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Abstract
On Finding Optimal Groups - A Quadratic Programming
Approach in Zero/One Variables with Applications
by
Don Michael Coleman

Co-chairman K. B. Irani
E. L. Lawler

In this research we consider a mathematical programming
problem of the following form:

Maximize f(x) = ) ¢y - ). b].x].
i, ] j

. k
subject to ) 8" X, < Iy k=1,2,...,m,

where b]. is an arbitrary real, cij >0 for all i,j, and ajk, ly are
positive reals for all j and k, X; € {0, 1} for all j.

For values of m < 2 we present an algorithm for solution of
this problem based upon generalized Lagrange multipliers. This
algorithm is suitable for application to problemsv with a rather
large number of binary variables.

 This formulation is shown to be applicable to a number of
optimal grouping problems; a particular application to computer

systems paging is examined in detail.
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Chapter 1

1. Introduction

In the design of many large scale systems it is frequently useful
to formulate a number of the engineering problems as optimizati'on,
problems in zero/one variables.

Much effort is directed towards developing algorithms for solu-
tion of these problems which are readily programmed and do not require
unreasonable amounts of computation time and storage.

Linear programming has been one of the more successful tech-
niques developed to deal with problems of this nature. For example,
special algorithms have been developed for efficient solution of thg
classical transportation and assignment problems.

In this dissertation we provide a method for solving a quadratic
binary programming problem. We show this problem to have a wide
range of applicability in both operations research and in computer sys-
tems design.

In the subsequent Sections of this chapter we present first a
description of the general quadratic problem with which we will be con-
cerned and then a review of the areas of applicability and known results.

In the concluding portion of this chapter we give the scope of this

dissertation in detail.



1.1 General Problem Area

The quadratic programming problem will be defined as follows:

(1) Maximize f(x) = 123 Cij xix].-zj:bjxj

subject to

(2) ? aijj < By k=‘1;'2;...,m

~where X = (xl;xz;. .o ;xn) X, e {0,1} for all i, ¢;; > 0, for all
iandj, akj; u, are positive real numbers for all j and k, b]. is arbi-
trary real number,

For small values of n (less than 40) a general algorithm such as
the one given by Lawler and Bell [ 31] can be used to solve this prob-
lem, However , when n becomes relatively large, these algorithms are
not efficient when directly applied to this problem.

In this dissertation we present an algorithm although
not as general as [ 31], which can be used to solve (1) and (2) when
m < 2. Our algorithm may be used to solve problems for relatively
large values of n without requiring prohibitive amounts of computa-
tion time and storage.
-In the following section we explore some areas of applicability of

problem (1) and (2) for the case of m < 2.

1.2 Areas of Applicability

There are numerous areas for application of the problem defined
in sectionl.1. In the following three sections we give some operations
research problems which may be modelled using the formulation pre-

sented in section 1.1,



We begin with a problem we define as the quadratic knapsack
problem which is seen to be a special case of the problem of section

1.1,

1.2.1 Quadratic Knapsack Problem

We define the quadratic knapsack problem as follows:

Maximize f(x) = ), c,.X.X,
=Ty T
subject to

Zi: X, <

1%
i,j, a; >0 for all i.

where X = (x %), %€ {01} for all i, 1 >0, c;; >0 for all

Here, as apposed to the classical linear knapsack problem [ 8 ],
the value associated with selection of a particular item is related to the
set of items which are selected along with it, Of course X, =1 implies
that the ith item has been selected while X, = 0 implies rejection. The
constant cij is a measure of the value of selecting items i and j while
2 is the weight of the ith item and p is a constraint on the total weight
of the items selected.

A particular instance where such a model is applicable is in thé

program planning and budgeting field [2],[ 5 ], [45].

1.2.2 Optimal Selection of R and D Projects

It can be seen from the literature that the problem of selecting

afirm's research projectshas been given considerable attention (see



[ 5 ] for example). In most of the work previously published, consider-
able attention has been focused on the research and development alloca-
tion problems which can be formulated as linear programming models.
An interesting variation of the optimal project selection problem is
handled by the quadratic knapsack problem.

The problem briefly stated is as follows. A large research and
development concern is faced with the problem of selecting from among
n projects those which should be researched. It is further assumed
that among the n projects one has quantified a matrix {c'i].} which
represents the value of success;

c'ij' = the value of the successful outcome of
the ith and jth research proposal
One might see [ 2 ] for a discussion of how one estimates the value
of suc_cessful projects. There also might be associated with each pair
of projects a number pij the probability of a successful outcome of the
ith and jth project. Therefore we can define cij = pi]. c'ij which repre-
sents a weighted interrelated value coefficient. And we select‘the set .

of projects which maximize

BON ) i -
i,]
Of course X, = 1 implies that the ith project has been selected
while X, = 0 implies otherwise. Now usually management estimates,

from past experience, the cost per man-hour associated with a given

.th .
type of research project. This is represented by a; for the i ~ project.



The total available man-hours per year u for all projects which are
utilized among the projects is a cost constraint known by management.
And it is this constraint which must be satisfied when the set of re-
search projects are selected i.e.,

(2) :2 ax, < .

The maximization of (1) subject to (2) gives the best selection of
research projects and is a direct application of quadratic knapsack
problem,

There are numerous algorithms in the literature for the classical
knapsack problem [ 8 ], [9 ], [17]. However there are few results
concerning the quadratic case. In chapter four we give some compu-
tational results for the problem of selecting an optimal set with
inter-related value coefficients.

The next section illustrates an application in the area of pattern

recognition,

1.2.3 Pattern Recognition

A common problem in pattern recognition [43 ] is that of classi-
fying signals into sets of common patterns, i.e., signals or points |
which are somehow similar are expected to be classified into different
classes.

Essentially there are three basic elements to the classification
problem in pattern recognition. The first is that of metricizing i.e., a

method of measuring distance between the points to be classified.



Generally the distance measure is a way of quantifying the similarity
or dissimilarity of the points to be classified. Next is the concept of
a clustering criteria which usually includes the notion that "distances"
between members of the same class are on the average small. f‘inally,
there must be a computational procedure for selecting the clusters or
partitioning the set of points.

If the first two elements of the pattern classification problem
are given, our quadratic programming formulation can be used as a
- method for classification, For example let us have a set of points
{1,2,...,n} for which we have a metric defined on all pairs of points.
If c'ij = the distance between the ith and jth point define cij = —617— .
It is desired to partition the set of points into two sets such thatl'ihe
sum of the distances of the points in the same set is minimized. One

could select this partition by solving the following:

maximize Z c XX, + Z ¢

L SR ..(l-xi)(lej)
i,j i,j

1}

subject to

s
(V4
=
—t

X.
1

AN

Ho

g =0

X, € {0,1} foralli, p, <ty -

This is a special case of the problem defined in section 1.1. The
numbers (4 and o could be used to control the size of the partition,

i.e., how many elements in each set of partitions. The first term in



the objective function is a measure of the similarity of the points which
are selected for first set of the partitions while the seond term mea-
sures the similarity of those points which are not seiected and which
form the second set of the partition,

In the next section we discuss a problem in computer storage
allocation. The study of this problem was a motivation for looking

at problems of optimal groupings and hence our quadratic problem.

1.2.4 A Problem in Computer Systems Storage Allocation

In the relatively short time that the electronic digital computer
has been available, it has undergone extensive changes in its basic make-
up and organization. This transformation has seen the computer move
from a relatively slow, unreliable machine with limited memory capa-
city to a highly complex system of processors with a hierarchy of
memories and complicated input-output devices. Along with thé emer-

gence of new hardware has been the emergence of the art of multi-

programming., This concept has been aided by development of the

virtual storage machire [ 1], i.e., each user in the system may
assume that he has available a very large address space, which may
be many times larger than the size of main memory., The bookkeeping
and memory management for efficient operation of such a system is
automatic and transparent to the user.

Multiprogramming, as the name implies, means having several

programs occupy high speed memory simultaneously. The problems



of effectively using storage in a multiprogrammed mode are sometimes

appropriately called problems of storage allocation, When we consider

this problem in the context of the early days of computing it was rela-
tively straightforward.

In early batch systems where programs were run one at a time,
each program had the entire high speed memory (core) available.
Problems arose when a program was larger than the available core.
In thesé cases the pfogrammer had to improvise by "'segmenting' his
program (instructions and data) , and controlling the overlaying of
""'segments'', Segmenting, of course; referred to dividing the program
up into parts (segments); hence during execution the unused segments
of a program were kept on a backing store and brought into core, i.e.,
overlaid as they were needed. If the problem of segmenting a program

was given to the operating system instead of the programmer we had

what was called an automatic segmenting system; and the problem of

segmenting the program in an optimum manner became known as the
classical overlay problem [ 36 | or the problem of program segmenta-
tion [ 26 . Segmentation has come to mean something slightly different
in modern terminology [ 11 ].

In multiprogrammed systems overlaying or segmentation is -
intended to increase the size of effective memory. Segmentation can
also réduce the delay in loading a large task ihto the space currently

occupied by many smaller ones, since in the case of segmented systems



much of the overhead incurred by having to move tasks around to make
the larger task fit can be avoided, Likewise the delay is reduced in

loading small tasks among large tasks. Therefore with effective seg-
mentation throughput may be increased. A summary of techniques for

overlaying is found in [ 36 ].

1.2.4.1 Paging

In batch systems there was no particular problem associated with
the overlays of different sizes (the only constraint was that they were
smaller than the core). However in multiprogramming systems, if the
size of the unit of core allocation is varied to suit the needs of the infor-
mation being tra.nsferred; then the problem of storage fragmentation is
incurred; that is,the high speed memory available for storage becomes
fragmented into numerous little sets of contiguous locations. There is
a high system overhead incurred by physically moving tasks in and about
to utilize a fragmented core, due to the added burden of keeping track
of things once they have been committed to high speed memory. In
the first dynamic storage allocation system, the Ferranti ATLAS,
this problem was ""solved" as follows. High speed memory was divided
into fixed size blocks called page frames. The programs and data
which were to .be brought into high speed storage were divided into
similarly fixed sized blocks called pages. Now wheninformation was
to be brought into core; the set of available frames was matched with

the set of blocks or pages which were to be brought in, Systems which
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use this approach usually have hardware mapping devices which make
the address of items in a page independent of the particular page frame
in which a given item resides. Such systems are called paging systems
and these are the systems with which we will be directly concerned,
Actually the physical dividing up of core does not "solve" the core frag-
rhentation problem, However; in such systems fragmentation is now
within individual pages rather than in high speed memory. This is
because it is often the case that a page(s) allocated to a task will only
be partially used. The great virtue of such systems is that they are
simpler to implement since a page can be placed into any available
page frame, Some modern systems do not have a uniform unit of core
allocations, for example the MULTICS system has two such frame
sizes - 1024 words and 64 words; and are still referred to as paging
systems. A good summary of the allocation strategies and hardware
facilities of several modern day systems is given in [41].

A basic problem in paging systems is that of memory management,
that is, the decisions by which the operating system determines what
pages are to be brought in to high speed memory, called fetch strate-
‘gies, the decisions which determine where the incoming pages are to
be placed, called placement strategies; and the decisions to determine
which pages must be removed when the conditions of high speed core so
dictate, called replacement strategies. A set of such strategies is

usually called a page turning rule or algorithm. These strategies must
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be formulated in the total system environment with consideration given
to such system policies as scheduling, which is most often concerned
with the selection of the task to use the CPU,} sharing of programs, and
other system features. However, the main objective of such page-
turning policies is to decrease the page traffic between high speed
memory and the backing store, The reasons for such an objective are
well known, First, there is a system's overhead as.sociated with
making a decision about what to move and where to move it. Second

if the volume of transfer between the two levels of storage grows too
fast; there can be congestion in the channel between the two memories
which could in some cases seriously affect processor efficiency due to
tasks being queued for the use of the channel. The operation of the CPU
is further degraded; by the "stealing' of memory cycles by other
auxiliary memory devices, if the page traffic is high.

In most of the literature the memory management problem is

divided into two stages:

(1) Paging in - Locate the required page in the backing store,
bring it into the high speed memory and turn on the
appropriate bit in the appropriate page table.

(2) Paging out - Remove some page from main memory;
turn the in-core bit off in the appropriate page table.

Denning [10 | notes that the problem of paging in is solved apriori since

most systems use the so called demand paging strategy; a page is
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brought in only whén it is first referenced by an executing task. So
most work is concerned with the page replacement part of the manage-
ment strategy. A summary of some of the current replacement rules
is given in [ 10].

One current view is that by careful analysis of the structural and
behavioral characteristics of programs which run on paged systems, one
can décrease the page traffic, Structural and behavioral characteristics
of a program are referred to as microscopic properties as opposed to
its macroscopic properties, e.g., execution time , size, etc. The
structural characte;'istics are determined by the threads of control
between blocks of program code while behavioral characteristics refer
to frequencies of references between program blocks.

In Chapter 4 we present a detailed discussion of models for pro-
gram reorganization. In this chapter we show how the quadratic pro-
g‘ramming problem may be used as a tool for selecting.a biock of a

computer program.

1.2.4.2 Class of Computer Programs for Partitioning

Given the prevailing conditions for collecting statistics on pro-
gram behavior, we initially consider program reorganizational techni-
ques to apply toAa single class of programs. These are large systems
programs which are run frequently, such as compilers, assemblers,
and certain library routines. These programs tend to be composed

of a large number of subroutines and tend to be combined at execution



13

according to a rather constant pattern. Such programs are heavily
used and are available for study. The time spent gathering statistics
for model building is justified if only a small increase in operating
efficiency is obtained.

In our subsequent discussions we draw freely on the descriptive
terminology of the graph theory. For the reader unfamiliar with such

terminology we refer him to Appendix III.

1.2.4.3 A Review of Program Partitioning

We now review what has been set forth in the past regarding the
microscopic approach to the problem of memory management.
Ramam'oorthy [39] has previously proposed an operating system
which would detect, during the compilation phase, those structural
properties of a program which would be incorporated into a page-turning
algorithm. He advocates an advance paging policy as opposed to demand
paging. There is some merit to advance rather than demand paging.
Although demand paging tends to minimize the amount of high speed
memory allocated to the tasks in the system, since only pages which
are referenced are loaded, a more significant measure of a strategy's
effectiveness is the space time product. A program aw_aiting pagés
will continue to occupy high speed memory; in this case the space time
product will be affected by the time taken to fetch pages. Pinkerton
[38] has results which show conditions under which an advance paging

policy is more effective, in terms of space time product, than demand
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paging. More important to our immediate goéls are the suggestions
Ramamoorthy has about how pages shquld be produced, what we call
the "page packing problem'". He advocates that the blocks of

code placed on the pages (packing of pages) afte‘r the program has been
compiled should be chosen on the basis of connectivity and frequency
of access, }ie uses the directed graph model of a program, as pre-
viously introduced by Karp [22] and Marimont [34] , as the basic tool
for study of the page packing problem. Each node of the graph repre-
sents a small block of data or instructions. The directed arcs repre-
sent the transfer of control between instructions, and the undirected
edges are used tq indicate an instruction referencing data. Since the
edge is undirected control is tovremain in the instruction block.

Ramamoorthy uses the connection matrix of the graph to deter-

mine a number of useful program properties. For example; the pro-

gram can be examined for logical consistency, i.e,, no infinite loops

) b

or redundant inétructions by a series of algebraic operations on the
connection matrix, His main result concerning the packing of programs
| has to do with the observation of the property of strong connectedness
among the nodes of the graph. A set of nodes are strongly connected

if given any pair of nodes Vi’vj there is a path from \A to vj and also a
path from Vj to vy Ramamoorthy states that the page packing which
minimizes traffic between high speed memory and the backing store
will be one which places all nodes of the strongly connected components

of a graph on the same page. However, since the strongly connected
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components of a graph can be any size, ranging from only one
instruction to perhaps the complete program, the fact that there .are
constraints on the page sizes indicates that this result will in

general not be very useful for practical programs.

Kral [26] has formulated the problem of program segmentation
as a problem in pseudo-boolean programming. His paper consists of
showing that the packing of a program can be reduced fo the problem
of solving a linear integer programming problem in zero-one variables,
He concludes by observing that all the algorithms of pseudo-boolean
program}ming can be applied to this problem. However, most of the
known algorithms are not sufficiently effective to solve problems of
the ranges'invol;red in program segmentation, The essential part of
this paper is the formulation of the linear integer programming problem.
In this paper Kral gives no algorithm for the problem solution,

Pinkerton [38] uses a Markov model for study of the problem of
selecting the segments of a program. An optimization problem is’
formulated. No algorithm is given for the solution of the optimization
problem. He concludes that the cost of an effective solution to the prob-
lem is not justified in terms of all the assumptions necessary in the
building of the model.

Kernighan [24] studies the problem of assigning subroutines to
pages and graphical partitioning. He develops an algorithm for assign-
ment of subroutihes to pages such that interpage transfers are minimized

- under the following conditions,
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1. The program graph is a tree
2. The edge weights of the graph are monotone non-decreasing
| on any path away from the root (initial vértex) of the tree,
That is; if Vi’vj’ and V), are a sequence of vertices on a
path away from the root then c(i, j) < c(j,k), where c(i, j)
is the weight of edge (vi;‘vj).' |
3. Cost on all edges leaving a vertex is the same. That is
if vertex v, is the initial vertex for arcs (vi,vj) , (vi; vk), cee
(Vi’vﬁ)’ then c(i;j) = c(i;k) =... =c(i, 0.
From this basic procedure an algorithm for the more geheral case,
acyclic graphs; is.developed. Under similar restrictions on the edge
weights of the graph and with duplication of vertices allowéd, Kernighan
gives a procedure for optimum assignment of subroutines to pages.
rI;he restrictions of his procedures to acyclic graphs is limiting
if the procedure is to be applied to real programs, However, if a suit-
able methods were available for representing general directed graphs by
acyclic graphs, then his algorithms would be a good initial step for pro-
gram partitioning. Estrin and Martin [13]have given procedures for
'trahsformation of certain cyclic structures to acyclic graphs.
Kernighan and Lin [ 25] have given a heuristic procedure for
graphical partitioning, In this case there is no restriction on the type
of graph or on the edge weights. Es’sentially a "hill climbing'' algorithm

is used to find an optimum partition of a graph into two sets of equal
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vertices. The procedure is reapplied to the two subgraphs 'defihed by
the two sets of vertices. The procedure is applied as often as neces-
sary to the resulting subgraphs until the required partition is found.

Essentially,. the idea of "hill climbing" is to start with an arbi-
trary two-block partition and move progressively to better two-block
partitions until an optimum two-block partition is found. Better two-
block partitions are found by interchanging vertices between the
blocks of a current partition; a gain g ils( computed for each interchange.
The strategy is to maximize the sum Z g; over k interchanges.
When this is done, the resulting partitioixzils treated as the initial par-
tition and the procedure is repeated. Whenv the maximum of the sum
Zgi is zero, a local maximum is réached. Kernighan and Lin give
ways of trying to improve this two-way partition, The procedure re-
quires all vertices to be the same size and ways of dealing with une—'
qual size vertices are given, |

When the graph is small an algorithm developed at Informatics

[20] can be used to find an optimum partition for arbitrary graphs.

This algorithm, backtrack programming, is essentially a method of

implicit enumeration. A very simple heuristic algorithm is reported

in [ 20] ; in Chaper 5 we compare computer results using this algorithm,
In the next section we note a final area of application for our

quadratic programming problem.
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1.2.5 Other Relevant Results
A great deal of research literature has been devoted to problems

of finding optimum groupings. The quadratic programming problem is

closely related to many of these, such as the assignment problem,

graphical partitioni'ng; and cluster analysis. In the particular area

of numerical taxonomy [46] and cluster analysis [21], [42], [44]

we find a number of algorithms designed to give groupings of items
according to some specified criteria. With cluster analysis the prob-
lem is to orgainize a set of data into homogeneous groups where such
homogeneity is based upon some measure of associativity between
items of data. We note that this problem is significant only when there
is a rather large"number of elements to be organized, this being on
the order of a few hundred, With cluster analysis, there is a measure
(objective function) to judge the efficacy of a given partition or group-
ing of the data. Much effort has been devoted to the problem of extre-
'mizing some function of the distance metric [21] which is defined on
the set of objects to be partitioned. |

When the distance metric is given, the criterion for optimality
will depend upon the given application, Typically one is concerned
with extremizing the within group distances of the data objects to be
grouped or clustered.

For example let Cij be the metric distance between data items
iand j of a set of items to be clustered into M groups. Suppose that

the criterion is to maximize the within group distances. One common
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way of proceeding (for example see [12]) is to divide the data objects
into the two most compact groups and repeat the procedure sequen-
tially until M groups are obtained.

Finding the two most compact groups when maximizing the within

group distance can be accomplished by solving the following,

Maximize .Z.Cijxixj + Z ci].(l—xi)(l -x].)
i,j i,j
Subject to
L > 1
i
x. e {0,1} foralli
X, = 1 data item i in group 1,
=0 data item i in group 2.

When M = 2 the solution to this problem gives the optimal cluster-
ing, However when this procedure is used sequentially; i.e., M> 2
the solution may very well be suboptimal, . However the problem of
dividing the partition into two groups where we have only the single
constraint Z X, > 1, is solved efficiently by the method of generalized
multipliers and our algorithm for unconstrained optimization which we
present in chapters two and three.

In reviewing the literziture for problems of nontrivial dimension
we find no algorithms which guarantee optimality other than total enu-
meration. Therefore most clustering algorithms are concerned with a
search for the best alternative among a small subset of alternatives.

Rubin [42] reported an algorithm which gave "good' results for a
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clustering problem consisting of 150 items. The algorithm cari be clas-
sified essentially as a hill climbing procedure, as with Kernighan and
Lin, which ran moderately fast for these types of problems; the reported
times for this algorithm ranged from 3 to 12 minutes on the IBM 7094.
To obtain a feel for the combinational complexity of problems
of this type consider the following. Given a set of N objects, it can be
partitioned into M disjoint subsets in S(N’;M) ways vh ere S(N,M) is the
Stirlings number of the second kind;

| KM
s =50 ) GOMTE ) KN

M ko
For the following values of M and N Jensen [21] gives the following,

©§(25,10) =1, 203,163,392,175, 387, 500
S(24,6) = 6,090, 236,036,084, 530

So even with program partitioning; where some partitions are
infeasible because of size constraints; we are confronted by an enor-
mous combinatorial problem when we consider partitions for sets where
N =125, M =~ 20, as is the case for a typical compiler.

Lawler et al [32] reports an algorithm for partitioning logical
networks into modules such that intermodular delay is minimized. The
procedures are developed first for networks represented by trees and
then generalized for the case of acyclic networks; optimal clusterings
‘are obtained provided duplication is allowed of network elements. The
procedure consists of an efficient labelling procedure which is similar

to that found in [ 24].
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1.3 Scope of Dissertation

In chapter two we develop a two phase algorithm for maximiza-
tion of an unconstrained quadratic function, The third chapter is devo-
ted to techniques used to convert constrained optimization problems to
unconstrained problems. Chapter four is a chapter of applications in
which we give a model for program partitioning along with an algorithm
for partitioning based upon solutions of the problem defined in section
1.1. In chapter five we give some alternative strategies for program
partitioning and some comparative results, Chapter six is an actual
application of program partitioning to a large systems program,
Finally in chapter seven we give conclusions and future research prob-

lems.



Chapter 2

2. Unconstrained Optimization of a Discrete Quadratic Function

In this chapter we develop an algorithm for solution of an

unconstrained quadratic function in zero/one variables. The algorithm

will be the basic tool used in solution of the constrained problems de-
fined in the first chapter.

Basically the unconstrained problem is defined as:
Maximize Y(x) = izj Cijxixj - Z? bjxj (2.1)
where we have Jf >0, for all i,j, 'bj real and X; € 10,1} for all j.
In all our subsequent discussions we assume that Cii = 0; since if
a term ciixi2 is in the objective function it can be replaced by e
We simply set such a nonzero coefficient Cs to zero and change the
linear coefficient of X, to b~ Cii

One of the main difficulties in the solution of (2.1) i.e., obtaining

)
a free maximum, is the dimension of the problems with which we are
concerned. For solutions of problems with more than about 40 variables,
conventional mathematical programming methods do not exist or are
inéfﬁcient when directly applied. In this chapter we devise an algorithm

for obtaining a free maximum which has two phases. The first phase of

the algorithm is a direct approach; sufficient conditions are developed to

determine if the variables of a given set are either zero or one in a maxi-
mizing solution, These tests are not exhaustive,i.e., not all values
for all X, are found but they are sufficiently powerful to find a large

number of the boolean values in a maximizing solution. Some computation

22
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results are given using these tests where the test problems ranged from
6 to 150 variableé and there were up to 600 nonzero coefficients Cij‘
The results of these problems where cij and bj were randomly
generated suggested that the first phase of this algorithm was suf-
ficiently powerful to determine enough of the variables so that those
remaining variables in a maximizing solution could be determined by
more conventional techniques.

In the seconci phase of the algorithm we deal with a problem of
exactly the same form as (2.1) but of considerably smaller dimension. -
In this phase we use an implicit enumeration scheme for determination

of the remaining variables.

2.1 Phase I Branching Algorithm

In this section we give the proofs of a number of sufficiency tests
which allow easy determination of a subset of the variables which maxi-
mize (2.1). The first phase of our algorithm is really a structured
search of the space of feasible solutions (all boolean n vectors) where
we can determine easily which paths are not to be taken if we are tb
determine an optimum solution vector x*.

We start with a test to determine which variables are to be zero
for a solution vector x* which maximizes Y in equation (2.1). Note
that a lower bound of Y in a free maximum is zero. This observation

leads to the following theorem:

Theorem 1a

A boolean vector x* = (xq*y . .X *) maximizes
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Y= .E.Cijxixj' %} bjxj’ S >0, bj >0 foralli,j,
only if X*=0 whenever %;(cij + cji) < bi
Proof

k= (¢, ... X%, 1 x*, L., X* ) maximizes
Assume that x*= (x oo X pLE e n)

Y and suppose that /‘7 (c. ]+ c, ) < b Let us consider
]
Y(x*) =z + X¥ ( E (c..+ c].i)xj* - bi) where z contains all terms of

— - i
1 j ]

Y (x*) not 1nvolv1ngx *, Now since z (c, it c] ) - b <0 Y(x*) =
j

X +1.%( Z (Cij + Cji)xj* - bi) <z +0, hence x* cannot maximize Y.
o
Q.E.D.

Theorem 1b

A boolean vector x* = (x1%0-- ’Xn*) maximizes

Y = Z JES 7b X;, >0, foralli,j
onlyifxi‘: 1 whenever b, < 0.

Proof

Assume x* = (xl*, cel ,x*i_l,O,x*i+1,. . ,x*n) maximizes Y and
' i x*) — * X
suppose that bi §0 . Consider Y(x*) =z + X, [ ? (Cij+ c].i)x j bi]
where z contains all terms of Y(x*) not involving x*.. Now since b, <0
we have Y(x*) =z +0 *[; (cij+ cji)x*j-bi]§ Z+ 1% [jZ(ci].+cji)x*j-bi] .
Q.E.D.
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We use these initial theorems as a first step (see flow chart of
figure 2.1) in our algorithm for finding a maximizingvector of (2.1).
We next consider additional sufficient conditions for setting a

Boolean variable, X of equation (2.1) equal to one.

Sufficient Conditions for xi =1

Given an X; we want to decide if it is desirable to set X equal to
one. The main idea is when we set an x, equal to one, we should be
certain that the contribution to the objective function is nonnegative;
since we can always make a nonnegative (zero) contribution, with respect
to a given variable, by setting that variable equal to zero in equation (2. 1).
For example, suppose for some i and j, cij > bi + bj in (2.1). Then we
know that we can}set Xi=1 and xj =1, since in this case the contribution
to (2.1) cannever be negative, We express this sufficient condition more
generally in Theorem 2,

Definitiohs

1) We now define the following "coefficient sets' Si and Si+

which will be used in construction of the algorithm for
maximization of Y as
8;= {i: C £0 or i £0}
8%={i ¢;-0,>0 orcy -b, >0} < §;
We note that if C45 OF Cy5 and b]. are all zero then j({Si+;
and for every i, i¢ Si+’ since c,; = 0.

2)  We define the assignment sets A, A'i , and Aio as
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{j: optimum value of 3 is not known}

A?

]

= ¥ cij,éo or cji’é 0, x*, = 1} ¢ A
= {j: cij;éO or cji’é 0, x*;= 0} £ A
We note at this point that after application of lemma 1a, we have

the following conditions satisfied for each x. not set to zero andie A

5 (c, i* ) > b, and theorem 1b guarantees that b, >0 if i ¢ A.
jeA :

Theorem 2

I Z+ J>b o+ ), . by then

JeS je Si
_

xt*z 1 for all te Si’ and xi* =1,

Proof

Let 8; '{tl’tz’ Wt } Notice IS, *| =m. We can write the

objective function (2.1) as

Y(x) = Zcixﬂxj—Zb.x.zz +(c1+c Jx.x, + Z
R

(¢, +¢C )X X
; : h "h{ Qh
)] P st N esp

heS+

+0, (e v )X Xhoot ) (e Hey )X ;S(c +e, )X X

j;Si+ CERCELE j;i'-' td ity m] 268, fh" "he

A s h¢'S.*

i# i | I h?lél

+) (e .tc)XX-bx - ) bx - ). b,

jest NI TR gesdk 1S tudi} J

LetIc 87U {i} and Y° £ Y(x') where,
X, =0  forjel;
X' =1 for je[s," U{i}]-1

x].' arbitrary for j ¢ Si+U{i} .
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Let Y! 2 Y(x’) where
: o« T
xj” =1 for je S U{i} ;
xex! for j ¢Si+U{i} :

We claim Y' - Y° > 0.

First let 1 =8, U{i}. Then we have

1 o X
Y-Y =[ }_/ (c..+ c.i)x. + ; ,(ct1j+ Cjt X, +

jgst W 1]
i ¢S,
cee  + (c, .+c, )X,
j/;u ‘m ’}
i ¢S,
* Z +cﬁh+.Z +(cij+cji)-bi_.Z +bj20'
2eS.+ ]eSi ]c—:Si ‘
he}Si

The bracketed terms always sum to a nonnegative value, regard-
less of the values of x].'s. By our hypothesis the sum of the terms out-
side the brackets is nonnegative; hence we get that any maximizing
vector x* cannot have all x].*= 0, for j eSi+ U{i}. We now show that no
proper subset of variables with indices in Si+ U{i}, can be zero in a
maximizing vector x*,

Suppose I is a proper subset of Si+ U{i}. Let us assume that
I= {tl,tz. . .tr}, r < m. Note that in this case i ¢I. Then we have

vl ¢° =[ ;
]
j

i (ct it Cit )x1+...+ ), (ct A+ cjtr)x].J
¢s.”
i

1) 1 AL, r!
i ¢s.
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¥ Z Coptond+ L (e +e )= Db, .
t.el j j t.el 7
hES.+ ] ]
1

Since for tjeI CSi+

and since the terms in brackets are always nonnegative; Yl-Y0 2 0.

Suppose the set I contains i, thatis I = {i,t prtose tr}; then
1 0
Y-Y = Z (c..+ C..)X. + (€, .+ €. )Xit...
[]{S-{P 1] nj ],él t].] ]tl ]
1 . +
i ¢8;
.+ (c, +c. )X. |+ Z (c,.+c.,)
j;i N tr] Jtr ]t] Lel SR E
i ¢S, ﬂ;él
i
]eS
¥ Z -+(Ci] Z b.
j€es, tel 7j

1 ]

Now we know that the bracketed terms have a nonnegative sum and

) L ijte)- by Zb D +(613 cji)-bi- ) > 0.
]esS1 tJeI ] ]eS1 jeS

Therefore Y'- Y° > 0.

Hence we see that no subset of variables of x with indices in
Si+U{i} can be zero for any x which maximizes Y. This completes
the proof of theorem 2.

The motivation for our next lemma results from examination of
the set of zissig'ned variables A].', for every unassigned variable xj,

je A. Suppose wehave unassigned variables xj and there exists a
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can be assigned the value one, since we are assured that we can get

c_. such that 4 ij and x*q =1, i.e., qe¢ Aj'a Then we see that x,

only a nonnegative contribution to Y, our objective function, Writing

this condition in a moré general form gives theorem 3.

Theorem 3

If Z ' (cij+ Cji) > b,, then x.* =1,
i t-:Ai

Proof: Obvious.

‘The next theorem is a generalization of the theorem 2, in that
we consider several sets Si+ simultaneously,
Theorem 4%
Let L C A, andlet P=U Si+; and suppose L C P,
If for each i € L there e:}eciLsts jandkin L, j£k£i, such

that ie Sj+ and j € S *, then x } = 1for all ge P.

Proof

LetIC Pandletl 13

1=InL, 12=I-11. LetY Y(_:g)whgre
X. =1 1ieP
xi' arbitrary i ¢ P.

Let Y° 2 Y(x'") where
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We claim Y! - Y° > 0 for all 1 CP.

Z c X5+ Z c x + Z c + Z c Z b
iel ie iel iel iel
j¢P i€P jeP jeP

The terms outside the brackets are nonnegative. We can write the
terms within the brackets as

Doeyr D e 2 on] o 3oy D oeu- Do

1(511 leI1 leI1 1612 14512 1eI2
jeP jeP jeP jeP

Now for each iel,, since I1 CLCP, there exists a jeL such that i eS].+

| & )
therefore, we have either cij?- bior cjizbi' By hypothesis we have that

there exists a ke L, where k# i such that jeS,". We then have a

e
distinct c > b or ¢, 2 bj’ Therefore, for any i and j in I1 we
have bi and bj "covered" by distinct ¢'s. This means the first of the
bracketed expressions is nonnegative.

Suppose ie 12, then there exists a j such that je L, .i € Sj+. Now
if 12 (by construction), therefore, for each ie 12 there is disfinct ci]. or
cji sucﬁ that either cij > bi or c].i > bi' Thus the second of the

bracketed expressions is nonnegative and Y1 -Y° > 0. This completes

the proof of theorem 4.
Definition
An index i is said to meet the adjoint test with respect

to a set of indices P if
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After we find a set of variables for which the optimum value is

known, we readjust the constants bj to the new value bj' ,

b,'=D;- ), (c..+c..)
j ] ieAj' ij ji

If the modified value bj' of b]. is negative, i.e., the index j meets
the adjoint condition with respect to the set A'j, it indicates that

the test of theorem 3 is successful. In that case the corresponding
xj* Is set to one. If, however, the test of theorem 3 fails, the

cdrresponding b]. is replaced by the modified b].' and we continue our

search for optimum values Xj*’ je A,

Definition
S, 2 {i: there exists a sequence i,jy, j, - - ]
such that j; € S;*, j € st,...,jm € sj:'n_l,j € sj:n}.
Example Sl++’ Sqtt
Let

Sl+ ={3’ 4, 5}’ Sz+ = {6}: S3+ = {2, 7}’ S4+ = {9}
S5t =8t =8t =5t = o, Si++ ={2,3,4,5,6,7,9}

S;* = {2,86,7}.
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Definition
Let P CA be a set of indices. A subset M]. CPis
said to be a mutually covering set (MCS) with respect
toP
(1) ifM.=s U {j}, s.c8.’ ;
] ] )
() ific s andke P, thenie sk+ iff k= j;
(ild) je s iffke s..
Definition
Let P C A be a set of indices; an index j is said to
be ""covered' in P if there exists an ie P such that
je Sit. If, in addition, there exists ak ¢ P such
thatk £jandie 8", then j is "distinctly covered"
by i. Finally, if there exists a set K CP such that
K[> 1 and for each ke K we have je Sk+, then the
index j is "multiply covered' by indices of K.

We first prove a few lemmas concerning MCS which will help

us show additional sufficiency tests for xi* =1,

Lemma la
Letie Si++‘ If Si++ does not contain a MCS with
cardinality greater than one, then each element

je Si++ is distinctly covered by some element k eSi++.
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Proof

Let j eSi++ and assume that j is not distinctly covered. Let
T c:si++ be the set of indices which cover j. If |T[> 1, then j is
multiply covered. Now since j is not distinctly covered we must have
for each te T that te Sj+‘ Now for at least one te T there must be a
ke Si++’ k #j such that te Sk+; otherwise the set M].= {i}UT is a MCS in Si++
with cardinality greater than one,' which is a contradiction. But note
‘that if for some teT we have ak £j and k eSi++ such that t 8, ", then
by definition t distinctly covers j.
Q.E.D.
Lemma 1b
Let Mi and M]. be two MCS with respectto P, Ifi c—:sj :
then,
M;= {i} if lM].I > 2 and

M.=M, if IM, | = 2
1] ]

Proof

In addition to i, let k, k£1i be an element of M,. khas tobe
equal to j, otherwise ie s]. and i eSk+ which contradicts the fact that
Mj is a MCS.

In the case that j=k, k cannot be in M, if IMJ.I > 2. For, there

+

0 which contradicts that Mi is a

is an ,tleMj, 241 £j, such that jeS
MCS.

Q.E.D.
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Lemma 2
Let Mj and Mi be two MCS with respect to P, .
j A1, then s ﬂsj = .

Proof

Case 1 lMil = IMJ.I =1 obvious.
Case 2 IMJ.l >landie 5
The result follows from lemma 1b.
Case 3 -lel>1,ig{sj,j¢/si.
Suppose that siﬂ 5 £¢. Then fe siﬂ J L £j A1, It follows that

[ eSjJr and (e Si+ which contradicts condition (ii) of the definition of

a MCS.
Q.E.D.
Lemma 3a
str-(U sthus”’
! jes;* ] !
Proof

If j € S;** then by definition there exists a sequence 1,j;,jg, ..+, Jp]
..|.
It
Case 1 t=0; inthiscaseje S,

such that j1 € Si+’ j2 € Sj‘lf, ...,j €8S, . There are two cases to consider.

‘Case 2 t#0; inthis case je€ SjT, iy € Si+'
Hence we have Si++c (U s.thHu Si+'
JES.
Hje(U st udttheneitherje U s*torje s’ Now
tes,* * . teS,* !

if je S.*, then obviously j e S.**. Ifje U §* thenje s, tes .
! ' tes.* ¢ t !
i
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Therefore there exists a sequence t,jl, j2. . .jm,j where t € Si+,
. + . + . + . ++
iy € St y Ig€ S]. oo ] € Sjm and j € Si . Therefore

(U s Hus*tcs ™.
ot ) 1 1
j(—:Si Q.E.D.

Lemma 3b

Proof

Let P= (U " S.*) U Si+ by previous lemma 3a we have
je Si

5% = (U 8+ U §*and since 8,* C 5,"F, §;"* C P. The proof
j€ Si+ ] J
of the lemma is complete if we show that Si++ O P. Letke Pthen
there are two cases.
Case 1 ke Si+, then obviously k € 8, **.

Case 2 k¢ Si+ and k € Sj++ for some j ¢ Si++;

B Ky,

+
ewa.”keSk.
n

in this case there is a sequence i, jl’ j2’ . .o kn’ k such

+
1,... 1

that k € Si++ and also P C Si++'

that j1 €S jE€ Sj+ , k Therefore we see

Q.E.D.
Lemma 4

fie Si++ then there exists a L. C Si++ such that
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Proof

We can prove the existence of such a set L by showing that Si++
is one such set. LetP=U s].+. By definition s].+ CS];++.
je Si

p=U 8" c(U s™c{U s™HUs'}=s™

jesi++ j i Si++ i jeSi++ ] i
by lemma 3b. The proof is completed if we show that Si++ CP. Let
k eSi++, i.e., there exists a sequence i, kl,‘kz.' ;;.;kn, k such that
ke Si+, ko Slir RN e»‘?‘k“:1 There are two cases to consider.

Case 1 n=0; in this casek eSi+ and since ieSi++, keP,

Case 2 n#£0; in this case k €Sy * and ke Si++ and k ¢ P.
n

Hence Si++ C P and the proof is complete.

Lemma 5
Let P =8, {i} or P =5."". AMCs, M,

(le | > 1), exists with respect to P only if

ieSi++. If since M]. exists in P, thenie M]

Proof

First let us show that if i ,{si** then no M, can exist with respect
to P such that leil > 1, We first note that j cannot be.equal to i.
Otherwise, IM, | > 1 implies that there exists a k¢ s; such that i ¢S, "
and hence i eSi++. :

So M]. CPandj#i. Notice that ip‘Mj, otherwise i ¢ s].,

, and since je8,"", it would imply that ieSi++.

which implies that i e sj+
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Letk £j £ibe an element of M].. Since k eSi++ there exists a

* ,k eS”

sequence i, jl’jZ’ .o .jm,k such that jl eSi+, .o .jmeS. !

m-1 m

There are two things to be noted. First, m£0. Otherwise,
k eSi+ which cannot be the case because by definition of a MCS if k eM].,
k£ jthenk eSi+ if and only if i=j. Secondly, j,=1, because again

kes, ¥ andk ¢M,, kA j, imply by definition of a MCS that j, = .
m

If Jp=1 then by definition of M]., -1 es]., and consequently
jn_ 9= j. We continue until we get to jl. At this point, depending on
whether m is odd or even j1=j or jle Sj' If j1=j then we have j <sSi+
which implies that i eMj, which we have already shown not to be the
case, If jle S]:+ and since jle Si+’ according to the definition of a MCS
i has to be equal to j, which we have shown not to be the case. Therefore
we have shown that if i¢ S, there is no M, C P such that |M,| >1.
i i | il
Now letie 8", i.e., P =8"", Let M, C P such that M, | > 1.
If j=1, 1eM; by definition of a MCS. If j Li there is a k eM].; k £i;
if k =1 the second part of the lemma is proved. If k #i there exists a
+ - +
€S, ,..., keS, .
2 J1 ! jm
If m =0, by the same arguments as previously used, i =j. If

sequence i,jl,jz, coey jm; k such that jj € Si+; j

mf 0, jmzj as previously shown., Again by the above arguments either

j1=j or j1 € Sj‘ For the former case i eMj; for the latter i =j. This

completes the proof of lemma 5.
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Corollary
A set Mj such that le | >1, is a MCS with respect
to P =8, U {i} if and only if it is a MCS with respect

++
to Si :

Proof

Let M, be a MCS with respect to P = Si++U{i} where le | > 1.
We claim that Mj is also a MCS with respect to Si++. We have by lemma

’

5 that if M, exists with respect to P that i eSi++ in this case si”*: P
hence it follows that M, is MCS with respect to si++.
If M, in a MCS with respect to si++ then since si++ C P it follows

directly that Mj is a MCS with respect to P,
Q.E.D.

In defining MCS with respect to a set si++ it is possible for sets

of cardinality two to be identical. This can be seen from the

M, M,
following example,
5" = {2,3,4}
s, = {1,5}
S’3+ - g
34+ - ¢
85+ - ¢

The set Sl++= {1,2,3,4,5} and M, and M, with respect to Sl++ are

both {1,2}. Mutually covering sets Mj with respect to a set Si++ are

shown to be unique under certain circumstances by lemma 6.
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Lemma 6
Let M; be a MCS with respect to S,"" such that M 1> 1
(i) I lel > 2 then Mj is the only MCS of cardinality
greater than one in Si++‘
(ii) If [Mj | = 2 then there are exactly two MCS of car-
dinality greater than one namely Mi and M].; further=

more M.=M.,
1 ]

Proof

Let M; and My j £k £ibe MCS in si“”’ both of cardinality greater

than one, According to lemma 5, ieM]. andieM , i.e., iesjﬂsk. But

k

this is impossible by lemma 2.
If k =i, then the lemma follows from the fact that i ¢ Mj and
lemma 1b.
Q.E.D.
We note that if i ¢ Si++ it is not necessary for a MCS of cardin-

ality greater than one to exist. This is shown by the following example.

Example
5,7 = {2,3,4}  8,7={1,2,3,4}
8, = {1}
8," = {2}
;"= ¢

No MCS exists in Sl++ with cardinality greater than one,
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| The following lemma is useful in making certain fhat there
exists no MCS M,, th | >1in "
Lemma 7
If for each j ¢ Si+’ id Sj+’ then there can be no Mj CSi++

such that IMJ.I >1,

Proof

Obviously M, cannot be in’Si++, |M1l > 1, if for each
je Si+’ igd Sj+. Suppose for j £i a MCS Mj exists in Si++ where
M, >1. By lemma 5 i Mj. Now by (if) and (iif) of definition of
MCS we have j ¢ si+ and i e s].*, but by hypothesis if j eS,", i ¢ sj+,
hence a contradiction. Therefore no MCS M]. exists such that IM]. [ >1.
Q.E.D.
Theorem 5
If i eS8, and no M, C8,"" exists such that M, 1>1, then

x.* =1 for all je si”*.

Proof

This follows from lemma la, lemma 4, and theorem 4,
QoEoDo
The next set of Theorems deal with those cases involving Si++

both when i ¢ s].l”“+ and when i ¢ si“*o

_Theorem 6

Suppose there exists a MCS, M ,, with respect to

Q’

** such that IM ﬂl > 1. Then if there exists an index

S.
i
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te Mﬁ such that

Z++ +(Ctk+ th) > b,
ke si - St
then xk* =1forallke Si++°

Proof

We have i€ Si++ and suppose that there exists a MCS, M 0 in

si++ such that | M ,[> 1. Lette M such that the condition of the
theorem holds. Let Y1 =y (x") where
‘ tt
xk' =1, ke Si ;
x,'is arbitrary k¢ si++ :
Let Y- Y(x") where
" o ++
x " =0, kelICS,
X" =1, ke s -1;
' xk" =xk' otherwise .

The theorem will be proved if we can show that Yl- Y0 > 0 for

all I Csi++' ConsiderY1 - Y0 =

= C. X, Cpt Ca) = b
jZS.++ ( jk * ck]) j +keZI ( k]+ ]k) kZe:I k
Kl i ¢ Si++
The terms outside the brackets are nonnegative, We have two cases to

consider,
. Casel, t¢d L

We can then write the terms within the brackets as follows:
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(a) . ;IQM(;:kA c jk) +k 6%:- Mﬁ(ck].+ Cjk) - Z by - Z by

keIﬂMﬁ keI—Mﬁ
j eSi++ i eSi++- Mﬂﬂl
Consider any k ¢ IMM » if k # { then this index k is "covefed"
by £, i.e., ¢, , >b Orc, Zbk. Ifk = (, then since te M,

we can have t as a unique coverer of ¢, i.e., Sty >b,orc > b,.

and t ¢1,

Now consider any ke I - M I since k ¢ S_Jr+ it is clear that there exists

at least one j e Si++ "covering" k, i.e., Cik 2 > b, or ck]> b, . We note

since there is a single MCS in Si++’ with cardinality greater than one,

there is no chance that {j,k} form a mutually covering set with respect

to si++ It therefore follows that expression (a) is nonnegative.

Case 2 te I.

‘Now we write the terms within the brackets as

B Y eyrca)r ) (Cpsc) - Y ba{ Y  (c.+c.)-b}
keIﬁMQk] J k el-M, Tk kel-{t} * jestt-g 9 T
jes; jeSi+—ImM£

]k’ét +Z c+c

jes, +
Eachk e IMM ‘ k#t is covered by index ¢ by the same argument

given for case 1. Similarly all indices inI - M g are covered again by
the same argument given for case 1. Now t is the only index which is
not covered but we see that the terms in the braces are nonnegative by

hypothesis. It follows then that expression (b) is nonnegative since t

always covers the index ¢. : Q.E.D.
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Theorer9_7

. ++ :
Letig 8, andlet ), (cgrei) >y,

. + ij
j eSi -Si

then x;*=1 for all j e 8, U{i}.

Proof

—— s

Let P =8, 1041} and let vie Y(x'") where

x].' =1 je P,
xj' arbitrary igd P
Let I be an arbitrary subset of P, Let YO= Y(x'") where
xj" =0 jeICP,
x]." =1 - jeP-1,
x," =x.' otherwise

We claim th'a_t Yl - YO >0 forallCP,

1 0

Y -Y =Z (€. +C )X+ Z(c.+C.)-Zb.
jer Ik KTk TR s
k{P keP

The terms outside the brackets are nonnegative, It remains to show
that the terms within the brackets are nonnegative. We consider two
cases; the first case considers the index i to be in the set I, We then
write the terms within the brackets as follows,

@ ) +(c +c]1 + ), . (c j* ¢ L > b,-b..

C
. 1 . .
jes,t Y j €S, sl’“ JeI {H}J 361-{1}3 !
kes

Now by hypothesis we have



) (c..+ c..} >b;
j e gH_gt 1 i i

i i .
it therefore remains to show that the rest of the expression (a) is

nonnegative, We can write

b. = E b, + b..
je - {1} ) je@ st jel-{ij-s

Now if je (I- i) ﬂSi+ then .there exists ak ¢ P, viz i, such that Cik > b].
or ckj 2 b].; This j will then be '"covered' by a term in the first sum-
mation of expression (a).

Suppdsé jel- {1} - Si+, then since by lemma 5 there does not exist
a MCS, M]., with respect to P such that lM], | > 1; we then have j
"covered' by a c].k where k ¢ Si++° It then follows that expression (a)

is nonnegative and we have completed the proof for the case i¢ I.

The next case considers i ¢ I. In this case

1 0 , _
Y-Y = ) (C]k+ck)xk+ ), (c]k+ckj) ) b]
jel jel- jel
k /P keP

As before the terms outside of the brackets are nonnegative; the terms

within the brackets can be written
(b) Z (cjk+ ck]) + Z (cjk.+ ckj) - E bj' Z bj
jerns,” jel-8." je msi” jel- si+
ke P ke P-msi+
If je Imsi+ then j is "covered" by i. If je I - si", then there
ik Z b]. and since there is nd MCS

in P j does not cover k uniquely. It then follows that (b) is nonnegative,

exists a k ¢ P such that ck]. 2 bj orc

Q.E.D.
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Theorem 7 is the last test in the first phase of the algorithm,
A flow chart of the algorithm is presented in figure 2.1,

In figure 2.1 we see that the conditions of theorems 1a,1b, 2 jand 3
are tested in the boxes numbered 1,2, and 3 respectively. In box num-
ber 5 we use lemma 7 to facilitate the testing for conditions of theorem 5;
this is shown is box 5. The tests of theorems 6 and 7 are represented

by boxes 6 and 4 respectively.

2. 2 Computational Results Using Phase I

Table 2.1 summarizes the results of the computations for a series
of test problems. The coefficients Cij and bj were randomly selected
using a standard random number generator. To avoid trivial solutions

all bj selected were positive. The number of variables for each test

problem is designated by N, the number of distinct coefficients cij in
the objective functions is represented by M. The number of variables
not found by the first phase of the algorithm is |A|. In table 2.1 we
list the maximum number not found in any of the five test problems.
The times shown represent the running time of the algorithm written
in Fortran running on the IBM 360 model 67.

Table 2.1 shows that the average running times ranged from . 02
seconds for the 10 variable problems to 9. 27 seconds for the 150 variable
problems. The growth of the running time with N does not appear pro-
hibitive. Due to the nature of the dirécted search of the first phase

of the algorithm the more significant growth parameter is the number
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N M Problems I Average Time| Maximum Time| Max [A|
S | (Seconds) (Seconds)
s
10 15 5 .02 .05 3
2% | 50 | 5 | .11 18 0
50 | 100 5 | .58 .82 2
75 200 5 1.40 1.98 2
100 300 5 2.36 3.84 0
125 400 5 4,43 6.37 2
150 | 600 5 9,21 12.16 0
| N S —— _ e [
Table 2. 1*

¥ After this table was constructed we did generate one example

consisting of 150 variables and 500 coefficients where ]A| was 17
at the end of phase I.
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of coefficients M in the cost function. For N fixed at 150 figure 2. 2
shows the variation of running time with M. The solution times ranged
from 1.78 seconds M =100 to 5, 17 seconds M= 600. The dashed curve
was fitted to the data points. The time is seen to vary linearly with
M. The slope is 5.0 milliseconds per coefficient, which says that for
N= 150 about 500 milliseconds in additional phase I solution time is

needed for every 100 additional nonzero coefficients in the objective
function,

In summary it appears that the algorithm is quite effective in
reducing the dimension of a quadratic function as defined by equation
(2.1). It seems thaat the tests are sufficiently powerful to allow use of
this algorithm for problems with a large number of (C,1) variables,
especially in those cases where the coefficient matrix [¢ ]] is rather

sparse.

2.3 Phase II

The purpose of the first phase of the algorithm is to reduce the
dimension of the problem., Once this has been accomplished we begin
the second phase of our algorithm. In the second phase we obtain the
optimum values for those indices which remain in the set A, therefore

the problem with which we deal is
Z c. XX - Z b..
ieAa ) jea’
je A v
Note that some b].'s have been modified as suggested on page (31),
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since many of the variables will be determined in the first phase of
the algorithm. Since the dimension of the problem was small after
application of phase I of the algorithm, we could use an enumerative
procedure for finding the remaining variables. In section 2.5 we
discuss an alternative approach when the number of variables is

large.

2.3.1 Optimization by Implicit Enumeration

In phase II of our procedure we turn to implicit enumeration to
determine the value of the remainder of the variables. We now
review a rapid technique for implicit enumeration.

We use a technique for searching the solution space based upon
an algorithm of Lawler and Bell [31], developed for purposeis of solving
discrete variable optimization problem with not a large number of
variables. The idea is based on the observation that if the solution
vectors can be partially ordered, and the objective function and con-
straints are monotoné hondecreasing functions of the variables, a
large number of potential solution vectors can be skipped in a sys-

tematic search of the solution space.

2.3. 2 Partial Ordering of Binary Vectors

We define a vector partial ordering as follows. Suppose

L= (121,122, e ,ﬂn) and m = (ml,mz, . .,mn) are vectors we say
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£ <m if and only if ﬁi Smi fori=1,2,...,n. For example, if
£ =(10010) and m = (10110) we have { <m. We can associate a
numerical ordering with a set of binary vectors by associating with

each vector { the corresponding integer

N = 0,20 2R g 2

Observe that £ < m implies N(f) < N(m). However, N(£) < M(m)
does not imply £ <m.

If we list all binary n-vectors in numerical order

(0,...,0,0)
©,...,0,1)
(1,1,...,1,1)

We observe that following an arbitrary vector { there may (or may not)
be several vectors (' with the property £ < {'. These are vectors
which differ from £ only in that they have 1's in one or more of the
right most 0's of ¢, For example, the vectors following £=(0,1,0,0)
in the numerical ordering are (0,1,0,1), (0,1,1,0), and (0,1,1,1) and
each is greater than _ﬁ_ in the vector partial ordering. A vector {* is
denoted as the first vector following { in the numerical ordering with

the property that ¢ < £*. For arbitrary ( the vector * is calculated

in the following manner:
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Consider ( to be a binary number:
(1) Subtract 1 from ¢
(2) Logically "OR" Zand ¢-1 to obtain £* -1

(3) Add1 to obtain fx,

An example
4 = 10010
-1 = 10001
-1 = 10011
2* = 10100

Note that the vectors in the interval [ ¢, £¥-1] are all partially
orderedas { < f+1,,.., <{x-1, Itis this partial ordering which

- —— —

allows skipping in the enumeration procedure,

2.3.3 Partial Enumeration with Quadratic Function

Consider the objective function

Y = Cc..X.X, - Z b.x.;
S D U A B
L] ]

We can write Y as the difference between two nondecreasing functions

Y =g,() - gyx)

g,(®) = ) c;xx, €. >0 gox) = ), bix;, by > 0, since

1] ]

those cases where bj < 0 will be eliminated in phase I.
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Suppose we examine all 2" possible solution vectors in numerical
order starting with (0,0,...,0) and ending with (1,1,1,...,1). The pro-
cess can be considerably shortened by using the following observation,

Suppose we test each vector in the numerical ordering keeping
track of the best solution so far found. Let @be the solution which has
maximized Y(§). Let { be the solution currently being considered.

We use the following. rule to determine if we need test for any solution
vector in the interval [ £, ¢* - 1],

If gl(g*— 1) - gz(_ﬁ_) < Y(_@ then skip to £*, This is because

gl(_g*- 1) maximizes g, in the interval [ 4, 8%~ 1]

, and { maximizes

-8, in that interval, Therefore it is impossible for some ('¢ [ £, £¢-1]

to exist such that gl(_{l") - gz(g') }Y(!Z\). Figure 2,3 gives a flow chart

of this phase of the algorithm.

2.4 Phase I Computation Efficiency

In this section we analyze the first phase of the algorithm for
unconstrained maximization. We attempt to assess the amount of
computation involved for a problem consisting of N variables xj with
M distinct nonzero coefficients Cij' ‘

The algorithm begins (see figure 2.1) with tests for conditions
of theorems 1a and 1b. For theorem la for any variable xj it will be
necessary to examine at most M coefficients for exeéution of this

test. If all variables meet conditions of this test, then the operations
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0, 0...0—}

1—1

Y()—Y()

Figure 2.3
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are performed onée for each variable x].. In the case that a variable

is found for which it is necessary to set to zero by the conditions of

the theorem 1la, we are then required to remove all coefficients invoiving
this variable and then recheck the conditions of the theorem for all
indices i which comprise the set A. The maximum number of times

this must be performed or an upper bound on the passes for this test

is N. The total growth then is at most MN2 for theorem la. Table 2.2
summarizes these results.

The check for theorem 1b involves examination of the coefficient
bj for each variable x].. For any variable this involves a single operé.—'
tion; and it must be performed for at most N variables.

The check for theorem‘ 2 for any variable xj requires generation
of the set Sj+‘ Generation of a set S].+ requires at most M operations.
In box 2 figure 2.1 we check conditions for a given xj after generation
_of Sj+‘ If conditions are not met we might require this test for at
most N variables or we have a maximum of N possible executions
of the operations for theorem 2 for a given pass. Whenever we find
values for variables via the later tests, theorems 5, 6, 7 we even-
tually return to the entry labelled o in figure 2.1. We therefore are
bounded by N on the number of times we return to perfbrm theorem 2.

This gives a total growth rate of MN2 for this test.
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To perform the test for theorem 3 for a given variable it' is
necessary to perform at most M operations. This test is performed
when other tests have found values for variables with indices in the
set A. If the test for theorem 3 for some variable Xj is successful,
then the test is repeated for all remaining variables in set A. This
means that during performance of this test for a pass it might be
performed at most K2 times where K is the number of indices in set
A. Intable 2.2 Wé see that a maximum growth for this test is MN3.

The tests for theorems 5, 6, 7 involve generation of the set

.+ . ++ . .. .

S;"". Essentially a set S;" for any i where S{’: {]1, Jgr oo ]n}

is obtained as follows. We first construct I' = U Sj+' Now for
t=1 "t

any £ e I'such that £ ¢ Si+ we augment by replacing I'by 'U Sf.
We continue until it is no longer possible to augment and this

I'= Si++' Construction of an Sj+ involves at mdst M operations;
this must be done for at most N indices so maximum operations

for construction of Si++ is at most MN. The checking for a MCS
for a given set Si++ involves examination of at most (N-1) M terms.
Therefore the number of operations for the tests for theorems 5, 6
and 7 involve the MN operations for construction of Si++ sets plus
at most (N-1) M operations for a check for MCS's and a maximum
of M(N-1) operations for theorem 6 and a maximum of N operations

for theorem 7. Since this test could be required for N variables
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in the set A and repeated at most N-3 times when some test is suc-
cessful. An upper bound on the growth for these various tests is

N2M(N-3) or operations on the order of MN3.

2.5 Comparison with Other Methods

There are few other known methods which deal with the uncon-
strained problem as defined by equation (2. 1). Of course the algorithm
of Hammer and Rudeanu [19 |for general boolean functions could be
used for solution of this problem. But this algorithm is highly alge-
braic and would not be efficient for application to problems containing
a large number of variables.

Recently Lawler [30] and then Balinski [4] have discussed a model
developed for making optimal selections which could be used as a
vehicle for the maximization of (2.1). Their formulation is as follows:
Let there be m items i=1, 2,...,m; and suppose there are n subsets
of the m items Sl’ SZ’ ey S Associate a value d]. with a subset Sj
and a cost bi with an item i. There are no constraints on the collection
of subsets {S]., j=1,n} of the m items. It is desired to choose a col-
lection of subsets together with all items. which belong to this collection

of maximum value. This is done by solving:
Maximize Z]: djv]. - };biui

subject to

vj -y S 0 whenever i e Sj

U, vy € {o,1}.
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u, =1 if item i is chosen.

=0 otherwise.

v.=1 if all items in subset Sj are chosen.

=0 otherwise.

If we define a set Sj for each coefficient c 1k >0 of (2.1) and
assigh the value c Ik to dj and likewise each coefficient bi in (2.1) is
" associated with the cost of item i then the analogy is clear. They
then show that this problem can be solved by graphical network
techniques.

A directed network is constructed whose nodes consists of a
source note s, and a sink node t, and a node for each item i and for
each subset of items Sj' The arcs of the network consists of arcs
(s, Sj) for each set Sj and (i,t) for each item i. Each arc (s, Sj) is
assigned a capacity dj and arcs (i,t) are assigned a capacity bj' If

ie S]. then an arc of infinite capacity (S]., i) is constructed in the network.

subsets
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A minimum cut of a flow network is defined as a partition of
nodes into two sets A and B, where the source node s ¢ A and the
- sink t ¢ B. The subset of arcs incident to a node of.A and one in
B is called a cutset. If these arcs are deleted from the graph all
paths between s and t are removed. The value of the cutset is the
sum of the capacities on the arcs (i,j) withie A and j ¢ B.

It can be shown (see [4]) that the minimum cut of the above
flow network corresponds to.the selection of the sets from
{S]., j=1,...,n} and associated items of maximum value. For such
a minimum cut the optimum sets from {Sj, j=1,...,m} are identified
as those sets: Sj which are still connected to s ; the set of nodes still
connected to the S]. identifies the items.

We now show how an unconstrained maximization can be obtained

using this network flow formulation. We solve the following problem
Maximize f = 5x1x2 + X Xg + XoXg = Xp = Xg = 10x3
If we first solve this problem by our algorithm we get x3* =0

by theorem 1a; the problem then is reduced to:

Maximize 5x1x2 - X - Xg;
which we have x; = x; = 1 by theorem 2 and f* = 3.
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Formulation of this problem in terms of a flow network gives

Sl = {1: 2}; Sz = {1’ 3}’ S3 = {29 3}

A minimum cut consists of arcs (s, Sz) , (s, S3) ,(1,t), and (2,t).
Therefore an optimum set of subsets is identified with S1 since it is
still connected to node s and items 1 and 2 which are connected to
node Sl' This set has value of 5 - 1 - 1 = 3 which is the same
answer we obtained with our algorithm. |

The algorithm for finding a minimum cut of network with P
nodes has growth on the order of P5 for arbitrary values of arc capa-
cities (see [30]). In solﬁng (2.1) with N variableé and M coefficients
the corresponding network will have N+M+2 nodesy. This means the
algorithm will have growth rate proportional to (N+M+2) o for solution
of the ﬁnconstrained problem. |

We found that our algorithm has maximum growth of MN3 at

worst. However, this algorithm does not find all the variables of a
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maximizing solution. So in this regard a network solution would be
superior. However, in all problems solved the branching algorithm
found at least 85% of the variables therefore the problems which
remained after application of the algorithm were of trivial dimension.

The network flow solution technique could be used for the
second phase of our procedure for unconstrained optimization since
it is clearly superior to implicit enumeration.

If the coefficients in (2. 1) are limited to integers then the
corresponding flow graph problem can be solved with a growth rate
proportional to k(N+M+2) 2. Clearly this would be a more efficient
algorithm for this case.

In conclusion this chapter has presented an algorithm for the
optimum solution of a quadratic binary function. The quadratic func-
tion arises from problems in operations research. The major part
of the algorithm consists in reducing the dimension of the quadratic
function which is to be extremized to a size which can be handled by
conventional enumerative procedures. The first phase of the algorithm

has been found to be very effective in this regard.



Chapter 3

3. Techniques for Constrained Optimization

In this chapter we discuss techniques for solution of constrained

optimization problems of the following form,

Maximize f(x) = ) ¢y, - Z bjxj
1] 1]

subject to
(A) g;®) < p, i=1,2,...,m

X = (xl,xz,. . .xn)

xi-e {0,1} i=1,2,...n, ¢j; >0, 1, -1,2,...n

The method used for solution of a given problem defined by (A)
will in most casesﬂ depend on the nature of the objective function f(x)
and the constraints gi(_)E). This is particularly true when either the
objective function or the constraints are non-linear in X and/or there
are a large number of variables. In this chapter we consider the case
where {(x) is quadratic in X and the constraints gi(g) are linear,

For a review of techniques involved in solution of (A) when
both the objective function and constraints are linear see [3] and [18];
and for a discussion of techniques with no particular restrictions on
f(x) and gi(g) see [33].

For the problems with which we were concerned; i.e. , m=l or
2 in problem (A), we found the generalized Lagrange multiplier method
of Everett [14] and the family of solutions techniques of Hammer and
Rudeanu [19] to be effective when dealing with problems with a moder-

ately large number of variables. With both these methods it is assumed

64
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that one has available techniques for dealing with the free or uncon-
strained optimization of a function of the same form as f(x). We use
the algorithm developed in chapter 2 for the unconstrained optimiza-
tion. The generalized Lagrange multiplier method is in a sense more
general than the farhily of solutions technique since with the former
there are no restrictions on either f(zc_),' g.(_}_c_); or the domain of optimi-
zation, while with the latter the constraints gi(gc_) are required to be
linear in X before the family technique can be applied.

We begin with a discussion of solution of constrained optimiza-

tion by the method of generalized Lagrange multipliers.

3.1 Generalized Lagrange Multipliers
One effective method for constrained optimization problems is
the technique of Lagrange multipliers. A rather recent generalization
of this technique to problems containing non-differentiable functions
has been made by Everett [14]. We begin by presenting his theorem.
For the statement of Everett's Theorem we first need to state
problem B: |
maximize f(x)

(B) subject to
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Everett's Theorem:

For the Lagrangian

m
L(z(_,&) = f(X) - Algl(—x—)
i=1
where f(x) and gi()_t) are the same as in problem B and A = (AI;AZ;'. . ;Am)

is a set of non-negative Lagrange multipliers, if x* ¢ X is a global
maximum for the Lagrangian L(x ,A) ,l then x* is the optimum solution of
problem B over all x ¢ X if By is replaced by gi(}i*) fori=1, 2; eo.,m,
Note that there are no restrictions on the form of the functions f(x) and
gi(g) or on the nature of the set X over which the maximization is to be
performed.

Proof: Assume that

m . m
() - ) AgE) 2 - L Ag
i=1 i=1

for all X e X subject to 7‘120 i=1,2,...,m, We can write

m
fix*) > f(x) + A, (g; (x*) - g,(x)) .
i=1 -
Since for each i we have N >0 and gi(zc_*)' > gi(§); it follows that
f(x*) > {(x) , which proves the theorem.
If gi(_)g*) =1y for each i , then the problem (B) has been solved.
However', for arbitrary choices of Ai's this in general will not be the

case. The procedure, then, for the solution of problem (B) is to solve

first Everett's problem with arbitrary )\i's and if all gi(gi_*) £ By choose
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another set of multipliers, optimize the new Lagrangian, and recheck
the constraints., The procedure is repeated until for each i we have

g.(x*) sufficiently close to u

& i The value of the Lagrange multiplier

method depends upon how practical it is to optimize the Lagrangian,
and on the efficiéncy of selecting a set of multipliers which give values
of constraints which are reasonably close to the given ui's.

A second result Everett obtained was that for a given i,if x]. are
fixed for j £1i, gi(§*) is a monotone nonincreasing function of )‘i' This
allows interpolation to be used to select the >‘i which gives the desired
value of By We must add however that there may be values of By such
that there does rfot exist A, which will give an x* such that gi(§*) =y
Everett refers to such a situation as a ""gap' and gives some modifica-
tions to his basic theorem to determine solutions in Such cases. |

Figure 3.0 is a schematic of the procedure for solving a con-

strained optimization problem by the method of generalized Lagrange

multipliers. The procedure consists of three steps. First a set of

®© G

A L(x,)) X*

Figure 3.0
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nonnegative multipliers is selected.  This gives rise to a particular
Lagrangian L(_}S A). The next step consists of finding x*, a vector
which maximizes L(x ,}) Now each constraint gi(g*) is evaluated. If
each gi(gc_*) has the appropriate value, by Everett's theorem; the prob-
lem is solved. If not, a new set of multipliers must be selected. This
is indicated by the function h which takes the current multipliers ) and
the current values of constraints gi(g*) and uses this information to
select a new set of multipliers. The particular mapping h used for the
case of quadratic knapsack problem is defined in section 3. 2. This
procedure is continued until either a set of constraint values is found
which are appropriate or until it is discovered that no A exists which
will give the values of gi(zc_*) within the required range of By In general
it is not possible to say apriori if a set of multipliers exists which will
give a solution to a given constrained optimization problem. However,
when {(x) and each gi(§) are linear, a necessary and sufficient condition
[35] for existence of multipliers which give a solution is that the con-
tinuous analog of problem (A), i.e., the problem in which the constraint

’
x; € {0,1} is replaced by 0 < x, <1, has an extreme point solution,

3.2 Using Generalized Multipliers for Quadratic Knapsack Problem

In this section we show how multipliers can be used to solve the
problem defined in Section 1. 2.1 as the quadratic knapsack problem,

 Recall this problem was defined as:
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Maximize {(X) = Z‘ Cijxixj
i,j

subject to
(&) gx) = ), ax, <p
i
X, € {0,1} and a,>aforalli, u>a

5 > 0, for alli,j.

In this case we deal only with one multiplier since there is only
one constraint, The Lagrangian for problem (A') is:
L(x,)) = C.XX, - ) ) axX,
- = 1) 1] = )]
1] )
The crux of the generalized multiplier technique is to find the
appropriate value of ) if it exists, The appropriate A is designated as

Y where we define X as follows.  Given some positive ¢ we have

g () = &
0<p-pn<e
We use a binary search to find the appropriate value of X. The
strategy is to select first an arbitrary 7\0 such that x*, the maximizing
vector of L(x, %) gives g(x*) =0. This initial value A’ is an initial
upper bound for x; the initial lower bound is zero. The fact that g(x*(}))

is a monotone decreasing function of x makes the search for ) straight-

forward, The algorithm used for finding % follows:

Step 0. Selecte >0, 3> 0, AO such that g(x*) =0;

0
=0, A= 21
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Aer + A
_ H "L
Stepl. X = ———————-——2 (}LL<>\H)

Step 2. Find x* which maximizes L(x, }).

Step 3 If g(x*) > u, then go to step 6.

Step 4. I Ap- A <O or p-g(xx) < e, then set
X =2, p=g(x*), save x*, go to step 7.

Step 5. Set A, =2, save x* go to step 1.

H

Step 6. If ay- Ay > 0 , then set A

Step 7. If x* has been found, then print x* stop;

=) go to step 1.

Otherwise print '"nmo multiplier solution' and stop.

The above procedure finds X if one exists. In those cases where
no X exists such that we can find a feasible solution; i.e, , a "'gap"
as characterized by Everett , we switch to the family of solutions tech-
nique which is discussed in Section 3.4.

The above procedure was used effectively to solve a number of
quadratic knapsack problems. We now discuss the more difficult prob-

lem when there are two constraints.

3.3 The Two Constraint Case

For some applications; to be considered later, it is necessary to
have a pair of constraints as opposed to a single constraint as formulated

with the problem in section 3,2, In this case we are concerned with

selecting a pair )\1 and ), of multipliers and the procedure is more com-

2

plicated. Suppose the constraints for problem (A') are written
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g (®) = L% < iy
i
Lbx < u
1
The Lagrangian is now

Xx Ay ch]ljhkl;aixi_M?bixi'
In this case appropriate values for >‘1 and 7‘2 are defined as

—Xl and XZ’ where for some positive ¢, and ¢ o We have
g, &% (N, X)) = By
g, (0 X)) =11y
and
0<py - K<ey
0 <y BpSey
We know from Everett's results that if A is fixed we still have
gl(zc_*()xl)) as monotone function of A - We therefore select an initial
>\0 5 as some arbitrary large real number. With this value of >\2 we
use the binary search procedure to find —Xl' Now if we find .that for
this value of X, we have gz(gg*) = 9 then we stop; otherwise we proceed

1

to select a new value of 7\2 and repeat the binary search procedure for

>\1. |
The new value of 7‘2 is selected as follows. )\2 is assumed to be
in the interval (0,>\02); we initially set AZL =0, sz = 2)\02 where always

2 .2 . .
N <A H and X, 18 computed using:



(a) Ay =

As with 7‘1; we select subsequent values of ), by using a binary

2
search of the interval (0, Aoz); if g2(§*) > U 9 , then the new value of

AZL is Aq and AZH remains the same. If gz(}_c*) < uz,then the new value of

2H is 12 and AzL remains the same, In each case >‘2 is computed

using (a).

A

The effectiveness with which we select the initial arbitrary

value for >\2 will determine the number of iterations necessary
for solution of a given problem., We have found that a reasonable
initial value for Az is Z.Cij , the sum of ‘all coefficients in the cost
function., In some of oulxz ]exper'imental problems we have been able to |
decrease the number of iterations by selecting >\02 as some fraction of
) ...
ij H

Figure 3.1'is a flow chart of the algorithm when there are two
constraints, In the flow diagram of Figure 3.1 we have 6ne program exit
from a box which says "NO MULTIPLIER SOLUTIONS'"; this is necessary
since we cannot predict apriori that for all values of the givens
(c, .,ai,bi; “1;“‘2) we can find Lagrange multiplier solutions which are

1]
feasible, When we encounter this situation we abandon the generalized

multiplier approach for constrained optimization.
The next section presents another approach to the problem of

constrained optimization,
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3.4 Constrained Optimization Using "Families of Solutions"

Given a constrained optimization problem of the following form,

(1) Maximize f(x)

p—

subject to

XoyeeesX ) X, € fo,1} i=1,2,...,n .

A possible procedure for the solution of this problem is to find
the set of vectors S = {X: g(x) <u} and from S we select x* such that

f(x*¥) =max {f(x)} . Of course the number of feasible solutions IS

might be quite large; therefore it would be helpful to characterize the

solutions of (2) in such a way as to avoid evaluation of {(x) for every

X ¢ S. Hammer and Rudeanu [19] have given a procedure for classi-
fying the solutions of a linear inequality into disjoint "families of solu-

tions"; {Fl,F . ,Fm}, such that given any x'e S, X belongs to

g
exactly one family Fi’ i <m, The number of families m is much

smaller than the number of feasible solutions [S]|.

A A A A

A family F, is characterized as follows: Let X = (xl,xz, . o ,xn)

be a member of S and let I be a set of indices IC{1,2,...,n}, let
I'(x,T) be the set of all vectors (x,,X,,...,X )¢ {0,1}" -

.

- ) A
fo,1} x {0,1},x...x {0,1} where x, =X, if i ¢ 1, the other variables

A
xi(ig I) are arbitrary, If all vectors X = (x . ,xn) e T'(x,T) satisfy

1’x2’ ¢
A
(2), then I'(x,I) is called afamily F]. of solutions to (2).
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When_)/i is what is called a basic solution (see appendix I) then
an I can be found such that all x € I'(x,I) satisfy (2). The pair (g, I)
is said to generate the family I‘(Q, I) ; the variables X, for whichie I
are called fixed variables of the family. When the set I consists of p
elements, the family consists of 2P solutions, where p <n. Hammer
and Rudeanu developed an algorithm for finding basic solutions and the

sets I associated with each basic solution.

91
to (2) is known a procedure for solving (1) and (2) is defined, For each

Once the set of disjoint families {FI;F F_} of solutions
family F, we find the maximum with our algorithm, described in
chapter 2;' for unconstrained maximization. The maximum of the prob-

lem defined by (1) and (2) is therefore solved as follows:

1) For each family Fi-let f(_}gl) be the maximum
obtained by application of unconstrained optimi-
zation algorithm,

(2) f(x*) = max _ {f(xi)},
i=1 s 2, voo ,m

Therefore for a problem with m families we will be required to
solve m unconstrained optimization problems. Each unconstrained
problem has fewer variables than the original problem since all xi
(i ¢ I) have fixed values, We present in appendix I thé algorithm of
Hammer and Rudeanu for determining the families of solutions of a

linear inequality.
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Average

n Time (m,s.)
4 0.5
1 1.0
8 1.1
14 1.5
16 .. 9.6
Table 3.1

A Fortran program running of the IBM 360 model 67 was used
to test the speed of the family method. Table 3.1 shows the average
time in milliseconds to generate one family for a number of test problems,

n is the number of binary variables.

3.5 Example Problem Using Lagrange Multipliers

In this section we give an example of a problem solved using
the algorithms thus far described. We want to solve the following prob-
lem.

Maximize f(x) =1. 40x1x3 + . 42x3x6 + .18x4x8 + . 42x5x8+ .42:(6x8+

. 98x,7x8 -. 7x1—. 6x2—. 91x3-. 09x4-. 21x5-. 42x6-. 49x7-x8

subject to

gl(x)= 5x1+ 9x2+ 3x3+ 4X p+ Tt et 9x7+ Xg <10

g2(§)=x1+ Ko Kot X+ X+ X b X+ Xy >2

x ¢ {0,1} i=1,8

We select for ¢, =2, ¢,=1, 6=.001, A)=1.0. The first

2
step in our program is to find 3(1. In this case Xl =0. 273, g (X*¥) =9,

f(x*) = -.79
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There were 11 solutions of the Lagrangian for the values of ), which took
.17 seconds, using the program for unconstrained optimization developed
in chapter 2.

Since g, (x*) am 2; the second multiplier is adjusted to x,=.5.
This gives the same x* for 7{1 =.12. The binary search technique is

used until the proper XI’XZ are found, which in this case are:

Al: . 089
Az =,318
which give

X * =x3*=x * -1

1 6
x2*=x4*=x5*=x7* =x8* =0

f(x*) =-.21

g, (x*) =8

gqx*)=3

The values obtained for 3(1 and "7(2 are not unique. The procedure

is aimed at finding multipliers which lie in the required intervals. The
total number of interations required for solution of this example was 35
with atotal time required of .51 seconds. In the sections on applications

we will give more computational results obtained with our procedure for

constrained optimization problems,
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3.6 Comparison of Lagrange Multiplier and Family of Solutions

Techniques

The generalized multiplier technique and the family of solution
technique were applied to-a number of diverse problems, We found
advantages and disadvantages with each particular technique.

The main disadvantage of the family of solutions tecﬁnique is
the rapid growth of the number of families. For éxample if we are
finding the number of families for the constraint

- .

Z=1 Rl

where ai=1 for all i, We see that the number of basic solutions is
(2). Now in addition to the time required for generation of each of
the basic solutions‘; we must solve each constrained problem associated
with a basic solution, The solution time of the unconstrained problem
was reduced when using the family technique. This is because, with
this method, the number of binary variables in a problem is reduced
when we solve for the free maximum. However, for large n we can
quickly run up the number of families such that the time to generate
the families is prohibitive.

We define an iteration to be the solution of the unconstrained
problem for a given set of multipliers. When using the generalized
multiplier method, the number of iterations required for solutions was

small compared to the number of families generated. Recall that we
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must find a free maximum for each family generated. In solving prob-
lems with two constraints using the algorithm discussed in 3.3 for a

fixed 2,, the average number of iterations for the search for A, was

2’ 1
14, This was for a set of problems-which ranged from 4 to 50 variables.

The main difficulty with multipliers occurs when one encounters
"gaps''. This phenomena is most likely to occur in problems in which

all the given values are integers. The following example illustrates

this problem.

3.7 Existence of Gaps Using Multipliers

Suppose we want to solve the following problem with generalized
multipliers:

‘Maximize f(x) = 2x1x2+ 2x1x3+ 2x2x3- 2xl- 2x2— 2x3

subject to

X+ x2+ x3 S 2

Feasible solutions will have

x1+ xz+ x3= 2

x1+ x2+ x3 =1

or

Now the Lagrangian for this problem is

X,= (24 X =X 240 -2 )X

L(§,§)=2x1x + 2X X+ 2X X, - (2+ A - xz) i 1 2)xz-( 1729

2 7173 23 3°

If we maximize L(x,}) as a function of A -Xgy, Where ), and A, are
constrained to be nonnegative, we see that if 'Al- A >0, X* = (0,0, 0).
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On the other hand, when A T2 <0 x* =(1,1,1). These are the only
maximizing solutions for all values of the multipliers. Since both solu-
tions are infeasible we have a gap,and Lagrange multipliers cannot be
used for solution of this problem.

The occurrence of gaps in the problems we solved was indeed
infrequent. In those cases in which gaps were found the family of solu-
tion technique was used. In the chapter on applications more detailed
results are presented on the relative frequency of occurrence of gaps.

In conclusion we see that we have rather straightforward ways
of converting the conétrained problems of the first chapter to an uncon-
strained form for immediate application of our algorithm for free maxi-
mization. In the subsequent chapters we present applications of these

techniques to problems of practical interest,



Chapter 4

4, Computer Programming and Graphical Partitioning

In this chapter we consider in detail a particular application of the
problem of finding optimal groupings. We consider an example from
the area of com'puter systems storage allocation. This area of applica-
tion was selected primarily for two reasons. First, as we shall see
in chapter six, we had available facilities to collect the necessary
statistics for model building; and second the availability of other (chapter
five) algorithms or strategies for this particular application
allowed assessment of different approaches to the problem.

We first present a model for computer program partitioning and

a discussion of the mathematical programming problem derived from
this model. A brief discussion is given of the general problem of

graphical partitioning of which computer program partitioning isa

special case.

We present some sequential partitioning procedures which
utilize the solution of the quadratic.programming problem, and we close -
with some computational results which are based on the sequential

partitioning procedures.

4.1 Model for Program Graph

In studying the program packing or pagination problem of com-

puter systems attention is focused on the structural and behavioral

81
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properties of programs. In this regard the Markov morel [40] is a
natural vehicle for description of program structure, i.e., transfers
between the various parts of a given program. The frequencies of

these transfers or behavioral characteristics can be used in a Markov
model for developing a figure of merit for the packing of programs. Per-
haps, the most fundamental measure of the effectiveness ot a page
packing strategy is the resultant number of pages moved between me-
mories per program execution; and since for most systems the decis-
ions relating to traffic between core and secondary devices are highly
dependent upon overall system environment, e. g., schedulin.g algorithms,
paging strategies, etc., the effects of packing a program on page

traffic are very difficult to ascertain directly. Given these prevailing
conditions it is nevertheless true that a program structured to minimize
interpage page transfers, reduces the number of systems level decisions
relating to that particular program with regards to paging. Therefore

it is in this context that the Markov model is used to develop a figure

of merit relevant to the average number of interpage transfers per

execution of a given program.,

4, 1, 1 Program Instruction Units and Data Units

The model used for a program graph is the one proposed in [20].

The salient details of the model are as follows. A program consists of two
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collections of units, instruction units a = { aqe am} and data units

B = { Bl. . Bn } The first collection of units is defined as follows.
Each instruction unit a.€ @ is an ordered collection of instruction
elements. An instruction element is the smallest functional part of

a program, generally a byte or word. Each element, with the exception
of exit elements, has associated with it a family of successor elements
which are the instruction elements which may be executed immediately
after it. An instruction unit is then an ordered collection of elements

€1r€ge e ef such that:

1) Each element is an instruction element and appears

in exactly one unit;

2) For 1< i<f{, the successor of e, consists of the

single element € 1°

3) For1 < i< f, e, is the successor of exactly one

element, and that element is e 1

4) The total volume of the instruction unit (which equals
f bytes if the elements are bytes and size is measur-

ed in bytes) is not greater than some fixed maximum.
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So we have an instruction unit consisting of a sequence of instruc-
tions which may have a single branch point (at the end),and a single
entry point (at the beginning), and occupying some number of memory
units,

Each data unit Bi € B is composed of a set of data elements,
Those data elements which can be read or written on by instruction
element e, are said to be referenced by the instruction e, or referenced
by the instruction unit to which €; belongs., Data units are an unordered
collection of elements bl' .. bh such that:

1. Each element is a data element and appears in

exactly one unit;

2. The total volume of the unit (which equals h bytes

if elements are bytes and size is measured in bytes)

is not greater than some fixed maximum,
Also an entry point and an exit point is specified for the program. If
there are multiple entry points and exits one can include dummy units
to make the entry and exit unique.

~ For the problem with which we will be concerned we use the

so-called Markov description of a program, Here the matrix P= {pi'j}
describes the transfers of control between instruction units,

pii = probability that aj is executed after o

1<i, j<m and Zpi].=1foraui.
j
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For the data units we have the matrix A = {z, }, -
Ziy = probability that o, references data unit 8 for
i . u
1<i<m, 1<u<n,

The following is an example of a program graph along with its associat-

ed matrices.

A 0o 1 0 0 00

P=[140 14 12| 2=[2.3
0 120 1/2 0.5
- -7 By 0o 0 0 1 0.5

The dashed lines indicated that control is not transferred when data
units are referenced.

The complete packing problem requires specifying the alloéation
to pages of both the instruction units and data units. There are various
packing strategies one can employ, e.g., mixing of instruction and
data units on the same pages, or perhaps‘ having pages consisting of
instruction units or data units or both, The point of view we take in
this paper is that the pages consists of entirely instruction or entirely

data and are not mixed; in this regard we consider only the packing of
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the instruction units. The techniques discussed could be applied to

pages of data given the appropriate data matrices.

4.2 . Figure of Merit for Program Packing

We in this section consider the packing of instruction units only,

In order to develop a figure of merit for packing of a prografri, we use

the "frequency of execution' concept developed independently by

Kral [ 27 ] and at Informatics [ 20 ]. Implicit in the objective function,

to be developed, will be the number of times each instruction unit is
executed. Programs will always have an exit unit; an exit will correspond
to an absorbent state of a Markov chain. The remaining units will
correspond to the transient states of a Markov chain. It can be shown [-23]
that if Q represents the transitions between transient states of a Markov
chain, then {I-Q}-1 = {nij} gives the mean number of visits to the tran-
sient states of the chain before absorption. That is, By, is the mean
number of times state j is visited given that the chain started in state i,
Therefore if the program is known to start in state one (unit al), then

we can compute the first row of (I—Q)-; to determine the frequency of
execution of each instruction units. It should be noted that Q is derived
from the P matrix (defined in the previous section) by deleting from P

all rows and columns which correspond to non-transient states, We let

Y be the number of times unit o is executed in one execution of the
program. In the case that unit one is the unique initial state then Y= ny;e
Let qij be the probability of a transfer from unit @; to unit aj, then

yiqij is the mean number of transfers from o to a].. Therefore it is the
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sum of the quantities Yiqij over all program units which we desire to
minimize by reorganization of the program.
In the next section the mathematical programming formulation

is presented.

4. 3 Program Partitioning as a Mathematical Programming Problem

It was noted in the last section that yiqij and yjqji are measures
of transfer activity between instruction units a; and o. The transfer

activity of all instruction units is measured by

L (s + 749y
i,

Now if a pair of instruction units are on the same page, then transfer
between these units are not interpage transfers, these transfers can
be tabulated as follows:

L & Xyp

i,j -

xi]. =0, o and Otj on same page;

= 1, otherwise.

where

% = Vi T %7 G
It is the quantity Z Cis xi]. which is used as a measure of effectiveness
for program packg]g. Since cij and cji both appear in the summation we
must take one half this quantity; i.e., | —2]?— Z ci].xj to get the true number
of interpage transfers. o
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Each instruction unit a has a size 2, associated with the number
of memory units occupied with the instruction elements. A page of

instruction elements is said to be feasible if the instruction units on

that page have a total size not exceeding a fixed constant y which is

a size of a physical page. The size constraint can be incorporated as,
n
1231 (1-xi].)ai§u i=1,2,...,n,

This constraint simply adds the sizes of all instruction units which
are on the same page; noting of course the reflexive constraint that
x;; = 0, for all i.

It is necessary to incorporate a transitivity constraint, i.e.,
if o5 and oz]. are on the same page and a and oy are on the same page,

then a]. and oy are on the same page. This is written as

X1] + X]k

+ xik;é 2 for all i,j,k.
Finally we have the obvious symmetric constraint xij = xji'
It therefore follows that a mathematical programming problem

representing program pagination is:

e 1
(1) Minimize f(x) = 5 izj cij Xij
subject to

n
0 (2 ) t-x)a <p i=1,2...,5
i=1 nore

(3) xij + xjk + Xy #2, for all i, j, k;

| (4) xij = in’ for all i, j;
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(5 x..=0,  i=1,2,...,n
®) x;¢{0,1},

2= ®pp XXy nop ¥
The problém defined by (1) - (6) is a linear integer programminé
problem in zero/one variables. The optimum solution of this problem
gives the assignment of program units to pages which will result in the
minimum mean number of interpage transfers. Consider for a moment

the size of this integer linear programming problem. For any program

2
n"-n
2

means we take advantage of symmetry constraint (4) and of constraint (5)

containing n units we will have a problem in

variables; this

that allx, = 0.

We also have a total of n +'(§) constraints from inequalities (2)
and (3). So we see that when n is any meaningful size, e.g., greater
than 20, the current techniques for solution of linear programming
problems in zero/one variables, with the number of constraints indi-
cated, are iﬁefﬁcient. For example,one of the fastest algorithms
among existing techniques is the algorithm of Geoffrion [15]. But

even here the number of constraints present in the program partitioning

problems, as presently formulated, would make application of this
algorithm impractical.
We now consider the packing problem in the context of the graphi-

cal partitioning problem.
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4.4 Graphical Partitioning Problem

It is possible to consider a special case of the program packing
problem in the context of the general problem of graphical partitioning
which we can state as follows.

Let G = (V, F) be a graph, where V = {Vl’VZ’ ...,V | is the set

of vertices and F = {fl’ foy e e fm} is the set of edges. Let

g {Fi:F]. C F i=1,2,...n} be a collection of subsets of F,
F, = {t.:4; is incident to vj}'. Let &'(£) be the set of all subsets

of € and let w be a weighing function where w: §7( £.) —R.

A partition of a graph G is a collection of blocks C ={E,1, Egren ,€t}
such that 8iﬂ~€j =¢ if i#jand ;J Ei = £. It is possible to define
many different partitioning problemsvdepending of course on the nature
~of the function w. The graphical partitioning problem is to find a maxi-
mal weight partition of the graph G for an arbitrary w(£) where the
feasibility of a partition is pre-specified, e.g., a feasible partition
might be defined as one in which all blocks 6]. of the partition have
l e j I <3. In the{case of optimal packing of program pages, the

function w can be defined as

() w( €)= [MEY |- ME-EYNMEY ],

= UF
Fjeék

where A( 6k)

The function w( Ek) counts the number of edges with both ends
incident to vertices of & K In the context of pagination the vertices

of the graph correspond to program units and the edges represent those
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transitions between units. We note also that the edge weights are
integral valued for this formulation. An additional condition on the
formulation of partitions is that of feasibility, i.e., a partition 51{
is said to be feasible if and only if the size of each block g( & W <
Where the size g( ék) is the sum of the sizes of the vertices which
make up block €.

The weight of a partition C is defined as the sum of the weights
w( Eik) of the individual blocks of the partition. We can minimize
the number of interpage transfers by finding the maximum weight
feasible partition.

For arbitrary weighing functions w( € k) no efficient procedure
is known for solution of this graphical partitioning problem. However,
for a special class of weighing functions w( & k) Lawler [29] has given
an efficient procedure, a growth rate proportional to hs, for the solu-
tion to the graphical partitioning problem. Briefly his procedure is to
formulate the problem as a problem in dynamic programming; and for
the restricted class of weighing functions, the dynamic programming
calculations are required only over a very restricted class of subsets
of €. One such cost function for which Lawler's results hold is

(2) w(&) = |F[- [A(E-EYn AMEY .

This weighing function bears a superficial resemblance to the

weighing function of program packing, but unfortunately it is not
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possible to restrict the class of subsets for (1) as was done with

weighing function (2).

4, 5 Sequential Selection of Partition Blocks

It appears after one examines the alternative approaches to
solving the graphical partitioning problem, especially in the context
of‘program packing , that if graphs of nontrivial order are to be
dealt with, one must use some procedure which is suboptimal. In
this regard we introduce in this section procedures for pai'titioning
in which the "optimal' blocks of a partition are selected sequentially.
In doing so we ob’gain a resultant partition which will in general be
suboptimal. However, for a number of test problems we found this

procedure to give optimal results.

4, 5,1 Selection of Maximum Weight Partition Blocks

As previously stated, concomitant with the minimization of the
inter-block weight is the maximization of the sum of the weight of the
individual blocks which comprise the partition. One might be inclined
to use as a heuristic strategy a partitioning which selects the blocks
with the largest weight. That is, we select from our graph a maximum

weight feasible block V.; a block such that the sum of the weights of

1

the edges with both ends incident to vertices in V1 is maximum over

all feasible blocks in G. This will be the first block of our partition.

Now from the graph G-V1 we repeat this procedure for V2 the second
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block of our partition. We continue in this manner until we have a
set of blocks {Vl, ces ,Vm} which comprise a complete partition
of the graph G. The inter-block weight of this partition will in
most cases be close to the inter-block weight of the optimum
partition.

The selection of the block Vk with maximum weight can be

obtained by solution of the following optimization problem.

max f(x) = Z cijxixj
i,j

subject to

%laf% S iy

x € {0,1} i=1,2,...,n

xi=1 vier,

=0  otherwise,

cij ‘weight of edge (vi,v].)

a]. size of vertex vj
iy maximum allowable block size.
This problem, even though nonlinear, can be solved with the

methods described in chapters two and three, There are some

obvious advantages to this formulation. First we deal with n variables.
.2
as opposed to - 2' 2 and we have only one constraint as opposed

to constraints on the order of n3 as with the linear formulation.
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Successive applications of problem (II) were found to give in
many cases an optimal partitioning when applied to small test problems
for which the optimal results were known. However we could construct
examples for which the process of successive selection of the heaviest
feasible block could lead to a very poor partitioning.

To assess the computational effectiveness of block selection by
solution of (II) a number of tests problems were solved. Table 4.1
summarizes the results. |

Column N represents the number of variables and M the number
of distinct coefficients cij in the objective function. The coefficients

ci]. and a.]. were selected using a random number generator from (0, 10).

: N
The value of iy Was taken as .4 Z a,. The column labeled T represents
i=1
the time taken to select an optimal block form of graph of N vertices
and M edges.
N M T D
10 15 . 097 .34
20 40 .M .25
30 60 5. 2 .14
40 90 9.6 .12
50 107 13.3 . 09

Table 4.1
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In the program written to solve the problem we use an upper
triangular matrix. That is if there are terms cij Xixj and cji xixj in
the objective function where i <'j we store the value cij where cij =ci].+c]. i
The value of M represents the number of terms in the upper triangular
matrix, Since we have Cii = 0 for all i, the density of the matrix
[cij] is %\I—l\g—_—N—- Column D represents the density for each value of

N. For the value of density given the solution time seems to grow

as N5' 2.

4. 5.2 Selection of Partition Blocks with Minimum Interblock Weight

An alternative procedure for selection of the blocks of a parti-
tion which maximize the sum of the weights of the individual blocks is
now examined,.

In using problem (II) for block selection, poor partitions could
result if the blocks which were selected tended to leave the remaining
graph highly disconnected. For example consider the following graph,

where all vertices are unit size and u = 2.

If we use the problem (II) as a vehicle for block selection, we
could obtain vertices {2, 3} as the first block of a partition, since this
set is a maximum weight feasible set of vertices. It is clear however
that either {1,2} or {3,4} is a superior set for the first block of the

partition since in these cases we leave the remaining graph connected.
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To anticipate this type of graphical structure we can reformulate the
strategy for sequential block selection as follows. Rather than having

the weights of the edges with both ends incident to vertices in V, (the

k
selected block) maximized, we can select Vi such that the weight of

the edges between Vk and V - Vk is minimized. This of course is

equivalent to maximizing the sum of the weights of the edges with both

ends in Vk and with both ends in V - Vk'

function would be

In this case our objective

Zcxx+2 lx 1-xj).

i, ] i,]

The second term weighs the edges on the graph after the block of

vertices Vk is removed. We can rewrite f(x) as

fx = 2 c..x.X, - 2 bx, + K
IZ,]- 1] 1] Z]]

b, = V(c., + C..
b, jZ(cu+cll)

KZc

i,j

Now the quadratic programming problem for sequential block selection

becomes:
Maximize c..X.X, - X,
‘ Z iji] ]Z 1]
Subject to |
(tr) g &) = ;aixi <y

golx) = Zx > Ly
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= 0, otherwise, ;12_>_ 1,

Notice that we have added the constraint in 2 Hos this con-
straint is necessary to avoid the trivial solution1 X, = 0 for all i, which
will indeed maximize f(x) and be feasible without the second constraint.

Problem (III) was found for a number of small graphs to give
better results than problem (II) when used as a tool for selection of
the optimal blocks of a partition. Note that the constraint K is dropped
from the objective function in problem (III) since it playS no role in
the maximization of f(x).

Next we consider some of the problems encountered in using a

sequential selection strategy when problem (III) is the vehicle for

block selection.

4, 5.3 The Number of Vertices on Selected Block as a Parameter

For any graph of Nvertices, the minimum number of partition

blocks is

MINPAG =

The maximum number of vertices on a block is

MAXVER =N - MINPAG + 1

(@) * = smallest integer greater than or equal to a
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If x* is an optimal solution to problem (III) then for any feasible two
block partitioning we will nave g, (x*) bounded,
1< g5 (x*) < MAXVER .
In our procedure we select a value, MINVER, as the minimum
number of vertices on any block to be removed. We choose MINVER
as follows:
MINVER = MAXVER - CON, if MAXVER > CON + 1
=1, otherwise
The value ®f CON is preset in the algorithm. Of course by controlling
the number of vertices per block we control the number of ‘blocks ina

partition. “

Recall that in using the Lagrange multipler method of solution
we selected the values of the multiplier arbitrarily and used a binary
search to obtain intervals for: Al and 7\2 such that the constraints were
satisfied. Now with problem (III) we know that i, represents the
physical limitation on the sum of the sizes of the selected vertices;
but Ky is only specified to be greater than one. In other words we do
not know in advance what the number of vertices should be which will
give an optimum two block partition when we solve (III). In fact when
we select MINVER as the smallest number of vertices we will remove,
Everett's Theorem only tells us that if our block has size g1(§*) and
it contains gz(’i*) = MINVER vertices, then no block of size less than
gl(x*) containing at least gz()_g*) vertices exists which will give a higher

f(x*). Therefore before we select a block for our partition we solve

for several values of gz(’i*)‘ That is we soblve our problem for some
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initial set of multipliers such that g2(§*) is as large as possible, we

Then we solve the problem for values

call this first value gz(}_c_*) max’

3 . * X
of gz()i*) in the range MINVER < g2(§ ) < gz(J_c_ ) max.

The value selected for }\2 for the first solution of the Lagrangian
is arbitrary. We want to select the initial >\2 such that the initial num-
ber of vertices removed is as large as possible. For any value of 7\2
selected gz(’i*)max is bounded above by MAXVER. We found experi-
mentally that after 7\2 is larger than some constant, AZmax’ that
the same resulting partition was obtained for all values of
A value we found for A, . was n}ax{b].} where

bj is the coefficient of the linear term in our objective function

f(x) .

After a partition is obtained with this initial value of 7\2 we have
associated with this partition gz(:_c_ *)max “vertices. Now we look for a
partition with g2(§*) = gz(’i*) max - 1 vertices. This is done by

using a binary search of the interval (o, AZmax) for a value of A, that

2
gives gz(y_t_*)max - 1 vertices. When the proper Ay is found, i.e., it
gives the appropfiate gz(’i*)’ we record the value of f(x*). Now the inter-
val (o, Az) is used to find the next value of the second multiplier; this

is the value which gives gz(z{_*) - 1 vertices. This procedure is con-

tinued until we have g9 (§*) = MINVER. The partition selected is the

one with vertices in the range of (MINVER, gz(x*) ma.x) with maximum

£(x*) .
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So rather than treating block size Hq and the number of vertices
on a block as fixed known quantities, they are treated as parameters
in as much as we look at the value of the objective function for
different combinations of block size g1(§*) and number of vertices
gz(_:g*). Therefore in this case, where g is an unknown the algorithm

is as follows:

Step 0  Select A max’ MAXVER, MINVER, A1, = 0,
21" *2max
2° 2 '

Step 1  For this A,, find A; such that a block of maximum

feasible size is selected. Record gz(gc_*). Set

gy(x¥)

= * 1 * 3
X*) max g2(§ ). If no feasible x* is found

go to step 8.

Step 2 pg = go(x*) - 1.

Step 3 AZ = A2L+ }‘2 max’
2

Find Al such that we obtain maximum size g1(§*)
feasible block; otherwise if no feasible x* is
found go to step 8.

Stepd I gz(_;_c_*) = U, 8O to step 7.

Step 5 If gz(_rg*) > lg, }‘Zmax = A2r§1ax and go to step 3.
Step 6 If gz(g*) < H» A2L = X9 and go to step 3.

Step7 I Ho = MINVER Stbp; otherwise Ho = gz(gc_*) -1,

Azmax = A9, 80 to step 3.
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Step 8 Stop multiplier search gap exists, go to family method.

After an optimum set of vertices V has been removed, the pro-
cedure is repeated on the graph G - V. For the graph of figure 4. 1,

table 4. 2 given the result of the parametric partitioning.

A g g gy &*) f(x*)
0.2727 [ 1.0 [ 9 i -0.79
0. 120 0.545 | 9 4 -0.79
0.0898 | 0.3175| 8 3 -0. 21

Table 4, 2

When 7\2 is set to 1. 0 our binary search procedure selects values
for Xl until the value'k1 =0, 2727 is found. This corresponds to a
feasible block of size 9 containing 4 vertices. The value f (x*) repre-
sents the weight of the edges between the two blocks. 'When we selected
7\2 to be . 3175 we get a 7‘1 of .0898, which corresponds to a feasible
block of size 8 containing 3 vertices. Smaller values for Az give no
improvement when MINVER is two as in this case. In this particular
case it turns out that the optimum two block partition corresponds to
>‘1 =,0898 and 12‘ =, 3175, which gives a between block edge weight
f (x*) of -0.21. To get the total weight of edges with both ends incident
to vertices on the same block, we add a constant K representing the
total arc weight of the original graph to the negative number f (X*). The

block of vertices removed from figure 4.1 is {1, 3, 6}.
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Block size = 10

Numbers beside the vertex represent the vertex size

Figure 4.1
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4, 6 Algorithm for Graphical Partitioning

The approach taken is to use the generalized multiplier tech-
nique for partitioning the graph whenever possible. If during the process
of partitioning a graph a gap in the values for multipliers is discovered
we switch to the family of solutions technique. We can state that during
the actual running of the algorithm on graphs where all the vertices
were not the saine size, gaps occurred only when there were very few
vertices on the infeasible graph (graph which remained to be partitioned
after removal of some vertices). For cases where not all vertices
were the same size, we found when it was necessary to use the family
method, that the largest number of families generated for a single
partitioning was 87,7 this occurred when- ;che total number Qf families
generated was 115 (see table 4.4 n =46). Figure 4. 3 is a flow chart

of the partitioning algorithm.

4, 6.1 Example of Partitioning

We illustrate the steps in application of this algorithm by finding
the optimum partition for the graph of figure 4. 1. First the bounds
on py the maximum block size is set; this is shown in box 1. of Figure 4. 3.
In this hox-we also read CON which determines MINVER. In box two
we see all infeasible connections are removed, i.e., if vertices v, and
v]. have edge ci]. between them and a, + aj > --111, }edge cij is deleted

from graph. The edge ci]. is called infeasible because it is impossible,
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due to size cohstraints, for the vertices connected by this edge to be
on the same block. The sum of all infeasible edges is a lower bound
on the inter-block weight of any partitioning of the graph. In box 2 the
lower bound MINVER is calculated from formula MINVER = MAXVER -
CON; MAXVER in this case is 5 and CON is 2,

Figure 4. 2 (a) represents the graph with which we deai after the
checks of box 2 of our algorithm have been applied. Notice that vertex
2 is not on the graph since it is isolated after infeasible edges are re-
mdved and no longer plays a role in the optimum partitioning.

The first value of >\2 is selected. Then the interpolation scheme,
i. e., binary search is used to find the appropriate value for 7‘1’ This
sequence is indicated by box 3. After amaximum size g, (x*) feasible
block has been found with the given 7\2 using a binary search of values

for ,, we consider a new value for X,. This is box 6. If g, (x%) £

1’
MINVER, the search procedure previously indicated is used to select
a new value for >‘2’ i. e., first step in box 3 of figure 4. 3.

Table 4.3 indiéates the optimum values found after application of
procedure to graph of figure 4. 2(a). Figure 4. 2(b) is the subsequent
graph after removal of optimum block. Table 4. 2 gives the values found
after application of procedure to graph of figure 4. 3(b). The resulting'
vgraph is shown in figure 4. 2(c). When we apply the procedure to this

graph we note that the multiplier method fails, i.e., a "gap" is en-

countered.
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In this case we use the family method, box 5 in flow chart, to get
the optimum block. The resulting graph figure 4. 2(d) is feasible and

the partitioning is complete.

: A f(x*) Vertices Removed
N ) X

. 089 | 317 - 21 1,3,6

.083 | .44 -. 09 4

Gap Gap -. 21 7,8
Table 4, 3

4,6.2 Results for Some Partitioning Problems

Table 4.4 summarizes statistics for a set of partitioning problems
solved using the sequential optimization procedure, when problem (III)
is used for blo;:k selection,

The problem for n = 4, 8,14 were problems for which the optimal
results were known and obtained. The two larger problems were select-
ed by using a random number generator for values of ci]. in the interval
(0,10). The values of vértex sizes were randomly selected integers in
the range [1,]. The table shows that for the largest problem solved a
total solution time of 4. 80 seconds. This time is the sum of T1, the
total time to generate all families when a gap is encountered and, T2,
the total time to solve all unconstrained problems. The 4 and 14 ver-
tex problems were problems in which all vertices had identical sizes.

Note that, I, the number of unconstrained problems solved is quite
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n = number vertices

T1 = total family solution time (sec. )

-T2 = total unconstrained solution time (sec. )

T3
F

I

p = block size

total solution time (sec.)

number of families generated

total number of unconstrained solutions

n T1 T2 T3 F I L

4 . 002 . 01 . U12 i 0 2

8 . 004 .47 . 414 3 58 10

14 1, 54 1. 88 3. 42 1326 1326 4

25 . 02 2,42 2. 44 5 163 10

46 .28 4, 62 4, 80 115 182 20
Table 4,4
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large for the 14 vertex problems, since an unconstrained problem must
be solved for each family.

The number of iterations, solutions to unconstrained problems,
was fairly constant when no gaps were present. The average was 14
iterations per solution for a given >x2. With the 46 vertex problem a
gap was found after 31 vertices had been removed from the graph by
application of the generalized multiplier technique. This resulted in
87 families being generated for the next optimufn partition of the graph
which at that point consisted of 15 vertices. This was the largest
number of families generated for a ‘partition when the sizes of the ver-
tices were not all identical. Generally when gaps did occur, for
problems where vertex sizes are mixed, they occurred after a num-
ber of vertices had been removed. This meant that the number of

families generated was not prohibitive.
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5. Comparison' of Program Partitioning Strategies

This section deals with the question of accuracy; that is how |
close to the optimum is a program partition which is obtained by a
sequential selection procedure. We attempt to assess sequential selec-
tion as a partitioning strategy by solving a set of problems by two al-

ternative partitioning procedures and comparing the results.

5.1 Alternative Partitioning Strategies

In appendix IT a detailed presentation of the unit merge algorithm
developed at Informatics [20] is found along with the dynamic program-
ming segmentatio;l algorithm of Kernighan [24]. These algorithms
represent different approaches to the problem of graphical partitioning
or program reorganization. Both procedures were much faster than the
parametric sequential selection procedure, therefore the basic compari-

son of the algorithms is with accuracy.

5.1,1 Unit Merge Algorithm

Basically, the unit merge algorithm is a procedure which fits into
the class of 'greedy' algorithms, That is, blocks of vertices are found
by selection of the sets of vertices which have the highest weight edges

connecting them. Suppose the edges are ordered as follows,

{cilj , czﬂk,. ce 0521 where,
el>e? > > >
ij — - - pq —

110
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Now if vy and v]., the vertices which are connected by Cilj , have a feasible
total size, i.e., a, + a]. < u, where a, and a.j are the sizes of Vi and Vj’
they are said to form a feasible merger and h;‘nce they are combined to
make a new vertex vi', where vi' has a size equal to the sum of the

sizes of 4 and v].. All edges previously connected to either of thesé two
vertices are now connected to vertex vi'.

However, if it is the case that ai + aj > U, then the vertices connected
by cij2 are considered for a merger. The algorithm continues to test for
possible merges in the order of decreasing edge weight. The procedure
is terminated when it is no longer possible to make any feasible merger.

The sum_of the edge weights between vertices at the time of ter-

mination of the algorithm represents the interblock weight of the parti-

tion.

5.1.2 Segmentation Algorithms

Kral [28] and Kernighan [24] have independently developed program
partitioning algorithms which operate as follows. A program is considered
to be a set of n vertices, where the vertices are program units indexed
by {1,2,...,n}. The size of the vertices are knowﬁ and the ordering
of the vertices is fixed. Minimization of transitions between pages is
accomplished by identifying a set of "page breaks" or "break points"
between vertices. The vertices between successive bréak points form

the blocks of the partition. This formulation is somewhat simpler than
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that of the general program partitioning problem and in appendix IT we

give the dynamic programming algorithm ot Kernighan tor its solution.

5.2 Comparative Results

Table 5 summarizes the results after the three algorithms were
applied to a collection of graphs. The column labeled Al, A2, and A3
are the resulting interblocks weights obtained respectively from the
sequential selection procedure, the unit merge algorithm ahd the seg-
mentation algorithm. The number of vertices and edges on each graph
is represented by N and M respectively. All algorithms were programmed
on the IBM 360 model 67. For all graphs the maximum total time re-
quired by either the merge algorithm or the segmentation algorithm was
1. 6 seconds. The typical times for the algorithm (Al) were given in

section 4.6,

N M Al A2 A3
! 4 110 180 110
10 1.6 1.6 2. 51
14 17 43,5 44,0 43,5
25 50 214,17 204.35 | 265,30
25 63 218, 84 218,97 | 285.5
46 75 311. 2 287. 2 386, 61
46 95 319, 43 339,12 | 403, 2
50 106 141, 2 159, 1 225, 3
Interblock Weights.

Table 5
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Table 5 shows that the sequential selection algorithm (Al) and
(A2) clearly give the best results (smaller interblock weights) in most
cases. For the‘small graphs, n =4, 8,14, the values obtained by the
sequential algorithm (Al) were optimum. The segmentation algorithm
(A3) gave results which were in general not as good as the first two
algorithms, In some cases a better (smaller) interblock weight was
obtained with (A3) by renumbering the vertices. |

For the graphs with n > 14, which were generated randomly, the
optimum results are not known ; here we find for the same value of N
that if the graph has a larger number of edges M, we get slightly better
resulté using sequential selection. On the other hand when the graph is
more sparse, fewer edges, (A2) gives better results.

The time required by (Al) is considerably more than that required
by (A2). For example, the interblock weight obtained by (A1) for N =25
and M = 46 is approximately the same as that obtained by (A2). But
for this case the total time required by (Al) is 6. 4 seconds as compared
to . 22 seconds for (A2).

For the 1argést graphs N = 50 we obtained the best results
when problem II (quadratic knapsack section 4, 3) was used as the
vehicle for sequential block selection. This result is shown in table 5;
the total time required was 13. 5 seconds as compared to 1. 6 seconds

for (A2).
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For incorporation of é program packing procedure in a compiler,
it is obvious that a fast algorithm such as the unit merge algorithm
would be required, since in this case the time added to compilation must
be less than the time saved during paging. A procedure such as unit

merge meets this requirement,

5. 3 Extensions of Sequential Solution Procedures

In this section we present an expanded branch and bound algorithm
for graphical partitioning. Using this expanded algorithm we attempt
to deal with some questions such as multiple solutions which may arise
Wﬁen using the sequential selection procedure previously described and
the fact that }the order in which the partition blocks are selected may

- affect the overall result.

5. 3. 1 Order of Selected Blocks

Using the sequential optimization procedure to select the block
which m.inimizes the weight of the edges between the remaining graph
and the chosen block (or equivalently maximizes the sum total weight
of the edges which have both ends adjacent to vertices on the selected
block or both ends adjacent to vertices on the graph which remains after
the vertices of the selected block are removed) we can in some cases
select suboptimal partitions. For example consider the following graph

where all vertices have size 1 and the block size is 3.
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1
2®_ @1
2
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2 2
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Clearly the feasible block of vertices to remove for minimum interblock
weight is {1, 2}/ In this case the sequential selection procedure has
MINVER > 1 hence the single block { 2} is not feasible. Now this gives
an incremental cost of 3. The graph which remains can be optimally
partitioned for cost of 4; then the total interblock weight is 7. Now it is
clear that {1, 3, 5} is a block with an interblock weight of 5; this incremen-
tal interblock Weight is the total interblock weight since no further
partitioning is required. This example shows how the sequential selec-
tion procedure which selects the optimum feasible block at each stage
can be lead to suboptimal results since this procedure has no "look
ahead. " The branch and bound algorithm which we shall presently
describe is one method ot dealing with this problem. Next we show how

multiple optimum solutions can lead to suboptimal results,

5. 3, 2 Multiple Solutions

A problem which can be encountered when solving the sequential

optimization problem is that of multiple solutions. That is there may be
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more than one optimum block which can be selected by sequential

optimization algorithm. Consider the following

Here the maximum allowable block size is 3; and all vertices have

size.l, with the exception of vertices 4 and 5 which have a size of 2.

In this case we h'avve two blocks whick. may be Selectﬁid as an initial
block in the sequéntial optimization procedure. We may éelect either
{1, 2, 3} or block {1, 2} for an interblock weight of 5. It is clear that
the additional partitioning cost will differ depending upon which of the
initial optimal blocks is selected, e. g., if { 1,2, 3} is selected we

can get an optimal partition with interblock weight of 8.

These examples illustratethe fact that it is not possible to
characterize a given block as belonging to an optimal partitioning until
the completé structure of the partitioning is known. Hence we see that
in general any sequential procedure for selection of partition blocks
may lead to suboptimal results when the number of blocks required

is more than two.
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In this next section we describe a procedure for exploring opt -
imal solutions which, at the expense of more computation time, allows

one to "look a head" in the sequential selection procedure.

5.4 Branch and Bound Algorighm for Partitioning

One method for dealing with the problem of "order of selection"
and "multiple solutions' is to add "look ahead' to the sequential selec-
tion procedures. This was done as follows. Suppose we solve the
partitioning problem and we have selected m blocks bf a partition Vl’
V2, ceo Vm° And suppose block V1 has size s;, where 8, < u where p
is the bound on the block size used in the sequential selection procedure.
We have disFussed two particular ways of selecting blocks (problems II
and III in section 4. 5). It was found that in general the second strategy
(problem III) gave the best results with the algorithm discussed in
chapter 4. However with the branch and bound strategy we used the
quadratic knapsack (problem II)as. the tool for block selection.

Associated with the partition V1, V2, cooey Vm is an interblock
weight TMIN; we now want to discover if we had selectesl another block
smaller than V1 as our initial partition block whether we could have
obtained an overall smaller interblock weight TMIN. Since we know
that the block with maximum weight and largest size obtained from the
original graph has size Sy, originally, we set the bound in the block

size pat p' = ;-4 where q > 0 and start the problem over agéin.
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With this particular pthe original initial block will not be feasible,

hence the algorithm will select a new first block Vl"° Now the graph
which remains to be partitioned is not the same graph as when originally -
we selected the first block using u as a size bound. In figure 5.1 we see
a representation of the branch and bound scheme. Each vertex repre-
sents the state of the graph to be partitioned. Gr1 is the original graph,

2
selecting thefirst block of size S, we obtained the graph G2. At each

The arcs labeled 84 leading to the node labeled G, means that after

vertex Gi there is an associated cost Ti for obtaining the set of blocks
leading to the graph Gi‘ We can compute the incremental cost IC of
going from G; to Gi+1}using S k= 1; 2,3 for the graph shown,

and if T; + IC > ’i‘MIN we stop the search along this path. Other-

wise we continued until we got a complete partition, If at the end we
obtained a smaller TMIN we retained this new partition and this.cost is
our new TMIN. We then back tracked to the last vertex at which we
had not considered alternative block size.

The second phase of the algorithm for unconstrained optimization
was programmed so as to record multiple solutions, It was then possible to
utilize the same branch and bound routine to trace for alternative parti-
tions which arise due to multiple maximizing vector found in the second
phase. However, in this case 81189 etc. represent different blocks

selected due to different maximizing vectors, not different block sizes.
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Figure 5. 1
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In using the expanded branch and bound procedure it was found that
the computational time grew quite rapidly if there were many branches
to trace in the tree of figure 5. 1. The increase in computation time
did not seen to justify this approach to graphical partitioning. The
use of Ti +1C < TMIN as a test was not sufficiently powerful to avoid
lengthy tracing through the tree of figures 5. 1.

If one were to pursue this particular application, a way of deQ
creasing the tree searching is to use a stronger test to decide if a
particular path is to be followed, That is, calculate a lower bound on
the additional cost before a particular path in the tree is taken. For
example suppose we have reached mode Gi which represents the graph
é.fter i - 1 block have been removed. We could use the max - flow/
min cut algorithm of Gomory and Hu [16] to calculate the minimum add-
itional cost to partition Gi’ since this algorithm gives the minimum
cost to partition Gi into two blocks independent of the blqck size. This
of course, could add more time to the algorithm so that the trade -off
between additional computation at each vertex Gi and the total number

of paths searched would have to be investigated.

5. 5 Summary

In using the different algorithms for partitioning, it became
clear that the partitions obtained by the sequential selection algorithm

are dependent upon the "uniqueness' of the blocks selected in the early
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stages of the procedure. This means, of course, that the order in which
blocks of an optimum partition are selected is very important. This
is why for partitions where the number of blocks is limited, and
hence order of selection is not as significant, the sequential algorithm
gave optimal results. In considering other algorithms which select
blocks sequentially, we find this same problem. For example the
Kernighan - Lin [25] algorithm is a sequential selection procedure
which divides the graph into two subgraphs of equal vertices at each
step, it attemps to minimize the sum of the weights of edges between
the two subgraphs. But even here, where no attempt is made to get
feasible size blocks, there is no way of choosing between:alternative
optimum 'two-way'' partitions in the early stages of their procedure.
This means that after the first optimum two way partition is found,
half of the vertices of the original graph can never be considered to
be on the same block of a partition.

On the other hand, when we consider the unit merge algorithm, we
find that the "merges' made do not tend to disconnect or rule out part-
icular sets of vertices for blocks as rapidly as sequential selection.
The major problem with the unit merge procedure is that it is highly
dependent on the "order" in which the maximum weight edges are
selected. Consider the example which follows in which all vertices have

unit size and vthe block size is 3.



This example was given in [20] and the optimal partition was -
said to have aninterblock weight of 1, 3. Vertices 1,3 and 7 are first

selected by the merge algorithm for the same block. .This leaves the

following graph.

Now it is possible using the merge algorithm to select vertices
2,5 and 8 as the next partition block. This will result in an interpage
weight of 1, 39 which is not optimal. This problem is always encountered
when the merge algorithm is used with graphs where some of the edges
have identical weights.

Segmentation procedures [24], [28] can be done efficiently with
dynamic programming techniques. The computation time for these
algorithms are competetive with the merge algorithm. With the examples

we considered, the partitions found by segmenting or finding break points
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were in general the worst of the three partitionings. In some cases we
could tind a better partition by renumbering the vertices. It appears that
tor graphs in which several vertices have a high degree, i.e., a large
number of incident edges, this procedure will give partitions which have a
relatively high interblock weight. However this approach to partitioning
was designed to be used on the instruction level. That is the program
unit which the vertices represent are individual instructions rather than
sets ot instructions., A graph representing programs at this level would
tend to have in general a low average vertex degree. For program re-
presentation at this level segmentation algorithms are applicable. How-
ever, one is immediately confronted with the problem ot gathering statis-
tics tor programs at this level ot detail.,

Summarizing we saw that sequential selection tended to give slightly
better partitions than the greedy algorithm for graphs with a high edge to
vertex ratio. There is however a trade -otf in the increased computational
time needed tor the sequential seleétion procedure and in most cases the
additional accuracy obtained by this procedure would not be justified in
terms of additional time. For graphs which are sparsely connected, the
merge algorithm gave results which make it preferable.

Segmentation procedures should be used only in graphs for which the
average degree of the vertices is relatively small, i.e., at instruction level.

In the next chapter we give an example of the changes in paging per-
formance for a system translator which has been reorganized atter app-

lication ot a program partitioning algorithm.



Chapter 6

6. Application to Systems Programming

In this chapter we assess the impact of program partitioning on
a systems program's performance in a real paging environment. A
program was written to take the results of an optimal grouping of a
set of subroutines of a systems program and reorganize the set of
routines such that the interpage references among the routines were
reduced. The program graph for the systems program (SNOBOL 4)
was sparsely connected; therefore the Merge algorithm was used
for partitioning.

Due to its modular structure we found for purposes o.f this test
that the SNOBOL 4 vtranslator on the Michigan MTS system was well
suited as a.testing vehicle. Performance results for both the normal

and the reorganized version of the translator are given.

6.1 Paging of a SNOBOL Translator in MTS

General computing services at The University of Michigan are
provided on the IBM 360 model 67. The software system is called
MTS, i.e., the "Michigan Terminal System". The Michigan Terminal
System is a reentrant job program which runs under the University of
Michigan Multi-Programming System (UMMPS). In addition to batch
processing, MTS has the capability of controlling and executing pro-
grams from remote terminals. Programs run under MTS are paged

in a multi-programmed environment.
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For purposes of assessing the impact of programmed reor-
ganization on paging performance, a SNOBOL 4 translator was analyzed
and optimized using the procedures previously discussed. A special
version of the translator was assembled which allowed determination
of the following,

1. the inter-page branching between procedures,

2. the number of times each procedure is called,

3. the time spent in each procedure,

4, the average time per call for each procedure.

The MTS data collection facility [37] was used to collect the
statistical data from the special version of the translator. The data
collection facility produced a tape with all the relevant information
from which the appropriate data could be derived. This data was used
to construct a program graph of the SNOBOL 4 translator.

The SNOBOL 4 translator used for this test consisted of 106
independent procedures which call on each other during execution
of the program. The procedures ranged in size from 30 bytes to
3076 bytes, with the total translator hé.ving 18 pages of procedures. A
page consists of 4096 bytes on the IBM 360,

To maintain a constant environment this paging experiment was
run in the early (4:00AM, 19 Dec. 1970)hours of the morning with few other
users on the system. Two special statistical versions of SNOBOL
were assembled, one reorganized and one left in its normal state.

A set of five SNOBOL programs were run using each translator. To
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create a constant system paging environment each translator was run
with a special background job call PAGE-IT. The PAGE-IT job obtains

a large number of virtual storage pages and references them cyclically

in rapid succession. PAGE-IT was designed such that when run with
a moderate load of normal MTS tasks, the drum channel programs are
kept running continuously. The effect of this is to force pages of

~ other programs out of storage at a faster than normal rate.

6. 2 Reorganization of a SNOBOL Translator

The SNOBOL translator or program functions as an interpreter;
that is its operation is divided into two phases, translation and execu-
tion. The translation phase consists of an examination of the source
language program (problem program) and a determination of the
proper subroutine to execute the tasks specified by the source statement.
Execution is that phase of the SNOBOL program in which control is
given to certain SNOBOL subroutines for execution of tasks determined
during translation.

As cited earlier the SNOBOL translator consisted of 18 pages of code.
There are an additional 30 pages of data. The reorganization performed
consisted only of reorganization of the pages of code since it was not possible
to affect the organization of the data pages. During the translation
phase of the SNOBOL translator only two data pages are referenced.
Therefore it was assumed that the behavior during this phase of the
translator could best reflect the paging results, due to reorganization,

of the routines of the translator.
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Program S1 S2 D
1 7560 | 7324 | 236
2 7124 | 7029 95
3 11332 | 11242 90
4 4348 | 4365 | -17
5 3209 | 3063 146

. Table 6.1

Program S1 S2 D
1 3771 | 3739 |32
2 3433 3612 | -179
3 5496 | 5495 | 1
4 2186 2180 6
5 1545 1566] -21

Table 6. 2

P=4082 during S1
P=4397 during S2

P=182 during S1
P=831 during S2
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Table 6.1 and Table 6.2 represent the trahslation times of

the five test problem programs used in our paging expefiment. The

column lébeled S1 represents the SNOBOL translation time of the prob-
lem programs which used the translator which was not reorganized,

S2 represents the translation times of the test programs ﬁsing the
reorganized version of SNOBOL; and D is the difference S1-S2; all
times are in milliseconds. Table 6.1 summarizes the results taken
during operation of the special program PAGE-IT. The value P be-
side the tables represents the number of drum reads recorded during
operation of these programs; their number is indicative of the paging
activity occurring during the running of the test programs. The
translation times include time taken for paging.

First we note that the times in Table 6.1 are about twice as large
as those in Table 6. 2; this is due of course to the additional time for
- paging. For example when the five problem programs were run with
the translator designated S1, there were 4082 drum reads during the
execution of these programs with PAGE-IT creating a heavy load.
When these same programs were run on S1 without the additional
paging load there were only 182 drum reads.

For the first problem program we see that when there is rela-
tively small paging load (Table 6. 2) the difference in translation time
is 32 milliseconds with the reorganized translator S2 being faster,
However, with this same program under heavy paging conditions

(Table 6.1) we get a translation time difference of 236 milliseconds,
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with S2 being faster. For this problem program we .get a translation

time difference of approximately 1%, i,e,, the time for S1 is approxi-
mately 1,01 times the time for S2, under a small paging load. The
translation time difference is about 3% when there is much paging
activity with the reorganized version faster.

With problem programs 3 and 4 there is little difference in
translation times under a light paging load. However when paging
is increased the increase in translation time for problem 3 is slightly
less than 1%with S2 the faster version. With problem 4 the reorganized
version S2 was the slower with a heavy paging load, The explanation
for this is not clear except that the reorganization of the SNOBAL tran-
slator was base;l on its "average'' behavior; therefore it could be ex-
pected to run slower for some types of problem programs.

Problem program numbers 2 and 5 had relatively high time dif-
ferences under the small paging load, In these cases it was the reor-
ganized version which was slower with little paging (Table 6.2). But
when the paging load is increased for both these problem programs
the reorganized version was faster by at least 1.5%

In conclusion we note that in 4 of the 5 problem programs su-
perior performance, under heavy pa,ging,‘ was observed by the reor-
ganized SNOBOL translator, In the one case; problem prbgram 4,

where the reorganized program was slower the difference was less

than 1/2%,
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The data for which the program graph for SNOBAL was construc-
ted was obtained by running a program which used a wide mix of the
translator's facilities. Therefore when the problem programs, not
the same programvfrom which the program graph was constructed,
were run a variation could be expected since all problem programs
use different parts of the translator with different frequencies.

The portion of the SNOBAL translator used for data is larger than
that used for code (30 pages versus 18 pages). Therefore the paging
due to data referencing is significant. We could not affect the organi-
zation of the data pages. The original version S1 was better organized
with respect to data referencing, When the translator was reorganized
the paging due to data referencing actually increased, i.e., the value
~ of P is always higher for the reorganized translator.

Although the statistics were taken at a time in which system use
was minimal, we could not completely control the system enfrironment.
Users could sign on and thereby affect the overall system paging stra-
tegy and thereby the statistics we collected.

A cbnclusion which may be drawn from our results is that the
paging efficiency can be increased by a reorganization of the code of a
program. Even though the efficiency increase may be relatively
small, the fact that the systems routines are heavily used can result
in significant savings in paging overhead. If little data referencing is

done this is all that is necessary. But if many data pages are used
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code reorganization should not take place without consideration of

the references to data pages.



Chapter 7

7. Summary and Future Research

This section summarizes the results of this study and suggests areas
where the research may be extended.

The central purpose of this research has been the development of
an algorithm for finding specific optimal groupings. Towards this end

we have done the following:

(@) developed an algorithm for solution of a quadratic binary
program of large dimension:
(b) investigated one specific application of optimal groupings to
computexi programming’
(c) | made computer comparisons of algorithms for computer pro-
. gram partitioning:

(d) restructured a systems program and monitored paging behavior.

We have developed an algorithm which has application to a variety
of problems. For the specific application of computer program parti-
tioning we found the unit merge algorithm to give the best performance in
terms of running time and accuracy: for some graphs the Unit Merge algorithm
could give results which were inferior to those given by sequential selection.
The speed and simplicity of the Unit Merge algorithm makes it attractive

as a procedure to incorporate in a compiler. Segmentation procedures
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were found to beveffective only for graphs of low average vertex degree;
A system program was reorganized and the paging behavior due
to this reorganization was measured. It was found that considerable
paging overhead could be decreased by program reorganization. For
programs with large amounts of data it was found that data pages must be
considered in any scheme of overall program reorganization.
In the next section we consider some extensions to the problem

we have discussed.

7.1 Extensions to Quadratic Algorithm

We have discussed how generalized multipliers maybe used to solve
the quadratic problem for m< 2. There should be more research in

extending the generalized multiplier approach to large values of m. -

7.2 Program Partitioning with Paging

In the previous work, we have not made use of the fact that a
program may have more than a single page in main memory at a given
instant. When this aspect of memory management is considered, one
can alter the nature of a given program partitioning. Consider the

following example.
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For this graph all vertices except 1 and 6 have size 1, vertices 1
and 6 have size 2; the page size is two. The unique optimum partition

for the above program graph is

Pagel 1
Page 2 2,4
Page 3 3,5
Page4 6

This partition corresponds fo an interpage transition weight of
2 1/8 which is minimum. However if we assume that there is a non-
zero probability p(k) that k pages of this program are in main memory
simultaneously, w})ere k=1,2,3,4 and Ep(k) = 1, then we see that an
optimum partition will depend upon the distribution p(k). For example
suppose p(k) = 0, k=1, 3, 4, and‘p(Z) = 1. This means that we can have
pages 1 and 2 or pages 3 and 4 in core simultanéously. When we are
allowed this configuration our "interpage' cost is now only 1 3/4; since
there is no cost for transfer between vertices 1,2, and 4 or 3,5, and 6.
But we notice that we can reorganize this program parition such that

our interpage cost is 1 if we define the new packing as,

Pagel 1
Page 2 2,3
Page3 4,5

Paged 6
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With the new formulation pages 1 and 2 and pages 3 and 4 are
simultaneously core resident. The point is that the optimum partition
found under a ''static' consideration is not necessarily optimum when
ane allows multiple pages to be core resident.

When one considers multiple pages in core, a natural question is,
how partitioning of programs interacts with "page turning' or page
placement/replacement algorithms. One can formulate the partitioning
problem in such a manner that one has included an implicit page turning
algorithm. Suppose we have distribution p('k) , the probability that a
given program has k pages resident. We then would like to select a
partitioning which somehow takes advantage of the information given
by distribution p(k) .

Let us define xijl = 0 if vertices .i and j are on the

same page,

= 1 otherwise.

il
[y

For k > 1 define xijk if when control is at vertex i
vertex j is not on any of the k
pages which are core resident,

0 otherwise.

1

Now a cost function which takes into consideration the fact that there is

not necessarily a cost associated with interpage transfers is
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\ k
1) F=), ci.x..( ) p(k).

H i ij

i,j,k
In this case we get a contribution to the cost function only if vertices
are on different pages which do not occupy core simultaneously. The
distribution p(k) ""weights'' the cost according to the statistics on core
usage. The constraints for such a formulation could be as follows.
To assure that the vertices placed on a page don't exceed the capacity

of a page we have,

(2) Z,‘(l-xi].k)ai <ku, for all i, k;
i

where ai is size of vertex i and p is page size. A solution is considered
feasible if and only if for xijk - 0 and xijl = Lthenx,,P = 0 for all p >k
This constraint simply says that if vertices i and j are on pages A and

B respectively for k pages in core and control at A, then if more pages
are allowed in core with control at i, we will consider only those solutions
which still consider B to be émong the resident pages. This can be stated

as

Xijt -xijkz_O it t< k, fort=1,2,...m,

Now xi].k says whether j is on any page among the k pages which are
resident when control is at i: this should be the same for all other vertices p
which are on the same page as i, i.e., if xi].k =0 and xipl = 0 then

xpjk = 0, We state this as

L, W Sk Kk 2 kK _ k2 _
(3) ig (t-x;, )kél p§:1[(><pi - Xy )l -k 9% =0,

for all i,]j.
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And of course xijk e {0,1} for all i,j,k and xﬁk = 0 for all i, k.
Equation (1-3) defines an optimum problem in boolean variables which
is more general than the problem defined in section 2. The infor-
mation {xijk, k=1, 2,...,m} obtained in the solution can be used in a
page turning policy in order to minimize the number of page interrupts.

The optimization problem formulated for multiple pages core re-
sident is indeed very difficult to solve for cases of practical interest. A
possible area of future research in the formulation of more tractable
optimization models which retain the features of page multiplicity.

Implicit with a model which considers multiple pages in core is
the consideration. of page fetch and replacement strategies. More re-
search into this area is appropriate.

In the models developed no consideration has been given to multi-
processing program parallelism. Models which incorparate paging could

include these features.



Appendix I

Solution of Linear Pseudo-Inequalities

In this section we present a branch and bound algorithm due to
Hammer and Rudeanu [19 | for solution of a linear pseudo-Boolean

inequalities of the following form

C1Xp +CoXg +.uu + cnkn > d, . (1)

where C17Cgsene, Cyp d, (c1 2 Cy D eeny 2 c, > 0) gre known real
constants and X; (i=1,...,n) are Boolean unknowns.
Any Boolean inequality can be put into standard form (1) by
application of the following transformation, Let
a2, + blil s az + bnin >k | (2)
be the general form a linear psuedo-Boolean inequality takes_where
a;, by, (i=1,.. '. »0) and k are known constants and z; (i=1,...,n) and

ii =1 - z; are the Boolean unknowns. We can assume, with no loss of
generality, that 2, # bi for all i; also the proper sense of the inequality
is always obtained by appropriate  multiplication by -1,

For each i, let us set

( e
Zj 1fai>bi

z,, if a < bi

. 1

Now the term az, + biii becomes

138
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(ai'bi)xi + b, if a, > b,
a2, + bizi = (3a)

(bi-ai)xi

+ay, if a; < bi
Thus equation (2) becomes
CyXy + CoXg +.0v +C X/ Zd

where €2 CgreeerCp d are all known constants. By reindexing we
havec1_>_cz_>_... _>_cn>0.

Throughout we will confine our attention to the solution of
inequalities of standard form.

Following Hammer and Rudeanu we need the following definitions,
Definition 1.

Let S = (x* .o x*n) be a solution of (1) and let I be a set of

1, o
indices I C {1,2,...,n}. Let TI'(S,I) be the set of all Boolean vec-
tors (xl, coes xn) satisfying

X, = x*i for all i€ I,

The other variables X5 i ¢ Iare arbitrary, If all Boolean vectors
(xl, cons xn) e I'(S,I) satisfy (1), then I'(S,I) is said to be a family

of solutions to (1). The pair (S, I) is said to generate the family

I' (S,I); the variables X, for which i € I are called the fixed variables
of the family. IfI={1,2,...,n} the family consists of the single

vector (x*l, cees x*n) and is said to be degenerate,
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Definition 2,

A vector (x*l, weey XX ) satisfying inequality (1) is called a

basic solution of (1), if for each index i such that x* =1, the vec-

tor (x*1 . i1’ 0 X* o x*n) is not a solution of (1).

i+1’°
For solution of (1) the following three lemmas are needed.

Lemma 1

Let (x* X* , x*

.., X* ) be a basic solution
p n

1, o0 0y
of (1), then (x*

p+l’°

y+eeyX* ) is a basic solution of the
p+l n

inequality

n p
, z Z x*
=p+l . k=1
Lemma 2

If (x*p+1, coes x*n) is a basic solution of the inequality

n
z cx. > d,

] =
j=p+l
then(0’0"“’0’x*p+1"“’xn

Lemma 3

If d > 0and (x* . x*n) is a basic solution of

2"

n
Z ijj 2 d-c1
j=2

then (1, X*Z’ ceey x*n) is a basic solution of (1).

* ) is a basic solution of (1).
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Proof:
If x*2 = eee = x*n = 0, the lemma follows immediately; therefore
n
assume that Z; x"‘j > 0. It is obvious that (1, x*z, .,x*n) is a solu-
j=2
tion of (1); hence it remains only to show that it is a basic one.
By hypothesis (X*Z’ coey XX n) is a basic solution of (4), therefore
it follows that for every k (2 < k < n) such that x* = 1

n

X -
z cJ.xJ. <d c1
j=2

j#k

Hence we haVe.that

therefore (0, x*z, cens x*n) is not a solution of (1). This completes
the proof of lemma 3.
All basic solutions are found by repeated application of the

above three lemmas, Table Al summarizes those results.
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Z “iF

i=1

x1=x2=. =X = 1

Table Al
Condition Conclusion Justification
d <0 ‘|1 Unique:basic solution obvious
i X1.= X2 =., ,~~=.a}i(n= 0
d > 0 and a. For eachk=1,2,...,p obvious
X = 1
Cc >.°.v>/c&l - - — - -
1-—~—» bt Xl_xz—...xk'l-—xk-l—...—xn
c Daee > is a basic solution
p+l = -
b. If any other basic solutions
exist, they are characterized
by the property:
X =Xg=0 e =xp=0, and by lemmas 1, 2
(xp+1, ces ,xn) is a basic solu-
tion of
n
- i
z ch] >
j=p+1
id > 0, and No sblution obvious
n
i=1
d >0, ¢y <0 Unique basic solution obvious
n
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Table Al (continued)

Condition Conclusion Justification
d> 0, ¢y <d The basic solutions (if any) are by lemmas 1, 3
n characterized by the property: :
Z ci> d and x1=1, and (xz,...,xn) isa
i1 basic solution of
n
n
Z ¢;<d Z cj%; 2 d-¢;
i=2 =2
d>0, c, <d The basic solutions (if any) by lemmas 1, 3, 2
are characterized by the
n property:
either
zci>d and x1=1 and(xz,...,x)isa
i=1 o
basic solution of
n
n
DEEE 2, ¢ 2 ey
i=2 =2

or:
x1=0 and (x2, ces ,xn)
is a basic solution of
n
c.Xx. >d
2 o2

j=2
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Each basic solution, S, can be associated with a family of solu-
tions I'(S,J S) as follows. Let i be the last index for which
x*i =1, (i.e., x*i =1, and X*, = 0foralli> io), and let JS be

0

the set of all indices i § iy, Then I'(S, JS) is the set of all vectors

0°

(xl, veey X n) satisfying

arbitrary 1i> i0

It can be shown (see [18]) that if Sys+++,8  are the basic solutions
of (1), and P(Sk, Jk), k=1,...,m the associated families, then every
solution (xl, coes xn)wof (1) belongs to exactly one family. We now
present an example.

Example

2z1+6z2—4z3+z4+3z5 S 6

Rewriting as
-2z1 - 6z2 + 4:z3 -2y - 3z5 > -6
¥y =2y y2=52’:’3’3=53’ Vg =2y V5= Zg
By applying transformations (see equations (3) and (3a))we get
(2y;-2) + (6y5-6) + 4y5 +(y4-1) + (3y5-3) > -6
2y1 + 6y2 + 4y3 ¥y + 3y5 > 6;
by reindexing X7V X9=Vgs Xg=Vgr X,=Yy , Xe=y, we get the standard

form
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6x1 +4x2 +3x5+2x4 +Xg > 6
x1=1, Xg=Xg=X,=Xp = 0 by case 2 (see table Al).
(a) (1,0,0,0,0)
So by part (b) of case two x1=0 and one new equation is
4x2'+3x3+2x4:+x5 > 6
An examination of the coefficients shows that we have case 6; hence
x2=1 and we have to find the basic solution of
3x3 + 2x4 +Xg > 2,
which we see in case 2, x3=1, x4=0, x5=0, or
(b) (0,1,1,0,0)
and x3=0, x4=1, {(5=0, or
(c) (0,1,0,1,0).
Proceeding to part (b) of case 2 we have
Xg > 2
which leads to case 3.
We here follow this branch as far as possible; we therefore
return to the second part of case 6, x2=0
3x3 + 2x4 +Xg > 6.
This is case 4, Xg = Xy = Xg = 1,
(d) (0,0,1,1,1)
This terminates the search for basic solutions. Tables A2 and A3

summarize the results.
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Table A2
Solution Xy X X3 X, Xg
a 1 0 0 0 0
b 0 1 1 0 0
c 0 1 0 1 0
d 0 0 1 1 1
Table A3

Family X, X X X, X
F(SI, Il) 1 = - - -
1"(82, 12) 0 1 1 - -
P(S3, 13) 0- 1 0 1 -

I'(s & 14) 0 0 1 1 1

The dashes in Table A3 indicate the variables which are arbi-
trary in a given family, i.e., I;= {1}

I, = {1,2, 3}, I3={1,2,3,4},I4= {1,2,3,4,5}
so that family I'(S 4 14) is degenerate.

After applying the inverse transformation we get Table A4
which represents the families of solutions in terms of our original

variables.
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Table A4

Family Zy Zg Zg Zy Zg
number

1 - 0 - - -

2 - 1 1 - 0
3 0 1 1 - 1




Appendix II

Two Partitioning Algorithms

In this appendix we give two algorithms for graphical partitioning,
The first algorithm is the unit merge procedure developed at Informatics

[ 19]. The second algorithm is the segmentation procedure of Kernighan
[24].

II.1 Informatics Unit Merge Algorithm

The unit merge algorithm is suitable for application to any graph

G where the edge weight c;i are not all the same. The procedure assumes

that the graph G is represented by an upper triangular matrix W,

W = [le]
wij =cij +Cji 1 <j
=0 P>

Cij is the weight of edgé between A and v]. in graph G.

The algorithm proceeds as follows.
1) The matrix W is -searched, and ite largest element Wij is located.
2) If the size a; + a]. (of vertices \A and Vj) does not exceed
the block capacity , \A and v]. are merged, The matrix W is
accordingly updated.
3) The process is repeated until all possible mergers have been
made, That is, the process terminates when for each .

wﬁ>0, ai+a].>u.
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4) In order to reduce the number of pages required, any remaining
possible mergers are made with no regards to W, The mergers
made during this phase of the algorithm do not change the
interblock weight, They simply fill out any remaining empty
space or partially filled pages.

In order to update the graph when vj is merged with vy (i <j), the newly
formed unit (vertex) is named Vi The new weight is ai; the sum of the

old a, and a,. For allk W.; and w, become zero, The old values of
i j j ik

wk].and/ or w,, are added to wy ; OF Wy,

II.2 Dynamic Programming Algorithm for Segmentation

Kernighan 1;as developed an algorithm for the segmentation of
program which requires computations on the order of n2. Where n is
the number of vertices of the graph, We present the model for his
optimization procedure,

Let G be a directed graph. A node (vertex) j is a successor of

anode i iff (i,j) is an edge in G. In this case, i is a predecessor of j.

A program graph is a directed graph G of n + 2 nodes {0,1,2,...n,n+1}

such that
1. There is no edge (m,’O), for m in G; node 0 has no predecessors.
2. There is no edge (n+1,M), for m in G; node n+1 has no

successors,

3. There is no edge (m,m), for m in G.
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4. G is connected in the sense that for any node m in G, there

exists a path from 0 to n+1 which includes node m.,

Nodes 0 and n+1 are called the initial node and terminal node of G respec-

tively. The vertices of G have integral weights {w(i), =0,1,...n+1}
such that w (0) = w(n+1) =0, and 0 < w(i) < p for all i in (i,n); p is a

positive integer representing the pages size. A segmentation of the

program graph G is designated as a partition of the nodes of G into k
disjoint subsets G(1),...,G(k) such that |
k

1. U G() =G
j=l

2, The nodes in any G(j) are contigious; that is G(f) contains
nodes i, i+1,,..,m-1,m,

3. Z w(i) < p; that is the sum of the weights of the nodes in
ieG(j)

each subset of the partition is less than or equal to p. The

subset G(j) is called a page of the segmentation,

Let b(j) be the minimum node number in G(j), that is, the name of

the first node of G(j). The number b(j) is called the break point or page

break. The set {b(j), j=l,...,k} uniquely identifies the partition {G(j)},
b(1) =1,

Each edge (i,]) of G is assigned a nonnegative cost c(i, j) and the
cost of a segmentation is degined to be the summation of c(i,j) over all
i and j such that i and j are not in the same page. The algorithm below

obtains an optimal segmentation, i,e., one with minimum cost. The
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distance d(i, j) from node i tonode j (i <j) in a program graph G is
defined as d(i,j) = w(i) + w(i+1) +...+w(j); thus the distance is the sum

of the weights of all nodes from i to j inclusive,

Optimal Segmentation Algorithm

Let C(x,y) be the incremental cost for a page break at x, given that
the previous page break is at y,
Cx,y) = ) [ed,i) +cG,D)]
y <i<x
i>x
and let T(x) for any x in {1,.,.n} be the minimum partial cost (as far
as node x) for any segmentation of a section of a program {1,2,...,n},
with a break at x, Thus T(1) =1; T(x) is evaluated iteratively. The -
algorithm goes as follows,
1, SetT(1l) =0
2. Forx from 2 ton+l in steps of 1, set T(x) = min [ T(y)+ C(x,y)]‘
where the minimization is done over all y s'uchythat
d(y,x-1)<p. K more than one y satisfies the condition, choose
the smallest. Set L(x) =y.
3. Set Total coSt =T(n +1)
set z(0) =n+1
setk =1
4, While z > 1, do

z(k+l) = L [ z(k)]; k=k+1



152

5. Break points are z(1), z(2),... ,z(k); in descending order,

A proof of the optimality of this algorithm can be found in [ 24 ].



Appendix III

Graph Theoretic Formulation

In discussion of graphical models of computer programs it is
very helpful to present concepts in a graph theoretic context. And it
is in this regard that we present the following definitioné following
Busacker and Saaty [7].

A graphis defined as follows: Agraph consists of nonempty set
V, a (possibly empty) set E disjoint from V, and a mapping & of E

into VX V. The elements of V and E are called the vertices and edges

of the graph, respectively, and @ is called the incidence mapping asso- -

ciated with the graph,

An edge e ¢ E is said to incident with vertices v, we V if

&(e) = (v,w). The vertices incident with an edge are called its end
points, and are also said to be joined by the edge. Generally we do
not refer to @ explicitly and the fact that v and w are end points of e
is denoted as e = (v,w).
| A graph will be denoted as G = (V;E) where the incidence mapping

remains implicit. If V and E are both finite, G is called finite, For

our descriptive purposes we are concerned only with finite graphs. A

graph is said to be simple if at most one edge joins any pair of vertices

and each edge is incident to two distinct vertices.

If the vertices of a graph represent components of individual
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activities, and the edges are assigned an orientation, then in this case
the incidences relations within the graph reflect the way in which exe-
cution of certain activities is contingent upon completion of other tasks.

When an orientation is assigned to edges we have a directed graph.

A finite sequence €11€gyeeeys€p of (not necessarily distinct)

edges of a graph is an edge progression of length n if there exists an

appropriate sequence of n+l (not necessarily distinct) vertices v 1 V15V
cos ,an such that e, = (Vi-l"vi) fori=1,2,...,n, The edge progression
is said to be closed if Vg =V, and open if v, # Vo

When the elements of a progression represent distinct edges;'

the edge progression is called a chain progression if it is open and a

circuit progression if it is closed. The set of edges itself, without

regard to sequencing is said to constitute a chain in the former case

and a circuit in the latter.

With simple graphs,” if all n+1 vertices v ;vl;vz; vee,V, are

distinct, the set of edges is called a simple chain, If v.= Vo but the

0
vertices otherwise distinct the unordered set of edges is said to consti-

tute a simple circuit,

A graph is said to be connected if every pair of distinct vertices
are joined by atleast one chain, A graph is said to be a t_x‘_e_'g if it is
connected and has no circuits.

When dealing with directed graphs we replace the set E with a
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set of "oriented edges" A called arcs, and B= (V,A). Incidence for
any a e A is again designated as a = (v, W), where a is said to have v

as its initial vertex and w as its terminal vertex,

@ e

An arc progression of length n is a sequence of (not necessarily

distinct) arcs al,az, ERPEN such that for an appropriate sequence of
n+l vertices VorVps+++»V, We have a, = (Vi-l’vi) fori=1,2,...n, The
arc progression is closed if Vo=Vn and open if Vo # Vo An arc pro-

gression in which no arc is repeated is called a path progression or

cycle progression, depending on whether it is open or closed., The

corresponding set of arcs, is called a path or cycle respectively, A

directed graph is said to be cyclic if it contains at least one cycle, and

acyclic otherwise,

When the term "tree' is applied without qualification to a directed
graph it is understood that arc directions are ignored and the asso-
ciated undirected graph is being described. Some writers tend to use

the terminology node and arc when discussing directed graphs and

vertex and edge when dealing with undirected graphs., We tend to use

vertex and edge in both contexts and will specify when necessary if the
graph is oriented.

We will frequently refer to the connection matrix C of a graph.
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It is defined as a matrix C = {cij} where
Cy = 1, (vi,'v].) ¢ E;

0, otherwise

3

An analogous matrix can be defined for directed graphs, it is the

incidence matrix[6] M= {mij} which is defined as,
mys =1 if (Vi’vj) € A,
=-1 if (Vj,Vi) € A,

=0 otherwise,.
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