# MEAN VALUES OF MULTIPLICATIVE FUNCTIONS 

H. L. Montgomery ${ }^{1}$ (Michigan) and R. C. Vaughan ${ }^{2}$ (Pennsylvania)<br>Dedicated to Professor András Sárközy on the occasion of his 60th birthday


#### Abstract

Let $f(n)$ be a totally multiplicative function such that $|f(n)| \leq 1$ for all $n$, and let $F(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ be the associated Dirichlet series. A variant of Halász's method is developed, by means of which estimates for $\sum_{n=1}^{N} f(n) / n$ are obtained in terms of the size of $|F(s)|$ for $s$ near 1 with $\Re s>1$. The result obtained has a number of consequences, particularly concerning the zeros of the partial sum $U_{N}(s)=\sum_{n=1}^{N} n^{-s}$ of the series for the Riemann zeta function.


## 1. Introduction

Let $f(n)$ be a multiplicative function such that $|f(n)| \leq 1$ for all $n$. Then the associated Dirichlet series

$$
\begin{equation*}
F(s)=\sum_{n=1}^{\infty} f(n) n^{-s} \tag{1}
\end{equation*}
$$

is absolutely convergent for $\sigma>1$. (We write $s=\sigma+i t$.) In 1968, Halász [1] showed that if for every $T>0, F(s)=o(1 /(\sigma-1))$ as $\sigma \rightarrow 1^{+}$, uniformly for $|t| \leq T$, then $S_{0}(x)=\sum_{n \leq x} f(n)=o(x)$. One may note that Halász's theorem, together with the information that $\zeta(1+i t) \neq 0$, yields the estimate $\sum_{n \leq x} \mu(n)=o(x)$, which is equivalent to the Prime Number Theorem. Later, Halász [2] established a sharp quantitative form of his theorem. After further refinements of Montgomery [5] and Tenenbaum [8], this takes the following form.

ThEOREM 1. Suppose that $f(n)$ is a multiplicative function such that $|f(n)| \leq 1$ for all $n$, and let $F(s)$ and $S_{0}(x)$ be defined as above. For $\alpha>0$
${ }^{1}$ Research supported in part by NSF Grant DMS-0070720.
${ }^{2}$ Research supported in part by NSF Grant DMS-9970632.
Mathematics subject classification number: 11N37.
Key words and phrases: multiplicative functions, Riemann zeta function.
put

$$
M_{0}(\alpha)=\left(\sum_{k=-\infty}^{\infty} \max _{\substack{|t-k| \leq 1 / 2 \\ 1+\alpha \leq \sigma \leq 2}}\left|\frac{F(\sigma+i t)}{\sigma+i t}\right|^{2}\right)^{1 / 2}
$$

Then for $x \geq 3$,

$$
\begin{equation*}
S_{0}(x) \ll \frac{x}{\log x} \int_{1 / \log x}^{1} M_{0}(\alpha) \alpha^{-1} d \alpha \tag{2}
\end{equation*}
$$

Since $|F(2)| \asymp 1$ it follows that $M_{0}(\alpha) \gg 1$ and hence in the most favorable circumstance Theorem 1 gives the estimate

$$
S_{0}(x) \ll \frac{x \log \log x}{\log x}
$$

To see that this is sharp, take $f(n)$ to be the totally multiplicative function determined by the equations

$$
f(p)= \begin{cases}e\left(\phi_{p}\right) & \text { when } \sqrt{x}<p \leq x \\ i & \text { otherwise }\end{cases}
$$

where the $\phi_{p}$ are at our disposal. Then by comparing $F(s)$ with $\exp (i \log \zeta(s))$ it follows that $\left|S_{0}(u)\right| \gg u / \log u$ when $2 \leq u \leq \sqrt{x}$, and that $M_{0}(\alpha) \ll 1$. Moreover,

$$
S_{0}(x)=\sum_{\substack{n \leq x \\ p \mid n \Rightarrow p \leq x}} f(n)+\sum_{\sqrt{x}<p \leq x} f(p) S_{0}(x / p)
$$

so that by choosing the $\phi_{p}$ appropriately we have

$$
\left|S_{0}(x)\right|=\left|\sum_{\substack{n \leq x \\ p \mid n=p \leq x}} f(n)\right|+\sum_{\sqrt{x}<p \leq x}\left|S_{0}(x / p)\right| \gg \sum_{\sqrt{x}<p \leq x} \frac{x}{p \log (2 x / p)} \gg \frac{x \log \log x}{\log x}
$$

Thus in particular we see that the integral in (2) cannot be replaced by $M_{0}(1 / \log x)$.
In this paper we consider similar estimates for the partial sum

$$
S_{1}(x)=\sum_{n \leq x} \frac{f(n)}{n}
$$

in terms of the quantity

$$
M_{1}(\alpha)=\left(\sum_{k=-\infty}^{\infty} \max _{\substack{|t-k| \leq 1 / 2 \\ 1+\alpha \leq \sigma \leq 2}}\left|\frac{F(\sigma+i t)}{\sigma-1+i t}\right|^{2}\right)^{1 / 2}
$$

for $\alpha>0$.

Theorem 2. Suppose that $x \geq 3$, that $f(n)$ is a totally multiplicative function such that $|f(n)| \leq 1$ for all $n$, and that $S_{1}(x)$ and $M_{1}(\alpha)$ are defined as above. Then

$$
\begin{equation*}
S_{1}(x) \ll \frac{1}{\log x} \int_{1 / \log x}^{1} M_{1}(\alpha) \alpha^{-1} d \alpha \tag{3}
\end{equation*}
$$

In Theorem 1 the upper bound obtained is smaller than the trivial bound $S_{0}(x) \ll x$ by at best $(\log \log x) / \log x$, but for $S_{1}$ we are more successful. The trivial upper bound is $S_{1}(x) \ll \log x$, and in the most favorable circumstances we obtain an upper bound that is smaller than this by a factor $(\log x)^{-2} \log \log x$. Because (3) is comparatively farther from the trivial, its proof is more delicate. The hypothesis that $f$ is totally multiplicative could be relaxed to requiring merely that $f$ be multiplicative, but then the proof would become even more complicated. The restriction to totally multiplicative functions is not a hindrance below, since our intended applications pertain to totally multiplicative functions.

It is well-known that the hypothesis that $F(\sigma)=o(1 /(\sigma-1))$ as $\sigma \rightarrow 1^{+}$does not imply that $S_{0}(x)=o(x)$, even when $f(n)$ is a totally multiplicative unimodular function. (For example, if $f(n)=n^{i}$ then $F(s)=\zeta(s-i),|F(\sigma)|$ is uniformly bounded for $\sigma \geq 1$, but $S_{0}(x) \sim x^{1+i} /(1+i)$.) In contrast, by elementary reasoning we may estimate $M_{1}(\alpha)$ in terms of $|F(\sigma)|$, and hence Theorem 2 provides an estimate of $S_{1}$ in terms of $|F(\sigma)|$.

Theorem 3. Suppose that $x \geq 3$, and that $1+\frac{1}{\log x} \leq \sigma \leq 2$. If $f(n)$ is a totally multiplicative function such that $|f(n)| \leq 1$ for all $n$, then

$$
\begin{equation*}
S_{1}(x) \ll|F(\sigma)|(\sigma-1)\left((\sigma-1)^{-4 / \pi}+\log x\right) \tag{4}
\end{equation*}
$$

It is instructive to compare this with the Hardy-Littlewood Tauberian theorem, which (in one form) asserts that if $f(n) \ll 1$ and $F(\sigma)=o(1 /(\sigma-1))$ as $\sigma \rightarrow 1^{+}$, then $S_{1}(x)=o(\log x)$ as $x \rightarrow \infty$. The same conclusion is seen in (4), under more stringent hypotheses. The advantage of Theorem 3 is that it is quantitatively more precise. For example, a quantitative form of the Hardy-Littlewood Tauberian theorem (see Ingham [4]) asserts that if $f(n) \ll 1$ and $F(\sigma) \ll 1$ then $S_{1}(x) \ll(\log x) / \log \log x$. This is only slightly better than the trivial bound, but it is best possible $\left(\right.$ take $\left.f(n)=\cos \left((\log \log n)^{2}\right)\right)$. By comparison, in the more restricted situation of Theorem 3 we have the much better bound $S_{1}(x) \ll(\log x)^{1-\pi / 4}$. Seen in this light, Theorems $1-3$ are quantitative Tauberian theorems whose hypotheses are of an arithmetic nature.

By taking $\sigma=1+1 / \log x$ in Theorem 3 , we see in particular that

$$
\begin{equation*}
S_{1}(x) \ll|F(1+1 / \log x)|(\log x)^{4 / \pi-1} \tag{5}
\end{equation*}
$$

This estimate is sharp, as may be seen by letting $f$ be the totally multiplicative function for which $f(p)=b\left(\frac{1}{2 \pi} \log p\right)$ where $b(u)$ has period 1 and $b(u)=i e^{i \pi u}$ for $0 \leq u \leq 1$. In this case,

$$
S_{1}(x) \sim c_{1} x^{i}(\log x)^{2 / \pi-1}
$$

as $x \rightarrow \infty$, and

$$
F(\sigma) \sim c_{2}(\sigma-1)^{2 / \pi}
$$

as $\sigma \rightarrow 1^{+}$. It may be further shown that

$$
F(\sigma+i) \sim c_{3}(\sigma-1)^{-2 / \pi}
$$

as $\sigma \rightarrow 1^{+}$, and that $M_{1}(\alpha) \approx \alpha^{-2 / \pi}$ in this situation. Here the $c_{j}$ are non-zero complex constants.

The estimates (4) and (5) do not hold if $f$ is merely assumed to be multiplicative instead of totally multiplicative. To see this, suppose that $f$ is the multiplicative function defined by the relations

$$
\begin{aligned}
& f\left(2^{k}\right)=-1 \\
& f\left(p^{k}\right)=p^{k i} \quad(p>2)
\end{aligned}
$$

for $k>0$. Then $|F(\sigma)| \asymp(\sigma-1)$, so the right hand side of $(5)$ is $\asymp(\log x)^{4 / \pi-2}=$ $o(1)$, while in actuality $S_{1}(x) \sim c x^{i}$ as $x \rightarrow \infty$, with $c \neq 0$.

Let

$$
\begin{equation*}
U_{N}(s)=\sum_{n=1}^{N} n^{-s} \tag{6}
\end{equation*}
$$

Turán [10] proved that $U_{N}(s) \neq 0$ in the half-plane $\sigma \geq 1+2(\log \log N) / \log N$, for all large $N$. By introducing the estimate of Theorem 3 into Turán's argument, we obtain the following stronger result.

Theorem 4. Suppose that $U_{N}(s)$ is given by (6). There is a constant $N_{0}$ such that if $N>N_{0}$, then $U_{N}(s) \neq 0$ whenever

$$
\sigma \geq 1+\left(\frac{4}{\pi}-1\right) \frac{\log \log N}{\log N}
$$

In the opposite direction, Montgomery [6] has shown that for each $c<4 / \pi-1$ there is an $N_{0}(c)$ such that if $N>N_{0}(c)$ then $U_{N}(s)$ has zeros in the half-plane $\sigma>1+c(\log \log N) / \log N$.

As an application of Theorem 1, we consider the behaviour of

$$
T(x, n)=\sum_{\substack{m \mid n \\ m \leq x}} \mu(m)
$$

Theorem 5. In the above notation,

$$
T(x, n) \ll x(\log x)^{-1+1 / \pi}
$$

uniformly for $x \geq 2, n \geq 1$.
It is not hard to see that $\max _{n}|T(x, n)|=\Omega\left(x(\log x)^{-1+1 / \pi}\right)$, but Hall and Tenenbaum [3] have shown more, namely that $\max _{n}|T(x, n)| \gg x(\log x)^{-1+1 / \pi}$. Thus the upper bound above is sharp for all $x$.

## 2. Proof of Theorem 2

We first note that $M_{1}(\alpha) \gg 1$ uniformly for $0<\alpha \leq 1$, since

$$
|F(2)| \geq \prod_{p}\left(1+\frac{1}{p^{2}}\right)^{-1}>0
$$

From this we see that we may assume that $x \geq x_{0}$, since the implicit constant may be adjusted to deal with the range $3 \leq x \leq x_{0}$. If we multiply both sides of (3) by $\log x$ then the right hand side is an increasing function of $x$. Also, $\left|S_{1}(x)\right| \log x$ is increasing in each interval $[n, n+1)$. Thus if the equation $|S(x)| \log x=V$ has a root then it has a least root. Hence it suffices to prove (3) when $x$ is a member of the set

$$
\mathfrak{S}=\left\{x \geq x_{0}: x_{0} \leq y \leq x \Rightarrow|S(y)| \log y<|S(x)| \log x\right\} .
$$

Multiply both sides of the identity

$$
\log x=\log n+\frac{(\log n) \log x / n}{\log x}+\frac{(\log x / n)^{2}}{\log x}
$$

by $f(n) / n$ and sum over $n \leq x$ to obtain the relation

$$
\begin{align*}
S_{1}(x) \log x= & \sum_{n \leq x} \frac{f(n)}{n} \log n+\frac{1}{\log x} \sum_{n \leq x} \frac{f(n)}{n}(\log n) \log x / n \\
& +\frac{1}{\log x} \sum_{n \leq x} \frac{f(n)}{n}(\log x / n)^{2} \\
= & T_{1}+T_{2}+T_{3}, \tag{7}
\end{align*}
$$

say. (This is equivalent to integrating the inverse Mellin transform by parts twice.)
Our first step is to show that if $x \in \mathfrak{S}$ then

$$
\begin{equation*}
T_{1}(x) \ll \int_{1}^{x}|S(u)| \frac{d u}{u}+|S(x)| \log \log x \tag{8}
\end{equation*}
$$

We write $\log n=\sum_{d \mid n} \Lambda(d)$, and invert the order of summation. Since $f$ is totally multiplicative, we find that

$$
T_{1}(x)=\sum_{d \leq x} \frac{f(d) \Lambda(d)}{d} \sum_{m \leq x / d} \frac{f(m)}{m}
$$

Since $|f(d)| \leq 1$ for all $d$, it follows that

$$
\begin{equation*}
T_{1}(x) \ll \sum_{d \leq x} \frac{\Lambda(d)}{d}|S(x / d)| \tag{9}
\end{equation*}
$$

We take $h=x / \log x$, and observe that if $x-h \leq v \leq x$, then trivially

$$
\begin{aligned}
T_{1}(x)-T_{1}(v) & =\sum_{v<n \leq x} \frac{f(n) \log n}{n} \\
& \ll h x^{-1} \log x
\end{aligned}
$$

so that

$$
T_{1}(x) \ll h x^{-1} \log x+\frac{1}{h} \int_{x-h}^{x}\left|T_{1}(v)\right| d v
$$

By (9) this is

$$
\ll 1+\frac{1}{h} \int_{x-h}^{x} \sum_{d \leq v} \frac{\Lambda(d)}{d}\left|S_{1}(v / d)\right| d v
$$

Since $S(u)=1$ for $1 \leq u<2$, it follows that the sum over $x / 2<d \leq x-h$ is $\gg 1$ and hence the second term above is $\gg 1$. Thus the above is

$$
\begin{align*}
& \ll \frac{1}{h} \sum_{d \leq x} \frac{\Lambda(d)}{d} \int_{x-h}^{x}\left|S_{1}(v / d)\right| d v \\
& \ll \frac{1}{h} \sum_{d \leq x} \Lambda(d) \int_{\frac{x-h}{d}}^{\frac{x}{d}}\left|S_{1}(u)\right| d u \\
& \ll \frac{1}{h} \int_{1}^{x}\left|S_{1}(u)\right|\left(\sum_{\frac{x-h}{u} \leq d \leq \frac{x}{u}} \Lambda(d)\right) d u \tag{10}
\end{align*}
$$

Write this integral as $\int_{1}^{y}+\int_{y}^{x}$ where $y=x /(\log x)^{2}$. Suppose first that $1 \leq u \leq y$.
Then

$$
\sum_{\frac{x-h}{u}<d \leq \frac{x}{u}} \Lambda(d) \ll \sum_{k \leq 2 \log x} \frac{1}{k}\left(\log \frac{x}{u}\right)\left(\pi\left(\left(\frac{x}{u}\right)^{1 / k}\right)-\pi\left(\left(\frac{x-h}{u}\right)^{1 / k}\right)\right)
$$

Here the last factor counts the number of primes in an interval $\mathfrak{I}=\mathfrak{I}(x, h, u, k)$. This interval is contained in an interval $\mathfrak{I}^{\prime}$ of length $\ll h /(k u)$. By applying the Brun-Titchmarsh inequality to $\mathfrak{I}^{\prime}$ we see that the number of primes in question is $\ll h /(k u \log (4 h /(k u)))$. Hence the above is

$$
\ll \sum_{k \leq 2 \log x} \frac{1}{k}\left(\log \frac{x}{u}\right) \frac{h}{k u \log (4 h /(k u))} \ll h / u
$$

Hence

$$
\begin{equation*}
\int_{1}^{y} \ll h \int_{1}^{y}\left|S_{1}(u)\right| \frac{d u}{u} \tag{11}
\end{equation*}
$$

To treat the remaining range we appeal to our assumption that $x \in \mathfrak{S}$. Since
$\log u \asymp \log x$ in this range, it follows that $S_{1}(u) \ll\left|S_{1}(x)\right|$. On the other hand,

$$
\int_{y}^{x} \sum_{\frac{x-h}{u}<d \leq \frac{x}{u}} \Lambda(d) d u \ll \sum_{d \leq x / y} \Lambda(d) \int_{\frac{x-h}{d}}^{\frac{x}{d}} d u \ll h \sum_{d \leq(\log x)^{2}} \Lambda(d) / d \ll h \log \log x
$$

and hence

$$
\int_{y}^{x} \ll h\left|S_{1}(x)\right| \log \log x
$$

On inserting this and (11) in (10), we obtain (8).
Next we show that

$$
\begin{equation*}
\int_{e}^{x}\left|S_{1}(u)\right| \log u \frac{d u}{u} \ll M_{1}\left(\frac{2}{\log x}\right) \log x \tag{12}
\end{equation*}
$$

By the Cauchy-Schwarz inequality the integral here is

$$
\leq(\log x)^{1 / 2}\left(\int_{2}^{x}\left|S_{1}(u)\right|^{2}(\log u)^{2} \frac{d u}{u}\right)^{1 / 2}
$$

so it suffices to show that

$$
\begin{equation*}
\int_{e}^{\infty}\left|S_{1}(u)\right|^{2}(\log u)^{2} \frac{d u}{u^{1+2 \alpha}} \ll \alpha^{-1} M_{1}(\alpha)^{2} \tag{13}
\end{equation*}
$$

On writing

$$
S_{1}(u) \log u=\sum_{n \leq u} \frac{f(n)}{n} \log n+\sum_{n \leq u} \frac{f(n)}{n} \log u / n
$$

we see that this integral is

$$
\ll \int_{1}^{\infty}\left|\sum_{n \leq u} \frac{f(n)}{n} \log n\right|^{2} \frac{d u}{u^{1+2 \alpha}}+\int_{1}^{\infty}\left|\sum_{n \leq u} \frac{f(n)}{n} \log u / n\right|^{2} \frac{d u}{u^{1+2 \alpha}}
$$

By Plancherel's identity this is

$$
\begin{equation*}
\ll \int_{-\infty}^{\infty}\left|\frac{F^{\prime}(1+\alpha+i t)}{\alpha+i t}\right|^{2} d t+\int_{-\infty}^{\infty}\left|\frac{F(1+\alpha+i t)}{(\alpha+i t)^{2}}\right|^{2} d t . \tag{14}
\end{equation*}
$$

To treat the first of these integrals we break the range of integration into intervals of length 1 and write $F^{\prime}=F \cdot F^{\prime} / F$. Thus the integral is

$$
\ll \sum_{k}\left(\max _{|t-k| \leq 1 / 2}\left|\frac{F(1+\alpha+i t)}{\alpha+i t}\right|^{2}\right) \int_{k-1 / 2}^{k+1 / 2}\left|\frac{F^{\prime}}{F}(1+\alpha+i t)\right|^{2} d t
$$

$$
\ll M_{1}(\alpha)^{2} \sup _{k} \int_{k-1 / 2}^{k+1 / 2}\left|\frac{F^{\prime}}{F}(1+\alpha+i t)\right|^{2} d t .
$$

Thus it suffices to show that

$$
\int_{T-1 / 2}^{T+1 / 2}\left|\frac{F^{\prime}}{F}(1+\alpha+i t)\right|^{2} d t \ll \alpha^{-1}
$$

uniformly for $0<\alpha \leq 1$. To this end we recall that if $\left|a_{n}\right| \leq b_{n}$ for all $n$ then

$$
\begin{equation*}
\int_{T-U}^{T+U}\left|\sum_{n} a_{n} n^{-i t}\right|^{2} d t \leq 3 \int_{-U}^{U}\left|\sum_{n} b_{n} n^{-i t}\right|^{2} d t \tag{15}
\end{equation*}
$$

This is a refined form of an inequality used by Halász [1], [2]. For a simple proof see Montgomery [7, pp. 131-132]. Since

$$
\frac{F^{\prime}}{F}(s)=-\sum_{n=1}^{\infty} f(n) \Lambda(n) n^{-\sigma-i t}
$$

it follows by (15) that

$$
\int_{T-1 / 2}^{T+1 / 2}\left|\frac{F^{\prime}}{F}(1+\alpha+i t)\right|^{2} d t \leq 3 \int_{-1 / 2}^{1 / 2}\left|\frac{\zeta^{\prime}}{\zeta}(1+\alpha+i t)\right|^{2} d t \ll \int_{-1 / 2}^{1 / 2}|\alpha+i t|^{-2} d t \ll \alpha^{-1}
$$

and hence that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\frac{F^{\prime}(1+\alpha+i t)}{\alpha+i t}\right|^{2} d t \ll \alpha^{-1} M_{1}(\alpha)^{2} \tag{16}
\end{equation*}
$$

The second integral in (14) is

$$
\begin{equation*}
\ll \sum_{k}\left(\max _{|t-k| \leq 1 / 2}\left|\frac{F(1+\alpha+i t)}{\alpha+i t}\right|^{2}\right) \int_{k-1 / 2}^{k+1 / 2}|\alpha+i t|^{-2} d t \ll \alpha^{-1} M_{1}(\alpha)^{2} \tag{17}
\end{equation*}
$$

On combining these estimates we obtain (13), and with it (12).
Let $J(x)$ denote the left hand side of (12). By integrating by parts we see that

$$
\int_{e}^{x}\left|S_{1}(u)\right| \frac{d u}{u} \leq \frac{J(x)}{\log x}+\int_{e}^{x} \frac{J(u)}{u(\log u)^{2}} d u
$$

By (12) this is

$$
\ll M_{1}\left(\frac{2}{\log x}\right)+\int_{1 / \log x}^{1} M_{1}(2 \alpha) \alpha^{-1} d \alpha
$$

But $M_{1}(\alpha)$ is decreasing, so the above is

$$
\ll \int_{1 / \log x}^{1} M_{1}(\alpha) \alpha^{-1} d \alpha .
$$

On combining this with (8), we find that

$$
\begin{equation*}
T_{1}(x) \ll \int_{1 / \log x}^{1} M_{1}(\alpha) \alpha^{-1} d \alpha+\left|S_{1}(x)\right| \log \log x \tag{18}
\end{equation*}
$$

We now treat $T_{2}$, as defined in (7). Clearly

$$
T_{2} \log x=\frac{1}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} \frac{F^{\prime}(s+1)}{s^{2}} x^{s} d s
$$

for any $\alpha>0$. For $1 / \log x \leq \alpha \leq 2 / \log x$ this is

$$
\ll \int_{-\infty}^{\infty} \frac{\left|F^{\prime}(1+\alpha+i t)\right|}{|\alpha+i t|^{2}} d t
$$

By the Cauchy-Schwarz inequality this integral is

$$
\ll\left(\alpha^{-1} \int_{-\infty}^{\infty}\left|\frac{F^{\prime}(1+\alpha+i t)}{\alpha+i t}\right|^{2} d t\right)^{1 / 2}
$$

Thus by (16) we see that

$$
T_{2} \ll \frac{M_{1}(\alpha)}{\alpha \log x}
$$

uniformly for $1 / \log x \leq \alpha \leq 2 / \log x$, and hence

$$
\begin{equation*}
T_{2} \ll \int_{1 / \log x}^{2 / \log x} M_{1}(\alpha) \alpha^{-1} d \alpha . \tag{19}
\end{equation*}
$$

We treat $T_{3}$ similarly. For $\alpha>0$ we have

$$
T_{3} \log x=\frac{1}{\pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} \frac{F(s+1)}{s^{3}} x^{s} d s
$$

If $1 / \log x \leq \alpha \leq 2 / \log x$ then this is

$$
\ll \int_{-\infty}^{\infty} \frac{|F(1+\alpha+i t)|}{|\alpha+i t|^{3}} d t
$$

By the Cauchy-Schwarz inequality this is

$$
\ll\left(\frac{1}{\alpha} \int_{-\infty}^{\infty}\left|\frac{F(1+\alpha+i t)}{(\alpha+i t)^{2}}\right|^{2} d t\right)^{1 / 2}
$$

This integral is the second integral in (14), which is majorized in (17). Thus

$$
T_{3} \ll \frac{M_{1}(\alpha)}{\alpha \log x}
$$

uniformly for $1 / \log x \leq \alpha \leq 2 / \log x$, and hence

$$
T_{3} \ll \int_{1 / \log x}^{2 / \log x} M_{1}(\alpha) \alpha^{-1} d \alpha
$$

On combining (18), (19), and the above in (7), we find that

$$
S_{1}(x) \log x \ll \int_{1 / \log x}^{1} M_{1}(\alpha) \alpha^{-1} d \alpha+\left|S_{1}(x)\right| \log \log x
$$

But $\log \log x=o(\log x)$, so the last term on the right is small compared with the left hand side for $x \geq x_{0}$. Thus we have (3), and the proof is complete.

## 3. Proof of Theorem 3

We first establish two lemmas.

Lemma 1. Suppose that $f(n)$ is a totally multiplicative function such that $|f(n)| \leq 1$ for all $n$, and for $\sigma>1$ let $F(s)$ be defined as in (1). If $1<\sigma_{1} \leq \sigma_{2} \leq 2$ then

$$
\frac{\sigma_{1}-1}{\sigma_{2}-1} \ll\left|\frac{F\left(\sigma_{2}\right)}{F\left(\sigma_{1}\right)}\right| \ll \frac{\sigma_{2}-1}{\sigma_{1}-1}
$$

Proof. The quotient in question is

$$
\asymp \exp \left(\Re \sum_{p} f(p)\left(p^{-\sigma_{2}}-p^{-\sigma_{1}}\right)\right) .
$$

Since $|f(p)| \leq 1$, this is

$$
\leq \exp \left(\sum_{p} p^{-\sigma_{1}}-p^{-\sigma_{2}}\right) \asymp \frac{\zeta\left(\sigma_{1}\right)}{\zeta\left(\sigma_{2}\right)} \asymp \frac{\sigma_{2}-1}{\sigma_{1}-1} .
$$

The lower bound is proved similarly.

Lemma 2. Let $f(n)$ and $F(s)$ be as in the preceding lemma. If $1<\sigma \leq 2$ and $|t| \leq 2$ then

$$
\frac{F(\sigma+i t)}{F(\sigma)} \ll\left(1+\frac{|t|}{\sigma-1}\right)^{4 / \pi} .
$$

If $1<\sigma \leq 2$ and $|t| \geq 2$ then

$$
\frac{F(\sigma+i t)}{F(\sigma)} \ll\left(\frac{\log |t|}{\sigma-1}\right)^{4 / \pi}
$$

Proof. We may suppose that $t>0$. Since

$$
\frac{F^{\prime}}{F}(s)=-\sum_{n=1}^{\infty} \frac{\Lambda(n) f(n)}{n^{s}} \ll-\frac{\zeta^{\prime}}{\zeta}(\sigma) \ll \frac{1}{\sigma-1}
$$

it follows that $|F(\sigma+i t)| \asymp|F(\sigma)|$ when $0 \leq t \leq \sigma-1$. As for $t \geq \sigma-1$, we note that the quotient in question has modulus

$$
\begin{align*}
& \asymp \exp \left(\Re \sum_{p} \frac{f(p)}{p^{\sigma}}\left(p^{-i t}-1\right)\right) \\
& \leq \exp \left(2 \sum_{p} \frac{1}{p^{\sigma}}\left|\sin \left(\frac{t}{2} \log p\right)\right|\right) \tag{20}
\end{align*}
$$

Suppose that $\sigma-1 \leq t \leq 2$. Since $|\sin x| \leq x$, the sum over $p \leq e^{1 / t}$ is

$$
\ll t \sum_{p \leq e^{1 / t}} \frac{\log p}{p} \ll 1
$$

Since $|\sin x| \leq 1$, the sum over $p \geq e^{1 /(\sigma-1)}$ is

$$
\ll \sum_{p>e^{1 /(\sigma-1)}} p^{-\sigma} \ll 1
$$

The remaining sum is

$$
\begin{equation*}
\leq \sum_{e^{1 / t}<p \leq e^{1 /(\sigma-1)}} \frac{\left|\sin \left(\frac{t}{2} \log p\right)\right|}{p} \tag{21}
\end{equation*}
$$

Put

$$
L(y)=\sum_{p \leq y} \frac{1}{p}, \quad I(y)=\int_{0}^{y}|\sin u| d u
$$

Thus

$$
L(y)=\log \log y+c+O\left((\log 2 y)^{-2}\right), \quad I(y)=\frac{2}{\pi} y+O(1)
$$

It follows by partial summation that the sum (21) is

$$
\frac{2}{\pi} \log \frac{t}{\sigma-1}+O(1)
$$

when $\sigma-1 \leq t \leq 2$. This gives the stated result in this case.
Now suppose that $t \geq 2$. We write

$$
\begin{equation*}
|\sin \pi \theta|=\sum_{k=-\infty}^{\infty} c_{k} e(k \theta) \tag{22}
\end{equation*}
$$

where $c_{k}=2 \pi^{-1}\left(1-4 k^{2}\right)^{-1}$. The quantity (20) is

$$
\begin{aligned}
\asymp \exp \left(2 \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma} \log n}\left|\sin \left(\frac{t}{2} \log n\right)\right|\right) & =\exp \left(2 \sum_{k=-\infty}^{\infty} c_{k} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{\log n} n^{-\sigma+i k t}\right) \\
& =\prod_{k=-\infty}^{\infty}|\zeta(\sigma-i k t)|^{2 c_{k}} .
\end{aligned}
$$

The term $k=0$ contributes an amount $\asymp(\sigma-1)^{-4 / \pi}$. We let $C$ be a constant such that

$$
|\zeta(\sigma+i t)| \geq \frac{1}{C \log t}
$$

uniformly for $\sigma \geq 1, t \geq 2$. The existence of such a $C$ is assured, for example, by (3.11.18) of Titchmarsh [9]. Since $c_{k}<0$ when $k \neq 0$, the product above is

$$
\ll(\sigma-1)^{-4 / \pi} \prod_{k=1}^{\infty}(C \log \pi k t)^{-4 c_{k}}
$$

Moreover $\log \pi k t \ll(\log \pi k)(\log t)$ and $\sum_{k=1}^{\infty}\left|c_{k}\right| \log \log k<\infty$, so the above is

$$
\ll(\sigma-1)^{-4 / \pi}(\log t)^{-4} \sum_{k=1}^{\infty} c_{k}
$$

By evaluating (22) at $\theta=0$ we see that $\sum_{k=1}^{\infty} c_{k}=-1 / \pi$. Thus the proof of Lemma 2 is complete.

We now use the lemmas to show that if $0<\alpha \leq \beta \leq 1,|t| \leq 1 / 2$, then
(23) $\frac{F(1+\beta+i t)}{\beta+i t} \ll|F(\sigma)|\left(\alpha^{-2}(\sigma-1)+\alpha^{-1}(\sigma-1)^{1-4 / \pi}+\alpha^{1-4 / \pi}(\sigma-1)^{-1}\right)$.

We also show that if $k$ is a non-zero integer, $0<\alpha \leq \beta \leq 1,|t-k| \leq 1 / 2$, then

$$
\begin{equation*}
F(1+\beta+i t) \ll|F(\sigma)|(\log 2|k|)^{4 / \pi}\left(\alpha^{-1}(\sigma-1)^{1-4 / \pi}+\alpha^{1-4 / \pi}(\sigma-1)^{-1}\right) \tag{24}
\end{equation*}
$$

From these estimates it follows immediately that

$$
M_{1}(\alpha) \ll|F(\sigma)|\left(\alpha^{-2}(\sigma-1)+\alpha^{-1}(\sigma-1)^{1-4 / \pi}+\alpha^{1-4 / \pi}(\sigma-1)^{-1}\right)
$$

and then Theorem 3 follows by applying Theorem 2 .
We prove (23) first. Suppose that $\sigma-1 \leq \beta$. By Lemma 2 we see that

$$
\begin{aligned}
\frac{F(1+\beta+i t)}{\beta+i t} & \ll|F(1+\beta)| \frac{\left(1+\frac{|t|}{\beta}\right)^{4 / \pi}}{|\beta+i t|} \asymp|F(1+\beta)| \beta^{-4 / \pi}(\beta+|t|)^{4 / \pi-1} \\
& \ll|F(1+\beta)| \beta^{-4 / \pi}
\end{aligned}
$$

since $|t| \leq 1 / 2$. As $\sigma-1 \leq \beta$, by Lemma 1 this is

$$
\ll|F(\sigma)| \frac{\beta}{\sigma-1} \beta^{-4 / \pi} \ll|F(\sigma)| \alpha^{1-4 / \pi}(\sigma-1)^{-1}
$$

since $\beta \geq \alpha$. This gives (23) in this case. Suppose alternatively that $\beta \leq \sigma-1$. Then by Lemma 1,

$$
\frac{F(1+\beta+i t)}{\beta+i t} \ll \frac{|F(\sigma+i t)|}{|\beta+i t|} \cdot \frac{\sigma-1}{\beta} \ll \frac{|F(\sigma+i t)|}{|\alpha+i t|} \cdot \frac{\sigma-1}{\alpha}
$$

since $\beta \geq \alpha$. By Lemma 2 this is

$$
\ll|F(\sigma)|\left(1+\frac{|t|}{\sigma-1}\right)^{4 / \pi} \frac{\sigma-1}{|\alpha+i t| \alpha}
$$

If $|t| \leq \beta-1$ then the product of the last two factors is $\ll(\sigma-1) \alpha^{-2}$, while if $\sigma-1 \leq|t| \leq 1 / 2$ then the product of the last two factors is $\ll(\sigma-1)^{1-4 / \pi} \alpha^{-1}$. Thus we have (23) in all cases.

We now derive (24). If $\sigma-1 \leq \beta$, then by Lemma 2

$$
F(1+\beta+i t) \ll|F(1+\beta)|\left(\frac{\log 2|k|}{\beta}\right)^{4 / \pi}
$$

By Lemma 1 this is

$$
\ll|F(\sigma)| \cdot \frac{\beta}{\sigma-1}\left(\frac{\log 2|k|}{\beta}\right)^{4 / \pi} \ll|F(\sigma)|(\log 2|k|)^{4 / \pi} \alpha^{1-4 / \pi}(\sigma-1)^{-1}
$$

since $\beta \geq \alpha$. This gives (24) in this case. Alternatively, suppose that $\beta \leq \sigma-1$. Then by Lemma 1 we see that

$$
F(1+\beta+i t) \ll|F(\sigma+i t)| \cdot \frac{\sigma-1}{\beta} \ll|F(\sigma+i t)| \cdot \frac{\sigma-1}{\alpha}
$$

since $\beta \geq \alpha$. By Lemma 2 this is

$$
\ll|F(\sigma)|(\log 2|k|)^{4 / \pi} \alpha^{-1}(\sigma-1)^{1-4 / \pi} .
$$

Thus we have (24) in all cases, and the proof is complete.

## 4. Proof of Theorem 4

We adopt the notation of Theorem 3. By integrating by parts we see that

$$
\sum_{n>N} f(n) n^{-\sigma}=-S_{1}(N) N^{1-\sigma}+(\sigma-1) \int_{N}^{\infty} S_{1}(u) u^{-\sigma} d u
$$

for $\sigma>1$. By (3) it follows that the above is

$$
\ll|F(\sigma)|(\sigma-1)\left((\sigma-1)^{-4 / \pi}+\log N\right) N^{1-\sigma}
$$

when $1+\frac{1}{\log N} \leq \sigma \leq 2$. Since

$$
U_{N}(s)=\zeta(s)-\sum_{n>N} n^{-s}
$$

by taking $f(n)=n^{-i t}$ we deduce that

$$
U_{N}(s)=\zeta(s)\left(1+O\left((\log \log N)^{1-4 / \pi}\right)\right)
$$

uniformly for

$$
\sigma \geq 1+\left(\frac{4}{\pi}-1\right) \frac{\log \log N}{\log N}
$$

Since $\zeta(s) \neq 0$ in this half-plane, it follows that $U_{N}(s) \neq 0$, and the proof is complete.

## 5. Proof of Theorem 5

We apply Theorem 1 with $f(m)=\mu(m)$ when $m \mid n, f(m)=0$ otherwise.
Then

$$
F(s)=\prod_{p \mid n}\left(1-p^{-s}\right)
$$

and we require an estimate for this that is uniform in $n$.

Lemma 3. Suppose that $1<\sigma \leq 2$. If $|t| \leq 2$ then

$$
\begin{equation*}
\prod_{p \mid n}\left(1-p^{-s}\right) \ll 1+\left(\frac{|t|}{\sigma-1}\right)^{1 / \pi} \tag{25}
\end{equation*}
$$

If $|t| \geq 2$ then

$$
\begin{equation*}
\prod_{p \mid n}\left(1-p^{-s}\right) \ll(\sigma-1)^{-1 / \pi} \log |t| \tag{26}
\end{equation*}
$$

Proof. Put $G(s)=\prod_{p \mid n}\left(1+p^{-s}\right)^{-1}$. Since $|F(s)| \asymp|G(s)|$ uniformly for $\sigma \geq 1$, it suffices to estimate $|G(s)|$. We may suppose that $t \geq 0$. Clearly $0<G(\sigma) \leq 1$. Since

$$
\frac{G^{\prime}}{G}(s)=-\sum_{p \mid n} \frac{\log p}{p^{s}+1} \ll-\frac{\zeta^{\prime}}{\zeta}(\sigma) \ll \frac{1}{\sigma-1}
$$

it follows that $G(s) \ll 1$ if $0 \leq t \leq \sigma-1$. Now suppose that $t \geq \sigma-1$. We observe that

$$
\begin{equation*}
|G(s)| \asymp \exp \left(-\sum_{p \mid n} p^{-\sigma} \cos (t \log p)\right) \leq \exp \left(\sum_{p} p^{-\sigma} g\left(\frac{1}{2 \pi} t \log p\right)\right) \tag{27}
\end{equation*}
$$

where $g(x)=-\min (0, \cos 2 \pi x)$. Suppose that $\sigma-1 \leq t \leq 2$, and put $X=\exp (1 / t)$, $Y=\exp (1 /(\sigma-1))$. We observe that $\sum_{p>Y} p^{-\sigma} \ll 1$, and that $\sum_{p \leq Y}\left(p^{-1}-p^{-\sigma}\right) \ll 1$. Hence

$$
\begin{equation*}
G(s) \ll \exp \left(\sum_{X<p \leq Y} p^{-1} g\left(\frac{1}{2 \pi} t \log p\right)\right) . \tag{28}
\end{equation*}
$$

Put

$$
L(y)=\sum_{p \leq y} \frac{1}{p}, \quad I(y)=\int_{0}^{y} g(u) d u .
$$

Thus

$$
L(y)=\log \log y+c+O\left((\log 2 y)^{-2}\right), \quad I(y)=\frac{1}{\pi} y+O(1)
$$

It follows by partial summation that the sum in (28) is

$$
=\frac{1}{\pi} \log \frac{t}{\sigma-1}+O(1)
$$

when $\sigma-1 \leq t \leq 2$. Thus we have (25).
Now suppose that $t \geq 2$. We write $g(x)=\sum_{k} \widehat{g}(k) e(k x)$, and note that $\widehat{g}( \pm 1)=-1 / 4, \quad \widehat{g}(2 k)=\pi^{-1}(-1)^{k+1}\left(4 k^{2}-1\right)^{-1}$, and that $\widehat{g}(k)=0$ otherwise. The expression (27) is

$$
\begin{aligned}
\asymp \exp \left(\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma} \log n} g\left(\frac{1}{2 \pi} t \log n\right)\right) & =\exp \left(\sum_{k=-\infty}^{\infty} \widehat{g}(k) \sum_{n=1}^{\infty} \frac{\Lambda(n)}{\log n} n^{-\sigma+i k t}\right) \\
& =\prod_{k=-\infty}^{\infty}|\zeta(\sigma-i k t)|^{\widehat{g}(k)} .
\end{aligned}
$$

The term $k=0$ contributes an amount $\asymp(\sigma-1)^{-1 / \pi}$. From (3.5.1) and (3.11.18) of Titchmarsh [9] we know that there is a constant $C$ such that

$$
\frac{1}{C \log t} \leq|\zeta(\sigma+i t)| \leq C \log t
$$

uniformly for $\sigma \geq 1, t \geq 2$. Hence the product above is

$$
\ll(\sigma-1)^{-1 / \pi}(\log t)^{A}
$$

where

$$
A=\sum_{k \neq 0}|\widehat{g}(k)|=\frac{1}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1}=\frac{1}{2}+\frac{1}{\pi}<1 .
$$

Thus we have (26), and the proof is complete.

By Lemma 3 we see that $M_{0}(\alpha) \ll \alpha^{-1 / \pi}$ for $0<\alpha \leq 1$. Thus Theorem 5 follows from Theorem 1.

## REFERENCES

[1] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acad. Math. Acad. Sci. Hungar. 19 (1968), 365-403.
[2] G. Halász, On the distribution of additive and the mean values of multiplicative arithmetic functions, Stud. Sci. Math. Hungar. 6 (1971), 211-233.
[3] R. R. Hall and G. Tenenbaum, Effective mean value estimates for complex multiplicative functions, Math. Proc. Cambridge Philos. Soc. 110 (1991), 337-351.
[4] A. E. Ingham, On Tauberian theorems, Proc. London Math. Soc. (3) 14(A) (1963), 157-173.
[5] H. L. Montgomery, A note on mean values of multiplicative functions, Report No. 17, Institut Mittag-Leffler, Djursholm, 1978, 9 pp.
[6] H. L. Montgomery, Zeros of approximations to the zeta function, in: Studies in Pure Mathematics, Birkhäuser, Basel, 1983, 497-506.
[7] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Series, Amer. Math. Soc., Providence, 1994.
[8] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Math. 46, Cambridge University Press, Cambridge, 1995.
[9] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford University Press, Oxford, 1951.
[10] P. Turán, On some approximative Dirichlet-polynomials in the theory of the zetafunction of Riemann, Danske Vid. Selsk. Mat.-Fys. Medd. 24 (1948), no. 17, 36 pp.
(Received: August 10, 2000)
H. L. Montgomery

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1109
U.S.A.

E-MAIL: hlm@math. Isa.umich.edu
R. C. Vaughan

Department of Mathematics
218 McAllister Building
The Pennsylvania State University
University Park, PA 16802-5401
U.S.A.

E-MAIL: rvaughan@math.psu.edu

