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Abstract. A review of wavelet based techniques for the modeling of electromagnetic and optical structures

is provided in this paper. Fundamental theoretical aspects of Multiresolution Analysis are mentioned

along with mathematical properties of wavelet bases that lead to the construction of highly e�cient

numerical schemes and fast algorithms. Applications of such schemes in the ®eld of time and frequency

domain analysis of electromagnetic geometries are shown and the recently developed Multiresolution

Time Domain technique is extensively presented. The analysis and evaluation of wavelet based techniques

indicates their potential to provide fast and accurate solutions, thus broadening the limits of existing

electromagnetic solvers.
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1. Introduction

For more than one decade, wavelet theory has been a ®eld of intensive
multidisciplinary research for mathematicians, physicists and engineers. A
strong motivation for this activity has been provided by the property of many
wavelet bases to exhibit time and frequency localization (Daubechies 1992),
thus broadening the limits of the traditional Fourier analysis of functions and
distributions (Meyer 1992). Due to this property, the use of wavelets has
become an e�cient tool in the study of a variety of applications in di�erent
areas of science and engineering.

Among the areas where wavelet based techniques have shown signi®cant
promise is the solution of boundary value problems, encountered in the
process of numerical modeling of important physical phenomena that con-
tain singularities or sharp transitions. Examples of the latter are the forma-
tion of shock waves in ¯uid dynamics and beam focusing in nonlinear optics
(Bacry et al. 1992). Furthermore, state of the art microwave geometries
typically contain localized ®ne details, whose accurate modeling requires a
high order mesh re®nement. In such cases, the cost of modeling either a
spatially isolated detail or a singularity may adversely a�ect the overall
computational burden of a simulation, unless an adaptive method is
employed. Wavelets and the concept of Multiresolution Analysis (MRA)
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provide a natural framework for the implementation of highly e�cient
adaptive numerical schemes that overcome the well known di�culties at-
tached to multigrid techniques (Berger and Oliger 1984).

According to MRA, an approximation of a function at a certain resolution
can be considered as an approximation of this function at a coarse resolution
(generated by the so called scaling basis functions), successively re®ned by
wavelet functions. Hence, the local regularity of a certain function is merely
re¯ected on the magnitude of its wavelet expansion coe�cients. The latter can
be either retained in computer memory or thresholded to zero (according to
their relativemagnitude), a procedure that adaptively tailors the computer time
and memory demands of the wavelet based algorithm to the problem at hand.

Another aspect of MRA that leads to the construction of fast algorithms is
the Fast Wavelet Transform (Mallat 1989), that allows for the wavelet de-
composition of a given function in a recursive manner at the optimal cost of
O�N� operations.

The combination of these attractive features of wavelet based numerical
analysis has led to the development of both time domain and frequency
domain techniques with signi®cantly improved properties compared to their
conventional counterparts. This paper provides a selective review of such
techniques, emphasizing their application to the solution of electromagnetic
and optical problems.

2. Overview of multiresolution analysis

This section presents a brief overview of the mathematical properties of
wavelets and multiresolution analysis without delving into details that can be
found in relevant texts such as (Daubechies 1992; Meyer 1992). Also, this
analysis is restricted to orthonormal wavelet bases, although non-orthogonal
wavelet systems (for example, biorthogonal wavelets (Cohen et al. 1992)) have
been employed in a number of applications (Aidam and Russer 1998).

2.1. MULTIRESOLUTION APPROXIMATIONS

Wavelet bases are a mathematical tool for hierarchical decomposition of
functions in an orthogonal expansion, according to the general scheme:

f �n� �
X

k

ck/�nÿ k� �
X

j

X
k

dj;kw�2jnÿ k� �1�

where f is assumed to belong to L2�R�1. In Equation (1), the ®rst sum rep-
resents the projection of f �n� onto a subspace V0, that corresponds to an

1 Hilbert space of square integrable functions.
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approximation of f at a `coarse' level of resolution. The basis of V0 is gen-
erated by orthogonal translations of /�n� which is called the scaling function.
The resolution of V0 is successively re®ned by the second sum which consists
of projections of f onto the subspaces Wj, each one being spanned by a
wavelet basis w�2jnÿ k�f g. The function w�n� is called the mother wavelet,
since all other wavelet basis functions wj;k are simply produced by dilations
(for adjustement of resolution) and translations of w. It is noted that a basic
property of the subspaces V0;W0 is:

V0 �W0 � V1 �2�

where V1 corresponds to a level of resolution twice that of V0. This means that
scaling and zero wavelet functions form a basis of orthogonal functions that
spans V1. The notion of a projection of f onto approximation spaces at
successive levels of resolution is explained in Fig. 1.

Recursively,

V0 �W0 � W1 � � � �Wkÿ1 � Vk �3�

In other words, adding one wavelet level, is equivalent to improving the
resolution of an approximation, like the one in Equation (1), by a factor of
two2. Hence, any desired resolution of approximation can be achieved by
adding an appropriate number of wavelet levels.

Fig. 1. Projections of a function f on three approximation spaces V0; V1; V2.

2 Dyadic multiresolution analyses are considered here. In general, modifying the dilation factor for the

generation of the wavelet basis from the mother wavelet can yield other types of MRA.
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The advantage of this approach lies in the dependence of the magnitude of
wavelet coe�cients on the local regularity of f . In particular, wavelet coef-
®cients assume large values near discontinuities or singularities. Therefore,
once a numerical analysis of a problem is performed by expanding the un-
known function in a wavelet basis, high order wavelet coe�cients which are
located away from discontinuities or singularities, typically assume insignif-
icant values that can be thresholded to zero. By this procedure, an adaptive,
temporally moving mesh is implemented.

2.2. WAVELET BASES

The simplest (and oldest) orthogonal wavelet system is the Haar basis (Haar
1910). Its study is useful from a theoretical point of view because it o�ers an
intuitive understanding of many multiresolution properties. Furthermore,
due to its simplicity, this basis is widely employed in a series of applications,
hence its study is also practically interesting.

The Haar scaling function is de®ned as a pulse of unit length:

/�n� � 1; 0 � n < 1
0; otherwise

�
�4�

and the scaling function basis is produced by orthogonal translations of the
latter:

/k�n� � /�nÿ k� �5�

The Haar mother wavelet function is de®ned as:

w�n� �
1; 0 � n < 1=2
ÿ1; 1=2 � n < 1
0; otherwise

8<: �6�

and the basis is now produced by both translations and dilations, as shown in
the de®nition:

wj;k�n� � 2j=2w�2jnÿ k� �7�

In all these de®nitions n is a normalized, dimensionless variable. For exam-
ple, if / or w functions represent a variation along the x-direction of a
computational mesh with a cell size Dx, then simply: n � x=Dx. The Haar
scaling and mother wavelet functions are depicted in Fig. 2, and the mech-
anism, in which multiresolution analysis is brought about by employing this
basis (in the sense of Equation (3)), is qualitatively explained in Fig. 3.
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The Haar basis has an excellent localization in space (or time) domain and
poor localization in the corresponding Fourier domain, as shown in Fig. 4.
Therefore, the Haar basis does not share the typical wavelet property of

Fig. 2. Haar scaling and mother wavelet functions.

Fig. 3. Demonstration of the multiresolution principle.
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combining good localization in both domains (within the limits of the un-
certainty principle (Mallat 1998)). Throughout this work, the following
de®nition has been adopted for the Fourier transform:

F ff g�k� �
Z �1
ÿ1

f �n�ejkn dn �8�

A basis that has also been used in applications, is the cubic spline Battle±
Lemarie basis (Battle 1987). The Battle±Lemarie scaling and mother wavelet
(Fig. 5) are entire domain functions and therefore schemes that are developed
in this basis have to be truncated with respect to space. However, Battle±
Lemarie scaling and wavelets have an excellent localization both in space and
Fourier domains (Fig. 6), a feature that permits an a priori estimate of the
necessary levels of resolution for correct ®eld modeling.

Figs. 4 and 6 also provide an intuitive explanation of the successive ap-
proximation procedure that is connected to multiresolution analysis. Evi-
dently, the scaling function has the Fourier domain pattern of a low-pass
®lter, while the mother wavelet is by the same token a band-pass ®lter. Hence,
scaling functions alone provide a description of `low frequency' character-
istics of a signal, while the addition of wavelets enhances the capability of a
scheme to describe the high frequency content of a signal. This argument also
explains the adaptivity property of wavelet based numerical schemes:
Wavelet coe�cients correspond to high frequency signal variations, in the
absence of which, the value of these coe�cients decays to insigni®cant levels.

Fig. 4. Haar scaling and mother wavelet functions in the Fourier domain.
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3. Wavelet based time domain schemes

The concepts of wavelet based numerical analysis have been successfully ap-
plied to the ®eld of time domain analysis of microwave circuits, with the
introduction of the Multiresolution Time Domain (MRTD) technique
(Krumpholz and Katehi 1996). In fact, several types of MRTD schemes can
be derived, depending on the wavelet basis that is employed for the discreti-

Fig. 5. Battle±Lemarie scaling and mother wavelet functions.

Fig. 6. Battle±Lemarie scaling and mother wavelet functions in the Fourier domain.
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zation of Maxwell's equations. Analysis and study of MRTD has demon-
strated its signi®cantly better performance, in terms of memory and execution
time requirements, than the Finite Di�erence Time Domain (FDTD) tech-
nique (Ta¯ove 1995). The latter has recently become very popular due both to
its versatility and simplicity and the advancement of computer performance
that can nowadays reasonably meet the FDTD computational demands,
which for medium to large scale problems can become extremely high. In this
section, the application of the Method of Moments (MoM) for the derivation
of Time Domain schemes is ®rst demonstrated for a simple, pulse basis. By
extending this method, two MRTD schemes are then derived and analyzed.

3.1. DERIVATION OF TIME DOMAIN SCHEMES BY THE METHOD OF MOMENTS

The formulation of the MRTD technique is based on the observation in
(Krumpholz et al. 1995) that the FDTD scheme can be rigorously derived by
applying the MoM (Harrington 1968). This concept is here explained by
considering the simple example of the one dimensional, one way wave
equation (Krumpholz and Katehi 1997):

oE�z; t�
oz

� 1

c
oE�z; t�

ot
�9�

For the numerical solution of this equation, a discrete space-time mesh is
introduced and the values of the electric ®eld E�mDz; kDt� � k Em are sought
by marching in time. The FDTD scheme for this equation is derived by
approximating the partial derivatives of each side of the equation at a space-
time mesh point mDz; kDt� �, by centered di�erencing (Strikwerda 1989):

oE�mDz; kDt�
oz

� E �m� 1�Dz; kDt� � ÿ E �mÿ 1�Dz; kDt� �
2Dz

� O�Dz2�
� kEm�1 ÿ k Emÿ1

2Dz
�10�

oE�mDz; kDt�
ot

� E mDz; �k � 1�Dt� � ÿ E mDz; �k ÿ 1�Dt� �
2Dt

� O�Dt2�

� k�1Em ÿ kÿ1Em

2Dt
�11�

Simple algebraic manipulation leads to a second-order accurate approxi-
mation of (9):

k�1Em � kÿ1Em � cDt
Dz kEm�1ÿ k Emÿ1� � �12�

� kÿ1Em � s kEm�1ÿ k Emÿ1� � �13�
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where s � �cDt�=Dz is the CFL (Courant±Friedrichs±Levy) number (Strik-
werda 1989). For this scheme to be stable, the CFL number has to be less
than unity. Alternatively, for the discretization of (9) via the MoM, the
electric ®eld E�z; t� is expanded in pulse basis functions (or equivalently Haar
scaling functions) hn�z�f g; hn�t�f g in space and time:

E�z; t� �
X
k;m

kEmhm�z�hk�t� �14�

with

hn�x� � 1; nDx O x < �n� 1�Dx
0; otherwise

�
�15�

Substituting into (9), yields:

X
k;m

kEm
dhm�z�
dz

hk�t� � 1

c

X
k;m

kEmhm�z� dhk�t�
dt

�16�

Then, (16) is sampled in space and time using the complex conjugate of the
basis functions themselves as testing functions (Galerkin method). To carry
out the testing procedure, the following integrals are employed:

Z �1
ÿ1

hn�x�dhn0 �x�
dx

dx � 1

2
dn0;n�1 ÿ dn0;nÿ1
ÿ � �17�

Z �1
ÿ1

hn�x�hn0 �x�dx � dn0;nDx �18�

where dn0;n is Kronecker's delta:

dn0;n � 1; if n0 � n
0; if n0 6� n

�

Hence, testing the left handside of (16):

Z �1
ÿ1

Z �1
ÿ1

dzdt hm�z� hk�t� oE�z; t�
oz

�
X
k0;m0

dm0;m�1 ÿ dm0;mÿ1
ÿ �

dk0;k k0Em0
Dt
2

� kEm�1 ÿ k Emÿ1� �Dt
2

�19�
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while testing the right handside of (16):Z �1
ÿ1

Z �1
ÿ1

dzdt hm�z�hk�t� 1c
oE�z; t�

ot
�
X
k0;m0

dm0;m dk0;k�1 ÿ dk0;kÿ1
ÿ �

k0Em0
Dz
2c

� k�1Emÿ kÿ1Em� �Dz
2c

�20�

It is thus easily concluded that Equation (13) is again derived and therefore
the two methods for approximating (9) in a discrete space are found to be
equivalent.

In a similar manner, expanding the electric and magnetic ®elds in scaling
and wavelet functions and applying the MoM for the discretization of
Maxwell's equations (as indicated in the previous section), the MRTD
scheme is derived. In this case, the ®eld expansion in (14) writes:

E�z; t� �
X
k;m

kE/
m/m�z�hk�t� �

X
k;m

XRmax

r�0

X2rÿ1

p�0
kE

wr;p
m wr

m;p�z�hk�t� �21�

where Rmax is the maximum wavelet order that has been introduced. Also,

/m�z� � /
z
Dz
ÿ m

� �
�22�

is a scaling basis produced by a scaling function / and

wr
m;p�z� � 2r=2w 2r z

Dz
ÿ m

� �
ÿ p

� �
�23�

with p � 0; 1; . . . ; 2r ÿ 1. Hence, a slightly modi®ed de®nition with respect to
(1) is used for the wavelet basis here, in order to keep a correspondence
between the cell index m of the scaling and the wavelet functions. The
modi®ed ®nite di�erence equations for the MRTD approximation of (9) are
now dependent on the form that the following integrals assume in a given
wavelet basis:

I/;/
n;n0 �

Z �1
ÿ1

/n�z�
d/n0 �z�

dz
dz

I/;w
n;n0 �

Z �1
ÿ1

/n�z�
dwr

n0; p�z�
dz

dz

Iw;/
n;n0 �

Z �1
ÿ1

wr
n; p�z�

d/n0 �z�
dz

dz

Iw;w
n;n0 �

Z �1
ÿ1

wr
n; p�z�

dwr0
n0; p0 �z�
dz

dz:

�24�

666 C.D. SARRIS ET AL.



3.2. BATTLE±LEMARIE MRTD SCHEMES

As an example, for the Battle±Lemarie scaling function (Krumpholz and
Katehi 1997):Z �1

ÿ1
/n�z�

d/n0 �z�
dz

dz �
Xi�15

i�ÿ15
a�i�dn0;n�i �25�

where the coe�cients a�i� are numerically computed in the spectral domain,
utilizing the spectral form of the Battle±Lemarie scaling function:

F /f g�k� � 1ÿ 4

3
sin2

k
2

� �
� 2

5
sin4

k
2

� �
ÿ 4

315
sin6

k
2

� �� �ÿ1
2 sin k

2

ÿ �
k
2

 !4

:

�26�
The truncation of the in®nite summation in (25) is possible due to the
exponential decay of the magnitude of a�i�'s for increasing values of i. Note
that i represents the separation between /n;/n0 .

Considering for the sake of simplicity that the electric ®eld has been
expanded in Battle±Lemarie scaling functions only (S-MRTD), based on
(25), the discretized form of (9) according to this scheme is (instead of (13)):

k�1E/
m � kÿ1E/

m �
cDt
Dz

Xi�na

i�ÿna

a�i� kE/
m�i �27�

It is evident in the latter expression, that due to the entire domain nature of
the Battle±Lemarie basis, the stencil of the method extends over 2na � 1
points. A choice of na � 15 brings about a truncation error that is absolutely
less than 0:1%. In mathematical terms, S-MRTD approximates the spatial
partial derivative o=oz that appears on the right hand-side of the wave
equation (9) by a thirty one point sum, while FDTD approximates the same
expression by a second order accurate centered di�erence. In addition, the
extended stencil of the method, and the non-localized character of the basis
functions, calls for the use of the image principle for the modeling of local-
ized, hard boundary conditions, such as perfect electric/magnetic conductors
(Katehi et al. 1998).

Because of the high order (multi-point) approximation of spatial deriva-
tives that they employ, Battle±Lemarie MRTD schemes have a highly linear
dispersion behavior3 (Krumpholz and Katehi 1996), that allows for the
e�cient modeling of electromagnetic structures at discretization rates that

3 The e�ect of phase errors in the solution of a partial di�erential equation because of the discretization of

the continuous interval on which it is de®ned is called numerical dispersion.
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approach the Nyquist limit (k=2). Therefore, an economy in memory of up to
two orders of magnitude compared to the conventional FDTD is attainable
by this method. Space adaptivity via thresholding of wavelet coe�cients has
been shown to further extend the computational e�ciency of the method
(Tentzeris et al. 1997), providing a straightforward implementation of
adaptive subgridding.

On the other hand, high order approximations of spatial derivatives in-
volved in Battle±Lemarie MRTD schemes, have as a negative consequence
the decay of the stability factor of the latter, which becomes even more
dramatic with the addition of wavelets. In particular, for a three dimensional
S-MRTD scheme for the solution of Maxwell's curl equations in a uniform
grid Dx � Dy � Dz � D, the choice of the time step is limited by the condition
(Krumpholz and Katehi 1996):

Dt � 0:368112
D
c

�28�

while the respective condition for FDTD is (Ta¯ove 1995):

Dt � 0:57735
D
c

�29�

By adding only one level of wavelets, the condition in (28) becomes
(Krumpholz and Katehi 1996):

Dt � 0:253064
D
c

�30�

As an example, results from a three dimensional S-MRTD scheme applied to
an air-®lled, rectangular waveguide cavity of dimensions 1m� 2m� 1:5m
are shown in Table 1 (Krumpholz and Katehi 1996; 1997). By inspection of
these results, the conclusion that Battle±Lemarie MRTD allows the use of
coarse grids (MRTD grid is in this case coarser by a factor of ®ve per

Table 1. Resonant frequencies of an air-®lled cavity with S-MRTD (Battle±Lemarie scaling functions

only) and FDTD (Krumpholz and Katehi 1997)

Analytic values (MHz) 2 ´ 4 ´ 3 MRTD (MHz) 10 ´ 20 ´ 15 FDTD (MHz)

125.00 125.10 124.85

180.27 180.50 179.75

213.60 214.60 212.40

246.22 248.70 244.50

250.00 251.00 248.70

301.04 303.90 298.95

336.34 339.20 334.35
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dimension compared to FDTD), yet maintaining an excellent accuracy, is
deduced.

The generality of the moment method approach for deriving time domain
schemes and the capability of the Battle±Lemarie basis to become a tool for
memory e�cient numerical modeling, have been demonstrated by the
S-MRTD analysis of nonlinear pulse propagation (Krumpholz et al. 1997).
In this work, the moment method is used to discretize a system of equations
of the form:

oEF

oz
� n0

c
oEF

ot
� jjEBe

ÿ2jDbz � jc jEF j2 � 2jEBj2
� �

EF

oEB

oz
� n0

c
oEB

ot
� jjEF e

ÿ2jDbz � jc jEBj2 � 2jEF j2
� �

EB:
�31�

This set of equations, derived in (Winful 1985), describes the coupling be-
tween the forward and the backward ®elds, EF ;EB under the slowly varying
envelope approximation. Qualitatively, the cubic terms of the right hand side
correspond to self-phase modulation, while the linear terms on the left hand
side correspond to the dispersive coupling between the forward and the
backward ®elds. FDTD and MRTD pulse modeling results and requirements
are compared in Table 2. It becomes evident that even one tenth of the
FDTD grid points is su�cient for MRTD to yield a reasonably accurate
approximation of the peak of the transmitted pulse.

Moreover, the range of applications that have been demonstrated so far
includes printed transmission line analysis (Tentzeris et al. 1996), nonlinear
circuit modeling (Roselli et al. 1998), complex air-dielectric boundary
problems and antenna geometries (Robertson et al. 1999). For the e�cient
simulation of open boundaries, a perfectly matched layer absorber for
MRTD has been recently proposed (Tentzeris et al. 1999) and 8±16 cells are
su�cient to obtain re¯ections limited to less than ÿ80 dB.

3.3. HAAR MRTD SCHEMES

Due to their relative simplicity, Haar MRTD schemes present an attractive
alternative to their entire domain counterparts and have therefore become

Table 2. Peak intensity of the transmitted pulse in a nonlinear medium via FDTD and MRTD

(Krumpholz et al. 1997)

Grid points FDTD MRTD

100 ± 10.407

200 7.969 10.623

500 10.189 ±

1000 10.562 ±
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the subject of several studies in the recent literature (Goverdhanam et al.
1997; Fujii and Hoefer 1998; Goverdhanan and Katehi 1999). In addition,
arbitrary order Haar MRTD schemes that provide the potential of per-
forming dynamically adaptive simulations with arbitrary order mesh re®ne-
ments have been presented (Sarris and Katehi 1999a, b). The formulation of
the latter is based on the closed form evaluation of integrals of the same type
as the ones in Equation (24).

A disadvantage of the Haar basis is that its spectral characteristics do not
permit a very coarse gridding close to the Nyquist limit at the scaling func-
tion level. However, when a su�ciently dense scaling grid (of at least ®ve
points per wavelength) has been introduced and still a local mesh re®nement
is necessary for the modeling of some geometric detail, a Haar MRTD
scheme with several orders of wavelets can be the method of choice.

As an example, the TEM propagation of a 0±20 GHz Gaussian pulse
down a transmission line is simulated with a second order Haar wavelet
scheme (of three wavelet levels). The parameters of the simulation are given
in Table 3. The direction of propagation is the z-axis and the electric ®eld has
its only component parallel to the x-axis.

The scaling cell is chosen to be kmin=5 and therefore, the resolution of this
scheme is equal to fourty points per wavelength. In Fig. 7, the propagating
pulse as modeled by this scheme is compared to the exact solution of the
problem. An excellent correspondence of the MRTD solution to the exact
solution can be observed. Despite the relatively coarse scaling grid, the
MRTD solution is shown to be numerically dispersionless, preserving
throughout its propagation the maximum value of the pulse. The absolute
values of the individual scaling and wavelet contributions to the pulse at a
certain time step are shown in Fig. 8. From this ®gure it also becomes evident
that wavelet terms assume signi®cant values at regions of high pulse deriv-
atives. In addition, the higher the order of a wavelet term, the more con-
centrated around the derivative peak is the region where this term becomes
signi®cant.

Due to the latter property, signi®cant economy in memory requirements of
MRTD with respect to FDTD is expected. For the case study of the wave
propagation that was earlier presented, this advantage is demonstrated in
Fig. 9, where the number of MRTD coe�cients for Ex after thresholding

Table 3. Parameters of the Haar wavelet simulation of TEM pulse propagation (Fig. 7)

Parameter Value

fmax 20 GHz

Time step, Dt 2.25 psec

Space step, Dz 1.5 mm

CFL number 0.9
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with an absolute threshold of 10ÿ6 is compared to FDTD coe�cients for the
same resolution, and their ratio (%) is plotted. It is observed that this ratio
starts from 0:125 � 1=8 as expected since at the beginning of the simulation
all coe�cients are zero and therefore only scaling terms remain after thres-
holding. As the pulse propagates along the transmission line, the ratio
gradually increases, but still remains limited to less than 0:25. The thres-
holded and unthresholded waveforms are presented in the same ®gure, where

Fig. 7. Haar wavelet modeling (2nd order scheme) of TEM pulse propagation.
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excellent agreement between the two is observed. Hence, for the relatively
low threshold of 10ÿ6, signi®cant economy in memory has been achieved,
while the accuracy of the solution has also been maintained.

Fig. 8. Decomposition of the pulse (at t � 550Dt) into its multiresolution constituents.

672 C.D. SARRIS ET AL.



A stability analysis of Haar MRTD shows that the minimum time step that
renders the scheme stable is twice that of FDTD for the same resolution
(equal number of degrees of freedom). In particular, for a three dimensional
scheme, where wavelets of order R have been introduced in all three direc-
tions, and Dx � Dy � Dz � D, the stability condition for the time step is:

Dt � 0:57735
D
2Rc

�32�

For the FDTD scheme to achieve the same resolution, cell sizes: Dx � Dy �
Dz � D=2R�1 have to be de®ned, corresponding to a stability condition that
reads:

Dt � 0:57735
D

2R�1c
� 2� 0:57735

D
2Rc

�33�

and limits the FDTD time step to half the MRTD time step at maximum.

4. Wavelet based frequency domain schemes

For the frequency domain analysis of electromagnetic geometries, the MoM
has long been established as a tool for rigorous study. However, integral

Fig. 9. Memory compression in Haar MRTD (2nd order) and comparison of thresholded and unthres-

holded waveforms, for a threshold of 10ÿ6 at the time step k � 1000Dt.
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based techniques combined with MoM, often lead to matrix equations that
are di�cult to be numerically solved due to their large number of unknowns
and the non-sparse character of the matrix. Therefore, a major challenge for
the successful application of MoM to problems of interest, is the choice of
appropriate basis functions that render the matrix sparse, thus facilitating the
numerical treatment of the related system of equations. A study of the rep-
resentation of operators in wavelet bases has led to the conclusion, that the
projections of integral operators onto wavelet bases usually correspond to
highly sparse matrices (Beylkin et al. 1991). Since those matrices enjoy very
good condition numbers, removing matrix elements of relatively small
magnitude by a thresholding procedure does not result in signi®cant degra-
dation of the accuracy of the solution. Furthermore, this thresholding pro-
cedure amounts to removal of ill-conditioned elements from the moment
matrix at the cost of losing some details (Sabetfakhri 1995). The construction
of fast numerical algorithms is also assisted by an inherent property of the
wavelet transform, according to which coe�cients at a certain resolution can
be recursively derived from coe�cients at ®ner resolutions, by an iterative,
®ltering-like procedure (Mallat 1989). Hence, moment matrix elements at
consecutive resolution levels can be recursively computed by the elements
corresponding to the highest resolution. These concepts have been applied to
a large number of guiding and radiating structures (Steinberg and Leviatan
1993; Sabetfakhri and Katehi 1995; Wang and Pan 1995). In these applica-
tions, taking full advantage of the wavelet transform properties has led to
e�cient numerical solvers combined with highly sparse moment matrices.

As an example, the two dimensional problem of electromagnetic ®eld
scattering from a slab waveguide of dielectric permittivity �r (Fig. 10) is
considered. For the integral equation formulation of the problem, the

Fig. 10. Dielectric slab geometry.
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dielectric region is replaced by a polarization current �Jp extending over that
region and given by the formula:

�Jp�x; y� � jx�0 �r ÿ 1� � �E�x; y� jxj � a=2; 0 � y � b �34�
Then, the electric dyadic Green's function of the problem (here corre-
sponding to free space) is determined in the form (Yaghjian 1980):

��Ge�x; y; x0; y0� � ��Goe�x; y; x0; y0� � ẑẑ
1

k20
d�xÿ x0�d�y ÿ y0� �35�

Also, the total electric ®eld is divided into the (known) incident and the
(unknown) scattered ®eld:

�E�x; y� � �Ei�x; y� � �Es�x; y� �36�
Considering the scattered ®eld as the response of the structure to the exci-
tation of the polarization current �Jp (that is induced by the interaction of the
incident ®eld with the dielectric slab), the electric ®eld integral equation is
written as (Chew 1990):

�Es�x; y� � ÿjxl
ZZ

slab

dx0dy0 ��Ge�x; y; x0; y0� � �J p�x0; y0� �37�

By a simple algebraic manipulation, the latter can be cast in the form:

1

�rÿ1
��I ÿ ẑẑ

� �
� �J p�x; y�ÿ k20

ZZ
slab

dx0dy0 ��Goe � �J p�x0; y0� � jx�0 �Ei�x; y� �38�

Assuming that the incident ®eld is vertically polarized,

�Ei�x; y� � ẑE0e
ÿj�ki � �r � ẑE0e

ÿjk0x cos hi�jk0y sin hi �39�

both the scattered ®eld and the polarization current are in the same direction.
Hence, the unknown in (38) is the z-component of the polarization current,
Jpz. Also, assuming that the slab is su�ciently thin in the y direction, Jpz can
be considered as a function of x only (reduction to one dimension). For the
solution of this problem, the MoM (Harrington 1968) combined with Mul-
tiresolution Analysis is applied. First, Jpz�x� is expressed as a multiresolution
expansion:

Jpz�x� �
X

k

ck/
x
Dx
ÿ k

� �
�
X

j

X
k

dj;kw 2j x
Dx
ÿ k

� �
�40�
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Similarly, the incident ®eld is expanded as:

E0e
ÿjk0x cos hi �

X
k

E/
i;k/

x
Dx
ÿ k

� �
�
X

j

X
k

E
wj

i;kw 2j x
Dx
ÿ k

� �
�41�

The discretization rate Dx de®nes the resolution of the scaling function and
presents an initial crude approximation of the solution that is re®ned by the
wavelet levels. Substituting (40) and (41) into (38) and testing the resulting
expression with the complex conjugate of the basis functions, results in a
linear system of equations with respect to the unknown coe�cients ck, dj;k, of
the form:

A// A/w

Aw/ Aww

" #
� �c

�d

� �
� �E

/

i

�Ew
i

" #
�42�

where the multiresolution expansion coe�cients ck; dj;k;E
/
i;k;E

wj

i;k have been
incorporated into the vectors c; d;E

/
i ;E

w
i respectively.

While a well known bottleneck of this method is that for conventional
bases, the matrix of the linear system (42) is densely populated and poorly
conditioned, the use of wavelet bases renders this matrix sparse and signi®-
cantly improves the condition number of the system. In the literature, matrix
sparsities of even 99% have been reported (Sabetfakhri and Katehi 1996). In
this example, the use of Haar basis leads to a matrix sparsity of 82.7%
(originally the matrix had 65� 65 elements), while a Battle±Lemarie basis
leads to a higher matrix sparsity of around 95% (originally the matrix had
297� 297 elements). In both cases, the moment matrices were rendered
sparse by thresholding to zero all matrix elements whose magnitude was less
than .01 of the maximum magnitude of all matrix entries. The structure of the
moment matrix for each of the two case studies is shown in Figs. 11 and 12
respectively.

Finally, it is noted that the e�ect of the thresholding procedure on the
accuracy of the solution is of the order of the threshold itself, mainly because
of the good condition numbers that multiresolution moment matrices enjoy.

5. Conclusion

Several aspects regarding the application of wavelets to the numerical
modeling of electromagnetic structures have been presented. It has been
shown that the introduction of this relatively new theory to the ®eld of
electromagnetics has positively a�ected the existing time and frequency do-
main modeling techniques, improving their e�ciency as well as their capa-
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bility to treat large scale, complex problems. Although the scope of this study
was to provide a general view of wavelet based techniques, it is hoped that it
has also provided the necessary pointers that the interested reader may ex-
ploit to transfer the herein presented concepts to his/her own ®eld of study.

Fig. 11. Moment matrix structure for Haar wavelet MoM: A 1% threshold has given an 82.7% sparsity.

Fig. 12. Moment matrix structure for Battle±Lemarie wavelet MoM: A 1% threshold has given a 95%

sparsity.
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Among the ®elds in which further application of wavelet based numerical
analysis seems to be quite promising are circuit problems for CAD appli-
cations and nonlinear optics problems, in which the localized singular
structure of the solution can be adaptively modeled by means of locally
introduced wavelets.
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