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Hertz  prob lem for a rigid punch  moving  across the  surface 
of a semi- inf ini te  elast ic  solid 
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Abstract.  The elastodynamic problem of a rigid punch moving at a constant sub-Rayleigh speed 
across the surface of an elastic half-space is investigated in the present paper. The unknown 
contact region is determined as part  of solution from the unilateral or Signorini conditions. 
Numerical results are plotted showing how the eccentricity of the contact ellipse changes with 
the punch speed. Some asymptotic properties of the solution for the case where the punch speed 
is comparable with the Rayleigh wave speed are explored in details. 
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1 .  I n t r o d u c t i o n  

A class of problems representing considerable physical interest in linear elastody- 
namics concerns the frictionless motion of a rigid punch at a velocity V across the 
surface of an elastic half-space. In the case where the punch is a rigid cylinder or 
a rigid sphere of radius R, this problem is the elastodynamic counterpart of the 
classical Hertzian contact problems. 

Churilov [I] treated the problem for the subsonic case (V < c2), where c2 = 
V/~ is the velocity of shear wave propagation (# being the shear modulus and 
p the density of the material of the half-space). In an earlier paper [2], he derived 
an expression for the elastodynamic surface Green's function corresponding to the 
action of a normal load P, moving at some speed V < c2, across the surface of an 
elastic half-space and then superposing this solution, he formulated the problem 
in the form of an integral equation in a frame of reference moving with the punch. 
He then developed a solution method but produced no numerical results. In the 
present article, the problem is analysed again. For the first time, numerical results 
are presented as to how the eccentricity of the contact ellipse changes with the 
punch speed. Some asymptotic properties of the solution concerning the case 
where the punch speed is comparable with the Rayleigh wave speed are explored 
at greater length. 
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2. T h e  m o v i n g  p u n c h  p r o b l e m  

Obviously the problem under consideration has a steady-state solution in which 
the stress fields are invariant in a frame of reference moving with the punch and 

the contact area is a single connected region a in this frame of reference. Therefore 
we can reduce it to a classical elastodynamic boundary value problem. 

If the boundary of the contact region (9 ~t is assumed to be given, the result- 
ing boundary-value problem is well-posed. However the problem being physical 
demands that the contact area be determined as part of the solution from the 
unilateral or Signorini contact conditions which means that the contact tractions 
should be non-tensile throughout the contact region and the gap g(x, y) between 
the half-space and the punch should be non-negative throughout the non-contact 
or separation region, i.e. 

p(x, y) > o, (x, y) e a 
g(x, y) > o, (z, y) e {z = o} \ 

(1) 

It can be shown (see for example [3]) that  these inequalities are equivalent to 
the conditions requiring that  the contact tractions be non-tensile throughout the 
contact region and that  it vanish at the edges of the contact region, i.e. 

p(x, y) > o, (z, y) e ~ (2) 
p(x, y) = o, (x, y) ~ o ~ (3) 

Characteristic of this kind of problems where the contact region is not given a 
priori is the fact that the contact region changes with the indenting force P. In 

general such problems are non-linear and therefore closed-form solutions of such 
problems can be derived only in exclusive cases. Iterative or numerical schemes 
are usually employed to solve this kind of problems. However we should note that 
the boundary conditions (2) and (3) are very sensitive to iterative or numerical 
treatment of such problems, since the assignment of an initial contact region which 
is bigger than the actual one leads to the violation of the condition (2), whilst the 
converse leads to the violation of the condition (3). 

3. T h e  e l a s t o d y n a m i c  s u r f a c e  G r e e n ' s  f u n c t i o n  

The problem under consideration can be efficiently formulated in the form of an 
integral equation involving the appropriate Green's function, which corresponds 
to the response of the elastic half-space to a point normal load P moving along 
the z-axis at a speed V across the surface z = 0. This problem was attacked by 
many authors. A convenient summary of the work in this direction can be found 
in Eringen and Suhubi [4]. It was first analysed by Payton [5] using the Betti- 
Rayleigh theorem. However his results are restricted to Poisson's materials only. 
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Eason [6] employed integral transform technique to solve this problem, but was 
able to find the surface Green's function for the sub-Rayleigh case only. Churilov 
[1] extended this result for the case of sub-shear speed, using a technique due to 
Smirnov and Sobolev [7]. The expression he derived for the surface displacement 
in a frame of reference moving with the load P is as follows: 

2#r , 0 < V < c2 (4) 

where r = X/x 2 + y2 and the function F(V) is given by the formula 

F(V)- 0<V<c2  (5)  R(V) 

where 

R(V) = (2 - M~) 2 - 4 1 ( 1  - M~)(1 - M~) (6) 

is the Rayleigh function and M1 = V/cl and M2 = V/c2 are the longitudinal and 
shear wave Mach numbers, respectively. 

The problem of derivation of the elastodynamic surface Green's functions for 
the transonic and supersonic cases is still an open question and is currently under 
the writer's investigation. 

4. I n t e g r a l  e q u a t i o n  o f  t h e  p r o b l e m  a n d  d e r i v a t i o n  o f  t h e  H e r t z i a n  
e q u a t i o n s  

The elastodynamic surface Green's function (4) allows an elegant formulation of 
the title problem. We can write down the normal surface displacement in a region 
f~ due to an arbitrary contact pressure p (x, y), in the form of a convolution integral, 
i.e. 

1 
.z (x,y,0) -- 2~t ~/R(Xl'yI~) ~{V(Y~ J dxl dyl (7) 

where R = V/(X - Xl) 2 + (y - yl) 2 is the distance between the points P (x,y) and 
P' (Fig.i). 

The corresponding integral equation for the static case can be derived by letting 
V tend to zero in (5), (6) and (7), namely, 

uz(x,y,O)- 1-u27r# f ~ f f  p(x~,yl)R dxldyl (8) 

A general solution of the integral equation of the type (8) for the case where gt 
is an elliptical region is given by Galin [8] who shows that  if the function Uz (x, y, 0) 



604 M. Rahman ZAMP 

~ O ~ @ 1 ~  P"(x0, Y0) 

! x(a, O) 

Figure 1. 
Elliptical Contact Region 

is a polynomial of x and y of order 2m, the solution for the function p (x, y) has 
the form: 

( x2 y2)  "~-�89 
p ( x , y ) = p o  1 a2 ~ (9) 

where p0 is an unknown coefficient. In literature this is known as Galin's theorem, 
although as pointed out by Cherepanov [9], a theorem much stronger than Galin's 
was proved by Dyson in 1891 [10]. In what follows we will show that Galin's 
theorem can still be employed to solve the elastodynamic equation (7). In so 
doing, we will closely follow Vorovich et al [11]. 

From the geometry of the Figure 1, we have 

xl = x + R c o s r  (10) 
Yl = y + R s i n r  

Substituting (I0) into (9), we obtain 

/5(R,r = p(x + Rcosr  +/~sinr  = P0 { ( A -  2 B ( r  C(r '~-�89 (11) 

where 

x 2 y2 
A = I  

a 2 b 2 

x cos r y sin 0 
B - - - + - -  a ~ b 2 

cos 2 r sin 2 r 
C - - - + - -  a 2 b 2 

Note that the functions B(r and C(r have the following properties: 

(12) 

B(Tr + r = -B(q~), g(Tr + r = C(4) (13) 
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Now putting (10) a, nd (11) into (7), and considering that  F(V) is an even function 
of V,  we get 

/5 (R, r F(V sin 05) dR d05 ~,~ ( ~ , v , o )  = ~ ~o 

- 2,uP~ s ,o/R~ 2B(05)R- C(05)R2}'~-1 r(Vsinr 
(14) 

where Ro(@ is the distance between the points P and P "  (Fig. 1). 
Note that  since the point P "  lies on the boundary of the ellipse, the following 

equations hold: 

x~ + y~ : 1 a-7 
xo = x + Ro cos 05 (15) 

Yo = Y + Ro sin 05 

Using equations (15) and the notations (12), it can be shown that 

R o ( r  = -B(r  + \/B2(05) + AC(r (16) 
6(05) 

Since the point P (x, y) lies within the ellipse (Fig. 1), A(05) > 0, and C(r > 0 
for all 05 C [0, 2rr]. Therefore 

B B + R C  B + R o C  < < 
x / B  2 + A C  - x / B  2 + A C  - x / B  2 + A C  

(17) 

Besides, it can be easily shown that  B / ( B 2 + A C )  > - 1  and ( B + R o C ) / ( x / B  2 + A C )  = 
1 (by virtue of (16)). Therefore the following relationship holds: 

B + R C  
- 1  < < 1 (18) 

x / B  2 + A C  - 

Now introducing a new variable 0 by the relation 

B + R C  
c o s O -  (0 < 0 < 7 0 (19) 

~/B 2 + A C '  

equation (14) can be rewritten as below 

~z ( x , v , o )  - po fro 2~ fo(r 1 (B2(r162162 r 
2 .  ~o ~ c(r J 

(20) 
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where 0(r is the value of 0 corresponding to R = 0. 
At this stage, consider the integral 

f2~ o(~) ( (r162162 r I : f 1 B 2 
,o v c ~ 5  c(r ] 

(21) 

We now put r = 7r + r into (21) and note that  cos0(Tr + r = - c o s 0 ( r  whence 
it follows that  0(~r + r = 7r - 0(r In view of this and the properties of the 
functions B(r and C(r defined by the equations (13), from (21) we get 

m 

J0 Jo v / - d ~  < c(r  

Now putting 0 = ~r - 0' into (22) and again noting that  F(V) is an even function 
of V, we obtain 

I = de 1 (B2(r +AC(r sin2"~O'F(Vsinr162 (23) 
(r ~ \ c(r  

With the help of equation (23), we represent equation (20) as 

m 

~z (x, y, 0) - 2 ,  v / - d ~  \ c(r 
(24) 

The integral with respect to 0 in (24) can be evaluated in closed form yielding the 
following expression for u~ (x, y, 0): 

f 1 {B2(<) + Ac( ) m 

Uz(X,y ,O)= P~ r ( v ~ i n r 1 6 2  

(25) 
Since C(r and F(V sin r are independent of x and y, from (25), we conclude that 
Uz (x, y, 0) is a polynomial in x and y of degree 2m. 

We now turn to the Hertz problem. 

H e r t z  p r o b l e m  

For the special case where m = 1, we have 

u~ (x,y,0) - po~r4# f0 ~ B2(c)Ca/2(r AC(r F(Vsinr  de 

which can be written in the following more convenient form: 

uz (x, y, O) = do - Aox 2 - Boy 2 

(26) 

(27) 
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where 

_-- Po b f~r F(V sin r 1 de 
do ~ s o  (k 2cOs 2r  r 

po k [ ~  r (V  sin r sin 2 r 
A o -  4 # a s o  (k 2cos 2 r  2r 

de 

r ( v  r cos 2 r 
Bo - 4 # a _ (k2 cos 2 r + sin 2 r 

dr (2S) 

where k = b/a. 
In deriving the above equation, we have made use of the fact that the integral 

with the x y term is zero, since the integrand is an odd function. 
Now suppose the elastic half-space is indented by a rigid indenter whose profile 

is defined by the gap function 

x 2 y2 
g ( x , y )  = A l x  2 + B ly  2 - + (29) 

2R1 2R2 

where Rs and R2 are the principal radii of curvature. It is assumed that  R1 > R2 
or A1 < Bs. We equate the coefficients between the equations (27) and (29) to 
obtain two equations for the unknown semi-axes a, b of the contact ellipse and the 
central pressure Po, which are 

A s -  1 _ pok fo ~r F(Vsinr  sin 2r de 
2R1 4 # a (k 2 cos 2 r + sin 2 r 

_ 1 _ _ P o k  fTr r ( Vs i n r  cos 2r 
de (30) 

Jo 2 3 Bs 2R2 4# a (k 2 cos 2 r + sin r 

To obtain a third equation, we note that either the total force P or the central 
displacement do must be given. If P is given, we note that  

P = 4 s o  so Po 1 a2 -~]  d y d x = - ~ z r p o a b  (31) 

Alternatively, if do is given, we have 

po b . f~  r (Y  sin r 
do - ~ ~ # - .  ( k2 COS 2 r + sin2 r �89 dO (32) 

The resulting simultaneous equations are non-linear in a, b. An iterative, numerical 
or graphical method must be used. However, we note that  a single equation 
depending on the ellipticity, k = b/a or the eccentricity, e = ~ / 1 -  k 2, of the 
contact ellipse and V can be obtained from the ratio of the two equations (30), i.e. 

As Re /2 
- - ( 3 3 )  

B1 /~s I1 
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where 

= - J ~  P(Vsinr c~ Ca de 
I1 (k 2 cos 2 r + sin r 

f0 ~ F(Vsinr sin 2 r 
~ = - ( k r T c o s T g + s i n ~ ) ~  a~ 

( 3 4 )  

Thus, the eccentricity e of the contact ellipse depends on the ratio R2/t:h or 
A1/B , ,  Poisson's ratio y and the punch speed V in a very complicated way. 

5. Se r i e s  s o l u t i o n  o f  t h e  p r o b l e m  

The question as to how the ellipticity of the contact ellipse changes with the speed 
of the indenter necessitates evaluation of the integrals (34). In all probability, they 
can not be evaluated in closed forms, but they are amenable to effective numerical 
evaluation. However a series solution of the problem can be derived by representing 
the function F(V sin 0) in the form of a power series of sin S 0. This is based on 
rationalizing the fraction in the expression of F(V sin 0) and then expanding the 
radicals in binomial series. The final result is: 

oo 

F(V sin r = E y~ sin2~ r (35) 
n~-~0 

The coefficients f~ are determined from the following recurrence relationships: 

4 S - (  71d'2/-4M-6 ~ - 5 ~  2 + 4M 1 M2 Afl + B f l -1  + Cf l -2  + Df l -3  = - , v q  2 ( ~),-5c:1 
(2z - 5)!! 2, ~ ( 2 1 - _  +4M?M~t (1 1)'2/-1 4M 1 M~ I!23)!! 4M~Z+2 ( 2 / -  3)!! _ lV2Z ( l  > 2 )  

�9 " ( 3 6 )  

where 

M~ 
f 2 =  6 4 ( 1 - u )  

fo----l--~ 

M2 (16~ ~ - 24u + 14) 
f l  = T g  

(27 - 220t, + 312u 2 - 224u 3 + 64u 4) 

A = 8 M ~  

B : 8 ( 2 -  ~)M 4 
1--Y 

C = 8 M ~  
D = - M S  
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In expression (36), it is assumed that ( -1)!!  = 1. 
It can be shown that  the series (36) is uniformly convergent for the case where 

the punch speed is less than the Rayleigh wave speed. 
Now putting the expansion (36) into (34), we obtain 

I1 = 2 ~ A(L~ - L.+I) 
n = 0  

h = 2 ~ I,~L,~+I (37) 
n = O  

where the following notation is introduced: 

1 ~ sin 2~ 05 
Ln = 2~v (k 2cOs 2 r  2r d05 (38) 

By making a change of variable r = re/2 - a in (38), and in view of the symmetry 
of the resulting integral, it can be rewritten as: 

f ~ cos ~'~ a da 
L,~ = (1 - e 2 sin 2 a) a 

(39) 

Closed-form expressions can be obtained for the integral (39) for all values of n, 
using the following recursion relations derived in Appendix A: 

_ 4 ( n - 1 )  M 2 ( n - 1 ) ( 2 e  2 - 1 )  Ln_1 2 ( 2 n - 3 )  
Ln (~-~nT]>~ n-1 -}- (2gt -- 1)e 2 (2n -- 1)e 2Mn-2 

(2n--  3)(1 -- e 2) 
+ L~-2 

(2n - l)e 2 

2(~ - 1)(2e ~ - (2. - a)(1 - e ~) M 
Mn = (2-nTff~  { 1) Mn-1 + -(~-nTT)72 n-2 (40) 

where Ms stands for 

fo ~ cos 2~ ada 
M,~ = (1 - e ~ sin 2 a)�89 

(41) 

The recursion expressions (40) are valid for n > 2. Below are given the starting 
values of Ln and Ms, namely for n = 0 and n = 1, 

Lo = ~E(e) 

L~ = ~[K(e) - E(e)] 

Mo = K(e)  

M1 = l [ E ( e )  - k2K(e)] (42) 
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where E(e)  and t((e) are the complete elliptical integrals of the first and second 
kinds, respectively. 

In the limiting case where V -+ 0, all the coefficients f~ except f0 reduce to 
zero and we get corresponding static solution 

- 2(t_j- L[E(e)k  - K(e)] 

I2 - 2(1 - u) e2 [K(e) - E(e)] (43) 

which is precisely the same as that  given in [3] & [12]. 

6. M o d i f i c a t i o n  o f  t h e  e x p r e s s i o n s  f o r / 1  (V) a n d / 2 ( V )  

The foregoing analysis is best suited for comparatively small values of the Rayleigh 
wave number MR. If the speed of the indenter is comparable with the Rayleigh 
wave speed, then at r = 1r/2 the numerator of the integrands in (34) reduces to the 
Rayleigh function which, as it is well-known, has a simple zero at MR = 1. The 
series solution of the problem represented by the equations (37) will be converging 
very slowly. For this case, we proceed with using the factorized form of the function 
R(V) (eqn (6)) [13] 

M2(M 2 - ml)(M2 z - rn2)(M22 - m3) 
R ( v )  = 

(2 -- M2) 4 + 4X/(1 - Mlz) (1 - M~) 

where ml ,  m2 and m3 are the three roots of the Rayleigh function, ml being the 
Rayleigh root. Explicit expressions for these roots are given in [13]. 

In view of the above factorized form of R(V), we now represent the function 
F(V) (see eqn (5)) as below: 

where G(V) is given by 

G(V) (44) 
r ( V )  - 1 - 

G(V) = ~ ~ (45) 

It can be shown that  G(V) is a monotone decreasing function of V for all V C 
[0, ca]. 

Putt ing (44) into (34) and making a change of variable r = :r/2 - a, we obtain 

f~/2 G(V cos a) sin 2 a d a  
I1 = 2 so ~ - - ~ - a )  -A~ (46) 

[~/2 G(V cos a) cos 2 ada 
I~ : 2 J0 ~ - - - ~ ~  (47) 
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where A = v/i  - e 2 sin 2 a. 
Now it is easy to see from (46) and (47) that  for fixed k, integral (46) is 

bounded for all MR E [0, 1], while the integral (47) becomes unbounded at a = 0 
and MR -+ 1_. We therefore represent the integral (47) as 

fo~/2 _~l(V cos a) - G(V) h = 2V(V)S + 2 ~ T o ~  ~T-)-~ c~ a d a  (48) 

where 
f~/2 cos 2 ads 

S = J0 (1 - M~ cos 2 a)Aa (49) 

Now for fixed k, the second integral in (48) is bounded for all MR E [0, eR]. 
Therefore the singular behavior of the integral /2 at MR -+ 1_ is determined 
solely by the integral S given by (49). Therefore in what follows we will explore 
the asymptotic behavior of this particular integral for MR -+ 1_. 

Note that  S can be represented as below: 

s = es;(e)  + s~(~) (50) 

where 
f~/2 cos 2 ~dc~ 

$1 = JO (1 -- M ~  COS 20l)/X ( 5 1 )  

Integral (51) is evaluated in closed form using the standard integral 3.679.1 from 
Gradshteyn and Ryzhik [14]: 

1 

s l  = M R V f f -  M ~ v ~  - k2(1 - Mg) ~ - K(~)E(/3, k) - E(~)F(/3, k) 

k) ] (52) +E(e)F(/3,  

where/3 = arceos MR, and E(/3, k) and F(/3, k) are the incomplete elliptical in- 
tegrals of the first and second kinds, respectively, E(e) = E(Tr/2, e) and K(e) = 
F@/2, e) are the complete elliptical integrals of the first and second kinds, respec- 
tively. 

Insertion of (52) into (50) leads to the following expression for S: 

1 MR 
S - 1  - k2(1 - M~)[K(e)  - E(e)] + 1 _ ~ 2 ~ n { 1  _ k2( 1 _ M ~ ) }  3/2 

r 7T 3 
[ ~  - K ( ~ ) E ( 9 ,  k )  - E ( ~ ) r ( / 3 ,  k )  + t , : ( ~ ) r ( / 3 ,  k)] (53) 

In deriving (53), use has been made of the following differentiation rule for the 
elliptical integrals [14]: 

OE(/3, P) ; [E(/3, p) - F(/3, p)] Op 

- -  - - -  P F ( / 3 , p )  . . . . .  

Op 1 - p2 P 2 X/1 - p2 sin 2/3 
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Figure 2. 
Variations of the eccentricity of the contact ellipse with the ratio A1/B1 for different values of 
the Rayleigh wave number  

From equations (48) and (53), we observe that  the integral I2(V) behaves as 
C(]  - MR) -]/2 (C being a finite constant) as MR ~ 1. 

7. N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

The problem has also been analysed by evaluating the integrals (34) numerically. 
While /1 has been evaluated as per (341), /2 has been evaluated by using the 
expressions (48) and (53) instead of the expression (34~). Numerical results have 
been obtained for a wide range of values for MR and Poisson's ratio, u. Some of 
the results thus obtained are represented in Fig. 2. It has been observed that  the 
effect of Poisson's ratio on the numerical results is of the order of 2%. Therefore 
graphical representation of the numerical results is done only for the case, u = 0.2. 
For small values of the Rayleigh wave number, our numerical results are found to 
be in excellent agreement with the corresponding static results [3, 12]. 
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8. Conc luding  remarks  

In the present paper, we have investigated the elastodynamic Hertz problem for 
a rigid indenter moving over the surface of an elastic half-space. For the first 
time numerical results have been presented as to how the ellipticity of the contact 
ellipse changes with the speed of the indenter. Some asymptotic estimates of 
the solution for the case where the speed of the indenter is comparable with the 
Rayleigh wave speed have been explored in details. Of further interest is the 
corresponding problem for a slender indenter for which the present solution is not 
much suitable. For this case, it seems promising to use the method of matched 
asymptotic expansions in conjunction with the present analysis. Research in this 
direction will be reported elsewhere. 

A c k n o w l e d g m e n t  

The research reported in this article was carried out while the writer was a Visiting 
Scholar at the College of Engineering, University of Michigan, Ann Arbor, USA. 
In this connection, he would like to acknowledge with gratitude supervision and 
partial financial support of Professor J. R. Barber. 

References  

[1] V. A. Churilov, On the effect of a normal load moving at a constant velocity along the  
boundary of an elastic half-space. J. Appl. Math. Mech., 41 (1977), 125-132. 

[2] V. A. Churilov, Action of an elliptical s tamp moving at a constant speed on an elastic 
half-space. J. Appl. Math. Mech. 42 (1978). 1176-1182. 

[3] L. A. Galin, Contact problems of the theory o/ elasticity and viscoelasticity. Moscow, 
Nauka, 1980. (In Russian) 

[4] A. C. Eringen and E. S. Suhubu, Elastodynamics. Vol. II: Linear Theory. Academic Press, 
New York, 1975. 

[5] R. G. Payton, An application of the dynamic Betti-Rayleigh reciprocal theorem to moving 
point loads in elastic media. Quart. Appl. Math. 21 (1964), 299-313. 

[6] G. Eason, The stresses produced in a semi-infinite solid by a moving surface load. Int. J. 
Engg. Sci., 2(6) (1965), 581-609. 

[7] V. I. Smirnov and S. G. Sobolev, Sur le probl~me plan des vibrations ~lastiques. C . R .  
Acad. Sci. Paris, 194 (1932), 1437 1439. 

[8] L. A. Galin, On the pressure of a s tamp of elliptical planform on an elastic hMf-space. 
Prikladnaya Matematika i Mekhanika(PMM), 11, 2 (1947) (in Russian). 

[9] G. P. Cherepanov, Mechanics of Brittle Fracture. McGraw-Hill, New York, 1979. 
[10] F. W. Dyson, The potentials of ellipsoids of variable densities. Quart. J. Math., Oxford 

Set., X X V  (1891) 259 288. 
[11] I. I. Vorovich, V. M. Alexandrov and V. A. Babeshko, Non-classical Mixed Boundary Value 

Problems of the Theory of Elasticity. Nauka, Moscow, 1974 (in Russian). 
[12] I. I. Shtaerman, Contact Problems of the Theory of Elasticity. ONTI, Moscow-Leningrad, 

1949 (In Russian). 
[13] M. Rahman and J. R. Barber, Exact expressions for the roots of the secular equation for 



614 M. Rahman  ZAMP 

Rayleigh waves. A S M E  Journal of Applied Mechanics 62(1) (1995), 250-252. 
[14] I. S. Gradshteyn  and I. M. Ryzhik, Tables of Integrals, Series and Products. 

Press,  New York, 1980. 
Academic  

A p p e n d i x  

The  objective of this  appendix  is to develop a recursion relation for Ln (see eqn (38)). 
From [14, p. 158], we have a recursion formula for the  following integral: 

/ ~/2 cos 2n ada 
Mn = (1 - e2sin2a)l/2 (A.1) 

do 
a s  

Mn = (2n - 2)(2e 2 - 1) Mn-1 + (2n - 3)(1 - e 2) Mn-2 (A.2) 
(2n - 1 ) d  (2,~ - 1)e~ 

We now represent  the integral (A.1) as below: 

r ~/2 cos 2n ada (A.3) 
Mn P ]0  (p2 _ sin 2 a)l/2 

where p = 1/e. 
Differentiating bo th  sides of (A.3) with respect to p, we get 

dMn _ .p2 cos 2n ada cos 2n ada 
dp J 0 (p2 _ sin 2 a)3/2 § (A.4) J 0 (p2 _ sin 2 a)l/2 

Again put t ing  p = 1/e  into the  right hand side of (A.4) and using the  nota t ions  Ln and Mn, we 
obtain 

dMn 
-- eLn + eMn (A.5) 

dp 
We now differentiate the  expression (A.2) wi th  respect  to p, obtaining 

dMn _ 2(1 - p ) ( 2  _ p 2 )  dMn-~ ~ (2 - 3p)(p 2 - 1) dMn-2 4p(1  - P )  Mzn-ld 2 p ( 2  - 3P) Mn_2 
dp 2 - p dp (2 - p) dp (2 - p) (2 - p) 

(A.~) 
For the  derivatives of dMn(p)/dp, dMn-1/dp and dMn-2/dp,  we use the relation (A.5) and 
performing some rout ine manipula t ions ,  we finally get the  following recursion formula for Ln : 

4 ( n - l )  M 2 ( n -  1)(2e 2 -  1 ) L n _ l  2 ( 2 n - 3 )  M -k ( 2 n - 3 ) ( 1 -  
Ln -- (2--n-~-_ ] ~ 2  ~-1  + (2n - 1)e 2 (~n ---i-)-~ n - - 2  (2n - 1)e 2e2)Ln-2 

( a . 7 )  

where Mn is expressed through the  recursion formula (A.2). 
The recursion expressions (A.2) and (A.7) are valid for n >_ 2. The s tar t ing values for (A.2) 

and (A.7) are 

L0 = ~ E ( e )  

L1 = ~[~;(e)  - E(e)] 

M0 = K ( e )  

M1 = 1 . [ E ( e )  - k2K(e)] (A.8) 
e z 
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where E(e) and K(e) are the complete elliptical integrals of the first and second kinds, respec- 
tively. Expressions (A.8) are obtained by using the standard integrals 2.584.1, 2.584.6, 2.584.42 
and 2.584.51 from [14]. 
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