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SUBSTITUTIONAL QUANTIFICATION 

AND SET THEORY 

Our concern in this paper is to defend the use of substitutional quantifi-. 
cation in set theory as a way of avoiding ontological commitment to sets. 
Specifically, two objections to this procedure are addressed. (1) Charles 
Parsons claims that substitutional quantification (at least in set theory) is 
not ontologically neutral, but rather expresses a bona fide sense of exist- 
ence-l We argue that he has failed to distinguish between meta-linguistic 
commitment to expressions on the one hand and ontological commitment 
to sets in the object language on the other. (2) T. S. Weston claims that a 
substantial interpretation of the quantifiers of Zermelo-Frankel set theory 
(ZF) is inconsistent with obvious theses of semantics.2 We argue that he has 
artificially limited the ways in which the quantification of ZF can be 
rendered substitutional due to a misunderstanding of the fmiteness require- 
ments for semantics. With the limitation removed, we give an example of a 
substitutional interpretation of ZF which is consistent if ZF itself is. It must 
be noted that in this discussion we are concerned only to defend the substi- 
tutional interpretation of the quantifiers. Thus we allow ourselves use of a 
referential interpretation of the atomic sentences of set theory; that is, ‘e’ 
will be interpreted as a relation over an ontology of sets. Of course, this 
interpretation of the atomic sentences subverts any overall effort at onto- 
logical neutrality as regards sets. Accordingly, we shall conclude with a 
description of a semantical framework within which an interpretation of the 
language of set theory which is not committed to sets is possible. 

I 

The classical case for the ontological neutrality of substitutional quantifl- 
cation was made by Quine. He argued that (a) since substitutional quanti- 
fication is explicable in terms of truth and substitution no matter what the 
substitution class - even that whose sole member is the left-hand 
parenthesis - we must deny existential import to substitutional quantiti- 
cation. For we surely do not have to provide an entity for the left-hand 
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parenthesis to name in order to count true sentences that contain it. And 
(b) “ . . . we [cannot] introduce any control by saying that only substi- 
tutional quantification in the substitution class of singular terms is to count 
as a version of existence . . . [b ecause] the very notion of singular terms 
appeals implicitly to . . . objectual quantification”.3 Parsons, by contrast, 
claims that 

. . . the existential quantifier substitutionally interpreted has a genuine &ii to express 
a concept of existence which has its own interest and which may offer the best 
explication of the sense in which ‘linguistic’ abstract entities - propositions, attributes, 
classes in the sense of extensions of predicates - may be said to exist4 

Concerning set theory in particular, he asserts: 

The fact that the substitution interpretation yields truth conditions for quantifiid 
sentences [of Set theory] means that everything necessary for speaking of these classes 
as entities is present, and the request for some more absolute verification of their 
existence seems senseless.’ 

Thus while not suggesting that substitutional quantifiers be understood 
objectually, Parsons does reject their ontological neutrality. He must there- 
fore answer Quine’s argument. He does so as follows: Parsons replies to (a) 
by pointing out two formal features of substitutional quantification with 
respect to singular terms which he thinks can be used to distinguish that 
substitution class from other (trivial) ones. They are the fact that class 
“admits identity with the property of substitutivity salva vetifute. [And] it 
has infinitely many members that are distinguishable by the identity 
relation”.6 We find this appeal unconvincing. The role of identity in a 
substitutionally interpreted language is quite different from its ordinary 
role (as Parsons himself seems to recognize in his footnote 8). As Ruth 
Marcus pointed out,’ identity will be replaced by a series of syntactically 
defined substitution principles depending for their scope on the expressive 
richness of the language. We may expect such principles for predicates and 
operators in addition to singular terms, and there seems to be no reason 
why we could not have them for punctuation devices as well. This suffices 
to cast doubt on both features to which Parsons appeals, for any express- 
ions for which we formulate such principles could belong to an infinite 
class of expressions which are distinguished by those principles. 

Parsons’ response to (b) is to 

concede Quine’s point . . . for a certain central core class of singular terms, which we 
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might suppose to denote objects whose existence we do not expect to explicate by 
substitutional quantification. We might then make certain analogical extensions of the 
class of singular terms in such a way that they are related to quantifications construed 
as substitutions. The criterion for ‘genuine reference’ is given In other terms.8 

It seems to us that this does not suffice to answer(b). Quine’s original 
problem was that there is no purely syntactic criterion for terms which are 
used to denote objects. Expressions which grammar classifies as proper 
names or definite descriptions are often used without commitment to the 
existence of entities for them to name. To identify the genuinely referential 
uses of terms, Quine suggested that we use the unquestionably referential 
quantifier ‘(3x)’ as a touchstone: a term I as used in a context c . . t . . .’ 
is referential iff r(3x)(x = ty follows from ‘. . . t . . ? . Notice that there is 
no pretense to an explication of existence here; rather, the quantifier func- 
tions as a reliable symprom of referential use. Now what is accomplished 
by Parsons’ ‘analogical extensions’? They may give us reason to classify class 
abstracts with the singular terms syntactically - they replace similar vari- 
ables, and so on. But it is their semantical interpretation which is in 
question: Do they denote? Qume’s test via the object& ‘(3x)’ gives a 
negative answer. To appeal to the substitutional quantifier ‘(3x)’ is to beg 
the question: the newly introduced ‘singular terms’ were supposed to 
establish the ‘concept of existence’ which that quantifier expresses. And in 
any case, such an appeal will fail. For, according to the substitutional 
interpretation, 

3 x(the museum has a statue of x) 

is true even if the museum’s only statue is a statue of Zeus, and yet we do 
not accord to Zeus any kind of existence. For the same reason, the truth of 

should not lead us to accord any sense of existence to {x : x is a horse}. 
Perhaps Parsons is relying on the presumption that quantification in the 

meta-language is object& and so the truth condition for quantified 
sentences engenders ontological commitment to expression-types. This 
would explain why he limits his theory to what he calls ‘linguistic’ abstract 
entities, e.g., propositions, attributes and extensions of predicates. Hence 
also his worry at the end whether commitment to all abstract objects has 
been avoided. If this is what Parsons intends, then perhaps his explication of 
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existence for these entities goes as follows. ‘Ordinary’ existence is what is 
required for the truth of existentially quantified sentences, when the 
quantifier is interpreted in the ordinary manner. Linguistic existence - our 
name for what Parsons is explicating if this interpretation of his intentions 
is correct - is what is required for the truth of existentially quantified 
sentences, when the quantifier is interpreted substitutionally in an objectual 
meta-language. But then what is the difference between the linguistic exist- 
ence of classes, say, and the ordinary existence of predicates? From 

‘ 3c@’ is true 

it will follow, in the meta-language, that 

Go there is a predicate ‘F’ such that ‘@{x : Fx}’ is true, 

where ‘there is’ expresses ‘ordinary’ existence. Thus from the point of view 
of ontological commitment, the linguistic existence of classes amounts to 
the ordinary existence of expressions. If so, we think it is misleading to call 
it a new sense of existence and announce it as a metaphysical innovation. 

Furthermore, even this weakened reading of Parsons’ claim is open to 
two objections. First, his assumption that the meta-language in which the 
substitutional quantification of the object language is interpreted must 
employ objectual quantification is questionable.g Second, it is incorrect to 
associate a sentence S with the ontological commitments of the sentence S* 
of the meta-language which gives S’s truth-condition. S* may have onto- 
logical commitments due solely to the structure of the meta-language and 
which are entirely unconnected to the content of S. For example, S* may 
refer to sequences of objects (as is typically the case for Tarski-type truth 
theories) and hence require the existence of sets, even if 5’ is ‘Fido barks’; 
but ‘Fido barks’ is uncommitted to sets. Likewise, the fact that (#) will be 
the meta-language truth condition for ‘(3 a)@a’ does not allow us to trans- 
fer the former’s commitment to the existence of expression types to the 
latter. And in this case the mistake is even more obvious: since the meta- 
language is presumed not to have substitutional quantification, a homo- 
phonic assignment of truth conditions is impossibie, and so we expect some 
distortion of content. We conclude, then, that Parsons has not refuted the 
ontological neutrality of substitutional quantification. 
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II 

While objections to the ontological claims of proponents of substitutional 
quantification have come from many quarters, arguments purporting to 
demonstrate the impossiiility of a substitutional construal of quantification 
in particular theories have been comparatively rare. An objection of the 
latter hind, however, has recently surfaced in a paper by T. S. Weston, who 
argues that if we presuppose Davidson’s well-known thesis that no language 
can count as learnable if infmitely many of its expressions must be treated 
as semantically primitive, then a substitutional interpretation of quantifiers 
in Zermelo-Frankel set theory (ZF) is inconsistent with principles of 
semantics common to both the referential and substitutional theories of 
quantification. In this section, we shall describe and criticize the argument 
for this contention. That argument, while developed around the case of ZF, 
is based upon certain general semantic assumptions which it will have value 
to develop and criticize. 

As usually axiomatized, ZF has the set-membership predicate as its sole 
extra-logical primitive. In order to make it amenable to substitutional 
semantics, therefore, ZF must be supplemented with singular terms. 
Weston’s contention is that there is a preferred way of doing this given the 
Davidson learnability stricture, and that the systems which result, when 
supplemented with a few trivial conditions on truth which are unexception- 
able with respect to substitutional semantics, will prove that each substi- 
tution instance of some formula is true, but that the (universal) closure of 
that formula is false.” The difficulty here is in fact somewhat more 
pervasive than Weston apparently realizes. In analogy to the mnnber- 
theoretic case, we shall say that a substitutionally interpreted theory T is 
‘w-inconsistent’ if, for some formula @J, T proves every instance of # 
relative to the intended substitution class, but refutes the universal closure 
of @. The extensions of ZF which Weston identifies as favored by Davidson’s 
condition are those which result from ZF by the addition of finitely many 
function symbols and finitely many individual constants, where an indi- 
vidual constant is understood to be a singular term having no first-order 
structure (relative to the fust-order syntax of the language of the relevant 
extension). It may be shown that any such extension, irrespective of 
supplemental semantical axioms, is w-inconsistent, and thus obviously not 
substitutionally interpretable. In addition, the w-inconsistency accrues not 
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only to the relevant extensions of ZF, but generally to a range of weaker 
systems as well. The reason, in outline, is as follows. Consider, for definite. 
ness, a system E such that the language of E (LB) results from LzF by 
addition of a single individual constant ‘c’ and function symbol ‘f '. (It will 
be seen that the argument to be sketched may be generalized to E”s with 
singular terms generated from any ftite number of individual constants vir 
application of any finite number of function symbols.) Suppose that arith- 
metic is relatively interpretable in E, and that E represents the following 
simple inductive definition: 

(5) qJ(0) = c; tin') =fc#e)). 
That is to say, there is a formula Bxy of two free variables in LE such that 

(9 r-E B(o, c), i-E B(O’,f(c)), t-E B(o”,fo)), . . . 

and such that 

(ii) I-E v x 3y(Bxy & (z)(Bxz + z = y)).” 

If E assumes the axioms of infinity and replacement, by virtue of (ii) E 
proves that the range of the function determined by Bxy on the integers 
exists; i.e., using some obvious abbreviation, 

(6) t-E (3y)(y = {x: (~z)(‘z is an integer’ &Bzx)}). 

Now it is easily seen that our assumptions on E guarantee (e.g., via the 
argument of Russell’s paradox) the existence of a proof in E of the senteno 

(7) vx-vyysx 

and so, by specification, 

(8) l-E - Vx(x E {x: (3 z) (‘z is an integer’ & Bzx)}). 

But by (i) and (6) if ‘t’ represents any closed singular term of E, 

(9) l-E f E {x: (3 z) (‘z is an integer’ & Bzx)}. 

(8) and (9) imply that E is w-inconsistent. Bringing matters together, then. 
we see that w-inconsistency accrues to any system which assumes the 
axioms of infinity and replacement, and in which inductive deftitions of 
the most elementary hind are representable if the sing&r terms of that 
system are obtained in the manner in which Weston supposes they must be 
obtained. We now turn to the argument for this supposition. 
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Of the various strategies for augmenting ZF with a class of singular terms 
suitab!e for a substitutional construal of its quantifiers, Weston considers 
only (a) adding inftitely many individual constants to LZF, and (b) adding 
ftitely many function symbols and ftitely many individual constants to 
LzF. Weston asserts that any language resulting from that of ZF via strategy 
(a) is unlearnable, or, at the very least, that such a supplementation yields 
a language “much less suitable for use by human beings” than one obtained 
via strategy (b).” The principle motivating this assertion was fust described 
by Davidson: no language can count as kamtdde, Davidson writes, if 
infinitely many of its expressions are semantically primitive, where a 
semantically primitive expression of a language L is one such that the rules 
which give the truthconditions for the sentences in which it does not appear 
do not suffice to determine the truth-conditions of those sentences in 
which it does appear. l3 Semantic primitiveness for L is tnus characterized 
as relative to a set of semantical rules which associate each sentence of L 
with a representation of its truthconditions; for example, a recursive theory 
of truth in the manner of Tarski, or a translation scheme mapping L into a 
language L*, supplemented with a semantic description of L* . Now Weston 
focuses exclusively on the latter construal, in terms of translation, although 
it should be remembered that the fmiteness constraint with respect to 
translation is only a part of the broader requirement of ftiteness applying 
to a complete assignment of truth-conditions to the sentences of L, of 
which the translation of L into L* is only a part. In any case, fixing English 
as the interpreting language, Davidson’s learnability stricture for translation 
assumes the form 

03 L is learnable only if there is a translation function mapping 
the sentences of L onto sentences of English which treats 
only finitely many expressions of L as semantically primitive. 

where a tmnslation treats an expression as semantically primitive if and only 
if the rules of translation determining the images of the sentences in which 
it does not appear do not suffice to determine the images of those sentences 
in which it does.” Thus understood, it follows that the present constraint 
is satisfied by any translation scheme incorporating only finitely many 
effective rules, i.e., by any translation which is recursively specifmble. But 
from the condition that a translation of L, if satisfactory, must be 
recursive - the requirement that L possess some fmitely representable 
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structure underlying translation - it does not follow that L may contain 
only finitely many expressions which are primitive with respect to first- 
order syntax in L . 

To see this, consider, as L, the language of Quine’s theory of virtual 
classes as supplemented with substitutional quantifiers taking the class 
abstracts as substitutes. We shall assume that this theory is formulated for a 
referentially interpreted language, b, which admits recursive translation 
into English; thus, if ‘F’ is a predicate of L,, , let ‘F* ’ represent its English 
translation. The formulas of L are now generated by first-order constructions 
from the basic formulas, viz., those of the form 

b) ti E {XI Fx}, 

where ‘ti’ represents a singular term or variable of LO and ‘F’ a predicate of 
one free variable of Lo, or of the form 

0 ti E Si 

where ‘ti’ is as above and ‘Y’ is a substitutional variable replaced by the class 
abstracts ‘(x: Fx}‘. Notice that the infinitely many abstracts of this form 
have no first-order structure in L, and must therefore be counted as indi- 
vidual constants with respect to L. Nevertheless, even though containing 
infmitely many individual constants, L is clearly susceptible of effective 
translation into (regimented) English, thus: the variables ‘ti) are translated 
via corresponding variables ‘u,’ ranging over the ontology of L,, , and the 
variables ‘si) via corresponding variables ‘q ranging over sets definable in 
English by (translations of) one-free variable predicates of Le. (It is assumed 
that the ontology of L,, forms a set, although this is not essential.) Formulas 
of the form (a) are now interpreted by the corresponding formulas 

(0 3 y(Vx(x E y - F*x) & ur E y) 

and formulas of form da) by 

Co’) Ui E Vi. 

The translation is extended inductively to all formulas of L by interpreting 
the connectives and quantifiers of L by means of corresponding connectives 
and quantifiers of English; in particular, the substitutional quantifiers of 
L are construed via quantifiers of English ranging over the sets definable by 
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one-free-variable formulas of Le. The present example shows that (D) is not 
sufficient by itself to motivate the claim that translations defined on 
languages with fmitely many first-order primitives possess ‘learnability’ 
properties which translations defined on languages with an infmite number 
of such primitives lack; for the translation just (recursively) specified does 
not treat infmitely many expressions of L as semantically primitive, even 
though L harbors an infinite number of singular terms having no first-order 
structure (in L). The general point here illustrated is that, although the 
learnability of a translation by a finite being does presumably require that it 
be finitely representable, such a representation may require a grip on more 
structure in the object language than its first-order structure. 

However, Weston appears, at one point, to recognize that a translation 
function may be finitely specified over a language with infinitely many 
individual constants, and so satisfy (D), but suggests that languages with 
infinitely many constants may be inadmissible in other respects: 

In effect, the infinitely many constants of such a language are treated notationally as if 
they were semantically primitive, and it is only the translation which shows that they 
are not. Following [this strategy] in arithmetic, that is replacing ‘0’ and l ’ ’ by an 
infmite list of individual constants, has obvious disastrous consequences. Since the 
successor function would no longer be representable, the axioms could no longer be 
stated in the usual way. In following strategy (4) [our (2), viz., using finitely many 
function symbols and constants] - either on arithmetic or ZF - we are able to 
represent the meaning relations which makes it possible to translate them into 
English.1s 

It is not obvious what Weston intends by ‘meaning relation’ in this context, 
but it seems plausible to suppose that what is meant is simply any semantic- 
ally relevant structure of the object language. The response would then be 
that, even if, by strategy (2), we can render such meaning relations finitely 
‘representable’ in the object language, it does not follow that this strategy 
is necessary to ensure such representability. The point can be ilhrstrated by 
considering Weston’s own example of elementary arithmetic (2). One 
familiar formulation of Z employs addition and multiplication predicates 
X(x,y, z) (r‘z is the sum of x andy”), n(x,y, z) C“z is the product of x 
and y”), an individual constant ‘0’ and the successor functor ‘SC’. 

Weston asks us to imagine a substitutional arithmetic Z * using the 
addition and multiplication predicates and an infinite set of individual 
constants (ac,ar,. . . } replacing {‘o’, ‘SC(O)‘, . . . } . It is not the case, as 
Weston suggests in the above passage, that the usual axiomatic formulation 
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is barred because the successor functor is not representable. If u1 is the 
constant replacing ‘SC(O)‘, one may construe ‘y = SC(X)’ by E(y, x, al). In 
fact, we may use this construal of the successor relation to specify a trans- 
lation r mapping Lz into Ly relative to which 2 is relatively interpretable 
hlz*,‘6 where Z* is axiomatized via the r-translates of the axioms of 2. 

First, note that any singular term of Lz is generated from variables or ‘0 
by iterated applications of the successor functor. By the mnk of a singular 
term t of Lz we shall understand the number of occurrences of the successor 
functor in t. We now defme a mapping of singular terms t of Lz onto 
formulas T&X) of LZ* inductively on the rank oft. If t is of rank 0, then 
~t(x)iSrx=~e1,iftiS’0y,andisrx=r1iftisavariable.Ifthasrank 
n+1,thent=Sc(t’)forsomet’ofrankn.7t(x)isthentheformula 

If t is closed, then, the formula r&x) inductively represents the denotation 
condition oft and if r is open, rt(x) inductively represents its assignment 
condition. The definition of Q is now given as follows. If # is B(t r , . . . , fn) 
where B is a primitive predicate of Lz, Q is the formula 

If+isr$vtJ1 +‘isr$Jv6’1 If#is’ l ” r-#‘l,etc*if$is 
‘3 v $9, qY k-3 v lp 

. -JI ,# IfJ 
,andif#isrVv $J girisrVv tirl” . 

The axioms of Z* are now simply the r-tranktes of the axioms of Z. 
The relative interpretability result follows easily by induction on the length 
of proofs in Z. 

Finally, a rather subtle response to this rejoinder must be examined. It is 
true that Z is relatively interpretable in Z* by means of the above trans- 
lation. That is, there is a translation of Li into Lz* that preserves first-order 
deducibility. However, there are still semantic relations that escape 
representation in Z* . There are true atomic sentences of the forms 
Z(o,, u], uk) and I&r,, ui, a,J that are not theorems of Z* . However, sin& 
any true atomic sentence of Lz is a theorem of Z, the r-translate of any 
true atomic sentence of Z is a theorem of Z*. We see, then, that although 
any atomic sentence of Z* is equivalent to the r-translate of a certain atomic 
sentence of Z, this equivalence may not be representable in Z*, i.e., it wiIl 
typically not be representable by a first-order derivation in Z* . 
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Now the objector is surely correct in maintaining that it is a clear 
constraint on our overall semantic description of Lz* that it account for 
the existence of such relations. The mistake, we suggest, comes in identify- 
ing the capacity of a semantics for Lz* to provide for an entailment 
relation in L =* with the capacity to explain the existence of that relation by 
appeal to the semantic analysis of its fti-order structure (i.e., the substi- 
tutional recursion); for this is the effect of requiring that the relation be 
representable by means of a first-order derivation in Lz* . However, the 
substitutional truth-clauses provide only a part of the semantic description 
of Lz* . To complete matters, we must specify an assignment of truth- 
conditions to the atomic sentences. What is required is that the substi- 
tutional recursion in conjunction with such an assignment impose enough 
semantic structure to enable the logical relations among the sentences of 
Lz* to be mapped. (If they do not, then, there is no reason a priori to level 
the complaint against the interpretation of the quantifiers rather than the 
semantics for the atomic sentences.) 

As an illustration, consider an assignment of truth-conditions to the 
atomic sentences of Lz * based upon the Zermelo interpretation of number 
theory in ZF. The addition and multiplication predicates may be associated, 
in one of the usual ways, with formulasA(x,y, z) and B(x,y, z) of LZr 
that respectively give their satisfaction conditions. The individual constants 
bo,h,... } are effectively mapped onto a set { JIe(x), J/r(x), . . . } of one- 
free-variable formulas of LZ~ that give their denotation conditions. More 
specifically, if Jlr(x) gives the denotation condition of aI ” and for any n, 
if J/,(x) gives the denotation condition of (I,, we may put 

(10) Vx(Jl,+,(x)- ~Yv~tJI”o)~(J/1(~)-,~(~,Y,~))l). 
An atomic sentence Q(QiI . . . at,) of Lz* is therefore accorded 

VXl . . . vx, 
( 

j$, tiijCxjl + @*(xl 9 - - - 9 &) 

) 

as its ZF-translation, where cP* is the ZF-translation of @, a primitive 
predicate of Lz * . 

Nowlet@(xr,... , xk) be any formula of Lz . Our problem is to derive 
the equivalences 
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from the substitutional truth theory for Lz* in conjunction with the 
interpretation of the atomic sentences of Lz* in LZr that we have specified 

A. For any n, the formula 

(12) vJG(JL~,,~l)-x=%+1) 

is true in Lz* . 
&of From the defmition of {$Q}, it follows by induction on n that 

tlx(A(x,u~,uf)-~,+,(x)), 

where for any i, UT is the denotation of Ur in the world of sets. (I 2) now 
follows by the equivalences 

and 
ViVjVk(A(u~,ui*,u~) - C(u,, uj, uk) is true in L,*) 

VnVx(x = a;+1 - Jl”+l(x)). 

B. For any n, the formula 

(13) VX(?fi(X) - x = a,) 

istrueinLZ*. 
Proof. For n = 0, the equivalence is immediate. 
Assume that V x(ri(x) -x = ok) is true in Lz* for given k. Then 

T~(~) is the formula V x(7&) + X(x, y, al)), which by the induction 
hypothesis applied to ra is equivalent to Vy(y = II, + Z(x,u, al)), i.e., to 
Z(x, (I,, al). (B) now follows by (A). 

C. If Cp is a primitive predicate of Lz* , then [@(fir, . . . , fir)] ’ is true in 
LZ*ifandonlyifW(u,,,...,cr,,)istrueinLZ*. 

ptoof. Since + is primitive, V = Cp. @(ii,, . . . , iiJ is then 

vx 1 . ..VX& 
( 
j?k~.j(Xi)~~xl,...rXk) , 

1 
whichby(B)appliedtor,l,. . .,rnk holdsinLa* iff+(u “,,. . . ,unk)= 
W%, , * . * , unk) holds in Lz* . 

(11) now follows from (C) by induction on the complexity of 
Wit . . . , xk). Thus, we see that although the equivalences of form (11) 
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typically possess no first-order proof in Lz l , they may be shown to be true 
by reference to an independently given semantics for the atomic sentences 
OfLZ’. 

Having said all this, let us consider a substitutional construal of quanti- 
fication in LZF which is adequate as regards satisfaction of the condition 
(D). We shall specify a class of individual constants denoting a certain 
countable model of ZF, the so-called ‘minimal’ model, which are susceptible 
of recursive translation into English. The minimal model results from 
restricting the field of the set-membership predicate to the class of those 
sets for which there is a predicate F of LZF such that 

ZF l- 3yVx(x Ey - Fx). 
This model is not elementarily equivalent to the usual one.” Thus, it should 
be clear at the outset what the interpretation to be suggested does not 
accomplish: it does not provide a substitutional construal of quantifiers 
that yields a distribution of truth-values to the sentences of LZa which is 
extensionally correct vi3-avis the intended interpretation. What it does do 
is provide a substitutional interpretation of ZF which leads to an o- 
consistent extension of ZF, one with respect to which ZF constitutes a 
correct description of a’certain model, and so provides an explicit illus- 
tration of how Weston’s problem may be avoided. For it is a familiar fact 
from model theory that if A4 is any model of a first-order theory T and T* 
results from T by the addition of a set of individual constants denoting the 
elements of M, then the expansion of M to LT* associating each constant 
with its denotation in M is a model of T* . Thus, let us fix an effective 
classb1,b2,. . . of individual constants, and let F1, F1,. . . be a recursive 
enumeration of those predicates of L ZF for whose extension there is a proof 
of existence in ZF; each bi will be construed as denoting the extension of 
Fi with respect to the normal interpretation. If ZF * results from ZF by 
addition of the br, the atomic formulas of L ZF* are effectively interpretable 
by sentences of English as follows: 

‘x E bil by r~y(Vz(zEy*F,z)&xEy)l 

‘bi Ei? by ‘3y(Vz(zEyt*Flz)&yEx)l 

‘bi Eb? by ‘~YI ~Y~(VZI(ZI EYI -Ftz~) 

& VZ~(Z~~Y~-F~Z~)B~Y, Ey2p. 
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Thus, it seems we have a substitutional construal in quantifiers in ZF that 
satisfies Davidson’s learnability stricture, and yet is based upon a substi- 
tution class harboring infinitely many individual constants. 

III 

The foregoing discussion attempted only to sustain the possibility of a 
substitutional interpretation of quantifiers in languages with infinitely many 
individual constants consistent with Davidson’s constraint (D). Such an 
interpretation would allow us to provide an assignment of truth-conditions 
to all sentences of, for example, an extension of L of LZF given an assign- 
ment of truth-conditions to the atomic sentences of L. How is the latter to 
be specified? If we follow the previous example we would provide, in effect, 
that each atomic sentence of the form ‘bi E b7 is true iff the extension of 
bi is an element of the extension of bj, where the extension of b, is the class 
of all sets satisfying F,, . However, relative to the ontological purposes which 
usually motivate one to entertain a substitutional construal of quantifiers in 
this context, this interpretation is, of course, entirely self-defeating. For, the 
assignment of a referential interpretation to the atomic sentences would 
induce a referential interpretation of its quantifiers; the distinction of 
referential and substitutional quantification then loses its ontological signifi- 
cance. Accordingly, to achieve an ontologically non-trivial result, we must 
formulate a non referential analysis of the atomic sentences, i.e., we must 
specify an assignment of truth-conditions to the atomic sentences which 
does not accord a referential interpretation to the primitive predicates and 
singular terms of the language in question. 

At first sight, this description of the enterprise may make it seem 
impossible; there simply seems to be no available form of semantic analysis 
for the primitive predicates of a first-order language other than the refer- 
ential. And in one sense, this is quite true. However, one must distinguish 
two ways in which reference may play a role in providing truth-conditions 
for the atomic sentences: (a) we may use reference directly in interpreting 
the predicates and singular terms of the atomic sentences, according the 
former satisfaction conditions and the latter denotation conditions, or(b) 
we may appeal to reference in providing a finitely based assignment of 
truth-conditions for the class of atomic sentences as a whole, without 
attributing a referential function to their constituent predicates and singular 
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terms. That (b) is strictly weaker than (a) may be seen by again considering 
our example of the language of virtual class theory as supplemented with 
substitutional quantification. Atomic sentences of the form 5 E (x: Rc}’ 
may be assigned the truth-condition of the corresponding sentence ‘F’. 
Each atomic sentence is then interpreted by another sentence, free of set- 
theoretic expressions. The atomic sentences are thus construed without 
ascribing a referential interpretation to the set-membership predicate; it 
functions merely as a place-holder, comparable to punctuation. 

Let us now tie these observations together into a general picture. Suppose 
that L is a substitutional first-order language with substitution class C,, and 
that Le is a language for which a semantic description is given. A semantic 
description of L is now given in stages. First, the substitutional interpret- 
ation of quantifiers in L abows us to represent the truth-value of any 
sentence of L as a function of the truth-values of the atomic sentences of 
L. An effectively computable function ij is then specified which maps the 
atomic sentences of L onto sentences of Le , and the truth-condition of any 
atomic sentence of L is identified with that of its counterpart in Lo .19 

Now suppose that [ is a model-theoretic interpretation of Le. We now 
extend [ to an interpretation t’ of L as follows. Since t assigns a truth-value 
to every (closed) sentence of Le, we may use JI to extend E to the atomic 
sentences AL of L, thus: 

(x)(x E AL + (x is true * 3y(y = $(x) and y is true)). 

Suppose, then, that g’ assigns a (unique) truth-value to all sentences # of 
L of complexity k or less. If # is ‘A v B1, where A and B are of complexity 
k or less, then [*(‘A v 9) = T if and only if E*(A) = T or t*(B) = T, and 
similarly for the other truth-functional connectives. Finally, if Q = ‘Vak?, 
where the substitution instances of A in C’, are of complexity k or less, then 
$j*~WorA&?) = T if and only if V p(p E C, + E*(qa/& = T). 

Any interpretation of .$ of L.e, then, uniquely determines an interpret- 
ation 5’ of L. (&!* is also defined on Le .) If S is a set of sentences of L,, or 
of L, we now provide that S is model-theoretically consistent if and only if 
some interpretation [ of b is such that t*(@) = T for each $J E S. The 
defmitions of validity and entailment are now derived from that of con- 
sistency in the usual manner. 

Regarding the model theory of L as thus supervenient on that of Lc 
allows us to make precise our response to Weston’s dilemma in Section II. 



330 DALE GOTTLIEB AND TIMOTHY MCCARTHY 

There will, indeed, typically be logical relations among the sentences of L 
which are not representable by means of first-order logic in L. However, 
this of itself is not a serious matter. For, the present approach to the model 
theory of L explains how the entailment relation in L may outrun those 
pairs (a, /3> of sentences that may be certified to be in that relation by virtue 
of a derivation of p’s first-order schema from (Y’S in quantification theory. 
It does this by ascribing to syntactically simple sentences of L the model- 
theoretic structure of sentences of L,, , which need not be syntactically or 
semantically simple.2o As regards ZF, however, all of this merely sets the 
problem, which is to specify an assignment of truth-conditions to the 
atomic sentences of (a substitutional extension of) LZF in a language which 
does not itself involve the very ontological commitments that the appeal 
to the substitutional construction is designed to avoid. 

The Johns Hopkins University 
The University of Michigan 

NOTES 

r ‘A Plea for Substitutional Quantification’, The Journal of Philosophy LKVIII, 8 
(April 22,1971), 231-237. 
2 ‘Theories Whose Quantification Cannot Be Substitutional’,Nous 8 (1974), 361- 

369. 
3 Ontological Relativity and Other Essays, Columbia University Press, New York, 

p. 106, 1969. 
4 ‘A Plea for Substitutional Quantification’, op. cit., p. 234. Parsons is concerned 

with at most predicative set theory. 
5 Op. cit. 
6 ‘A Plea for Substitutional Quantification’, op. cit., p. 233. 
’ ‘Modalities and Intensional Languages’, in Marx Wartofsky (ed.), Studies in the 

Philosophy of Science, Reidel, Dordrecht, pp. 77-96,1963. 
a ‘A Plea for Substitutional Quantification’, op. cit., p. 233. 
g Dunn and Belnap in ‘The Substitutional Interpretation of the Quantifiers’,Nous ii 

(1968), 184, defend the possibility of using substitutional quantification in the meta- 
language. For a criticism of their view, see S. A. Kripke, ‘Is There a Problem About 
Substitutional Quantification?’ in Evans and McDowell (eds.), 7kuth and Meaning, 
Oxford, pp. 341-342,1976. 
lo Specifically, we may define via well-known methods predicates ‘Cx’ and ‘Dxy’ 
expressing ‘x is (the Code1 number of) a closed singular term’ and ‘y is the denotation 
of the term (with Code1 number) x’, respectively, and a predicate ‘sub (x, y)’ express- 
ing ‘x is (the Gijdel number of) a predicate and y is (the Gijdel number of) a substi- 
tution instance of x’ for each extension E of ZF meeting Weston’s conditions. We now 



SUBSTITUTIONAL QUANTIFICATION AND SET THEORY 331 

add to LE the predicate ‘True’, construed as applying to Gadel numbers of formulae 
of LZF, and add to E (i) each instance of the schema ‘# + True ($‘>‘, wherein ‘4~~ 
represents (the Giidel number of) a sentence of Lzp, and (ii) each instance of schema 
‘(x)(y)(Cx & Dxy + Fy) + (z)(sub crF1, z) + True (z))’ for each predicate ‘Fx’ of 
LZF. It is clear that the axioms obtained through (i) and (ii) are correct with respect 
to the substitutional as well as the referential interpretation of the quantifier. 
l1 It may be shown that the axioms of pairing and finite unions suffice, given our 
other assumptions, to insure this sort of representability. 
I2 Weston, op. cit., p. 362. 
r3 More precisely, if S is a set of semantical rules generating truth-conditions for the 
sentences of L, and e is an expression of L, we say that e is semanticntly composite 
relative to S iff any subset of S providing truth-conditions for all sentences of L not 
containing e suffices to provide truth-conditions for all sentences which do contain e 
(i.e., for all sentences of L). We now characterize as semantically primitive with respect 
to S any expression of L which is not semantically composite with respect to S. 
l4 This is to say, some recursive function acting on the sentences of L yields a truth- 
condition for each sentence of L in English. Weston’s description of Davidson’s 
requirement, reformulated slightly (his condition [S]), is as follows: 

151 A translation F defined on L is satisfactory only if there is a finite 
subset S of singular terms and function symbols of L and a recursive 
function G acting on finite sequences from F(S) such that for each 
singular term t one can effectively find a finite sequence s of members 
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