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Bayesian Estimation of Isotopic Age Differences 1 

Rane L. Curl z 

Isotopic dating is subject to uncertainties arising from counting statistics and experimental errors. 
These uncertainties are additive when an isotopic age difference is calculated. I f  large, they can 
lead to no significant age difference by "'classical" statistics. In many cases, relative ages are 
known because of  stratigraphic order or other clues. Such information can be used to establish a 
Bayes estimate of  age difference which will include prior knowledge of  age order. Age measurement 
errors are assumed to be log-normal and a noninformative but constrained bivariate prior for  two 
true ages in known order is adopted. True-age ratio is distributed as a truncated tog-normal vari- 
ate. Its expected value gives an age-ratio estimate, and its variance provides credible intervals. 
Bayesian estimates o f  ages are different and in correct order even i f  measured ages are identical 
or reversed in order. For example, age measurements on two samples might both yield 100 ka with 
coefficients o f  variation o f  0.2. Bayesian estimates are 22. 7 ka for age difference with a 75% 
credible interval of[4.4,  43.7] ka. 
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INTRODUCTION 

Many methods exist for dating rocks and sediments, among which those using 
radioactive isotopes are prominent. All methods are subject to errors arising 
from procedural and measurement imprecisions. Classic statistical methods for 
estimating age differences and their confidence intervals suffice when errors are 
small and age differences are large. However, if errors are large and ages are 
similar, classic methods lead to accepting the null hypothesis of  zero age dif- 
ference. 

In some cases, age order is known. An important example, which was a 
primary motivation for this work, is dating of  stalagmites by 23°Th-Z34u dise- 
quilibrium measurements (e.g., Latham et al., 1986). Stratigraphically, lower 
samples are known a priori to be older than upper, regardless of  date order 
found from isotope measurements. Bayesian statistical methods permit impos- 
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ingsuch information and estimating properly ordered age differences from even 
reversed-order data. 

Bayesian methods and interpretations used here were adopted from Gutt- 
man et al. (1982). 

DISTRIBUTION OF DATING ERRORS 

A measured isotopic age xi is assumed to be a sample from a log-normal 
distribution, with error log-variance a~. Thus 

In x i -- N(ln ai, (72) (1) 

where al is true age. Standard deviation oi may be estimated from dating sta- 
tistics as the coefficient of variation of measured age. 

Assuming log-normality assures that measured ages, and confidence lim- 
its, are non-negative. This usually will be true when variance arises primarily 
from one major error source such as counting statistics. 

Two measured ages xl and x2 are assumed independent (dating procedures 
have no covariance) with a joint probability density function (p.d.f.) 

p(x,, x21a,, a2) -- p(xl la,) p(x2la2) (2) 

where true ages are defined a2 > al > 0. Bayes' theorem gives a posterior 
p.d.f, for (a~, a2) as 

p(Xl, X 2 ]al, a2) p(al,  a2) (3) 
p(a,, a2lx,,x2) = p(xl, x2) 

From the p.d.f, for a log-normal distribution (Eq. 1) 

p(x, ,x21al,  a2) o ~ l e x p I l I ( l x l x 2 - -  --~ ~ In XlX} 2a~/ + ( l~  In x2k) 2a2/J)l~ (4) 

BAYESIAN PRIOR 

A noninformative but constrained prior p.d.f, is chosen to be 

p( ln  al, In a2) = k or (5) 

k 
p(al, a2) - (6) 

al a2 
for a2 > al > 0, and zero otherwise. This forces non-negativity and the known 
age order but little more (it has infinite variance). Also, xl and x 2, and hence 
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p (Xl, X 2), are constants for a given pair of age measurements. From Eqs. 3, 4, 
and 6 

p(al ' a2 ]xt, X2 ) ~ 1 exp 1 1 xl 1 x2 ala-~2 - 2  o7 In + In (7) a l /  ~2 a2/ J )  

C O N S T R A I N E D  B A Y E S  E S T I M A T E S  

Conveniently, a~ and a2 may be estimated by means of transformed vari- 
ables 

1 
u = ~ 7 ~  In (8a)  

1 
v = ~75 In (ala2) (8b) 

whence Eq. 7 becomes I E( )2 
p(u, v l x , , x2 )  ocex p - V - U - -  2'___/21nxl 

21/2al 

( )2 1 v + u -  2 ~/21nx 2 
+ 21--/207 

(9) 

from which (by integration and normalization) 

p(u)  = exp (a 2 + a2 ) _j [rc(o 2 

a truncated normal distribution, where 

+ 02)] '/2 ~(~)  u > 0  

(101 

in (X2/X ! ) 
0¢ (0_2 q- 0.2)1/2 (11) 

and • (c~) is the cumulative unit normal distribution function. Expected values 
for u and v, ( u )  and ( v ), from Eq. 10, are 

(02 + o2)'/2 exp (-½c~ 2) 

( u )  = ~575 in + 2rr t/2 rb (c~) (12a) 
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(0-z 2 _ 0-2) exp ( _ 1 ~ 2 )  

1 (12b) 
< v ) = ~7~ In (xlx2) + 217r( 0-2 + o2)]1/2 

,I, (oe) 

Bayes age estimates 81 and 42 are obtained from Eq. 8 as 

8 2 = e x p (  { v }  + { u } ) 2 1 / 2  (13b) 

Credible intervals for age ratios are estimated from 

Pr(_u_ < a < ~ )  = 1 - fl (14) 

where _u_ and g, lower (1 - /3/2)  and upper ( / 3 /2 )  percentage points for Eq. 
10, are given by 

I , (z )  = 1 - (1 - 3') ~(oe) where (15) 

z = (u  } - ( 1 / 2  '/2 ) In (x2/xl) (16) 
1 2 [ ~ ( O  1 -{'- O-2)11/2 

and y = /3/2 and 1 - /3/2 for u and K, respectively. Credible limits for 42 - 
81 are calculated from the limits (u, K ) with ( v ) and Eq. 13. Variance in 82 
- 81 comes primarily from variance in u, and much less by variance in v, and 
therefore a joint credible region is unnecessary. 

A P P L I C A T I O N S  

Equations 11, 12, and 13 use four parameters (xl, x2, al, cr2) determining 
two estimates (41, 42), obscuring the dependence of  the ai, and their difference, 
on the data. The general behavior is shown (Fig. 1) for 0-1 = 02 -- 0-. 

Quantity u, and hence 82/41, is always greater than 1.0, even i fxz /x  I < 
1.0, agreeing with known age order. As expected, 42/41 tends to x2/x, as Xz/X, 
increases or 0- decreases. Age estimates also yield 41 = Xl if 0-1 = 0, and 4 2 = 

X 2 if 0-2 = 0. 
Example 1 (Table 1) shows data for a stalagmite dated by Harmon and 

Curl (1978a,b). Two-sigma standard errors about measured ages overlapped, 
reducing the significance of classic age difference estimates [as pointed out by 
Gascoyne, 1978)]. A Bayesian estimate for age difference is positive with pos- 
itive credible limits. 

Example 2 is from Latham et al. (1986) who regressed point age estimates 
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Fig. 1. Dependence of Bayes point and 75 % 
credible-limit age-ratio estimates on measured 
age ratios for equal coefficients of variation. 
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versus  pos i t i on  in a s t a l agmi te ,  imp l i c i t l y  a c c e p t i n g  a g e - o r d e r  desp i t e  ove r l ap  

o f  al l  ad j acen t  ( and  m a n y  m o r e  d is tant )  s t a n d a r d - e r r o r  in te rva ls .  Desp i t e  large  

unce r t a in ty  in x l ,  £2 - £1 is nea r ly  " c l a s s i c a l . "  C r e d i b l e  in te rva l  l imi ts  are 

pos i t ive .  

E x a m p l e s  3 to 7 are  h y p o t h e t i c a l  cases  to i l lus t ra te  effects  o f  re la t ive  xl 

a n d  x2, and  a for  al  = a2. E x a m p l e s  3 and  4 b o t h  h a v e  x2 /x  l = 2, for  smal l  

or  la rge  a. E s t i m a t e d  age  d i f fe rences  are c lass ica l .  E x a m p l e s  5 and  6 h a v e  x2 

Table 1. Examples of Bayesian Estimates of Age Differences 
i 

No. i Xi ai ill, ka a2 - dl, ka 75% C.I., ka 

1 1 126.0 0.209 124.0 
2 207.0 0.241 212.0 88.0 [33.0, 147.] 

2 1 0.045 2.30 0.024 
2 0.525 0.64 0.550 0.526 [0.11, 1.75] 

3 1 100.0 0.02 100.0 
2 200.0 0.02 200.0 100.0 [95.2, 105.] 

4 1 100.0 0.20 99.7 
2 200.0 0.20 200.6 100.0 [53.5, 151.] 

5 1 100.0 0.02 101.1 
2 100.0 0.02 98.9 2.2 [0.40, 4.40] 

6 1 100.0 0.20 112.0 
2 100.0 0.20 89.3 22.6 [4.40, 43.7[ 

7 I 100.0 0.20 82.5 
2 80.0 0.20 96.9 14.4 [2.50, 29.0] 
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=:.xl, and example 7 has reversed age measurements (x2 < xl ). Estimates ~l 
and 42 are ordered, 42 - ~ are positive, and 75% credible intervals are large. 

DISCUSSION 

At first, estimating ordered dates from reversed measurements appears 
startling. However, Bayesian estimates have only reasonable and desirable 
properties. These include: 

1. 42 > ill: t~l = 42 cannot be accepted. 

2. Classic estimates result for small oi or large x2/x~. 
3. Credible interval estimates have positive limits, but reflect increased uncer- 

tainty when x2 < x~. 

Of course, no guard exists against reversed age measurements resulting 
from systematic errors in dating. To be properly interpreted, Bayesian estimates 
msut be based on data subject only to (approximately log-normal) imprecision. 
However, systematic errors do not lead to contradictory (42 < fi~ ) results, but 
only to large credible intervals. 

In view of these properties of Bayesian estimates of age difference, no 
reason exists for accepting a null hypothesis that al = a2 when it is known, a 
priori, to be false. 
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