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I. INTRODUCTION 

"Defining a word is not asserting anything but stating a nile or policy 
for the word's employment." Some such view of definitions is widely 
accepted; but what is the philosophical payoff if it is right? This is 
where I have a suggestion to make. Show me an inconsistent assertion, 
and I will show you a false assertion. But an inconsistent rule is not 
false; indeed it may be correct in the only sense that matters, that of 
according with speakers' semantic intentions. 1 This opens up the 
possibility of definitions that are no less correct for being contradictory. 
Much later I'll suggest that this possibility obtains for a certain defini- 
tion of truth. Meanwhile we should ask: what is it for a definition qua 
rule of usage to be inconsistent? 

Rules of usage are commonly conceived as putting conditions on 
objects, the conditions an object must meet for the word to apply to it. 2 
But it is equally true that they make demands on subjects, telling those 
who use the word what sort of conduct with it is or is not permitted. 
This has an interesting and underappreciated consequence, namely that 
"inconsistent," said of a definition, can mean two different things. The 
more usual meaning is that the demands the definition places on objects 
are unsatisfiable, as when a glub is defined as a round square. The 
other, and neglected, alternative is for the defimtion to impose irrecon- 
cilable obligations on speakers. What we lack is an account of defini- 
tions that makes room for the second sort of inconsistency,. Such an 
account lies waiting, I claim, just beyond the existing theory of inductive 
definitions. 
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II. T H E  P R O B L E M  

Imagine that we face the task of introducing a novel predicate P into a 
language L we already understand. How should this be done.'? Most 
obviously by providing P with a definition: a rule coordinating P with 
some combination of L's other vocabulary. Assuming for convenience 
that L's syntax is first-order, or first-order-like, this rule can be written 

A ex  ¢(x), 

where ¢(x) is a formula with variable x free and containing no other 
free variables. To keep to the traditional terminology, P is the defini- 
tion's definiendum and ¢ is its definiens. Of course, A as written is only 
the form of a definition, for we have not said what conduct with the 
definiendum P it authorizes. 3 To a first approximation, though, the 
point of advancing A is to stipulate that whatever the background facts 
may be, an object should count as a P just in case it satisfies # By this 
act we hope to explain how the Ps are delineated in any given fact- 
situation. 4 And to explain this is, nearly enough, to explain what the 
new predicate means. 

III .  T H R E E  K I N D S  O F  D E F I N I T I O N  

Here  are some sample definitions to get us started. Bear in mind that 
everything other than the definiendum P has its meaning given in 
advance: 

(1) x is P =af x is A or x bears E to some A 
(2) x is P =d~ x is A or x bears E to some P 
(3) x is P =af x is A or x bears E to some non-P. 

Two differences exist among these definitions. The first is that in (1), P 
appears on the left hand side only, whereas (2) and (3) have P on the 
right hand side as well. The second is that P appears positively in (2)'s 
definiens, while in (3)'s it appears negatively. 5 To have words for defini- 
tions like these, let's call them noncircular, positive circular, and nega- 
tive circular, respectively. 6 So 

(4) x is P =dr x bears E to all As 

is a noncircular definition; 
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(5) x is P =dr x bears E to some P or to some A 

is positive circular; and 

(6) x is P --dr no Ps bearing E to x are As 

is negative circular. Some of the above are indeed bewildering. The 
question will be what sense, if any, can still be made of them. 

IV. N O N C I R C U L A R  D E F I N I T I O N S  AND (D), 

THE D E T E R M I N A T I O N  S C H E M E  

Not at all bewildering are noncircular definitions, or ordinary explicit 
definitions of the kind found in logic primers. Their intuitive compre- 
hensibility has an objective basis, for these definitions demonstrably 
fulfill their promise of showing how to find the definiendum's extension 
in any given situation or world. The procedure is simple: When a world 
w is given, we learn what exists in w, and the extension there of the 
predicates we understand (including every predicate in 4). From this 
information, Tarski's theory of truth shows how to calculate ¢'s exten- 
sion in w. And since ¢ is definitionally equivalent to P, the objects in 
that extension are the ones we should take to satisfy P in w: 

(D) x satisfies P in w iff x belongs to ¢'s extension in w. 

(Why do we say "x belongs to ¢'s extension" rather than just "x satisfies 
~b"? Because (D) instructs us to collect all objects satisfying ~ before 
considering what objects P might be true of. That is, ¢'s extension is 
supposed to determine P's extension. Contrast interpretation scheme 
(E) below.) 

V. C I R C U L A R  D E F I N I T I O N S  AND (E), 

THE E Q U I V A L E N C E  S C H E M E  

Such a procedure for figuring P's extension is not available, though, if 
A is circular. As before, when w is given we learn the extension in w of 
every predicate we understand. The difference is that we do not 

thereby learn the extensions of all the predicates in 4; for ~ contains P 
and we do not understand P as yet. This logical difficulty is reflected in 
the traditional "rule of definition" that the "definiendum must not 
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appear in the definiens. ''7 "Definitions which violate this rule are . . .  
circular," we're told, and circular definitions 

must be rejected as definitions because they do not explain the meaning of the 
definiendum: a person who did not already understand the definiendum could not 
understand the definiens. 8 

There is something right in this criticism: if the definiendum is part of 
the definiens, then the definiens cannot be fully grasped until the 
definiendum is fully grasped. 9 But it is a further claim that this renders 
the definiens useless in an explanation of the definiendum's meaning. 1° 
Before examining this further claim, let's notice some reasons for 
wondering whether circular definitions can really be as irredeemable as 

alleged. 
Reading traditional criticisms like the above, one would think that 

definitions like (2) gave no semantical guidance whatever. This is just 
untrue. From (2) it follows that the Ps include every A, everything 
bearing E to an A, everything bearing E to anything bearing E to an A, 
and so on indefinitely. Information about what is not a P can also be 
extracted from (2), namely that nothing is a P which is neither an A nor 
in the domain of the E relation. Related to this, the objector's distrust 
of circular definitions conflicts with the actual practice of logicians, who 
use definitions like (2) all the time: 11 

(7) x is a number =dr 
x is zero or x is some number's successor; 12 

(8) x is a sentence =dr 
x is an atom or x is the result of negating or conjoining 
sentences; 

(9) x is a theorem ----dr 
x is an axiom or x follows from theorems by modus 
ponens. 

Either logicians are very confused, then, or the critic is overlooking 
something that logicians have seen. Which is it? 

Lurking just in the background here is an issue raised in section II, 
the issue of how a definition Px --~ ¢(x) determines its definiendum's 
meaning. By far the most usual theory has P inheriting its meaning from 
¢. Seen from this perspective, circular definitions are indeed objection- 



D E FI NITIONS,  C O N S I S T E N T  AND I N C O N S I S T E N T  151 

able. Before it can bestow its meaning on P, ¢ must already have a 
meaning: and how can it if it contains P as a part? That said, there may 
be other ways for a definition to fix P's meaning than by furnishing a 
chunk of language to which that meaning already attaches. This is the 
possibility that the critic is overlooking. 

What other ways can there be, though, for a predicate's definition to 
settle what it means? Perhaps P's meaning flows, not directly from O's 
meaning, but from the requirement that these two be (in relevant 
respects) the same. Bracketing worries about the truth-conditional 
approach to meaning, this amounts to the equivalence scheme 

(E) x satisfies P in w iff x satisfies ¢ in w. 

Although technically equivalent to ~ ) ,  ~ )  involves a crucial change in 
perspective: we no longer expect to arrive at P's extension on the basis 
of O's extension, for if A is circular then this is not possible. Instead the 
proposal is that P's extension should be a set P such that when P is 
taken to stand for P, ¢ and P emerge with the same extension. Writing 
#w(P) for the extension ~b receives in w on the hypothesis that P stands 
for P, we can put this in the form of an equation: P = ¢w(P). Whatever 
solves this equation will also be said to solve Px =a~ ~b(x) (in the 
relevant world). So the proposal is that P's extension should be a 
solution of its definition. 13 

VI. POSITIVE C I R C U L A R  D E F I N I T I O N S  AND (F), 

THE F O R C I N G  S C H E M E  

Whether a definition is circular or not, to ask after its solutions makes 
perfect sense. However the plural here should give us pause. Definitions 
are supposed to fix their definienda's meanings uniquely, but circular 
definitions are seldom uniquely solvable. Negative circular definitions, 
we'll see, need not be solvable at all; and positive circular definitions, 
the subject of the present section, tend to be multiply solvable. This is 
well illustrated by (7), the standard inductive definition of "number." 
According to the equivalence scheme (E), all that (7) tells us about 
"number'"s extension is that it should be a set consisting exactly of 0 
and its members' successors. But then there can be no objection to an 
eccentric who concludes from (7) that the "numbers" are the integers, 
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or the rationals, or the reals! For each of these sets contains exactly 0 
and the successors of its members. 14 

Doesn't this justify the tradition's rejection of positive circular 
definitions as logically defective? No it does not. Remember that which 
rule the words Px =af ¢(x) express is a function not just of the words 
themselves, but also the interpretation scheme employed. Originally our 
scheme was (D), which read Px = a  ¢(x) as instructing us to 

find the things that ~b applies to, and apply P to them. 

When that proved unable to cope with circular definitions we tried the 
equivalence scheme (E), which read into A a different rule: 

use P and ~ in application to the same things. 

Now that (E) too has run into trouble, rather than blaming the 
definitions it seems more natural to blame the scheme. 

To go by (E), the only constraint a definition imposes on the use of 
its defmiendum is that P and ~b should agree in their extensions. But 
unless the standard definition of "number" is to be seen as radically 
defective, definitions demand more of their adherents. 

Which objects do I resolve to classify as Ps, when I accept a defini- 
tion Px =dr ~b(x)? Not any objects I like, subject only to the requirement 
that the Ps and the Cs come out the same; rather the objects that that 
requirement forces me to treat as Ps. But the only things that I am 
forced to treat as Ps, on pain of having different Ps than ~s, are the 
members of A's smallest solution. Thus (E) gives way to the forcing 
scheme 

(F) x satisfies P in w iff x belongs to A's least solution in w. 

Part of the new scheme's attraction is that, as interpreted by (F), each 
positive circular definition assigns its definiendum a unique extension in 
every world. This is because the positive circular definitions are exactly 
the ones more commonly labeled inductive, and each inductive defini- 
tion is known to possess a unique least solution. Despite our early 
misgivings, then, positive circular definitions turn out to be fully as 
good as explicit definitions at fixing their definienda's meanings. 
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VII.  N E G A T I V E  C I R C U L A R  D E F I N I T I O N S  A N D ( G ) ,  

THE G R O U N D I N G  SCHEME 

That leaves definitions like (3), where the definiendum P occurs 
negatively in the definiens. These are in a good sense opposite to 
inductive definitions, so let's call them antiinductive. 

Antiinductive definitions have hardly been discussed by philoso- 
phers, maybe because it seemed there was nothing useful to say about 
them. Unlike explicit definitions, which are always uniquely solvable, 
and inductive definitions, which always have a unique least solution, 
antiinductive definitions need not be solvable at all. Even where 
solutions exist, moreover, they may well be incommensurable in the 
sense that none is included in all the rest. For an example of an un- 
solvable antiinductive definition, consider 

(10) x is a snarl = a  
x is Dan Quayle or x is a non-snarl. 

Suppose for contradiction that (10) has a solution, the snarfs. Either 
Jack Kennedy is a snarl or he is not. On the first hypothesis, either 
Quayle is Jack Kennedy, which he is not, or Kennedy is a non-snarf, 
which is contrary to assumption. Yet if Kennedy is not a snaff, then he 
meets the conditions for snarfhood and must be accounted a snarf after 
all. This shows that there is no possibility of extensional agreement 
between (10)'s definiendum and its definiens. The problem is slightly 
different with definition 

(11) x is an anteger =dr 
x is 0 or x is an integer similar to some non-anteger 

("x is similar to y" means "x and y are equidistant from zero"). Unlike 
(10), (11) has solutions: the nonnegative integers {0, 1, 2, 3, . . .},  for 
example, or the nonpositive integers, or indeed any set obtained by 
choosing one of n and - n  as n ranges from 0 forward. These solutions 
are incommensurable, though, so (11) has no least solution of the sort 
guaranteed above. 

Intractable as antiinductive definitions can be, they do sometimes 
induce naively acceptable extensions. Take for instance 



154 S T E P H E N  Y A B L O  

(12) x is a nember ~df 
x is 0 or x is a number succeeding some non-nember. 

Apart from 0, only positive integers can be nembers; so let us start with 
1 and work up. To be a nember, 1 would have to succeed a non- 
nember, which since 0 is a nember it does not. So 1 is not a nember. 
But then 2 succeeds a non-nember, which makes 2 a nember. By 
parallel reasoning we see that 3 is a nonmember, 4 is a nember, and so 
on. Therefore the nembers are precisely the even numbers. This is an 
intuitive argument but it is surely correct. Another and harder question 
is why it is correct, that is, what general principle operates to make the 
even numbers the proper extension? 

Now, it may seem as though we have an explanation of this. The 
even numbers constitute (12)'s least solution, hence they are the objects 
that the forcing scheme would have us regard as nembers. As we'll see, 
though, it is something of a fluke that forcing steers us right in this case. 
Outside the domain of explicit and inductive definitions, it can lead to 
distinctly counterintuitive results, t5 Even worse, it can fail to give 
guidance at all. 

Actually the second of these two problems has been encountered 
already. The "snarls," according to (F), are the things in (10)'s least 
solution, that is, the things in the smallest set P that contains Quayle 
along with everything that P does not contain. But then if there are no 
such sets (and there are not), (F) leaves us hanging: nothing gets 
classified either way. This sits ill with the fact that intuitively, Quayle is 
as clear a case of a snarl as there could be. Now for an example where 
(F) guides us, all right, but in the wrong direction. 16 Definition 

(13) x is ploofy ----of 
at least one thing is ploofy or x is not ploofy, 

admits of only one solution: the set of everything whatsoever. (Unless 
something is ploofy a solution is impossible, for the reader will be 
ploofy iff she is not ploofy. But if something is ploofy, then the 
definiens holds for all values of x.) According to (F), then, everything 
whatsoever should be considered ploofy. This is puzzling since naively 
(13) offers no grounds for regarding anything as ploofy. Take Ross 
Perot for example. For  Perot to merit classification as ploofy, he must 
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first satisfy (13)'s definiens 4. Because ~'s right disjunct would require 
him not to be ploofy, Perot's only chance at ploofiness is to satisfy @s 
left disjunct, that is, for there to be ploofies already. Extrapolating from 
this perfectly typical case, nothing deserves to be counted ploofy unless 
something has already been counted ploofy. How then does anything 
get to be counted ploofy in the first place? No answer is possible. There 
is no way of grounding an attribution of ploofiness to Perot or to 
anything else.17 

From these and similar examples it seems that (F) cannot be the 
whole story about extension-determination. But the examples suggest 
more than that, for there is a definite pattern to (F)'s lapses. On the one 
hand, it refuses to count Quayle a snarf, not because Quayle fails to 
satisfy (10)'s definiens, but because (10)'s definiens and its definiendum 
cannot be brought into extensional agreement. On the other hand, (F) 
endorses the hypothesis of universal ploofiness, not because every object 
demonstrably satisfies (13)'s definiens, but because that hypothesis 
represents the only way of keeping (13)'s definiens and definiendum 
extensionally on a par. The moral is that extensional equivalence, 
however desirable, must not be pursued at the expense of grounding: 
the requirement that P should be applied to an object when, and only 
when, that object has shown itself to satisfy ~.18 

More needs to be said about grounding, but first let's talk overall 
strategy. Remember that it is only when the definiens contains P 
negatively that the forcing scheme yields unintuitive extensions. This 
tells us to aim for an interpretation scheme (G) that, just as (F) agreed 
with (E) on explicit definitions while improving on it elsewhere, agrees 
with (F) on expficit and inductive definitions while outdoing it on other 
definitions: 

(G) x satisfies P in w iff x is A-grounded in w. 

This scheme will be developed in stages. After first giving an account of 
A-grounding appropriate to explicit, inductive and antiinductive defini- 
tions, we will find that the natural extension of this account to the one 
remaining case (definitions such that P has both positive and negative 
occurrences in the definiens) does not quite work. Luckily the account 
that does work can be extended backwards to the first three cases in an 
intuitively satisfying way. That done we will have shown how to inter- 



156 STEPHEN YABLO 

pret all definitions Px --dr ¢(x), with no restriction whatever on the 
definiens. 

VIII.  SIMPLE G R O U N D I N G  

To begin we re-present Tarski's theory of satisfaction as a theory of 
grounding for explicit definitions. Assume that we've been given a 
universe U and the extension A of every predicate A in some first- 
order language. Then Tarski's rules show how to determine which 
sequences s -- which functions from the language's variables into the 
universe -- satisfy which formulas; or more colloquially, how to tell 
whether a formula 0 is true or false of the objects s assigns to its 
variables. Writing T(0, s) for the first possibility, and F(0, s) for the 
second, the rules are these: 19 

(AT) s(x)~A ~ T(Ax, s) (AF) s(x)~A ~ F(Ax, s) 
(-aT) F(%s) ~ T O % s  ) ('TF) TOp, s ) ~ F('7%s) 
(AT) T(% s) and T(g, s) ~ T(~pA%,s) (AF) F(% s) or F(z, s) ~ F(~pA %,s) 
(VT) T(% s') for all s" ~-xs ~ T(Vx%s) (VF) F(%s')forsomes' =xs ~ F(Vx%s) 

These rules taken together are called (A)-(V). Formula 0 is said to be 
true (false) of xl ,  . . . ,  xn iff (A)-(V) prove T(O, s) for some sequence s 
assigning x 1, • • -, xn to O's free variables. 2° Context permitting we write 
T(O, x l , .  • . ,  xn) instead of T(O, s); this allows us to say that Ois true of 
x, or equivalently that x satisfies O, iff T(O, x) is obtainable by the 
stated rules. 

Explicit Definitions 

Take an ordinary explicit definition Px =of ¢(x). Because P has no 
occurrences in ¢, ¢'s extension is determined by (A)-(V) in advance of 
any information about P's extension. As an obvious corollary, for each 
x in ¢'s extension, (A)-(g) show x to be a ¢ without anywhere assuming 
that x is a P. This is just the idea of grounding, so we define: x is A- 
grounded iff rules (A)-(¥) prove T(¢, x). Accordingly (G), which says 
that x satisfies P iff x is A-grounded, acquires the following more 
particular meaning in connection with explicit definitions: 21 

( % )  x satisfies P iff (A)-(¥) prove T(¢, x). 
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Because the set of x meeting the latter condition is ~b's extension, all of 
our schemes (E), (F) and (G) agree on the interpretation of explicit 
definitions. 

Inductive Definitions 

How do we explain inductive definitions, say the standard definition of 
"number," to an inductive novice? 2z First we might tell him to look for 
things that satisfy "number"'s definiens -- "x is 0 or x is the successor 
of some number" --  no matter what objects are conceived as numbers. 
From this he deduces that 0, at least, is a number. Next he must learn 
to bring his current harvest of numbers to bear on the identification of 
new numbers. Since 0 is a number, "x is 0 or x is the successor of a 
number" is satisfied, at least, by 0 and 1; since 0 and 1 are numbers, it 
is satisfied, at least, by 0, 1, and 2; and so on until the process exhausts 
itself in the definiendum's intended extension. As a matter of fact, the 
novice is now told, this route to the desired extension is available for 
all inductive definitions, not just the definition of "number." Objects 
that satisfy P's definiens ~b regardless of how P is interpreted may be 
thrown into P's extension straightaway, whereupon further objects are 
seen to satisfy 4, and so on indefinitely. Repeating this procedure as 
necessary yields the set inductively defined by Px =dr #(x). 

What interests us in this story is that nothing has been called a P 
unless it at some point earned that title by showing itself to satisfy the 
definiens. This is exactly the idea of groundedness, so let us explicitly 
note the rules involved: they are Tarski's original rules (A)-(¥) plus a 
rule 

(AT) T(~b,x) ~ T(P,x)  

saying to add x to P's extension should the definiens prove true of it. 
This leads us to call x A-grounded iff T(O, x) is provable using (A)-(V) 
and (A T); whereupon (G) takes on the meaning 

(GI) x satisfies P iff (A)-(V) and (AT) prove T(#, x). 

But, the set of x satisfying (G0's right hand side is known to be A's 
least solution. So when (F) says that P is true of the objects in A's least 
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solution, and (G) says that it is true of the A-grounded objects, they are 
saying the same thing. 

Antiinductive Definitions 

At least, they are saying the same thing if A is an inductive definition. 
Applied to other definitions, we saw, (F) loses its head entirely, leaving 
intuitively grounded items out of P's extension (remember Quayle), and 
making P true of intuitively ungrounded items (remember Perot). 

However we have not yet examined what grotmdedness comes to in 
the context of antiinductive definitions. 23 Rules (A)-(V) and (AT) are 
not enough, for they offer no way of showing that P is false of anything, 
and it is characteristic of antiinductive definitions that ¢ may be true of 
x because P is false of some other thing. This is the case for example 

with 

(1 2) x is a nember =dr 
x = 0 or x is a number succeeding some non-nember. 

To show that ¢ is true of 2, we need the information that P is false of 1. 
And using (A)-(V) and (AT) alone, that information is unavailable. --  
Well, how does one show that 1 is not a nember? The reasoning used 

(a) ~ is true of O; so 
(b) "nember" is true of O; so 
(c) ¢ is false of 1; so 
(d) "nember" is false of 1. 

The first step of this reasoning, from (a) to (b), is licensed by 

(AT) T(# ,x)  ~ T(P ,x)  

but the step from (c) to (d) requires a complementary rule 

(AF) F(O,x) F(P,x). 

This is the only new rule needed to show that the nembers are exactly 
the even numbers. In fact it is the only new rule needed to work with 
antiinductive definitions generally. So let's define x as A-grounded iff 
(A)-(V), (AT) and (AF) prove T(¢, x), which makes 

above was 
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(GA) X satisfies P iff (A)-(V), (A T) and (A F) prove T(¢, x) 

the appropriate version of (G) in antiinductive contexts. 
Three versions of the grounding scheme have been considered, one 

for each of our three types of definition: explicit, inductive, and anti- 
inductive. Actually though it is possible to interpret all of these defini- 
tions in a uniform way. For notice two things. First, if A is explicit, then 
neither (AT) and (AF) can contribute to proof of T(~, x). Second, if A 
is inductive, then (AF) cannot contribute to such a proof. This means 
that instead of using (G~) for explicit definitions, (GI) for inductive 
definitions, and (GA) for antiinductive definitions, we can use (GA) 
across the board to the same effect. This is not the only simplification 
possible. Rules (A)-(V), (AT) and (AF) prove T(¢, x) iff they prove 
TO ~, x); so, rather than letting x satisfy P iff these rules prove T(~, x), 
we may well adopt the simple grounding scheme 

(Gs) x satisfies P iff (A)-(V), (A T) and (A F) prove T(P, x). 

Thinking of (A)-(V), (AT) and (AF) as the simple rules, the scheme 
becomes this: P is to be counted true of x iff it is simply provable that P 
is true of x. 

IX. R E F L E C T I V E  G R O U N D I N G  

Whether A is explicit, inductive or antiinductive, the A-grounded 
objects are the ones that can be shown to satisfy P using the simple 
rules. But there is a kind of definition we have not considered: 

(14) x is sheec ----dr 
someone sheec applauds x and someone unsheec 
derides x. 

Obviously, (14) is not explicit, but "sheec'"s second occurrence in the 
definiens prevents it from being inductive, while the first occurrence 
prevents it from being antiinductive. Definitions like this will be called 
coinductive 24 to reflect the fact that P appears positively and negatively 
in the definiens. 

Now I x~ll give two reasons for thinking that the simple rules are not 
quite right: one has to do with their treatment of inductive definitions, 
the other with their treatment of coinductive definitions. Both reasons 
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trace back ultimately to the fact that the simple rules offer no way of 
reflecting on the grounding process and incorporating the results of that 
reflection back into the process. 

Suppose first that A is inductive. All sides agree that the simple rules 
prove T(P, x) for every x that P is intuitively true of, so the problem 
can only be that they fail to establish F(P, x) for every x that P is 
intuitively false of. This problem arises even with as familiar a definition 
as (7), the standard definition of "number." Using (A)-(V), (AT) and 
(AF), 25 the things we can show to be numbers are 0, 1, 2, 3 . . . . .  What 
we cannot show is that nothing else is a number. Should k be a 
negative integer, for instance, then F(¢, k) can be obtained only by 
inferring it from F(¢, k - 1) using (AF), while F(~b, k - 1) must itself 
be obtained from F(¢, k - 2) and so on indefinitely. So while k's claim 
to numberhood cannot be proved, it is not refutable either. 

So long as A is inductive, this failure to identify all non-Ps is not a 
matter of real concern. For if P is positive in ~, the fact that such and 
such things fail outside of P's extension cannot quality anything to 
belong to ¢'s extension. (This is how the simple rules manage to 
identify the intuitively correct extension despite underestimating the 
class of non-Ps.) When we advance to the coinductive realm, however, 
our luck runs out, for here it can happen that certain items satisfy the 
definiendum only because other items fail to satisfy it. Look for 
example at definition 

(1 5) x is a noomber =dr 
x is 0 or x and - x  succeed a noomber and a non- 
noomber respectively. 

0 is a noomber because it satisfies ¢ outright. Therefore O's successor 1 
is a noomber provided that - 1  succeeds a non-noomber. And so it 
does, for --2's claim to noomberhood is demonstrably ungroundable: it 
can qualify for the title of noomber only if - 3  has qualified beforehand, 
only if - 4  has qualified before that, only i f . . .  Similar arguments reveal 
each nonnegafive integer to be a noomber while showing that nothing 
else is a noomber. Next consider 

(16) x is awd ~df 
x is identical to an awd number or it succeeds a non- 
awd number. 
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0 cannot qualify as awd through ~'s second disjunct, for it does not 
succeed an), number. 26 Nor does it qualify as awd through ~'s first 
disjunct, as this would require it to be awd already, contrary to 
grounding. So, 0 is not awd, which makes 1 the successor of a non-awd 
number and therefore awd. Similar arguments show that 2 is not awd, 3 
is awd, 4 is not, and in general that the awd numbers are exactly the 
odd numbers. 

So far, so good, except that the simple rules offer no way of reaching 
these results. This is because they recognize one route only to the 
conclusion that P is false of x, namely inferring it from the fact that ~b is 
false of x; and because this route becomes viciously circular in the 
cases under discussion. To exclude 0 from the set of awd numbers, for 
example, we would first need to know that it was neither an awd 
number nor the successor of a non-awd number. 

How does it transpire that negative integers are not numbers, or that 
even numbers are not awd? In all such cases the argument that x 
falsifies p27 is not that it falsifies 4, but that x's claim to satisfy ~b is 
demonstrably groundless. This is the argument we try to develop. 

By a hypothesis let's mean a set of claims to the effect that such and 
such formulae are true (false) of such and such objects. Object x will be 
called ungroundable iff T(#, x) cannot find a place even in the most 
inclusive hypothesis compatible with current information. Here is how 
that hypothesis is constructed. Since the only nile suspected of trader- 
producing is (AF), let's start by collecting all claims of the type it 
proves with the slightest chance of being right, that is, all claims F(P, s) 
such that T(P, s) is not a part of current information. Next let's subject 
this collection to all remaining rules (A)-(V) and (AT). The result is the 
hypothesis we want, the set of all claims with the slightest chance of 
being right. Formally, a set O of premises makes x ungroundable iff 
Y(~, x) is not provable using (A)-(V) and (AT) from the set of F(P, s) 
such that T(P, s) ~ O. Given a premise-set of this kind, the reflection 
rule allows us to infer F(P, x): 

(AR) 19 ~ F ( P , x ) . . . w h e r e O  makesx ungroundable. 

Here is the same thing in ordinary language: when you know enough to 
refute all possible proofs of x's claim to satisfy the definiens, you may 
conclude that the definiendum is false of x. 

Where does this leave us? Recall that (A)-(V), (AT) and (AF) were 
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defined as the simple rules, and that x was called simply A-grounded iff 
these rules proved P to be true of x. Now let (A)-(V), (A T) and (A R) 
be the reflective rules, and let x be reflectively A-grounded iff the 
reflective rules prove P to be true of x. As you might expect, both kinds 
of grounding come to the same if A is explicit, inductive, or antiinduc- 
five (see the appendix, Prop. 5 and the remarks following). And since 
reflective grounding improves on simple grounding in the area of 
coinductive definitions, we may as well make it our official notion of 
grounding for all definitions. By this route we arrive at last at an all 
purpose interpretation scheme. No matter what kind of definition A 
may be, it instructs us to employ its definiendum P as follows: 28 

(GR) X satisfies P iff (A)-(V), (A T) and (A R) prove T(P, x). 

Now we apply this scheme to two bits of unfinished business: incon- 
sistent definitions generally, and an inconsistent definition of truth. 

X. INCONSISTENT DEFINITIONS 

The project was to make sense of inconsistent definitions, or definitions 
placing irreconcilable obligations on those adopting them. I claim that a 
definition requires its adherents to use P in accordance with 0E), ~ )  
and (G). 29 This yields the analysis 

A is consistent iff 0E), (F) and (G) are jointly satisfiable; 
otherwise inconsistent. 3° 

Equivalently, since the A-grounded objects are the only set satisfying 
(G), A is consistent iff the set of A-grounded objects is at the same 
time A's least solution. 

How does the analysis deal with our four types of definition? 
Explicit and inductive definitions are always consistent because, first, 
they always have a least solution, and second, the least solution is 
always the set of A-grounded objects. The surprising thing is that other 
definitions can be consistent as well. So although definition (12) of 
"nember" is antiinductive, and definition (16) of "awd" is coinductive, 
both of them ground exactly the members of their least solutions. 

When a definition is not consistent, this will be for one of two 
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reasons: either it lacks a least solution, or the one it has is at variance 
with the set of A-grounded objects. These possibilities are illustrated by 
(10) and (13): 

(10) x is a snaff =d~ 
x is Dan Quayle or x is a non-snaff. 

The reflective rules show "snaff" to be true of Quayle and that is all, 
But when we interpret "snaff" in (10)'s definiens as {Quayle}, the 
definiens becomes tautologous and therefore satisfiable by objects other 
than Quayle. This shows that the set of (10)-grounded objects is not a 
solution: and in fact (10) is absolutely unsolvable. Now consider 

(13) x is ploofy = ~  
at least one thing is ploofy or x is not ploofy. 

Definition (13) has a unique solution, viz. the entire universe. But since 
the reflective rules do not show anything to satisfy "ploofy," this 
solution is as far from the set of (13)-grounded objects as it could be. 

Assessing a definition for consistency might seem a complicated 
affair. First we find the set of A-grounded objects, then we check that it 
is a solution, and lastly we make sure there are no smaller solutions. 
Happily there is a simpler method that stays within the grounding 
process itself. For  that process turns up not one but two sets of interest: 

F A = {x t the reflective rules prove T(P, x)}, 

the set of things that clearly belong in P's extension, and 

F A == {x I the reflective rules do not prove F(P, x)}, 

the set of things not clearly belonging outside P's extension. And 
whether A is consistent can be judged from the relation between these 
two sets: it is consistent if F/, -= F A, and inconsistent if Fa # F A (see 
appendix, Prop. 8). Thus the grounding process gives us a sort of 
idealized decision procedure for the consistency of a definition. For  
instance, ff A is 

(11) x is an anteger =at 
x is 0 or x is an integer similar to some non-anteger, 
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then F A = {0} # F A = the set of all integers, reflecting the fact that 
(11) is inconsistent. Definition (10) and (13) are also inconsistent by 
this test, but (12) and (16) come out consistent. All of this agrees with 
the analysis given at the beginning of the section. 

Now, someone could question our treatment of a definition like (11) 
as inconsistent. After all, what the grounding rules tell us about 
"anteger" is just that it is true of 0 and false of whatever is not an 
integer. And this might seem to leave the nonzero integers' status 
harmlessly undecided. Really the situation is rather worse, though, for 
we continue to be bound by the equivalence and forcing require- 
ments. 31 Together these make the following reasoning inescapable. By 
grounding, nothing satisfies "anteger" unless the rules show it to do so. 
They do not show 7 to satisfy "anteger," so 7 is not an anteger. But 
then - 7  is a non-anteger by the same reasoning; and if neither is an 
anteger, then each becomes similar to a non-anteger (the other) and so 
must be counted an anteger to preserve equivalence! Even more con- 
fusingly, no sooner do we count them antegers than the basis for this 
move (that each is similar to a non-anteger) evaporates and we must 
revert to our original position that they are not antegers. In this way we 
get caught up in a cycle of semantic reversals, with each reclassification 
of the nonzero integers immediately" calling forth its opposite. 32 

So it is not for no reason that definitions like that of "anteger" 
are called inconsistent. However we behave with P, we are shirking a 
semantic obligation, and if we try to fulfill that obligation we find 
ourselves guilty of some new violation. The predicament is somewhat 
akin to the conflicts of moral obligation discussed in the ethics litera- 
ture; for instance, promising your parents you will observe Yore Kippur 
and your friend you will go stunt flying as soon as she gets her plane 
fixed. But notice an important difference. Where the usual moral 
examples involve coexisting imperatives such that complying with one 
means defying the other, in the semantical case I create the imperative I 
defy by complying with its competitor. Thus the situation is rather as 
though "park only in empty spaces" were a bona fide moral law. What- 
ever parking space I choose is thereby non-empty and so, according to 
the law, to be vacated. Likewise whatever action I take with P --  
pronouncing it true of x or not --  gives ~ the opposite relation to x, 
which forces me as a subscriber to Px =dr ¢(x) to take my action back. 
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XI, TRUTH 

Sound familiar? Substitute "true" for P and "this very sentence is 
untrue" for x, and you get the paradox of the Liar: whatever action I 
take with "true" - -  applying it to the Liar sentence or withholding it - -  
forces me immediately to reverse myself and take the opposite line. 
Now I will propose a definition of truth that explains how such a 
situation arises. 33 Because the definition I favor is not consistent, I will 
compare it with a consistent definition that is otherwise as similar as 
possible. That way I can explain why my definition strikes me as more 
"correct," that is, more  in accord with the truth-predicate's ordinary 

meaning. 
By far the most important paper on truth since Tarski is Kripke's 

"Outline of a Theory of Truth." Kfipke does not actually define "truth" 
in the sense we have been concerned with here. But the theory he 
gives 34 is exactly the one you would get if you took the following 
simultaneous definition of "true" and "false" and interpreted it accord- 
ing to the procedures of this paper: 35 

¢ is true ~df 
4 = ~Ra~ and a's referent belongs to R's extension, 

or ¢ - - r  ~ and ~O is false 
or 4 = r~ 0 & X ~ and both ~p and • are true 
or 4 = rVx~0(x) ~ and all its instances are true 

or 4 = ~P is true ~ and ~p is true 

4 is false ~df 
4 = ~Ra~ and a's referent doesn't  belong to R's extension, 

or 4 = r_  ~0~ and ~0 is true 

or 4 = r~p & X~ and either ~0 or Z is false 
or 4 = ~Vx~p(x) ~ and some of its instances are false 

or 4 = ~0 is true ~ and ~p is false. 

I have only one quarrel with this, and it concerns the very last line: 
unless I am mistaken, if ~p is not true, then a sentence saying it is true 
ought to be considered false. So, I would replace Kripke's "4 = ~P is 
true ~ and ~0 is false" with "4 = r~0 is true ~ and ~0 is not true." This 
adjustment, although superficially minute, makes an enormous logical 
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difference: Kripke's definition is inductive and so consistent, whereas 
mine is coinductive and, although this does not follow from coinduc- 
tiveness, inconsistent. 

How does the proposed adjustment bear on the Liar sentence? With 
"true" interpreted Kripke's way, the Liar creates a problem only for 
those who insist on assigning it a truth value; seen as neither true nor 
false it causes no more harm than any other truth value gap, for 
instance, "the President of Moosejaw likes maple syrup." But on my 
interpretation, whoever reckons the Liar neither true or false obliges 
herself to count it true after all. More generally, if Kripke's definition is 
correct then we can meet our obligations regarding the Liar, whereas if 
mine is correct we cannot: the Liar emerges as the most striking 
manifestation of "true"'s inconsistency, or better, the inconsistency of 
the semantic rules that together constitute its meaning. 36 

A P P E N D I X  

For the formal theory, we use an ordinary first-order language L with 
connectives ~ and A (negation and conjunction) and quantifier g 
(universal generalization). Other connectives and quantifiers are defined 
from these in the usual w a y s  L(P) is the language obtained by supple- 
menting L with a new predicate P. A definition of P is something of the 
form 

A Px  ----dr ¢(x) ,  

where ¢(x) is a formula of L(P). Here is our problem: given a classical 
model M of L, how do we tell which members of M's universe P is true 
of and which it is false of? The problem is broken down into four 
cases, corresponding to the four types of definition: 

• explicit (P does not occur in 4); 
• inductive (P occurs positively in ¢); 
• antiinductive (P occurs negatively in ¢); 
• coinductive (none of the above). 

What we'll see is that the equivalence scheme (E) covers the first case; 
the forcing scheme (F) covers the first two cases; the simple grounding 
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scheme (Gs) covers the first three cases; and the reflective grounding 
scheme (GR) covers all definitions. 

For each model M of L, and each subset P of M's domain, let MP 
be the obvious expansion of M to L(P): the model that interprets P as P 
and everything else as M interprets it. For each formula ~p of L(P) in 
one free variable, let MP[~p] be the set of all x such that MP ~ ~p[x], 
that is, the set of objects satisfying ~p in the expanded model. Then the 
equivalence scheme 0E), according to which the same objects should 
satisfy P as 4, comes down to this: P - MP[¢]. Sets meeting this 
condition are called solutions of Px =dr ¢(X) in model M, or context 
permitting, just solutions. 

Prop. I: Every- explicit defimtion has a unique solution in every 
model. 

Pro@ Because P does not occur in ¢, MP [¢] --- M[4 ] for all choices 
of P. So P = M[¢] is A's unique solution.¶ 

With circular definitions, we saw, a unique solution is not guaranteed. 
However, something like Prop. 1 holds of positive circular, or induc- 
tive, definitions. 

Roughly and intuitively, whether P is negative or positive in ¢ turns 
on whether it is negated at the level of deepest logical form. Thus P is 
negative in Px ~ Qx because the latter reduces to -~ Px V Qx, yet 
positive in -7 (Px ~ Qx) because of the equivalence with Px A ~ Qx. 
Although it is common to draw the distinction syntactically we will take 
a semantical approach, calling P positive in ~ iff the larger P's extension 
is, the larger ¢'s extension is, and negative in ~ just in case the opposite 
relation holds: 

Def P is positive in 4 iff for all M and all P c Q _. dom(M), 

MP [41 c MQ [41. 
P is negative in 4 iff for all M and all P c Q c_ dom(M), 
MQ [4] c MP [4]. 

Note that P is trivially positive in any ¢ that does not contain it (and 
negative too for that matter). Thus it does not suffice to make a defini- 
tion inductive for P to be positive in 4; P must occur positively in 4, 
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meaning that P both occurs in 4 and is positive in it. Likewise A is 
antiinductive iff P occurs in 4 and is negative in 4. 

Assume a fixed model M of L. By the jump operator associated with 
M, we mean the function J taking S to MS [4] = the set of things that 
satisfy 4 when P is interpreted as S. From the definitions it's clear that 
if A is inductive, this operator is monotonic in the sense of preserving 
inclusion relations. (For all X and Y, X ___ Y ~ J(X) ___ J(Y)). 

Prop. 2: Every inductive definition has a least solution in every 
model. 

Proof: Consider the sequence P0 -- • ,  Pa -- J(Pa-1) .38 Since J is 
monotonic, (Pa) is increasing. 39 For cardinality reasons (Pa) even- 
tually reaches a P7 -- PT+ 1- Let this be P. P -- J(P) -- MP [4], so P is 
a solution. To see that P is least, let Z b e  any other solution. By J's 
monotonicity, P~ ___Z ~ Pa+l ___J(Z) -- Z. Transfinite induction 
shows that Pr ___ Z.¶ 

Antiinductive definitions need not be solvable at all, so Prop. 2 cannot 
be extended to them. Notice where the proof breaks down: if A is 
antiinductive, the jump operator J is antimonotonic. (Meaning that it 
reverses inclusion relations: X c y ~ j (y)  __. J(X).) 

Def. A semisolution of A is a pair of sets P and Q, P a subset of 

Q, such that (i) P -- MQ I41 and (ii) Q = MP I41. 

P and Q are A's least semisolution iff all semisolutions X and Y lie 
between them, that is, P ~ X ___ Y _c Q. 

Prop. 3: Every antiinductive definition has a least semisolution. 
Proof: Since J is antimonotonic, H -- JoJ  is monotonic. Define the 
sequence (P~) by P0 = Q,  P~ = H ( P a - 1 ) ,  40 and the sequence (P~) 
by P ~ = J(P~). Then (P~) is increasing and (P a) is decreasing, with 
P~ always a subset of P~. For cardinality reasons there exists a 7 
such that Py = P7+1 and p7 = pT+l. Let P = P7 and Q = PT. Then 
P = J(J(P)) = J(Q) = MQ[4 ], and Q = J(J(Q)) = J(P) = MP[4 ]. So 
P and Q semisolve A. Leastness is proved by ordinal induction.¶ 

Least semisolutions have been encountered already in another guise: if 
A is anything but coinductive, P and Q are A's least semisolution iff P 
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is the set of x such that T(P, x) is simply provable and Q is the set of x 
such that F(P, x) is not simply provable. (I will take this for granted in 
what follows.) 

That leaves the fourth case, where P occurs in 4 but with no 
particular valence. This can come about only if P makes multiple 
appearances in 4, some in a positive position and others in a negative 
one. 41 But what is it for an occurrence of P to be positive (negative)? 
Basically the idea is that increasing that one occurrence's extension, 
leaving all else the same, will increase (decrease) 0's extension. Given 
an occurrence Pk of P in ¢, let ¢k be result of replacing all other occur- 
rences of P in 0 with occurrences of some L-predicate C not occurring 
in 4- Then 

Def. Pk is a positive occurrence of P in 0 iff P is positive in ~ ,  
and a negative occurrence of P in 4 iff P is negative in Ok. 

So P's first occurrence in Px ~ (Ax --' Px) is negative, since P is 
negative in 41 = Px ~ (Ax ~ Cx); but its second occurrence is 
positive because P is positive in 42 --- Cx ~ (Ax ~ Px). Pk is said to 
have a polarity in its containing formula iff it is either positive in that 
formula or negative in it. 

Lemma: Each occurrence of P in 4 has a polarity. 
Proof: By induction on complexity, the result holds for all formulas 
4 containing P exactly once. Now let 4 be an arbitrary P-containing 
formula: Pk has a polarity in 4 iff P has a polarity in Ok, which it must 
since ~ contains P exactly once.~ 

That every predicate-occurrence has a polarity allows us to combine 
our methods for inductive and antiinductive definitions. 

Def. Where ¢ is a formula of L(P), 0 # (O 's polarization) is the 
result of replacing all positive occurrences of P in 4 with P#, 
and all negative occurrences of P in O with P*. For M a 
model of L, M~ is the model of L0~#, P#) that is just like M 
except in assigning X to P~ and Y to P #. 

Often we write MYx[4] for M~[ 4 # ]. This means that M~[4] is the set of 
objects that satisfy 4 when X is assigned to P's positive occurrences in 
O and Y is assigned to its negative ones. 
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Def. A semisemisolution of A is a pair of sets P and Q, P a 
subset of Q, such that (i) P = M~ [4] and (ii) Q -- M~[¢]. 

Prop. 5 will show that if A is antiinductive, its least semisemisolution P, 
Q is its least semisolution as well; if A is inductive, P is A's least 
solution; and if A is explicit, P is A's unique solution. Therefore all of 
our propositions so far can be obtained as corollaries of 

Prop. 4: Every, definition has a least semisemisolution. 
Proof: First we introduce L, the leap operator. Because M~[¢] is 
monotonic in X, for any Z the sequence S 0 -- MZ[¢], Sa = MZo_,[¢] 
is increasing. For cardinality reasons it reaches a limit Sy = St+ 1 = 

z Ms,[¢]. This S 7 will be L(Z), with the result that (*) L(Z) = MZ(z)[¢l . 
Now, since M~[¢] varies inversely with Y, L is an antimonotonic 
operator, whence K = L o L  is monotonic. Define the sequence (Pa) 
by P0 = 0 ,  P~ -- K(P~_~); and define (P~) by P~ -- L(P~). These 
sequences are increasing and decreasing respectively, so ultimately 
they arrive at fixed points P and Q of the K operator. Since P = 
L(Q)  and Q -- L ~ ) ,  it follows from (*) that P is M~[¢] and Q is 
M~[¢]. Evidently P c Q, so P and Q semisemisolve the definition. 
That P and Q are least follows by induction.¶ 

No matter what kind of definition A is, A's least semisemisolution is 
the pair consisting of F A = {x [ T(P, x) is reflectively provable} and 
F a = {x I F ~ ,  x)  is not reflectively provable}. So the next proposition 
says in effect that the reflective rules yield, first, each, explicit defini- 
tion's unique solution; second, each inductive definition's least solution; 
third, each antiinductive definition's least semisolufion; and fourth, each 
coinductive definition's least semisemisolution. 

Prop. 5: Let P,  Q be A's least semisemisolution. Then 
(i) A is explicit ~ P ---- Q = A's unique solution 
(ii) A is inductive m P = Q -- A's least solution, and 
(iii) A is antiinductive ~ P,  Q = A's least semisolution 
Pro@ [A explicit] P = M~[¢] ~ P ---- M[~i] since P does not occur 
in ¢. Likewise Q -- M~[¢] ~ Q -- M[¢]. By Prop. 1, M[¢] is A's 
unique solution. [zX inductive] Since P has no negative occurrences in 
4, P = M~[¢] # P = MP[¢] and Q = M~[¢] m Q = MQ[¢]. So 
P and Q both solve A. To see that P is A's least solution: X solves 
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A ~ X and X semisemisolve A ~ P c X C Q  since P, Q is A's 
least semisemisolution. To see that P -- Q, it's enough to show that 
Q ___ P. x ~ Q ~ F(P, x) is not reflectively provable ~ the set of 
reflectively provable claims does not make x ungroundable ~ T(~b, x) 
follows from {F(P, z) I z ~ P }  using (A)-(V) and (AT) ~ T(~b, x) 
follows from the null set using (A)-(V) and (AT) (since P is positive 
in 4) ~ TO?, x) follows from the null set using (A)-(V) and (AT) 
x ~ P. [A antiinductive] Since P has only negative occurrences in ~b, 
P --- MpQ[Ol - P = MQ[O] and O -- M~[~] ~ O = MP[~]. So P, O 
is a semisolution of A. For leastness, any other semisolution X, Y is 
also a semisemisolution, and P, Q is by hypothesis least among A's 
semisemisolutions.¶ 

Since least semisemisolutions are constructed using the reflective rules, 
and least solutions and semisolutions are constructed using the simple 
rules, it follows from Prop. 5 that if A is anything but coinductive, the 
simply A-grounded objects are exactly the reflectively A-grounded 
objects. The next proposition adds that whatever type of definition A 
may be, the reflectively A-grounded objects include the simply A- 
grounded objects. 

Prop. 6: For all definitions A, simple A-groundedness entails reflec- 
tive A-groundedness. 

Proof: This is clear from Prop. 5 for explicit, inductive and anti- 
inductive definitions, so let A be coinductive. The only simple rule 
that is not also a reflective rule is (AF), so it suffices to show that the 
set H A of reflectively provable claims is closed under (AF), that is: 
F(~b, x ) ~  H A ~ F(P, x ) ~  HA. Induction on complexity shows that 
for any ~p and y, FOp, y) ~ Ha ~ T(% y) is not a member of the 
set H a of claims provable from {F(P, z) I T(~, z) ~ Ha} using (A)- 
(V) and (AT). Thus F(~, x) ~ Ha ~ T(~, x) ~ H a ~ T(~, x) is not 
provable from {F~, z) I T(¢, z) ~ HI,} by (A)-(V) and (AT) ~ H a 
makes x ungroundable ~ F(P, x) is obtainable from Ha by (AR) 
F(P, x) ~ Ha.¶ 

To finish we verify two assertions about consistency made in the text. 
The first says that A is consistent just in case P has an extension P 
satisfying (E) and (G) -- or what is equivalent, Fa solves A. (Remember 
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that FA = {x I x is A-grounded} - the set of x such that T(P, x) is 
reflectively provable.) 

Prop. 7: A is consistent ** Fz, solves A. 
Proof: [~  ] Trivial. [~  ] F6 solves A ~ F A satisfies 0E). By definition 
FA satisfies (G) so it's enough to show that F6 satisfies (F), i.e., that 
FA is A's least solution. Let X be any other solution. Then trivially X, 
X semisemisolves A. Since FA, F A is least among A's semisemisolu- 
tions, F A ___ X c F A. It follows that F A satisfies (F) and hence that A 
is consistent.g 

Second, A is consistent iff for every x, exactly one of T(P, x) and 
F(P, x) is reflectively provable. 

Prop. 8: A is consistent ** FA = F A. 
Proof'. [ ¢  ] Let P = F A -- F ~x. Then since FA, F A is a semisemisolu- 
tion, P -- Mpe[¢] = MP[¢].  So P = FA is a solution, whence A is 
consistent by the last proposition. [ ~ ]  That FA-- C F A is easy, so we 
show that F ~'-C FA ' Suppose not. F A is the set of all y such that 
T(~, y) can be proved from {F0 J, x)  t x ~ FA} using (A)-(V) and 
(AT). By assumption, some such proofs have y ~  FA; among these 
choose ar to be one of shortest length. Since FA solves A, F A is the 
set of all y such that Y(~b, y) is provable from {T(P, x) t x ~ FA} U 
{F(P, x) ] x ~  FA} using (A)-(V). Thus Jr can prove T(¢, y) with 
y ~ F A only by using (AT) at some point to obtain a T(P, z) such 
that z ~  F A. Given the structure of (AT) this requires that some 
proper subproof of ~ proves T(¢, z), contrary to our assumption 
that Jr was shortest among proofs of this kind.l[ 

So, a definition is consistent iff it divides the universe into two parts: the 
part that the definiendum is true of and the part that it is false of. 

N O T E S  

* ~Iqtis paper was written in a rush, so please forgive the occasional goof-up. Thanks to 
Marian David, James Joyce, Ruth Millikan, Leon Porter, Peter Railton, Gideon Rosen, 
and especially Sally Haslanger for help and advice. 

Two remarks. Definitions can be either of new words or of words already in use. But 
even in the latter case it is as though the defined word was new, for the definition must 
not assume a meaning for it in assigning it a meaning. Only after the definition has done 
its work do we compare the meaning assigned with the one the word had already, 
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pronouncing the definition correct iff they agree. For this reason I will sometimes call 
the defined word "new" or "not yet understood" even where an antecedent meaning 
exists. Second, definitions will seem truth-valuable if one neglects the distinction 
between defining a word and asserting that the given definition is true to the word's 
existing meaning. " 'Tables '  are hereby defined as bird-dogs" is eccentric but not false; 
" ' tables'  are correctly defined as bird-dogs" is another matter. 
2 Because our focus will be on predicates, "rules of usage" should be understood as 
"nfles of application." 
3 This job falls to what I H 1  call an interpretation scheme: a way of telling what rule 
for the use of P is encoded in a string of the form Px =dr ¢(x). Several such schemes 
will be considered below. 
4 As you can see from the last two sentences, I am going to be extremely sloppy about 
use and mention. 
s For now I leave the notions of positive and negative at an intuitive level. See the 
appendix for an exact definition. 
6 This classification is not exhaustive: a fourth category, combining the features of 
positive and negative circular definitions, will become important later on. 
7 Leonard 1967,p. 363. 
s Leonard 1967,p. 364. 
9 Even this may be conceding too much, but let it pass. 
t0 Perhaps the situation is as follows: we can partly grasp the definiens without 
understanding the definiendum at all, this partial grasp can be parlayed into a partial 
grasp of the definiendum and thereby an improved grasp of the definiens; and so on 
until we arrive at a full understanding of both. 
1~ Some will protest that to the logician, (7)--(9) are no more than shorthands for 
higher order explicit definitions (on the model of 'x is a number =dr x belongs to the 
smallest set containing 0 and closed under successor'). Arguably though the shoe is on 
the other foot: ascending to a higher order is just the philosopher's way of calming her 
conscience about circularity. Left to themselves, logicians take (7)--(9) at face value. 
1~ For purposes of this paper, "numbers" are natural numbers. 
~3 Notice that (E) agrees with (D) where explicit definitions are concerned. Unless ¢ 
contains P, the one and only set satisfying (D) in a world is ¢'s extension in that world. 
14 All and only integers, for instance, are either 0 or the successors of integers. The 
objection that negative integers fail to satisfy the definiens leaves our eccentric 
unmoved: he replies that - 1  succeeds the "number" - 2 ,  which succeeds the "number" 
- 3 ,  and so on. 
15 Just to be clear about the shape of the eventual point, the forcing scheme is not 
wrong to say that A instructs us to apply P to the members of A's least solution. But A 
also issues other instructions for the use of P; and where conflicts arise, these other 
instructions take precedence over those urged by the forcing scheme. 
16 For related examples see Gupta 1982 and Gupta & Belnap 1993. 
17 Someone might reply that although we cannot ground an attribution of ploofiness to 
x, we still have an argument for counting it ploofy, viz. that otherwise we are caught up 
in a paradox. But that kind of argument can be constructed for any conclusion, just by 
taking a paradox and installing the conclusion as the only escape route. 
18 Earlier we rejected the traditional idea that ~'s extension must be ascertainable in 
advance of P's extension. But that idea contained a germ of truth: ¢'s applicability to a 
particular x must be ascertainable without assuming that P applies to x. 
19 Sequences are assignments of universe elements to each of L's variables, s '  ~xs 
means that s '  is like s, except that s ' (x)  can be any element of the universe. To reduce 
clutter I omit explicit relativization to a world w. But strictly speaking (A) should be 
(A~), obtained by replacing A with a world-relative extension A~, and (V) should be 
(g w), obtained by letting s '  range over sequences assigning x a member of U w = w's 
universe. 
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20 "Prove" could be misleading since (V) is an infinitary rule; I use it anyway. 
21 Again I omit explicit relativization to a world w. Strictly speaking (GE) should be: x 
satisfies P in w iff (A~)-(V~,,) prove T(¢, x). Similar remarks apply to versions of (G) 
presented below. 
22 Compare a famous passage in Kripke 1975. 
23 Meaning, definitions Px =d~ ¢(X) such that P is negative in ¢. 
24 Mathematicians use "coinductive" not for a special type of definition but a special 
type of set: a set whose complement can be defined inductively. 
25 Actually (A F) is not needed; see Section VIII. 
26 As always, the numbers are the natural numbers. 
27 "x falsifies ¢" is another way of saying that ¢ is false of x. 
28 I don't  mean to suggest that (GR) exhausts the obligations a definition imposes on its 
devotees. On the contrary, ~ )  and ( ~  continue to apply. However in cases of conflict 
(see Section X), (Gg) takes precedence. 
z9 Unless otherwise indicated, (G) is (GR), the reflective grounding scheme. 
30 Two remarks. First, it would be equivalent to call A consistent iff some P satisfied 
(E) and (G) alone; any P that does that much is bound to satisfy (F) as well (Prop. 7). 
Second, consistency should really be relative to a world; like truth it is "risky" (Kripke 
1975). 
31 Because the forcing requirement follows from the other two (Prop. 7), I will stick 
just to equivalence and grounding. 
32 That these reversals come so naturally might tempt someone to turn the objection 
on its head: if the existing rules do not allow for flip-flopping, then we need some that 
do. (See Yablo 1993.) 
33 See also Yablo 1985 and 1993. 
34 Actually I am talking about just one component of Kripke's theory, his construction 
of the minimal fixed point based on the strong Kleene valuation scheme. But this is the 
component that has attracted the most attention. 
35 Although we have not discussed simultaneous definitions in so many words, they are 
handled in the obvious way: each of (AT), (AF) and (AR) becomes two rules, one per 
definiendum, 
36 Of course, to call these rules inconsistent is only to say that we are not always able 
to do what they ask. Quite often we can do what they ask, and in these cases definitive 
semantical classification is possible. Just as the inconsistency of definition (11) doesn't 
prevent 0 from being a clear case of an anteger, the inconsistency of our definition of 
"true" doesn't prevent "snow is white" from being a clear case of a truth. But where 0 is 
the only clear case of an anteger, our definition of truth recognizes infinitely many 
truths and falsehoods. (In fact it assigns more sentences truth values than Kripke's 
consistent definition does.) 
37 This proviso is meant to be taken seriously: some of what we do below becomes 
incorrect if the biconditional, for instance, is taken as basic (see note 41). 
38 p ~ - 1 is to be understood as P~ if a = fl + 1, or U ~ < aP~ if a is a limit ordinal. 
39 Here and throughout "increasing" is used in the weak sense: a ~< fl ~ P~ c_ p~. 
40 As before P ~ _ 1 is to be understood as Pp if a = fl + 1, or U ~ < aP/~ if a is a limit 
ordinal. 
41 Suppose that the biconditional had been treated as basic. Then it could have 
happened that P had no particular valence in ¢ despite occurring only once in it; for 
instance, P is neither positive nor negative in Px ,-, Qx. As it is, though, Px '-" Qx 
abbreviates the conjunction (Px - '  Qx) & (Qx -~ Px). This contains P twice, the first 
occurrence being negative and the second positive. 
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