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MODEL THEORY FOR MODAL LOGIC - PART III 

EXISTENCE AND PREDICATION* 

This paper is concerned with the technical implications of a certain view 
connecting existence to predication. This is the view that in no possible 
world is there a genuine relation among the nonexistents of that world 
or between the nonexistents and the existents! The meaning of the term 
‘genuine’ here may be variously explained. On an extreme interpretation, 
all relations are ‘genuine’, so that none of them are to relate non-existents. 
On a milder interpretation, the genuine relations are those that are simple 
or primitive in some absolute sense. But even without appeal to an absolute 
concept of simplicity, we can require that all relations should be analyzable 
in terms of some suitable set of relations, relating only existents to existents. 

In order to make our results applicable to the thesis, we shall suppose 
that the primitive non-logical predicates of our language correspond to the 
genuine relations, whatever they might be taken to be. Thus, the linguistic 
formulation of the thesis becomes that the primitive predicates of the 
language should only be true, in each world, of the existents of that world. 
Of course, the thesis might have been given a linguistic formulation, without 
any reference to relations, in the first place. 

The thesis is an instance of what has been called Actualism. This is the 
ontological doctrine that ascribes a special status to actual or existent 
objects. Another form of the doctrine, so-called World Actualism, says that 
the behaviour of nonexistents is supervenient upon the behaviour of the 
existents, that two possible worlds which agree in the latter respect cannot 
differ in the former respect. The present thesis, by contrast, might be called 
Redicate Acrualism . It should be clear that Predicate Actualism implies 
World Actualism, at least if the predicates used to describe the world are to 
express ‘genuine’ relations; for then there are no relationships involving non- 
existents by which two worlds might be distinguished. On the other hand, 
World Actualism does not, as it stands, imply Predicate Actualism. 

For our purposes, it will be useful to distinguish two versions of the 
actualist doctrine for predicates. Under one, the primitive predicates do not 
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apply to nonexistents, they are neither true nor false of them. Under the 
other, the primitive predicates do apply to the non-existents, but are false 
of them. 

For the first actualist, there is no more to say of a possible world than 
that there are certain relations among the existents. If the extensions of 
the predicates are to be extended to non-existents then this must be done 
by convention. One could adopt the Falsehood Convention, that the 
predicates are to be false of non-existents; but one could equally well 
adopt any other convention in its place. For the second actualist, however, 
it is true to say that the relations fail to hold among nonexistents; and 
that they do not hold is not a matter of convention but of principle. One 
could not equally well say, for example, that the relations always hold of 
nonexistents. 

For someone who holds to the first type of actualism, the standard 
semantics of modal logic, as presented in [8], is problematic; for ir requires 
that the extensions of the predicates be defined over all possible objects in 
each possible world. Now our actual&t could simply eschew the standard 
semantics. This is, in effect, the approach of Prior in his system Q ([lo], 
Chaps. IV-V), who sets up the semantics in such a way that appeal to the 
extension of a predicate over nonexistents is never required. But there is 
also a way in which our actualist may make use of the standard semantics; 
for he may arbitrarily extend the extensions of the predicates to existents 
and nonexistents alike, thus making that semantics applicable. 

However, in the resulting truth-conditions, not all sentences of the modal 
language will be on a par. For the truth-value of some of them in a world 
will depend upon how exactly the extensions of the predicates are extended 
to non-existents, while the truth-value of others will not so depend. In so 
far then, as the behaviour of nonexistents is a conventional feature of the 
model, it is only the latter class of sentence that will prove acceptable to 
the actuahst. 

Now one simple syntactic device for securing the desired independence 
from nonexistents is to require that each non-logical predicate P always 
occur in contexts of the form ‘E3cr . . .x,, &x1, . . . ,x, all exist’, for the 
extension of the predicate over nonexistents can then make no difference 
to the ensuing truth-conditions. Our first technical result is a sort of 
converse to this: any sentence whose truth-value is independent of the 
behaviour of nonexistents is logically equivalent to one whose predicates 
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are existentially restricted in this way. Thus, the actualist loses nothing 
by limiting himself to such sentences in the first place. 

Like Theorem 13 of [4] (herafter called ‘Part I’), the above result is 
an instance of a preservation theorem, with equivalence to a member of 
a syntactically characterized class of sentences being explained in terms 
of the given sentence preserving its truth-value in the transition from one 
sort of model to another. The proof, which is rather trivial, is given in 
Section 1. What is surprising is that the result no longer holds when the 
underlying logic is replaced with an arbitrary theory. In other words, 
something may be lost in confining one’s attention to existentially restricted 
sentences when the models to be considered are required to verify a certain 
class of non-logical axioms. The exceptions to the result and some extensions 
of the result for different semantic conditions or for different languages are 
given in Section 2. 

The framework of the standard semantics for modal logic is not prob- 
lematic on the second version of actualism. The predicates will always 
apply to non-existents in each possible world even if their extensions 
only include the existents. However, this version, and the other, may raise 
a problem for analysis; for they require that predicates which are true of 
non-existents be analyzed in terms of predicates which are not. Now on a 
certain view, upheld, among others, by Prior ([lo], Chaps IV-V), Plantinga 
([9] , Chaps VII-VIII) and Stahraker ([ 1 l] , pp. 333-336), no predicates, 
simple or complex, are true of non-e&tents. On this view, then, there 
would be no problem of analysis, since there would be no predicates that 
stood in need of analysis. However, it has always seemed clear to me that 
there are complex predicates, such as the external complement of existence, 
that are true of non-existents and, moreover, that the analysis of some of 
these predicates, such as the outer truth-predicate of Section 8 in [7b], is 
problematic. If this is so, the actualist doctrine requires, for its vindication, 
a detailed programme of analysis. 

In Section 3, I consider the question of when existentially unrestricted 
predicates can be analyzed in terms of restricted predicates. It is shown that 
such an analysis is possible under two separate sufficient conditions. The 
first is that any two possible objects both exist in some possible world and 
that each world contain infinitely many actuals. The second is that there be 
infinitely many necessary existents. It is also shown that such an analysis can 
always be given so long as the domain of objects is appropriately expanded. 
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In the proofs, it is only required that the analyses preserve the first-order 
truths for the respective predicates. In regard to particular predicates, the 
analyses may not be acceptable - either because they do not preserve all 
truths or because they do not explain the complex in terms of the more 
simple. What the results do is to remove certain technical obstacles to the 
programme of analysis required by this form of actualism. 

I should emphasize that I have not, by any means, given a complete 
account of the technical, let alone philosophical, issues raised by Predicate 
Actualism. One might consider alternative semantical schemes for the 
actual& philosophy, their relationship to one another, and to other, more 
standard, schemes. For example, the semantics for Prior’s system Q can be 
plausibly modified or extended in various respects. On the other hand, one 
might take the supervaluation route, stipulating that a sentence should be 
super-true just in case it is true under the standard semantics, no matter 
what the behaviour of the nonexistents. In another direction altogether, one 
might follow the lead of [5] and lay down conventional postulates which 
guarantee that any sentence is equivalent to one acceptable to the actualist. 

1. THE CHARACTERIZATION OF RESTRICTED FORMULAS 

In this section, we show that the truth-value of a sentence does not depend 
upon the behaviour of nonexistents iff that sentence is provably equivalent 
to one in which all of the predicates are restricted to existents. 

Restricted Formulas 
L-2.5? be any language, with or without constants. A formula #J of _Epis 
restricted if each non-logical n-place predicate R of 9’always occurs in C$ 
within a context Rt, . . . t,, A Et1 A . . . A Et” where t,, . . . , tn are variables 
or constants of 44 Let Et, . . . t,, abbreviate Rtl , , , t,, A Exl A . . . A Ex,. 
Then a formula is restricted if it is built up from formulas Et, . . . t,, Et 
and t = s by means of the usual formation rules. 

It is not required that the logical predicates = and E be subject to a 
similar requirement. For E, the requirement is of no significance. For =, it 
is not; but it does no harm. Each occurrence oft = s can be rewritten as 
O(t=sI\Et/\Es). 

The formula 9 is impZicitZy restricted in the theory T if (J is equivalent 
to a restricted formula in T, and q? is impZicitZy rest&ted if it is implicitly 



MODEL THEORY FOR MODAL LOGIC - PART III 297 

restricted in the quantificational system S5 of Part I. For example, 
3x q (Ex 1 Px) is implicitly restricted since it is equivalent in S5 to 
3x q (Ex 3 Rx A Ex). 

As in Section 4 of Part I, we may show that an implicitly restricted 
sentence in T is equivalent in T to a restricted sentence. 

Internal Indistinguishability 
We now define the model-theoretic counterpart to being implicitly 
restricted. 

Let ‘u = (W, 2, v) be a structure and w a world in W. Recall from p. 144 
of Part I that Y- is the language Ywithout its constants. Then we let 
‘8, = (&, , &,), where 5, is the function or&‘- U{c : v(c) E &,} such 
that: 

(0 C,(R) = {(al,. . . ,a,)EA”, :!w, al,. . . ,an)Ev(R)} 
for each n-place predicate R; 

00 SW(c) = u(c) for each constant c for which v(c) E &,, . 

If Ycontains no constants, then%, is the same as the inner structure 
41, of Part I (p. 136). If L?contains constants then% and’&, may differ, 
since i&, is only defined on 5C. 

Two structures ?.I = (W, 2, u) and 8 = (V, & p) are internally in- 
distinguishable -in symbols,% iis- if W = Vand VW E W@, =&,). 
Thus internally indistinguishable structures possess the same inner struc- 
tures; they do not differ in what goes on among the actuals of each world. 
Two models (?I, w,,) and @, vO) are internally indistinguishable if w. = p. 
and% ii.%. 

Relative to a theory T, say that 9 is preserved under internally in- 
distinguishable models if whenever ‘BI and W are models for T, !Dl k 9 
and !LN ii R then 9I I= 9. We wish to show that a sentence is implicitly 
restricted in SS (not arbitrary theory T) iff it is preserved under internally 
indistinguishable models. 

One direction requires: 

LEMMA 1. Suppose that %ii?B. Let $(x1, . . . , x,) be a restricted formula 
andar,.. . , a, members of A = B. Then for any w E W = Y: 

(%w) I= Hal,.. . ,anl iff@,w) I= 9bl,. . . ,anl. 
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Proof: By formula induction. The crucial case is $ = R t r . . . t, . But 
then 4 occurs in the context Rt, . . . t, A Et, A . . . A Et,, and the 
conclusion follows. 

THEOREM 2. Suppose the sentence 4 is implicitly restricted in T. Then 
whenever!BI and 9I are models for T, ‘$I k $I and!UI ii R then ‘8 k @. 

Proo& By lemma .l . 
For the other direction we require two definitions. Given a model 9JI , 

let the restriction % = %?I of !LR be the model that differs fromlll only in 
the respect that pw (R) = vw(R) f-12: for each n-place predicate R of .!?’ 
and world w E W. Thus in R the extensions of the predicates are restricted 
to existents. Given a formula I#+ let she the result of replacing each atomic 
subformula Rt, . . . t, in # with Et, . . . tn. Then we have the desired 
result: 

THEOREM 3. The sentence 0 is implicitly restricted (in SS) iff whenever 
‘$I and 9 are models, %I k 9, and%JI ii ‘9 then 9I I= 9. 

Proo$ The * direction follows from Theorem 2. For the other direc- 
tion, we shall show that S5 I- $I =-&under the supposition that V%R, FJZ 
(a/= f#~ &%i% *fl F f#~).%Riii%R. Soby the supposition,~j= 4 iff 
$ k 9. An easy induction shows that 2JI I= $ iff IDZ I= 6. Hence, ‘DI k 9 
iff !BI k &, and so, by completeness, S5 I- 9 E 6. This completes the proof. 

Call a theory T restricted if it can be given restricted axioms, i.e., if 
there is a set A of restricted seqences such that T = (4 : 4 a sentence and 
A j- $1. Then the above result can be extended to restricted theories. 

COROLLARY 4. The sentence @ is implicitly restricted in a restricted 
theory Tiff whenever W and !R are models for T, Iuz I= 4, and 9JI ii ‘8 
then 9I t= 9. 

I+oo./I As for Theorem 3. We need only verify thatlDZ is a model for T 
iff ‘#I is 3 model for T. But this follows from the fact that T is restricted. 

Corollary 4 can be extended in the obvious way so as to apply to 
formulas, sets of sentences‘ and necessary equivalence. In each case, the 
proofs of these results show something stronger. For the restricted 
equivalents can be effectively obtained by replacing each formula @ 
with $. 
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2. EXCEPTIONS AND EXTENSIONS 

In this section we fast show that the previous preservation theorem does 
not hold for arbitrary theories. We then show that the theorem holds when 
the model-theoretic condition is strengthened or when the language is 
enriched. 

Negative Results 
Let 9 be the sentence 3xEx A Vx3y 0 Rxy, and let T be the theory with 
axioms 9 and q VXO ($3 Ex) v 0 3x0 (4 3 - Ex). Let JI be the sentence 
q VXU (+ 3 Ex). Then J/ is preserved under internally indistinguishable 
models of T. For suppose that ‘3lI and R are models for T,!fJl ii ‘3 and 
%B!=$.Then!R l=$.Forotherwise 3 !=03xo(@>-Ex).Butthen 
3 k - E[a] and !3R t= E[a] for some a E A, and so not!IR ii !B after all. 

However, $ is not implicitly restricted in T. In order to show this, we 
shall need a definition and a lemma. Say that the one-one map p from A 
onto B is an interna isomorphism between 41 and 23 - in symbols, p :a+8 
-ifVwEW3vEV(plA-,:~,~~~)andVvEV3wEW(p?A,: 
B, 43,). Then we have: 

LEMMA 5. Suppose that p :‘&,, E!&,~ and that Vftite P’ C_ p 30 1 n’ 
(u : ‘3 Zi 23). Then for any restricted formula $(x r, . . . , x,) and for any 
al,. . . ,a,EAWO. 

!lJll= @[ah,. . , a,1 iff 3 I= $(p(ad, . . . , @,)I. 
Proof: By induction on $(x r, . . . , x,). The crucial case is when 

@(Xl,..*, x,) is of the form 0$(x1, . . , , x,). Suppose that 102 I= 
O$[a, ,..., a,]forar ,..., a,E&O.Then(Ca,w)!=$[al ,..., a,] 
for some w E W. Let p’ be the restriction of p to (a,, . . . , a,} and let 
u be an internal isomorphism between ‘% and b that contains p’. Choose 
z, E V so that u I&, :ai, q’&. Then an easy induction shows that 
@, v) i= IElb(ad, . . . , +,A ad so W I= W[P(~I), . . . , Nadl. The 
other direction is established similarly, thus completing the proof. 

This result will later be generalized. 
We now construct two models !lB and W . Let w, v, and u be three 

distinct worlds, let A0 be a set of distinct individuals al, az, . . . and let 
AI = {a2,4, . . . }. For each permutation T on A0 for which {a E A,, : 
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r(a) # c) is finite, choose a new world U, distinct from w, v and U. Now 
let!UI=((3I,w,Jbeamodelfor4P=@}suchthat:wO=w;A=AO, 
&=A,&=&&=Ar and&r=r(&),i.e.,{r(a):aE&};andv(R)= 
{(v,a,,a,+,hz = 1,2,. . . ). Let !JI = (B, vO) be the same as !LR, but 
wifhvo=uandv(R)=((v,azn,az,+2):n=1,2,...).fmand W are 
pictured below in obvious fashion (with the actual worlds w. and v. 
circled): w iTI 

8 a&...1 W U&...l 

V IRala, Razas V IRa2a4 Ra4a6 

u a2&. . . 1 0 tl2U4. . .I 

u7 +&u) : %(2)‘17(4) - . . UT 7(AU) : Q7(2)aT(4)- - - 

It is easy to verify the following: 

(1) 

(2) 

‘33 and ‘3 are both models for T; 

p = {(a,, a2,) : a, E A), %lI and ‘3 satisfy the condition 
of Lemma 5 

(for given p’ defined on (a,, . . . , a,) for which p’&) = azi, let O(Qi) = (zZ~ 
for 1 di~n,o(ai)=a~,_tforn<i~2n,ando(ai)=aifor2n<i). 

(3) !UI k @andnot 9I /= $. 

But then it follows that $ is not implicitly restricted in T. For suppose 
that T I- J, = 0 for 19 a restricted sentence. By (1) and (3), 302 I= 8; by (2) 
and Lemma 5, 8 k 19; and by (l), W != $ - contrary to (3). 

Let us use ITx for the possibilist quantifier, so that relative to a fkll 
structure ‘8 (as explained on p. 129 of Part I): 

w /= ll.a$(x) iff w I= $(c) for all constants c. 

Then in the particular example above, $ is equivalent to the restricted 
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sentence IIxEx in T. However, it is possible to construct other counter- 
examples to the preservation theorem for a language with possibilist quan- 
tifiers. Indeed, these difficulties run deep; and in [6], it is shown that the 
Interpolation Lemma also fails for quantified S5. 

Positive Results 
By weakening the notion of internal indistinguishability, it is possible to 
find a semantic counterpart to being implicitly restricted in an arbitrary 
theory.Foreachn=O, 1,2,.. . , let us define an isomorphism relation 
=:n between models as follows: 

P : (?I, wo) z. (23, vo) iffp :Bwo = 8,, 

P :c%wo)Tl+l (2% v0) iff (a) @, ~0) =O (9% VO), 

(b)VwEWVfinitep’EP3vEV3u>_pr(aI~~: 
(?I, w) =:n (23, v)) and (c) Vv E VV finite p’ 5 p 3w E 
w 30 2 p’(0 I& : (2l, w) k” (23, v)). 

Let us say that 9R = 8 if Vn3pCp : !IR =‘n a). Then we may show: 

THEOREM 6. The sentence $ is implicitly restricted in the theory Tiff 
whenever ‘9R and ‘% are models for T, !lJl k #and %R = III then ‘8 I= $. 

There are two other positive results of interest. First the preservation 
theorem for arbitrary theories holds for weaker modal logics such as T and 
S4 with the old notion zi used in place of =. Thus the preservation theorem 
also holds for theories containing S5 as long as St-models, say, are per- 
mitted. Second, the preservation theorem holds for the classical language 
Y* of Section 2 in Part I. In this case, a sentence is restricted if each atomic 
subformula R*wtl . . . t, occurs in the context R*wtl . . . tn A E*wtl A 
. . . A E* wt, . These results may be proved by the classical method of 
diagrams or by the modal method explained in Section 3 of Part I. 

3. THE FALSEHOOD PRINCIPLE 

This section investigates the consequences of the Falsehood Principle for 
analysis. This principle states that each primitive predicate should be 
existentially restricted, i.e., false of the non-existents in each world. 
This means that any unrestricted predicate should have an analysis 
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in terms of restricted predicates. So if the analysis is formulated in a first- 
order language, the theory for the original predicates should be interpret- 
able within a theory whose predicates satisfy the axiom (IJ) (Rxr . . . x, > 
Exl A.. . A Ex,). (See Part I, p. 128, for an explanation of the notation (0)) 

This section considers when it is possible, in principle, to give such 
interpretations. First, two sufficient conditions are given. Then it is shown 
that there is always such an interpretation so long as new entities are added 
to the domain. The upshot for analysis is this: there are no technical 
obstacles to providing first-order analyses that are in conformity with the 
Falsehood Principle; but in certain cases it may be necessary to expand the 
domain of existents. 

Interpretations 
Let Yand Y’ be two languages with the same individual constants. Suppose 
that for each n-place predicate R of Ythere is given a formula &(x1, . . . , 
x,) of-@. Now suppose that for each formula Q of 9, r($) is the result of 
replacing any subformula Rt 1 . . . t, of Q with $&r, . . . , t,) (rewriting 
bound variables of @&r , . . . , f,) if necessary). Thus: 

(9 6) Mh...h) = hdh,...~~) 

(b) ~(t = s) = t = s 

(c) 7(Ef) = Et 

60 q-f#J) = -WtJ)) 

(iii) T(ti ” $1 = (W ” HJ/)) 

(iv) 7(Vxqs) = VXT($J) 

(4 m?l = %#I. 

Then r is said to be a translation from ,Yinto9”. 
Let T and T’ be theories in Yand 9” respectively, and let r be a trans- 

lation from9 into 2”. Then 7 is an interpretation of T in T’ if T I- 9 iff 
T’ j- r(G) for each sentence (J of 2’; and T is interpretable in T’ if there 
exists an interpretation r of Tin T’. 

CallatheoryTresttictiueif(o)(Rxl...x,3Exl~...~Ex,)isa 
theorem of T for each n-place predicate R. Then our original question 
takes the form: when is a theory interpretable within a restrictive theory? 
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There are some simple examples of such interpretations. Let us use 
x~yforx=y~Ex~E’andx5yforxEy~Exr\Ey.’Thentreating= 
as a non-logical predicate, x = y may be defined as 0(x E y) and, under 
the assumptions of [7a], x E y may be defined as 0(x E y); and so the 
theory of the unrestricted predicate may thereby be interpreted within 
an appropriate theory of the restricted predicate. However not all theories 
are thus interpretable. For example, consider the theory T whose axioms 
are 3x1. ..X,[~(~X~A--~~X)AO(-~X~A~X~A-~J?X)A...A 

o(--FXl A.. . A -Fx,-,AFx,A-WZX)] foreachn=2,3,... .Then 
it may be shown that T is not interpretable within a restrictive theory. 

Let us now give the sufficient conditions. 
Condition One. We say that a theory T satisfies the first condition if 

the following sentences are theorems of T: 

0) 

(a 

(0) 0 (EX AEY); 

. . ax,(Dif(Xl, . . 
gk;, . . 

. ,xn))foreachn = 1,2,. . . . 
. , x,) is the formula A Xi +Xjm) 

I<i<j<n 

Note that the sentences under (i) and (ii) contain logical predicates only. 
Thus if T satisfies the first condition then so does any extension of T. 

(i) says that any two possible objects possibly co-exist. I call it the 
Ainciple of PossibZe Co-existence. For some domains the principle does 
not hold. Assume, for example, that the fact-that-p exists iff p is the case. 
Then for contingent p, the possible fact-that-p and the possible-fact-that- 
not-p cannot co-exist (see [7c]). (ii) simply says that each world contains 
an infinite number of existents. 

We shall show that any theory T satisfying the fmt conditions is inter- 
pretable within a restrictive theory T’. The language 9 of T’ contains the 
same constants as 9, a one-place predicate F, a three-place predicate P, 
and a one-place predicate R’ for each predicate R in the language 9’of T. 
Intuitively speaking, F is true of a in world w if II is w; P is true of a, b and 
cinwifa,bandcexistinwandcisthepair(a,b);andR’istrueofain 
w if a exists in w, a is the (n + 1)tuple (v, al, . . . , a,) and R is true of 
(al,. . . , a,) in D. This interpretation presupposes, of course, that the 
worlds are individuals and that the domain of individuals is closed under 
a pairing function. 
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Foreachn=2,3 ,... defmeaformula~(xr ,..., x,,x,+r)with 
n + 1 free variablesxr, . . . ,xR+r : 

0) ~~(x1,x2,x3)~0~1x2x3; 

(ii) c+l(xI,. . - ,x,+~x,+2)is03y(~(x~, . . . ,x,,Y)A 
p,cY,x n+I,~n+2)),wheren>2andwhereyisanew 
variable. 

Let r be the translation from 9’into-Y’ in which @n(xr, . . . , x,) is 
3Y(Fy A o~z(pJ+lfjwl, . . . , x,, z) A OR’z) for each n-place predicate 
R of 9. Let T’ be the theory whose axioms are T($) for 9 f T and 
@)(fil* ..x,3Ex1/\... A Rx,) for each n-place predicate R of-C?‘. 

LEMMA 7. T is interpretable in T’ as defined above. 
Proof: That $ E T implies ~(4) E T’ follows immediately from the 

definitions. For the other direction, suppose that the sentence 6 of 9’is 
not a theorem of T. By the strong completeness theorem and the Skolem- 
Liiwenheim theorem (see the remarks after Theorem 3.5 of Part I), 4 is 
false in a model for Tin which W and A are countable. By the theorems 
under (ii) above, each &, is inftite. 

Let (111, bl), (112, b2), . . . be an enumeration, without repetitions, of all 
pairs of individuals in A, Now defme a sequence cl, c2, . . . as follows: 

cl issuchthatar,b,,crE& forsomeworldw,; 

c,+~ is such that cr, . . . , c,+r are all distinct and 
~~+r,b,+r,c,+r EXWn+, forsomeworldw,+r. 

Since !UI satisfies the conditions (i) and (ii), such a sequence exists. For 
each n > 2, define a n-tpling function p” as follows: 

p’(e,f) = c, if e = a, andf = b,; 

p”+l(el,. . . ,e,+d = P2@“h, . . . ,eJ, en+& 

Also, for each world w E W, choose a distinct individual u,,, E A,,, . 
Let%R’bethemodelinwhich: W’= W;& =& foreachwEW; 

v’(a) = U(Q) for each constant a of 9; v’(p) = {(wn , a,, &, , c,) : n = 1, 
2, . . .}, u’(t) = {( w,a,):wEW)andu’(R’)={(w,f):f~&,and,for 
somev,el ,..., e,,(v,e, ,..., e,)Ev(R)andf=p”+‘(a,,el ,..., en)). 
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An easy induction establishes that IXR I= J/ [er, . . . , e,] iff %B I= r(G) 
h . . . , e,] for each formula $(x1, . . . , x,) of L?‘. Hence, r($) is false in 
~‘andeachT(J/)forJ/ETistruein~“.But(o)(Rx,...x,>E~~~... 
A Ex,) for R an n-place predicate of 5?’ ’ is also true in9.B ‘, and so r(G) is 
not a theorem of 2”. Thus, Lemma 7 is proved. 

Since T’ is a restrictive theory and since T was an arbitrary theory 
satisfying the first conditions, we obtain: 

THEOREM 8. Any theory satisfying the first condition is interpretable 
within a restrictive theory. 

Condition Two. Let us say that a theory T satisfies the second condition 
if*r... 3x, (Dif(x 1, . . . , x,) A q (Ex 1 A . . . A Ex,)) is a theorem for 
n=2,3,... . Thus, a theory satisfying the second condition is one which 
implies that there are infinitely many necessary existents. 

To show that such a theory T is interpretable within a restrictive theory 
T’, let the language Y’ of T’ contain the same constants as E”: a two-place 
predicate C, and for each n-place predicate R of Pan n-place predicate R’. 
Intuitively, we may think of C as a counterpart relation that associates with 
each possible individual an abstract counterpart (the individual’s essence, 
say). The relation R’ then holds of b r, . . . , b, if R holds of the entities 
al,..., a,ofwhichbr,... , b, are counterparts. The translation r is the 
oneinwhich#R(xI ,..., x,)is3y,...y,(n’“Ociy,~R‘~~ . ..~.,).T’is 
then defined as before, but with the new r in place of the old. 

Now let 8R be a model for Tin which A is countably infinite. Let 
al,a2,... be an enumeration without repetitions of A, and for each 
i= 1,2,. ..,letwlbeaworldsuchthata~E&,,Letb,,b2,...bean 
enumeration without repetitions of b for which b E each & . The model 
102’ for P” is defined as follows: W’ = W, &, = &, for each world w E W; 
u’(a) = v(a) for each constant a of 9; u’(C) = ((Wi, of, bf) : i = 1,2, . . . ), 
and v’(R’) = {(IV, bf , , . . . , bf,) : (w, ai,, . . . , af,j E V(R)). !D’t’ may then 
be used as before to establish: 

THEOREM 9. Any theory satisfying the second condition is interpretable 
within a restrictive theory. 

Further Results. gay that the translation r is weak if for some formula 
qbD(x) with one free variable x the translation clause for the universal 
quantifier is: 
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Thus, in a weak translation, the original domain may be a restriction of the 
new domain. Correspondingly, say that T is weakly interpreiable in T’ if 
for some weak translation r from Yinto P”, T I- @ iff T I- r(G) for each 
sentence 9 of 9. 

Now introduce a new one-place predicate G into the previous language 
9’ and modify the previous translation T so that #n(x) is Gi. Then the new 
T is a weak interpretation of any theory T into the corresponding restrictive 
theory. For in obtaining the model ‘2JI ’ from %JI we may expand the domain 
so that ‘2R’ contains infinitely many necessary existents. Thus, this gives: 

THEOREM 10. Any theory is weakly interpretable within a restrictive 
theory. 

Some open problems remain. First, necessary and sufficient conditions 
have not been given for interpretability within a restrictive theory. I doubt 
that there are any perspicuous conditions of this sort. Second, no conditions 
have been given for a theory T to be mu?ualZy interpretable within a restric- 
tive theory T’, where this last notion requires that there be a translation r 
from T into T’ and a translation 7’ from T’ into T, possibly with the added 
proviso that T I- /(+I)) s @ and T’ I- r(#($)) z J, for each formula r$ of 
9’and each formula J, of 2”. Finally, we should like to know the scope of 
particular translations. For any translation T, we should like to determine 
the theories T for which r is an interpretation of T within the restrictive 
theory that has the axioms r(e) for $ E T. 

University of Michigan 

NOTES 

* This paper is the third and fii part of a series (see the references below). It was 
completed and submitted to the Journal of Philosophical Logic in 1977, at about the 
same time as the other parts. But because of some mishap in the mail, its publication 
was delayed. The present part is independent from the other parts in its results, but 
draws upon the terminology of Section 2 of Part I. 

I should like to thank the editor, R. Thomason, for many valuable remarks on the 
earlier version of the paper. 
’ I have briefly discussed this thesis elsewhere. The reader may like to consult 
Section 7 of [ 11, pp. 151 and 156-160 of [2], p. 564 of [3], and Section 8 of [7b]. 
There has been a fair amount of recent literature on the topic. I cannot give a complete 
survey, but the reader may like to consult Chapters IV-V of [9], p. 86 of IS), 
Chapters VII-VIII of [lo], and pp. 333-336 of [ 111. 
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