conjecture 2, we would get a Novikov additivity for the 
higher signature of a closed manifold which is split along a codimension-1 
submanifold satisfying the conditions on M. 

(3) When F is trivial and ~ ~ Z°(F; C) is given by ~(e) = 1 then it follows from [2] 
that a(W, M, [~]) is the ordinary signature of the pair (W, M), which does 
satisfy the conjecture. 
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(4) The relative Novikov invariant is the image of a(W, M, F) under the map 
H,(BF; C) --+ H,(BF; BF'; C). 

4. i0. PAIRINGS O F  ~/ WITH 0-COCYCLES AND 1-COCYCLES 

4.10.1. O-Cocyeles 
Let n be odd and let Y be a 0-cocycle on ~,  that is, a trace on B. Then 

( ~ / , y ) =  fll/2 TR,~(aQe-#~Q~)ds, Y = TR , J  

Q, 
=~,~r(fv, q~(m'tr((R*~-Qq[)(m,m}) dv°l(m)y'J) 

We can relax the smoothness condition on ~b, and take ~b to be the characteristic 
function of a fundamental domain ~,~ in M', to obtain 

Q, (~l,Y-)=~fetr(~[(m%rn))dvol(m)J(7). (68) 

As a special case, if we take 3-- to be obtained from the character of a finite- 
dimensional representation p of F, we get xf~/2 times the lower eta-invariant for p. 
On the other hand, if we take .Y- to be the standard trace obtained from evaluation at 
the identity element of F, we get \ / ~ / 2  times the LZ-eta-invariant of [15]. 

More generally, following the discussion of Section 2, given an element x of F, let 
be the 0-cocyde obtained by pairing with the characteristic function of (x )  in F. 

Then 

=-5-- E tr ~<x> ~ (my, m) dvol(m). (69) 

If x # e then (~/, ~ )  is deformation-invariant. 

4.10.2. l-Cocycles 
Let n be even and let Y- be a 1-cocycle on N. Then 

(~, J )  

= (fla/Z fo ff STR(Q e-"~2q~(- s[V, Q])e-~#-"2q2)du ds, oY- ) 



HIGHER ETA-INVARIANTS 231 

4 C fo ' ) = fii/2 STR((_s[V,Q])Qe-~:e~)duds, J 
\ do 

ill/2 ~o d(f ls2) ,5-)  
= ( - T / o  STR([V' Q]Q e-P:e~) 

\ -  T STR([V, 0 -~ 3- 

- ) - 2 ~ ¢(m) tr~((R*o(~h)R ~ Q' - 1)(m, m)) dvol(m)yo dTi, 3- 

- 2 2 4~(m) tr~((~h)(mTo)Q'- l(mToh, m)) dvol(m)Y-(7o, 71). 
}'0,71 ~r 

Again, we can take ¢ to be the characteristic function of a fundamental domain, to 
obtain 

<gl, ~-> - 2 ~ tr~((~h)(m~o)Q'- t(m~,0?i, m)) dvol(m)9-(? o, 71). (70) 
)'o, Tt eF 

Given an element x of F, let z be a cocycle constructed as in Section 4.1, such that 
extends to a 1-cocycle of N. Let {g~} be a sequence in F such that {92 ~xg~} 

parametrizes <x). Then 

ill~2 
- 

2 

/~1/2 

2 

fit/2 

2 

~, f ~ tr~((Oh)(mTo)Q'- l(mgf lxgi, m)) dvol(m)z(gi, gj~;o) 
gj ~oeF 

2 fw tr~((Oh)(rngj?°)Q'-i(mx'm))dv°l(m)z(gJ'gsT°) 
• ?oeF 9~  t 

- -  ~ 7e~ d(~fi-g~ 1 trs((°h)(m?)Qt-l(rax'm))dv°l(m)z(gi' }')" 

If x ¢ e, this is deformation-invariant. If x = e, then z(e, 7) = #(7) for some group 
homomorphism #: F ~ (C, +), and 

(~' ~-> - 2 tr,((0h)(m?)Q'- t(m, m)) dvol(m)#(~,). (71) 

If we put A = Z-:~r#(}')R*(dh)e Ai(M ') then 

R*A = ~ g(?)R*~(dh)= ~ g(g-~y)R*(dh)= ~ (#(7)- #(g))R~(dh)= A. 
~ F  ~eF yet 

Thus the integrand of (71) is F-invariant, and so (71) can be written as the integral of 
a smooth quantity on M. 
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4.11. REMARKS 

(1) 

(2) 

(3) 

JOHN LOTT 

It would be desirable to weaken the assumptions that Q' is invertible and that 
the group F is virtually nilpotent. This latter assumption is very strong, and 
we hope that it can be weakened to a statement that, roughly, one can prove 
the Strong Novikov Conjecture for F. This would be more consistent with the 
results of [43] for the signature operator. 
The higher eta-invariant described in this paper can be viewed as fitting into a 
(C, ,~)-bivariant theory in the sense of [27]. One should be able to extend this 
to a (C°°(M), ~)-bivariant eta-invariant using the equations of [30]. This 
would give a higher rho-invariant which pairs with both the cyclic cohomo- 
logy of CF and the de Rham cohomology of M. The (Coo(M), C)-bivariant 
eta-invariant is considered in [42]. 
As the higher rho-invariant of this paper lies in cyclic homology, it is natural 
to guess that it related to something which is defined in K-theory. Recall that 
the Chern character of the index of a Dirac-type operator on M also takes 
value in cyclic homology, but in the part corresponding to the trivial 
conjugacy class, as can be seen from (24). In contrast, the higher rho-invariant 
takes value in the complementary part, as seen in (53). Thus the higher 
rho-invariant gives complementary information to the higher index. This 
seems to be related to the fact that when a group F has torsion, the assembly 
map from KO,(BF) to K,(C*(F)) is generally neither injective nor surjective, 
even if F is finite [39]. In this latter case, the (reduced) lower rho-invariant 
detects Q/Z factors in KO,(BF). 
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