TOTALLY DISCONNECTED SETS, JORDAN CURVES, AND CONFORMAL MAPS ${ }^{1}$

by
G. PIRANIAN (Ann Arbor)
Dedicated to the memory of Alpréd Rényi

Each bounded, closed, totally disconnected set M in the w-plane lies on some Jordan curve Γ (see R. L. Moore and J. R. Kline [3]). Let G denote the bounded domain determined by Γ, let D and C denote the unit disk and the unit circle in the z-plane, and let f be a mapping of $D \cup C$ onto $G \cup I$, holomorphic in D and continuous and univalent in $D \cup C$. Kikuji Matsumoto ([2], Theorem 4) showed that if we pinch the domain G in appropriate places, then the set $f^{-1}(M)$ has logarithmic capacity 0 . In this note, we prove that we can not only make the set $f^{-1}(M)$ arbitrarily thin, but that we can require it to lie in any preassigned perfect subset of C.

Theorem. Let M be a bounded, closed, totally disconnected set in the w plane, and let E be a perfect set on C. Then there exists a function f, holomorphic in D and continuous and univalent in $D \cup C$, such that $f^{-1}(M) \subset E$.

Our proof is based on the construction of a certain tree T and a certain Jordan domain G_{0} in the w-plane. The tree lies in G_{0}, and the derived set of its set of vertices is M. A simple analytic process allows us to replace the tree T with a subdomain G of G_{0} such that one of the corresponding holomorphic and univalent functions from $D \cup C$ onto \bar{G} satisfies the condition $f(E) \supset M$.

The tree. Without loss of generality, we may assume that the set M lies in the open rectangle Q whose vertices are the points $w= \pm \sqrt{2} / 2$ and $w=$ $= \pm \sqrt{2} / 2+i$. Since M is closed and totally disconnected, there exists a directed polygonal arc P that begins at the point 0 , lies in $Q \backslash M$, and separates Q into two components Q_{0} and Q_{1}, each of diameter less than $\sqrt{3}(4 / 5)$. Similarly, there exist two directed polygonal arcs P_{0} and P_{1} in $Q_{0} \backslash M$ and $Q_{1} \backslash M$, with a common initial point on P, and such that each of the four corresponding sets $Q_{00}, Q_{01}, Q_{10}, Q_{11}$ has diameter less than $\sqrt{3}(4 / 5)^{2}$. We continue the dissec-

[^0]tion of Q indefinitely, in such a way that each polygonal arc of the $n^{\text {th }}$ stage is divided into two parts by the common initial point of two ares of the $(n+1)^{\text {st }}$ stage. The union of the anterior parts thus determined constitutes a tree T_{0}, and each vertex of T_{0} (except the point $w=0$) has degree 2 or 3 (see the heavily drawn portion of Figure 1). We may assume that the directions of two consecutive segments of T_{0} always differ by less than $\pi / 2$.

Fig. 1

Because the set M meets none of the polygonal arcs $P, P_{0}, P_{1}, P_{0 G}$, P_{01}, \ldots, each point of M is the limit point of exactly one simple path that begins at 0 and lies in T_{0}. The union of all simple paths beginning at 0 , lying in T_{0}, and having a limit point in M constitutes our tree T.

The domain G_{0}. We arrange the segments of T into a sequence $\left\{S_{m}\right\}$ so that $m_{0}<m$ whenever $S_{m_{0}}$ precedes S_{m} in T, and so that $\left|m_{0}-m\right|=1$ whenever $S_{m_{0}}$ and S_{m} have a common initial point. We then choose a sequence $\left\{\delta_{m}\right\}$ of positive numbers, and we denote by H_{m} the set of all points whose distance from S_{m} is less than δ_{m}. If $\delta_{m} \rightarrow 0$ rapidly enough, then the set $G_{0}=\bigcup H_{m}$ is a Jordan domain, and for each index m the intersection of M with the closure of H_{m} is empty.

The analytic device. Barring an obvious geometric obstacle, the following lemma allows us to pass from any univalent function f in $|z|<r_{0}\left(r_{0}>1\right)$ to a univalent function g such that the essential difference between the domains $f(D)$ and $g(D)$ is a narrow rod of prescribed base, length, and direction.

Lemma (compare [1], pp. 43-44). Suppose that the function f is holomorphic and univalent in some disk $|z|<r_{0}\left(r_{0}>1\right)$. Let $\zeta=e^{i \theta}$, and let L be a complex number such that

$$
\begin{equation*}
\left|\arg L-\arg \zeta f^{\prime}(\zeta)\right|<\pi / 2 \tag{1}
\end{equation*}
$$

and such that the line segment S joining the points $f(\zeta)$ and $f(\zeta)+L$ meets the set $f(D \cup C)$ only at $f(\zeta)$. Corresponding to each real number $\varrho(\varrho<1)$, write

$$
\begin{equation*}
g_{\mathrm{e}}(z)=f(z)+L \frac{\log \left(1-z / z_{0}\right)}{\log (1-1 / \varrho)} \tag{2}
\end{equation*}
$$

where $z_{0}=\varrho e^{i \theta}$. Then there exists a constant $\varrho_{0}\left(\varrho_{0}>1\right)$ such that for $1<\varrho<\varrho_{0}$ the function g_{e} is univalent in some disk $|z|<r_{1}\left(1<r_{1}<\varrho\right)$.

To prove the lemma, we write $\varrho=1+\varepsilon$, we impose the preliminary restrictions $\varepsilon<1 / e$ and $\varepsilon<\left(r_{0}-1\right) / 2$, and we observe that the univalence of f in $|z|<r_{0}$ implies the existence of a positive constant A_{1} such that the inequality

$$
\begin{equation*}
\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right| \geqq A_{1}\left|z_{2}-z_{1}\right| \tag{3}
\end{equation*}
$$

holds for all z_{1} and z_{2} in $D \cup C$. We write $z / \zeta=\alpha+i \beta$ (α and β real), and we consider the function g_{ϱ} separately in the two overlapping regions

$$
\begin{aligned}
& D_{1}=\{z:|z| \leqq 1, \alpha \leqq 1-K| | \log \varepsilon \mid\} \\
& D_{2}=\left\{z:|z| \leqq 1, \alpha \geqq 1-(\log |\log \varepsilon|)^{-1}\right\}
\end{aligned}
$$

(see Figure 2); here K denotes a positive number to be chosen below.

Fig. 2

Since

$$
g_{\varrho}^{\prime}(z)-f^{\prime}(z)=\frac{L}{|\log \varepsilon / \varrho|\left(z-z_{0}\right)},
$$

and since in D_{1} the maximum modulus of the right-hand member is

$$
\frac{|L|}{|\log \varepsilon / \varrho|(\varepsilon+K| | \log \varepsilon \mid)}<|L| / K
$$

the inequality

$$
\left|g_{\varrho}\left(z_{2}\right)-g_{\varrho}\left(z_{1}\right)\right| \geq\left|z_{2}-z_{1}\right|\left(A_{1}-|L| \mid K\right)
$$

holds for all z_{1} and z_{2} in D_{1}. In particular, the choice $K=A_{1} / 2|L|$ gives the inequality

$$
\left|g_{\varrho}\left(z_{2}\right)-g_{\varrho}\left(z_{1}\right)\right| \geqq A_{1}\left|z_{2}-z_{1}\right| / 2
$$

and therefore g_{0} is univalent in D_{1}.
To establish univalence in D_{2}, we examine the argument of the derivative

$$
g_{\varrho}^{\prime}(z)=\frac{1}{z_{0}}\left[z_{0} f^{\prime}(z)+\frac{L}{|\log \varepsilon / \varrho|} \cdot \frac{1}{\left(1-z / z_{0}\right)}\right]
$$

By the inequality (1), the argument of the first term in the brackets is restricted to some interval $[\arg L-\eta, \arg L+\eta]$, where $\eta<\pi / 2$ if ε is sufficiently small. Because the argument of the second term is also restricted to such an interval, the theorem of K. Noshiro and S. E. Warschawski implies that the function g_{2} is univalent in D_{2} (see [4], Theorem 12, p. 151; [5], Lemma 1, p. 312).

To conclude the proof of the lemma, we shall show that if $z_{1} \in D_{1} \backslash D_{2}$ and $z_{2} \in D_{2} \backslash D_{1}$, then $g_{Q}\left(z_{1}\right)$ lies at a greater distance from the segment S than $g_{e}\left(z_{2}\right)$.

Our hypothesis on the line segment S implies the existence of a positive constant A_{2} such that for each z in $D \cup C$ the distance between $f(z)$ and the segment S is at least $A_{2}|z-\zeta|$. Therefore the distance between $f\left(z_{1}\right)$ and the segment S is at least $A_{2}(\log |\log \varepsilon|)^{-1}$. Since the imaginary part of $\log \left(1-z / z_{0}\right)$ is bounded by $\pi / 2$, the distance between $g_{\varrho}\left(z_{1}\right)$ and S is at least

$$
A_{2}(\log |\log \varepsilon|)^{-1}-2|L| \cdot|\log \varepsilon|^{-1}>A_{3}(\log |\log \varepsilon|)^{-1}
$$

On the other hand, (2) implies that if A_{4} denotes the maximum modulus of f^{\prime} on C, then the distance between $g_{\rho}\left(z_{2}\right)$ and S is less than

$$
A_{4} \sqrt{2 K /|\log \varepsilon|}+\frac{|L| \pi / 2}{|\log \varepsilon / Q|}<A_{5} / \sqrt{|\log \varepsilon|}
$$

This shows that $g_{Q}\left(z_{1}\right) \neq g_{Q}\left(z_{2}\right)$, and the lemma is proved.

Construction of the domain G. We choose any point z_{1} in the perfect set E, and we denote by L_{1} the coordinate of the endpoint of the segment S_{1} in the tree T. If $\varrho_{1}-1$ is small enough, then the function

$$
f_{1}(z)=L_{1} \cdot \frac{\log \left(1-z / \varrho_{1} z_{1}\right)}{\log \left(1-z / \varrho_{1}\right)}
$$

maps the set $D \cup C$ onto a region lying in H_{1} and containing the segment S_{1}.
If L_{1} is not a branch point of the tree T, we write $z_{2}=z_{1}$, and we construct the function

$$
f_{2}(z)=f_{1}(z)+L_{2} \frac{\log \left(1-z / \varrho_{2} z_{2}\right)}{\log \left(1-1 / \varrho_{2}\right)}
$$

choosing L_{2} so that f_{2} maps z_{2} onto the endpoint of S_{2}, and choosing ϱ_{2} near enough to 1 so that $f(D \cup C) \subset H_{1} \cup H_{2}$. If L_{1} is a branch point of T, we choose two distinct points z_{2} and z_{3} of E near z_{1} (this is possible, since E is perfect), and we construct the function f_{3} so that

$$
f_{3}(D \cup C) \subset H_{1} \cup H_{2} \cup H_{3}
$$

and so that $f_{3}\left(z_{2}\right)$ and $f_{3}\left(z_{3}\right)$ are near enough to the endpoints of S_{2} and S_{3} to allow the obvious continuation of the process.

Clearly, the function $f=\lim f_{m}$ is univalent and continuous in $D \cup C$, and $f(D) \subset G_{0}$. Since E is closed and each point of M is a limit point of the sequence $\left\{f\left(z_{m}\right)\right\}$, the set M lies in the set $f(E)$. This concludes the proof of the theorem.

If we drop the hypothesis that the set M is bounded, the theorem remains valid provided we interpret continuity in terms of the spherical metric.

REFERENCES

[1] F. Herzog and G. Pirantan, Sets of convergence of Taylor series. II, Duke Math. J. 20 (1953), 41—54.
[2] K. Matsumoto, On some boundary problems in the theory of conformal mappings of Jordan domains, Nagoya Math. J. 24 (1964), 129-141.
[3] R. L. Moore and J. R. Kitne, On the most general plane closed point-set through which it is possible to pass a simple continuous are, Ann. of Main. (2) 20 (191819), 218-223.
[4] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Ser. I 2 (1934-35), 129.-155.
[5] S. E. Warschawski, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc. 38 (1935), 310-340.
(Received August 23, 1970)
departmext of mathematics
UNIVERSITY OF MICHIGAN
3220 ANGELL HALL
ANN ARBOR, MIGHIGAN 48104
U.S.A.

[^0]: ${ }^{1}$ This paper was written with support from the National Science Foundation.

