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Introduction 

Geometric singularities constitute a fairly well explored area in linear elasticity. The 
earliest studies done by Williams [1, 2] start with an assumption about the general structure 
of  the singularity, and then establish by calculation when such a singularity exists and 
explore its more precise nature. The hazard in this approach is that possible singular 
states can be missed. A safer and more systematic method is to use a Mellin transform, 
which was first employed for this purpose in linear elasticity by Sternberg and Koiter  [3]. 
A very thorough study of geometric singularities in bodies consisting of  two different 
materials has since been carried out by Bogy and Wang [4, 5]. 

Geometric singularities arise also in contact problems when one of  the bodies has a 
sharp edge. The frictionless contact has been treated by Dundurs and Lee [6]. The effect 
of  friction has more recently been investigated by Gdoutos  and Theocaris [7]. Both studies 
take the body with the smooth surface as an elastic half space and the body with the sharp 
corner as a wedge. It was shown by Dundurs and Lee using a Mellin transform that  no 
singularities develop for wedges that are relatively soft in comparison to the half  space 
and have small angles. In contrast, power singularities arise for more blunt wedges made 
of  a stiffer material. Furthermore,  a logarithmic singularity separates the regions of  no 
singularities and power singularities. The investigation by Gdoutos  and Theocaris, which 
employs the Williams technique, concludes that no singularities may appear  in contact 
with friction under circumstances similar to the frictionless case, provided the bodies slip 
with respect to each other. The purpose of this note is to explore the nature of  the singularity 
under frictional slip in more detail, and to display experimental results showing that the 
difference between very low and very high friction clearly shows in photoelastic tests. 

Theoretical Results 

The use of the Mellin transform in studying the nature of geometric singularities has 
been explained by Bogy [4], and hence we give only the results. The possible singular states 
in the vicinity of  the vertex of the wedge are determined by the character of  the determinant 

which appears in the Mellin transform of  the elastic fields. The following criterion for 
judging the nature of the singularity may be repeated from the aforementioned paper  by 
Bogy: I f p  is a zero of  ~ in the strip 0 < Re (p) < 1, the orders of the singularities in the 
stresses as r --~ 0 are: 

tTtj = 0(r p - l )  for p real and 0 < p  < 1, 

0 [ r~ - l cos ( -q logr ) ]  or [ r~- l  sin (~/ log r)] 
for p = s e + i T /  complex and 0 < ~ < 1, 

0( logr)  for p = 1 and O~/Op = 0 at p = 1, 

0(1) for no zeroes o f ~  in 0 < Re(p)  < 1 and O~/Op ~ 0 at p = 1. (1) 
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Figure 1 
Wedge in contact with a half space. 

We use the same notation as in the paper by Dundurs and Lee [6] which treats the 
frictionless case; the labeling of the materials is shown in Fig. 1. The boundary conditions 
at the interface between the half space and the wedge specify continuity of normal displace- 
ments and normal tractions, and incorporate the Coulomb law of dry friction. The nature 
o f  the singularity at the vertex o f  the wedge depends on the direction in which the wedge slips 
with respect to the half space. However, both possible directions can be treated at the same 
time by letting the coefficient of friction assume also negative values. Thus, i fp denotes the 
coefficient of friction, positive values of p correspond to the wedge slipping with respect 
to the half space in the positive direction of x, while negative values of p indicate slip in 
the opposite direction. This becomes clear from the boundary condition 

o,0 = -pore0, ooo < 0 (2) 

on x > 0, y = 0 by considering the customary sign convention for cr,o and ~e0. 

Following the same steps as in the paper by Bogy [4], a rather tedious calculation 
yields the determinant in the Mellin transform of the elastic field as 

~ ( p ;  ~,, ~, fl, p) = 8(1 + p) sin prrF(p; 7, ~, fl, P) (3) 

where 

F(p; 7, c~, fl, p) = (1 + ~x) cos p'tr(sin 2 py - p2 sin 2 7) + �89 - ~) sin prr(sin 2py + p sin 27) 

+ p s i n p T r [ ( 1  - a)p(1 + p) sin 2 7 - 2fl(sin2py - p2 sin 2 7)] (4) 

and ~/is the wedge angle. Furthermore, 

(/~2//zl)(rx + 1) - (K2 + 1) (/z2//~l)(K1 - 1) - (r2 - 1) 
,~ = , /~ = (5) 

(~2/m)('q + I) + ,~ + I (~2/m)('q + l) + ,~2 + 1 

are the parameters introduced by Dundurs [8] characterizing the mismatch in the elastic 
constants of the two materials, in which x = 3 - 4v for plane strain, with v denoting 
Poisson's ratio. Taking into account the different labeling of the materials and sign 
convention on p, the function F(p; 7, ~x, fl, p) is seen to be essentially the same as that given 
by Eq. (8) in the paper by Gdoutos and Theocaris [7]. 

The appearance of oscillating singularities is connected with complex roots of 
F(p; 7, ~, fl, P) in the strip 0 < Re (p) < 1. For p = 0, this function is 

F(p; 7, ~,fl, 0) = (1 + c 0 cosp~r(sin2F7 - p2 sin 2 7) + �89 - c 0 sinFrr(sin 2/W + p sin 27) 

(6) 
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which, except for the opposite sign, is the same as the determinant given by Eq. (4) in the 
paper  by Dundurs and Lee [6]. Dundurs and Lee remark that it does not  seem possible to 
prove analytically the absence of complex roots  in the strip 0 < Re (p) < 1. They claim, 
however, that a systematic numerical study has provided convincing evidence that no such 
complex roots exist. Since F(p;  y, t~, fl, p) is much more complicated than F(p ;  y, a, fl, 0) 
the question of complex roots  will be left open in this note. 

Power singularities are related to the real roots  of  F (p ;  y, t~, fl, p) in the interval 
0 < p < 1. A numerical study of these roots for y = 60 ~ 90 ~ and 180 ~ was carried out by 
Gdoutos  and Theocaris [7]. Their display of  the results in the Dundurs parallelogram [8] 
for discrete values o f p  reveals that, similarly to the frictionless case, no power singularities 
appear for certain combinations of wedge angles and elastic constants. It is possible, 
however, to express analytically the demarcation between power singularities and no power 
singularities. Note first that F(1 ;y ,  c~, fl, p) = 0 for all combinations ofly, la,]fl,:and!p. 
Suppose now that 0 < p = PI < 1 is a root  of  F(p ;  ),, cr fl, p) 0 for a set of  values of 
y, a, fl and p. Since F i s  a continuous and differentiable function of  p, it has then a relative 
extremum between p = pl ,  and p = 1. Next suppose that, say, y is varied for fixed values 
of  tz, fl and p so that p l  ~ 1. In such case the relative extremum also approaches p = 1. 
Furthermore,  the study of the roots of  F (p ;  y, co, fl, p) for discrete values of  the physical 
parameters in [7] indicates that there is at most one real root  in the interval 0 < p < 1. 
Hence the locus separating the regimes of power singularities and no power singularities 
corresponds to 

~F(1 ; 7', a, fl, p) = 0. (7) 
~p 

Applying (7) to (4), the result is 

(~r + y) cos y + (~rp - 1) sin 
= (8) 

(9 - y) cos y + (~rp + 1) sin 

The results based on (8) are displayed in Fig. 2 for discrete values of the friction coefficient 
p. To the left and below any of  the curvesp = const (i.e., when = is replaced with < in the 
last expression), no power singularities are possible, whereas they may appear to the right 
and above these loci. The rather unexpected result is that, depending on the direction of  
relative slip between the bodies, friction may prevent the appearance of  power singularities 
and thus alleviate stress concentration effects. I t  is seen that  slip of  the wedge in the positive 
direction of  x has a beneficial effect, but that slip in the opposite direction is detrimental.  
One should realize, however, that the direction of slip depends on factors that do not  enter 
into a study of possible singular states, In fact, the direction of slip is one of  the unknowns 
in the general problem when two finite bodies are pressed together by, say, specified surface 
tractions. It also is possible that the bodies do not  slip at all. In  such case the singularities 
for perfect bond studied by Bogy [4], and Gdoutos  and Theocaris [7] will appear  at the 
sharp edge. 

Perhaps the most important  addit ional observation that  can be made on basis of  the 
determinant in the Mellin transform given by (3) pertains to the logarithmic singularities. 
Differentiating (3), 

-~p -- 8 (1 + p) sinprr ~-p + [rr(1 + p) cos/~r  + s in /~r]F �9 (9) 

F rom (9) and (3), it is seen that  ON/Op = N = 0 for p = 1 and, consequently logarithmic 
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Figure 2 
Loci separating regions of power and no power singularities. 

singularities are possible for all wedge angles. This result can be understood on the basis that 
the normal tractions between the bodies or (r00 are not likely to vanish at the vertex of  the 
wedge (x = 0 +) even for small wedge angles. In such case the shearing tractions or0 have 
a jump discontinuity from x = 0 § to x = 0 -  on basis of  (2). It is known, however, that 
a jump discontinuity in shearing tractions leads to a logarithmic singularity in the tangential 
component of  normal stress, or ~r, in the present case. 

Experimental Observations 

Some photoelasticity experiments were done in order to see the difference in the 
isochromatic patterns caused by high versus low friction. The models were made of  Hysol. 
The bot tom body was a rectangular block. The top body with a sharp corner was pressed 
against the straight face of the bot tom block. The coefficient of  friction between the blocks 
was estimated to be near 1.0 under dry conditions. Lubrication was done with common 
machine grease. As no quantitative evaluation of the isochromatics is attempted, and the 
results are presented in a purely qualitative way, there is no need to describe the experimental 
arrangement in greater detail. 

Figures 3 and 4 show relatively small areas of the overall isochromatic patterns. The 
difference between lubrication and dry conditions is quite noticeable. For  smaller wedge 
angles there is a considerable change even in the global pattern. This becomes less pro- 
nounced for larger wedge angles, but the difference can be observed in the density and 
number of loops emanating from the singular point. In all cases the slip observed was in the 
direction of  negative x, as defined previously, or the wedge slipping to the left with respect 
to the bot tom block. The serrations that are seen in the isochromatics at the interface, 
especially under dry conditions, are due to nonuniform slip or local sticking. 



Figure 3 
Isochromatics in the vicinity of a sharp corner. Left column: lubricated. Right column: dry. F rom 
top to bot tom:  y = 45 ~ 60 ~ and 75 ~ 



Figure 4 
Cont inuat ion  of  Fig. 3. F r o m  top to bo t tom 7 = 77-5 ~ (angle at which singularity s tar ts  to appear 
for identical materials and  no  friction), 90 ~ and 105 ~ . 
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Abstract 

The paper discusses the nature of the singularity that arises at a sharp edge in contact problems 
with friction. The theoretical treatment is based on the Mellin transform of the elastic fields. The 
results regarding the power singularities confirm the previous work of Gdoutos and Theocaris, but 
it is shown that logarithmic singularities are always present. Some experimental observations in 
photoelasticity are also presented. 

Zusammenfassung 

Die Art der Spannungssingularit~[t, die an einer scharfen Ecke in Berfihrungsproblemen 
erscheint, ist ffir den Fall mit Reibung untersucht. Die theoretische Behandlung sttitzt sich auf die 
Mellin-Transformation der elastischen Felder. Die Ergebnisse bezfiglich der Potenzsingularititen 
bestitigen die frfiheren Resultate yon Gdoutos und Theocaris. Es wird jedoch gezeigt, dab 
logarithmische Singularit~ten stets anwesend sind. Auch einige Beobachtungen yon photo- 
elastischen Versuchen sind dargestellt. 
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