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Abstract. Recently, the National Academy of Sciences concluded “it is clear that popula-
tion and the environment are usually interrelated . ..”. This paper directly tests the expected
interrelationship using annual county-level population estimates provided by the U.S. Census
Bureau and annual counts of dust storms from the 1960s, *70s, and ’80s at weather stations
situated throughout the U.S. Great Plains. In doing so, it implements a research design that
extends methods (far removed from conventional demography) for pure time series analysis
with multilevel regression models. The result is a method for causal modeling in panel data
that produces, in this application, evidence of bilateral causality between population size and
deleterious environmental conditions.

Keywords: climate change, granger causality, population and environment, U.S.Great Plains

Recently, in a reflection on the current (and future) state of demography,
Samuel Preston observed that “Several forces are converging to create
powerful pressures for conducting research between population growth and
environmental quality . ... The necessary research designs, incorporating both
macro and micro-level features, are far removed from those conventional in
demography .... Although the study of relations between population growth
and environmental change isn’t demography, it isn’t anything else either. We
can expect new interdisciplinary research structures to be created in which
demographers will play a prominent role” (Preston 1993: 600).

In the same year, the National Academy of Sciences concluded “it is clear
that population and the environment are usually interrelated, but the strength
and mechanism of action of the relationship varies widely from setting to set-
ting .. .. To date, cross-national studies have been intriguing, but have failed
to resolve the magnitude and mechanism of action governing the relationship
between population and environment. The next logical step for research is to
examine a number of case studies of differing dimensions to see how popu-
lation change and the environment are interrelated . ... It is also important to
account for the changes over time and to be able to relate population change
to the environment meaningfully” (NAS 1993).
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The purpose of this paper is to test directly this expected “interrela-
tionship” using annual county-level population estimates provided by the
U.S. Census Bureau and annual counts of dust storms from weather sta-
tions situated throughout the U.S. Great Plains. We compile and analyze
two complementary panel data files, one which exploits a longer time series
(1962-1988) with fewer cross-sectional units (twenty-two counties) and one
of a shorter time series (1969-1988) but with more cross-sectional units
(thirty-nine counties). In doing so, we implement a research design that incor-
porates macro- and micro-level features in a single application by extending
methods (far removed from conventional demography) for pure time series
analysis with multilevel regression models. The result is a method for causal
modeling of panel data that produces, in this application, evidence of bi-
lateral causality between population change and deleterious environmental
conditions.

Structural models of population and environment

The interrelationship between population and the environment alluded to
by the National Academy of Sciences in fact implies three possible causal
models: (1) unidirectional causality from population to environment; (2) uni-
directional causality from environment to population; or (3) feedback, or
bilateral causality. History holds many examples of this interrelationship,
some lending credence to the unidirectional effect of population on the en-
vironment, some tending toward the unidirectional effect of environment on
population, and others favoring bilateral causality. To illustrate what we might
expect of the causal structure of population and dust storms in the latter part
of the twentieth century, we review some of the historical record below.

Causal impact of environment on population

It is probably fair to attribute the origin of our current awareness of the im-
pact of the environment on population to the social historian Karl Wittfogel.
Wittfogel began formulating his hypothesis linking the role of irrigation to the
development of early civilization, using the designations “hydraulic civiliza-
tion” and “hydraulic society”, in the 1930s with his insight reaching fruition
in the classic comparative study of total power he titled Oriental Despotism
(Wittfogel 1935, 1939-1940, 1957). Writing during an era when the main
currents of anthropological and historical theorizing on cultural evolution
were descriptive and particularistic, Wittfogel pointed to cross-cultural reg-
ularities and “cultural causality”. His “irrigation hypothesis” integrated the
development of early civilizations in the East and the West by the managerial
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control required to construct and maintain irrigation systems. As water was
brought to arid lands, food production and population increased and became
the basis for class-structured states. Wittfogel’s irrigation hypothesis initiated
a research trend that continues to inform social histories (Steward 1978).

Climatic impact on population growth/redistribution is witnessed by two
recent, and coincident, U.S. migration streams: the South—North migration
reversal, usually referred to as “migration to the Sunbelt” (Biggar 1979) and
the metropolitan-nonmetropolitan turnaround (Long 1987) of the 1970s rep-
resent another commonly acknowledged population response to environment.
In both instances, positive net in-migration (to the South and nonmetropolitan
areas) is thought to have been (largely) determined by climate and desires for
a lifestyle that emphasizes outdoor recreation. Economists have also docu-
mented a lower cost of living, itself a potential determinant of migration,
associated with the milder climate found in the American South (Dickinson
1978).

Another place we find the causal impact of environment on population is
in the influence of disease in history. Since the mid- 1970s, a sizeable literat-
ure has been amassed through the efforts of social and medical historians,
anthropologists, and paleopathologists on “Old World” and “New World”
disease reservoirs, the susceptibility of hosts and the virulence of infections,
vectors of disease transfer, and the direction of transfer. Although most of
the debate among the practitioners of this area of inquiry has concerned pop-
ulation contact and the consequences thereof, coexisting with these central
themes is speculation over the negative relationship between the ecological
conditions favorable to disease and human population settlement. William
McNeill provides the most succinct articulation of this relationship.

In Plagues and Peoples (1976), McNeill locates the origin of Chinese set-
tlement in the northern semi-arid environment near the Yellow River (Huang
He) flood plain. From this toehold, Chinese population extended into the
river’s flood plain by 600 B.C. but, despite the inhospitable conditions of the
geologically unstable Yellow River, it would be another thousand years be-
fore Chinese settlement extended south into the valley of the Yangtze (Chang
Jiang) River.

The reason for this slow march to the south, according to McNeill, was
that “Chinese pioneers were also climbing a rather steep disease gradient
.... Put very simply, too many immigrants from the cooler, drier North
died to permit a more rapid buildup” (see McNeill 1976: 73-80). Timothy
Bratton makes a related argument for the exceptional virulence of smallpox,
and other *“virgin soil epidemics”, among Amerlndians (Bratton 1988). Sub-
stantial documentation of “pre-contact” pathogens in the New World can be
found in the issues of The Paleopathology Newsletter. These afflictions in-
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clude tuberculosis, emphysema, pneumonia, atherosclerosis, coccidioidomy-
cosis, trichinosis, melanoma, asthma, typhoid, systematic lupus, rheumatoid
arthritis, osteosarcoma, and spina bifida.

And of course there is considerable debate over the origin of syphilis.
Indeed a compelling account of the dual forces of geographic and disease
environments on the fates of human societies is found in Jared Diamond’s re-
cent prize-winning book Guns, Germs, and Steel (1997). Nowhere, however,
is the causal impact of environment on human population more apparent than
in the images of the American Dust Bowl of the 1930s. These images have
been powerfully captured by photojournalists such as Russell Lee, Dorothea
Lange, and Arthur Rothstein — their photographs, are vivid reminders of the
enormity of the “rollers” as they enveloped whole counties and the devast-
ation they left in their wake; by novelists such as Nathaneal West (The Day
of the Locust) and John Steinbeck (Grapes of Wrath); and by folk singers,
most notably, Woody Guthrie (Dust Bowl references in Guthrie’s song titles
include: Dust Storm Disaster, Dust Can’t Kill Me, Dust Bowl Refugee, Talkin’
Dust Bowl, Dusty Old Dust, and the song from which we excerpted the title
of this paper Blowin’ Down This Road).

Although most Americans understand the referent and have general know-
ledge of the period referred to as the “Dust Bowl Era”, the details of the
place and period are far less well known. The “Dust Bowl” a term coined
by Associated Press reporter Robert Geiger in 1935, became an official Soil
Conservation Service region (SCS Region VI) that same year consisting of
the western third of Kansas, Southeastern Colorado, the Oklahoma Pan-
handle, the northern two-thirds of the Texas Panhandle, and Northeastern
New Mexico. In contemporary geographic nomenclature, the Dust Bowl is
located within the southern Great Plains states.

Although observers in weather stations of the U.S. Weather Service have
been recording occurrences of dust, blowing sand, blowing dust, and dust
storms as “present weather” conditions since at least the late 1940s, compre-
hensive records of these “dust events” do not exist for the Dust Bowl region
during the 1930s. Still, it is possible to relate the comparative severity of dust
storms during that decade by drawing together information from a variety of
sources. First, the Soil Conservation Service did compile a frequency chart
of all dust storms of regional extent during the 1930s. In 1932 there were
14; in 1933, 38; 1934, 22; 1935, 40; 1936, 68; 1937, 72; 1938, 61; 1939,
30; and by 1940 and 1941, the count had again dropped into the teens with
17 regional storms recorded in each of these years. Second, in November of
1932 and again in May of 1934, dust storms originating in the Great Plains
affected cities as far east as New York and Savannah, Georgia (Worster 1979:
13—15). Third, records kept at the Panhandle A & M Experimental Station at
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Goodwell, Oklahoma reported 70 days of severe dust storms in 1933; 22 in
1934; 1935, 53; 1936, 73; and a staggering 134 dust storms in 1937 (Bon-
nifield 1979: 65, 70-71). The loss in topsoil due to wind erosion represents
another measure of devastation during the 1930s. By 1938, 23.5 million acres
in the Dust Bowl had lost at least their upper two and a half inches of topsoil.
Throughout the region, 850 million tons of soil a year was being lost due to
erosion during the 1930s, or about 408 tons of dirt blown away per acre of
cultivated land (Worster 1979: 29).

The terms “Okies”, “exodusters”, and “Dust Bowl Refugees” have be-
come linguistic icons for the population consequence of these dust storms
and Steinbeck’s The Grapes of Wrath forever etched in the American col-
lective conscience the images of foreclosure, expulsion, and the long, hard
migration west. The statistical evidence provides (qualified) support for these
impressions. During the 1930s the only states that had fewer residents at the
end of the decade than at the beginning were in Great Plains. In a survey of
forty Dust Bowl counties, the Resettlement Administration (later called the
Farm Security Administration) found that between 1930-1935 county farm
population decreased by less than three percent, but between 1935-1937,
after the dust storms began, over 34 percent of the population had left. In all,
almost a million plains people left their farms in the first half of the 1930s,
and 2.5 million left after 1935. The only difference between the reality of
the “dirty thirties” and Steinbeck’s archetypical Joads was that most movers
didn’t move far, most were simply blown into the nearest town or the next
county or the next state (Worster 1979: 48-52).

Causal impact of population on the environment

Of all the potential and real human impacts on our environment, land-cover
change and species extinction stand out as our most consistent mark. Human
population has created a legacy of stripping land cover and animal destruc-
tion beginning at the site where Western civilization first emerged, the Fertile
Crescent, and accelerating toward global deforestation at the end of the twen-
tieth century (cf. Marsh 1874; Sauer 1963: 145-154; Perlin 1989; Richards
& Tucker 1988; Meyer & Turner 1994).

Although the greatest (percentage) rate of deforestation is occurring in
Thailand, El Salvador, Honduras, Paraguay, and the Philippines — all lost
more than twenty percent of their forests just during the1980s and forest
cover in the Philippines has decreased by 56 percent in the postwar period
— global deforestation is a very real concern stretching from the outright land
conversion of tropical rainforests in South America and virgin and second-
growth bush in Sahelien Africa to the biotic degradation of existing stock in
the former Soviet Union (Richards & Tucker 1988).
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Probably the most widely discussed, though hotly contested, human pop-
ulation impact on the environment is global warming, sometimes referred
to as the “greenhouse effect”, and destruction of the ozone layer. Global
warming is caused by the increase in atmospheric concentration of green-
house gases. These greenhouse gases, primarily carbon dioxide, methane, and
nitrous oxide, absorb outgoing terrestrial radiation while permitting incoming
solar radiation to pass through the atmosphere. Although it is this basic heat-
trapping mechanism that keeps the atmosphere of the earth relatively warm
compared to other planets, and is in this sense “natural” and necessary for life
on this planet, the enhancement of the greenhouse effect due to the increasing
concentration of greenhouse gases is cause for serious concern (Adger &
Brown 1994: 3—-12). The primary human activity responsible for additional
warming of the earth’s surface is the burning of fossil fuel for energy. In
addition, human land use, including the global deforestation discussed above,
also causes global warming (cf. Adger & Brown 1994). Whatever the final
scientific and political assessment of the importance of global deforestation
and global warming to the well- being of all plant and animal species on earth
will be, clearly these phenomena represent outstanding examples of what it
means to claim a causal impact of population on the environment.

Feedback, or bilateral causality

If indeed the stripping of land cover and the human contribution to green-
house gases cause global climate change, sea level rise, ozone destruction,
and related impacts, then we have a ready example of a third causal structure,
bilateral causality. It is possible, however, to point to less terminal situations
for circumstances of causal feedback. For example, it is somewhat ironic that
the Sunbelt and nonmetropolitan migration streams we identified above with
the causal impact of environment on population have also been cited as the
root for destroying the very lifestyle that attracted Snowbelt and metropolitan
migrants in the first place. The following passage illustrates this connection
painfully well:

Jack Douglas can’t go rabbit hunting near his Florence, Alabama, home
the way he used to. The fields are covered with sub-divisions. His favor-
ite bass-fishing spot on nearby Wilson Lake is churned by water skiers
all summer, and the fish don’t bite anymore. The family-owned restaur-
ant where he used to eat fresh-baked pies and spicy barbeque sold out to
the Bonanza steak chain last year. (Biggar 1979: 34)

A fitting ending to this story might continue something like this: “Jack
Douglas could no longer tolerate the changes. He packed his truck and moved
to Bozeman, Montana”.
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If we accept the traditional “explanation” of the Dust Bowl — the conver-
gence on single crop agriculture (wheat) in the Dust Bowl region of the Great
Plains (Bonnifield 1979; Worster 1979) — we have the necessary ingredients
of bilateral causality here too: plains farmers (in part) caused the dust storms
that ignited the migrations of the second half of the 1930s. What is more, the
human impact on the magnitude and frequency of blowing dust is neither con-
fined to the U.S. Great Plains nor the 1930s. Finnell (1948, 1954) attributed
renewed dust storm activity in the southern plains to the plow-up of marginal
soils due to the expansion of agribusiness wheat farming and “the ‘suitcase
farmer’, who leases a tract for a short period, mines it to exhaustion, and
moves on” and the planting of cotton and feed-crop cultivation in response to
increased demand during World War II (Finnel 1948: 10).

Throughout the second half of the twentieth century, geographers and ag-
ricultural economists have observed a systematic covariation in the frequency
of dust storms with various human activities, including land conservation
practices in the (Texas) Southern High Plains (Ervin & Lee 1994; Lee &
Tchakerian 1995) and urban and industrial development in Mexico, Saudi Ar-
abia, and Mongolia (Jauregui 1989; Behairy et al. 1985; Gouldie & Middleton
1992). In short, while it is easy to point to a lack of rain as the cause of
dust storms, in many cases, according to many researchers, that is not the
real explanation. Indeed, it comes as no surprise then that the Canadian soil
scientist Chepil and his colleagues developed a wind erosion equation (WEQ)
that linked erosion to five factors, three of which are directly controlled by
farming practices (Chepil et al. 1963). The blame falls not on the elements,
but on human activity.

While issues of causality must ultimately be left to the realm of theory and
philosophy, the question of whether one can statistically detect the presence
and direction of causality has been given considerable attention in econo-
metrics for time series data. We extend and apply one of these methods, the
Wiener-Granger causality test (cf. Granger 1969; Sims 1972, 1980), to panel
time series from the

U.S. Great Plains in the 1960s, ’70s, and ’80s

Data: annual time series of dust storms and population in Great Plains
counties An empirical test of the interrelationship between population and
the environment requires observable measures of these broad concepts and
the data requirements for the successful deployment of the Wiener—Granger
method are stringent. The method is designed to detect short-term changes in
time series, rather than long swings, so the variables we want must, in prin-
ciple, be able to respond quickly. The method also requires a large number
of data points so annual observations (minimally) are desirable. Although
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there may be many suitable settings and indicators for such an empirical
test, the image of bilateral causality in the Dust Bowl is compelling and the
variables involved, population size and number of dust storms, can, as we
documented above, meet the conditions necessary for an analysis of this type.
Unfortunately annual enumerations, or reliable estimates, of population size
and counts of dust storms are not attainable from the 1930s — but extended
time series for both of these variables are available.

The U.S. Department of Commerce has published annual county total pop-
ulation estimates since 1969. The Bureau of the Census develops these county
estimates with a demographic procedure called the Tax Return method, which
is a “component change” procedure.! In addition, some states provided their
own annual county population estimates, based on the same procedure, before
the Census Bureau estimates became available for all counties (U.S. Depart-
ment of Commerce 1967). The U.S. Weather Service has recorded “present
weather” conditions, including occurrences of dust, blowing sand, blowing
dust, and dust storms (which together we refer to as "dust storms"), since the
1940s at a large number of weather stations situated throughout the United
States (Karl et al. 1990). Thirty-nine of these weather stations are located in
(or approximately in) the Great Plains and observations, taken at three hour
intervals, of dust events are available from 1961 through 1988.

The analyses to be presented in this paper exploit two overlapping panel
data series: one with the full set of cross-sectional units but of shorter duration
(the full 39 counties with weather stations have Census Bureau population
estimates for 1969-1988) and another of longer duration but with fewer
cross-sectional units (twenty-two weather station counties have population
estimates available from 1962 through 1988 — nearly exploiting the full time
series of dust storms). The resulting study samples have 780 data points
[1969—-1988 (= 20 years) x 39 counties] and 594 data points [1962—-1988
(= 27 years) x 22 counties], respectively. These study sample counties are
highlighted in the Great Plains map shown below. Weather station counties
in Kansas, Montana, New Mexico, Oklahoma, and Texas comprise the long
(1962-1988) series.

Both variables show considerable variation across the study space. Figures
1 and 2 plot the annual counts of dust storms and population estimates for
each of the weather station counties. The heavy bars in Figures 1 and 2 show
the (weighted) averaged time series — the line points are determined by adding
all counts (e.g., dust storms) in a given year and dividing by the number of
contributing counties. The “dip” in the (log) population line between 1968
and 1969 is not indicative of a sudden decline in population, rather it is due
to the shift in the number of contributing counties. Two points are clear from
Figure 1. First, there is an outlying time series on dust storms. This time series
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Map 1. Weather station locations in Great Plains.
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Figure 1. County time series of dust storms, 1962—-1988. Heavy bar shows mean of county
series.

belongs to Lubbock County, TX. It is far and away the dustiest place in the
Great Plains. In 1977, 82 dust storms were recorded, in 1974, 60 dust storms,
and a number of years experienced 50 or more storms. Although it is far less
obvious than the top end outlying series for Lubbock, there is also a location
(Sheridan, Wyoming) that experienced no dust storms over the twenty-year
period. Second, if the individual time series are trending over the twenty-two
year period, the direction of that trend is not obvious in Figure 1.

Figure 2 displays the population time series. As noted above, twenty-
two of the 39 weather station counties have population time series for all
twenty-seven years, while seventeen counties have population time series
from 1969-1988. We gain visual separation in the time series by placing
population size on a natural log scale. In its original metric, Tarrant County,
TX (which contains the city of Ft. Worth) is an outlying series. The population
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Figure 2. County time series of log population, 1962—-1988. Heavy bar shows mean of county
series.

of Tarrant County doubled between 1962 and 1989, by which time it is nearly
twice as large as the next most populous county.

In the log scale of Figure 2, the geometric growth of Tarrant County is
converted to a linear trend (see the time series at the top of Figure 2) but
almost all of the other time series move in a nonlinear fashion. Only a hand-
ful of counties monotonically trend upwards, what is more remarkable is the
absence of a clear pattern of population growth among the rest of these Great
Plains counties. The majority of counties show either periods of decline or
actual net decline over the twenty to twenty-seven year period.
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Methods: time series methods for pooled cross-sections

Our ultimate goal is to diagnose causality in the bivariate time series. To do
this we extend and apply a method for determining causal structure in time
series (the Wiener-Granger method) to panel data series of population size
and counts of dust storms using multilevel models.

The underlying logic of this method is that the future cannot predict the
past, so if a variable X causes variable Y, then changes in Xshould precede
changes in Y. The empirical realization of this can be put into operation
through a two-step regression procedure. We begin with an auxiliary regres-
sion of Y on its own past values. We follow by adding lagged values of
X improves the prediction of Y, we say that X causes Y. Typically then
one reverses the order to detect whether Y causes X. This results in four
possible causal structures: (1) unidirectional causality from X to Y; (2) uni-
directional causality from Y to X; (3) feedback, or bilateral causality; and (4)
independence.

The Weiner—Granger causality test is perhaps more appropriately con-
sidered a test of “feedback” rather than causality. Since “exogeneity” is often
equated with the notion of “lack of feedback™ in a system of equations, the
Granger test may be used to determine whether this condition holds (causal
structures 1, 2, or 4 above). In this sense, the method is used to determine
that “X does not cause Y or that “Y does not cause X”. The identifica-
tion of exogeneity is useful because it implies that no information is lost by
limiting attention to distributions conditional on the exogenous variable thus
considerably simplifying statistical inference (Mills 1990: 289-296). Given
the concern over the appropriateness of the use of the term ‘causality” in
connection with the Granger test, it is often preferred to use the phrase ‘X
(Granger) causes Y or “Y (Granger) causes X if exogeneity is rejected.

Before we can make this application, however, the time series must be
either stationary, i.e., not trending, or if trending, they must be trending to-
gether (a condition known as “cointegration”). In addition, the distributed-lag
structure of the bivariate panels will be investigated so that we do not truncate
the lagged effects. The following section will, therefore, include extensions of
time series methods for detecting stationarity, cointegration, and lag structure
prior to our treatment of Granger causality models. The section concludes
with a panel application of a technique for the visual display of causal im-
pact in dynamic vector autoregression systems known as “impulse response
functions”.
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Detrending time series: why do we detrend?

Consider the following population regression function for pure time series, Y;
and X,, where the subscript ¢ indexes a specific period in the time series:

Yt :BO+BIXI+GI' (1)

Now suppose we have a research hypothesis that posits B; > 0. If X and
Y trend upwards, B, will be positive even if the two variables are unrelated
because there is a third variable, time, that is not included in the regression.
The consequences of model misspecification are well known (cf. Gujarati
1995: 456-458), thus detrending time series is an essential operation before
causal modeling.?

Detrending time series: how do we detrend?

A common method of detrending involves controlling for trends by including
a time index as an independent variable in the regression analysis, such as:

Y, = Bo+ BiT| + €. (2

Equation (2) is a simple linear trend model in which Y at time 7 is a linear
function of time and 7 is generally initialized to take on a value of 0 when
r=1.

Unfortunately if trends are stochastic rather than deterministic, as is often
the case, this procedure does not detrend the time series (Raffalovich 1994).
If a time series is trending, Y, will be a function of Y at the previous point
in time. Thus an alternative method of detrending a time series is through an
autoregressive model in which Y is regressed on (a) previous value(s) of Y':

Y[ == BO + BIYI—I + 6[- (3)

Allison (1990) refers to Equation (3) as the regressor variable method.
Through a little algebra, Equation (3) can be written as a (first) difference
model:

A = Bo+ (B — DY +¢
== BO+8YI_1 +6[, (4)

where A, = Y; — Y,_,. Indeed, Equation (4) establishes the well-known
Dickey—Fuller test of stationarity in time series. Also referred to as the “unit-
root test”, stationarity (i.e., the time series is not trending) is indicated when

5 0.
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The linear growth model

The study of individual change has benefitted greatly from the development
of multilevel models. Beginning with Rao’s application of random-coefficient
models to the analysis of growth curves, the literature on multilevel models
for longitudinal data, repeated measures, and individual growth models has
rapidly grown large (Rao 1965; see also, Rogosa et al. 1982; Laird & Ware
1982; Rogosa & Willett 1985; Bryk & Raudenbush 1987, 1992; Karney &
Bradbury 1995; Willet et al. 1998). In its simplest form, the linear growth
model may be written as:

Yi =moi +miThi + €, (5

where i indexes the cross-sectional units (e.g., counties) and ¢ indexes the
period (as it did in Equation (2)), €;; ~ N (0, 0'2), and Tj; is initialized as O for
the first measurement. Equation (5) is often referred to as the “within-person”
or “level-1" individual growth model. The structural part of the level-1 model
contains two unknown constants referred to as individual growth parameters
whose values determine the trajectory of “true” individual change over time.
In Equation (5), growth is hypothesized to be linear, so my; represents initial
status (the “true” level of Y at time 0) and my; represents the “true” rate of
change in Y over time. A “level-2” model expresses variation in parameters
from the growth model as random. This level-2 model is commonly referred
to as a “between-person” model and may be written as:

oi = Boo + uoi,

Uo; 0 To0 Tol
, h ~N , . (6
i = PBio+ ui

As Equation (6) reveals, both the intercept, my;, and slope, my;, are treated as
random effects with no level-2 covariates in this specification. Equations (5)
and (6) can be combined and written as:

Yi = [Boo + BioTsil + [uoi +uriTii + €. (7

Equation (7) is useful because in it, it is easy to see that in Equations (5) and
(6) there is a deterministic component containing two “fixed” coefficients (the
intercept, By, and a slope, B9, for the time trend, 7;;) and a nonsystematic
component containing three “random” coefficients: for the intercepts (u;),
for the slopes (u1;), and for individual observations taken at time ¢ on each
person i (€;;). Interpretation of the fixed coefficients is straightforward: ,éoo is
the estimate of the average intercept across persons when 7;; (time) is zero,
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and if T}; is initialized at zero, then 300 is the estimate of “initial status” in
the growth model. Similarly, B is the estimate of the average slope across
persons.

Multilevel equations for panel data

The similarity between Equations (2) and (5) is obvious. Indeed the linear
growth model in Equation (5) is the panel series expression for the linear
trend model of Equation (2). As with Equation (3), the linear growth model
can be replaced by the regressor variable model that detrends on (a) prior
value(s) of Y. Thus the level-1 model of Equation (5) becomes:

Yii =m0 + w1, Yi—1i + €4, (8)

as with 7;; in Equation (5), Y;_y; is a level-1 (“within-county”) covariate and
the level-2 model is unrelated to any level-2 covariates:

i = Boo + uoi,

Uo; 0 To0 Tol
, hy ~N , . 9

T = Pro+uy

but 7y; and my; are allowed to vary between units.

Equations (8) and (9) reveal the potentially complex error covariance
structures implied in multilevel models. Each level equation contains its own
error term. In the “within-county” equation (Equation (8), €,; captures pre-
diction error in observations taken at time ¢ on each county i. In the level-2
equations (Equation (9), uo; and u); represent prediction error in each of the
i intercepts and i slopes, respectively. Under the classical mixed model, €,; is
assumed to be normal with (homoscedastic) variance given by oI, where 1
is the ¢ x ¢ identity matrix and the variances of uy;, #,; are elements in a diag-
onal matrix (given as Ty and 711, respectively, in Equation (9)). However, the
classical mixed model is only a special case of the general mixed model that
permits arbitrary parameterized covariance structures of the level-1 and level-
2 equations (cf. Wolfinger 1993). Indeed, Equation (9) shows an additional
covariance component, Ty, (= Ty9), which allows for correlation between in-
tercepts and slopes. In practice, while many alternative covariance structures
are plausible, a preferred structure can be empirically determined by fitting
competing representations. Although the choice of covariance structures can
be an informative aspect of the multilevel analysis, our preference is to allow a
nonzero covariance between oy and t; (i.e., 7o; = 719 7% 0)and, because our
data are pooled time series for each county i, the residual observations within
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counties will be modeled as a first-order autoregressive, or AR(1), process, a
common error structure for time series.

Another critical feature of multilevel modeling that must be folded into
pooled cross-sectional time series analysis concerns the scaling of inde-
pendent variables. “Centering decisions” have important consequences for
interpretation of parameters and for hypothesis testing. The choice of center-
ing options (raw metric vs. grand mean centering vs. group mean centering)
must be determined by the research question under investigation. As (panel
series) analogs to methods for (pure) time series, the variance in our outcome
measures needs to be partitioned into its within and between components.
Only group mean centering will provide the appropriate partitioning and
allow separate structural models for each component of the variance (Hof-
mann & Gavin 1998). Thus, Y,_y;, a level-1 (within-county) covariate, in
Equation (8) should be replaced by Y |, (Y;—; — Y ;, where Y is the
county-specific mean of the lag term Y;_;;). Henceforth all exogenous (right-
hand-side) variables will be “starred” as an indication that they are centered
on county-specific means and all exogenous variables are entered in the mul-
tilevel models as level-1 (within-county) covariates. Equations (8) and (9) can
now be collected and written as:

Yii = [Boo + BioY," ;1 + [woi +uii Yy, + €il, (10)

and Boo and will give the estimate of the average “condition” across counties
(e.g., average number of dust storms in the county time series) and, more
importantly, B¢ is the estimate of the average change in the time series.

Stationarity

In our discussion above we said that HyL. § = 0 of Equation (4) provides
a statistical test of stationarity.® In the multilevel model for panel series, the
regressor variable model of Equation (8) can be written as:

Ay =moi + &Y + €, (11)

where ¢; ~ N(0, X) and X is the within-county error variance-covariance
matrix that models correlation in residual observations as an AR(1) pro-
cess. However, the test of stationarity is now somewhat more complex than
Equation (4) in that Hy: B10 = 0 is found in the level-2 model to Equation

11):
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ooi = PBoo + uoi,

Uo; 0 Too Tol
, h ~ N , . (12
o1 = Pro+u

Since §; has both a “fixed” component, 319, and a random component, u;, it
is possible that some individual time series in the panel data are nonstationary
(i.e., trending) even if we reject Hy: B10 = 0. A further restriction on Equation
(12) then would be to treat §; as a constant across counties (as in Equation
(4)): 6 = Pio- The preference of § over §; can be formally tested as Hy:
711 = 0 in the error variance-covariance matrix from the level-2 equations
seen in Equation (12) (preference of § also implies 119 = to; = 0).

If Hy: B1o = O If Hy: is accepted (indicating nonstationarity), the standard
procedure is to then assess stationarity in the velocity of the time series of ¥
(measured as the first difference in Y;), then stationarity in the acceleration of
the time series of Y (measured as the difference of the difference in Y;), and

SO Ol’l.4

Cointegration between time series

Stationarity in each of the time series is enough to proceed with the causal
analysis but it is possible to causally model time series that trend as long as
they trend on precisely the same “wave length”. In time series that satisfy this
condition, the trends cancel out and are said to be cointegrated. In short, if the
residuals from the regression of Y, on X, are stationary, even when the time
series of Y, on X, are not, then the traditional time series methodology is still
applicable.

A simple test of cointegration was proposed by Engle and Granger (1987)
as a two-stage extension of the Dickey—Fuller/unit-root test for stationarity. In
the first stage regression Y; is regressed on X,. In the second stage regression
the residuals from the first stage regression, ¢,, are differenced and regressed
on €;_1, as in the Dickey—Fuller test:

A; = d€1 + vy, (13)

where A, = €, — ¢;_1. Equation (13) does not include an intercept because
E(e; | €,-1 = e,—1) = 0 and this assumption is met by OLS estimation. As
in Equation (4), Hy: 6 = 0 and rejection indicates stationarity in the residuals
which in turn indicates cointegration in the time series.

The multilevel Engle—Granger test of cointegration for panel series begins
with the following first stage level-1 model:
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Yi = moi + w1 X + €, (14)

where €,; ~ N(0,0?) and X is treated as a level-1 (within-county) vari-
able. In the second stage level-1 regression, the residuals from the first stage
regression are (first) differenced and regressed on a lagged residual term:

Asi + oo + 816y + Vi, (15)

where v,; ~ N(0, X) and X is the within-county AR(1) error variance-
covariance matrix. Although the expectation of «, is zero, it is a random
variable in Equation (15) and is therefore retained in second stage regression
(contrary to the pure time series equivalent in Equation (13). The level-2
model is therefore:

aoi = Poo + Uoi,

eo; 0 Too Tol
,  Where <€1i> N[<0)’<T10 r“):|' (16)
8 = Bio+ei

and the constraint to Equation (12) can again be applied as § = Py in
Equation (16). If Hy: B9 = O is rejected the time series Y; and X, are
cointegrated.

Distributed lags in the effect of X, on Y,

The final step before specifying the causal models is to investigate the bivari-
ate lag structure. The number of lagged terms to be included in Granger
causality tests is an important practical question, with the determination of
causality often depending critically on this specification (Gujarati 1995: 622—
623). In pure time series analysis the standard strategy is to choose a very high
lag order (of X,_1, X;_5, ..., X;—x) and assess whether the fit of the model
(Y; on X,_1, X,», ..., X;_y) deteriorates significantly when this lag length
is reduced (cf. Davidson & MacKinnon 1993: 675-676). A formal test of
lag length in distributed-lag models was developed by Schwarz (1978). The
Schwarz criterion (SC) is given as:

SC=mé*>+mlnn, (17)

where 62 is the estimated variance of the residuals, n is sample size, and m is
the lag length (i.e., number of lagged terms in the regression), is minimized
with respect to m. SC is essentially the BIC (Bayesian Information Criterion)
later popularized by Raftery (1995). What generally recommends SC (and
BIC) as a method of model selection is that it minimizes the effect of sample
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size while capitalizing on parsimony in model parameters. This works well
in pure time series as n is reduced by one with each additional lag term. In
pooled cross-sectional time series, however, 7 is reduced by [ (the number of
cross-sectional units). In practice we have found this effect on model selection
to be severe, leading always to a preferred model with smaller n regardless of
the impact of the additional lag term on model fit. We propose an alternative
approach.

We regress Y;; on a sequential series of lagged X,; terms using pairs of
restricted and unrestricted models with constant n. In this way we assess
the impact of an additional lag term on model fit while capitalizing on max-
imum sample size at each step in the sequence of models. For example, as a
restricted level-1 model we may fit:

Yii=moi + i X,y + € (18)

we would then fit:

Yii = moi + i X7y, + 12 X[y + € (19)

as the unrestricted model. Both models have their sample size fixed to the
smaller n of Equation (19) and the unrestricted model of Equation (19) has
only one additional parameter than the restricted model. More generally, if:

Yii = moi + Zﬂkixt*_ki + €, (20)
k=1

is the restricted model, then:

m+1
Yi=voi+ ) v Xi + €, 1)

k=1
gives the unrestricted model to Equation (20). The distributed lag terms are
treated as level-1 covariates (that is, they are “group mean” centered and are
not used as predictors of my; and m;; and yy; and y4; in the level-2 models
to Equations (20) and (21)) because the causal process of interest is internal
to each (pooled) time series. The form of the level-2 equations depend on
empirical conclusions from the previous sections. If the restriction on
in Equation (12) is applicable, the m;; and y;; in Equations (20) and (21)
are “fixed” coefficients and the level-2 equations involve only the estimation
of my; and yy;. If, on the other hand, §; is random, the level-2 equations that
follow, although simple in form (i.e., without covariates), will be numerous at
higher orders of k. To simplify, the covariance (off-diagonal) components in
the variance-covariance matrices may be set to zero. Improvement in model
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fit, indicating a preference for the lag structure of the unrestricted model,
is given by the difference in the —2LL between the paired models. Since
the unrestricted model has one additional parameter (degree of freedom),
statistically significant improvement (at the 5% probability level) is indicated
by A_p 1 > 3.84. It should also be noted that model selection criteria of
any kind (e.g., BIC, AIC, or the likelihood ratio tests we employ) for mul-
tilevel models with different number of fixed coefficients must be based on
maximum likelihood (ML) estimation of the —2LL rather than the restricted
maximum likelihood (REML) method that is commonly the “default” method
in software for multilevel analysis.

Granger causality tests

As in the time series methods described above, we extend the Wiener—
Granger method to panel data through the use of multilevel models. Although
the specific form of the autoregressive and distributed lag models will be
determined by the empirical conclusions of the previous section, the mul-
tilevel models that apply the spirit of Granger causality can be seen in the
following level-1 equations. The first stage (level-1) regression is a pooled
cross-sectional autoregressive model of the form:

Yi =m0+ ) Yy + €. (22)
k=1

A second stage (level-1) regression then introduces distributed lag covariates
of the same order from the cointegrated time series:

Yii = yoi + Z vii Y[ + Z)‘kix;k—ki + €, (23)
k=1 k=1

Both the autoregressive (Y, ;) and distributed lag (Y,* ;) terms are treated
as level-1 covariates and, as in previous procedures, we have no level-2 cov-
ariates (so the level-2 equations continue to look like those of Equation (9)).
If 74, yii, and Ay; are random, the (level-1) Equation (22) implies k level-2
equations (and a k x k variance-covariance error matrix) and Equation (23)
has 2k level-2 equations (with its 2k x 2k variance-covariance error matrix).
Following our earlier observation, the covariance (off-diagonal) components
in the variance-covariance matrices may be set to zero. It should also be noted

that the extended lag structure of Y* (indicated by ) y4;Y," ;) may be used
k=1

to satisfy the assumptions that cov(e;, €;15;) = 0 and €,; ~ N(0O, 0?) as is
done in “augmented” Dickey—Fuller and Engle—Granger tests in (pure) time
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series (Gujarati 1995: 720-721, 726-727). According to the logic of Granger
causality, evidence that X (Granger) causes Y is provided by preference for
the unrestricted model (Equation (23)) over the restricted model (Equation
(22)). As in the previous section, this evidence is given by the difference in the
goodness-of-fit (A_,; 1) of the multilevel models (relative to the differences
in their degrees of freedom). Equations (22) and (23) are then repeated where
X and Y are reversed in the structural equations in order to determine whether
Y (Granger) causes X.

Impulse response functions

It is difficult, if not impossible, to interpret the magnitude and lag structure
of the effect of X, on Y, in the structural equations of Granger causality
models. We can, however, visualize the causal impact through a forecasting
method known as impulse response functions. Impulse response functions
(IRF) operate through shocks to the error term of one of the equations in the
dynamic system. In practice the IRF can be explained as follows: suppose
one has two reciprocally related structural equations, say, equation A and
equation B. In equations A and B the empirically estimated regression slopes
(usually retained as standardized coefficients) are numerical constants while
their variables, say, X, and Y;_;, are initialized to 0. A one standard deviation
“shock” to the error term of equation A, usually at the maximum time lag
in the dynamic system, initiates the forecasting. This shock to equation A
is immediately felt in equation B as the predicted value of equation A is
substituted into equation B (replacing the initialized value of O for X, if a
contemporaneous effect of X is part of structural equation B). The IRF is
generated as we bounce back and forth between equations A and B until the
initial shock dissipates and the system returns to its equilibrium state (this
will happen only if the time series are stationary however).

In general, metric regression slopes in multilevel models may be stand-
ardized by multiplying the “fixed” regression slopes by Sy;i_x1e/Syii—yiie» the
ratio of the average county sample standard deviation of X at time ¢ to the
average sample standard deviation of Y at time ¢. Our standardized slopes in-
volved an additional transformation of the metric slopes to percentage change
in X or Y (depending on the position of (log) population on the RHS or LHS
of the regression equation) by the appropriate multiplication or division of B
by 100 (see, for instance, Stolzenberg (1980) on standardized coefficients for
logarithmic scaled variables). The reader is also reminded that in standardized
regressions, the regression line/plane passes through the origin of Y so the
intercept, Boo, 1S zero.

In panel data we can either generate IRFs for each cross-sectional unit
(using, for example, yy;, Vi, and )A»ki from the level-2 equations to Equation
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(23)) or we may use the “fixed” coefficients (e.g., Boo, 310, e l§k0 from
the level-2 equations to Equation (23)) that produce a single IRF produced
from effects averaged across the pooled county time series. For the sake of
parsimony, we will simulate the effects from the latter — the fixed regression
slopes.

Results: the interrelationship between population and dust storms

The methods for panel data analysis described above are implemented using
the county time series of dust storms and (log) population size shown Figures
1 and 2. We begin by assessing stationarity and cointegration in the univariate
and bivariate (panel) time series, respectively, we then determine the ap-
propriate distributed-lag structure, and conclude by fitting Granger causality
models to the preferred lag structures. Impulse response functions are used
to interpret the reciprocating effects of change in population on change in
dust storms and change in dust storms on change in population in the long
(1962-1988) and short (1969-1988) county time series. All model estimation
is by SAS’ PROC MIXED - except the IRF simulations which employ PROC
MODEL (for documentation on PROC MIXED, see SAS Institute, Inc. 1997:
571-702; for PROC MODEL, see SAS Institute, Inc. 1988: 315-398).

We continue to employ the natural log transformation of population size
because it reduces heterogeneity between the county time series and dis-
tributional skew within the time series. Another advantage of the log form
can be seen in when the regressor variable model of Equation (3) is written
as the (first) difference model of Equation (4). The first difference of the
untransformed population, Y, — Y;_;, gives the absolute change in Y, the
first difference of the log transformed population, InY; —InY,_| = %,
gives the relative or proportional change. In the context of substantial differ-
ences in the magnitudes of county populations, the relative change measure
standardizes for population size while absolute change does not.

Stationarity

The result of fitting the level-1 Equation (11) with and without the restriction
on Equation (12) is shown in Table 1. Panel A assesses stationarity in the
county dust storm panels for the long (1962-1988) and short (1969-1988)
series. Stationarity is supported by rejection of the null that 819 = 0. The test
statistic is reported as 7,,. Evidence in favor of a “fixed” B¢ is given in the
failure to reject the null that 7y = 0. The test statistic is shown as Zz /s c.¢3,)-

Stationarity in the dust storm time series is clearly supported by the estim-
ates provided in Panel A — although evidence in favor of a fixed coefficient
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Table 1. Multilevel unit root test of stationarity for pooled cross-sectional time series

Panel A. Dust storm time series

1962-1988 time series (N = 572) 1969-1988 time series (N = 741)
8 = Bro +ui;: 8 = Bio +ui;:

B1o = —0.64 T, = —6.00% Bro=-0.73 7, = —13.03*

Ziy fs.e.iy) = 398 Zy fs.eiyy = 151
8 = Bio: 8 = Bo:

Bro=—060 7, =—1562* Bio=—-064 7, =—1852"
Panel B. Population time series (natural log transformation of population)

1962-1988 time series (N = 572) 1969-1988 time series (N = 741)
8i = Bro +uy;: 8i = Pro +ui;:

Bio=-0.06 %, =—3.39* Bio=-025 7, =—6.20*

L [sefi) = 1.27* L [se(fi) = 3.32%
8 = Pio: 8§ = Pio:

Bio=—-005 2, =—4.08* Bio=—008 £, =—681*
Panel C. Population change time series (natural log transformation of population)

1962-1988 time series (N = 550) 1969-1988 time series (N = 702)
i = Pro +uy;: 8i = Bro + ui;:

Bio = —0.76 Ty = —6.66* Bo=-0.57 7, =—11.50*

Zy fs.eiyy) = 371 Ziy fs.e.iy) = 2:52°
8§ = Pro: § = pro:

B1o = —0.76 7, = —18.17* B1o = —0.54 T, = —15.03*

The 1%, 5%, and 10% critical values (t;,) for the null hypothesis that § (or §;) = 0, at n = o0,
are —3.42, —2.86, and —2.57 (Fuller 1996, Table 10.A.2, second panel). Zz,, /s 0 (z,,) is the
ratio of the variance component estimate for 77; (711) to its estimated standard error (this ratio
is standard normal distributed). Stars (*) indicate rejection of Hy: 819 = 0 and Hp: 711 = 0 at
1% probability. Absolute values of the critical values for 7, are applied in Panel C.

is not supported in the long (but less cross-sectionally rich) 1962—-1988 time
series.

Evidence in favor of stationarity in the (log) population county time series
is slightly more ambiguous. Panel B does support stationarity in the 1969—
1988 time series but we must reject the null that t;; = 0 so we must continue
to entertain the possibility that individual county time series may not be sta-
tionary. When we consider the 1962—1988 time series we observe stationarity
only when the constant effect restriction is in place — although our failure
to reject the null on 717 does support that restriction. Given the qualified
support in favor of stationarity in Panel B, we investigate stationarity in the
first difference of (log) population. If the change in population size is not
constant, perhaps the change in the change in population size is constant (i.e.,
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Table 2. Multilevel Engle—Granger test of cointegration for pooled cross-sectional time
series

*

Second stage regression of A;(= €; — €;—1) one€;_y;

19621988 time series (N = 572) 19691988 time series (N = 741)
8i=ﬂ10+uli: al'zﬂlo—{—uli;
Pro=—0.065  #, =—3.89 Bro = —0.101 %, = —6.26*
Zay [s.e(ti) = 1.55* Z3 se (i) = 1.85*
8= /31(): S = /310;
/310 = —0.057 fu = —4.50* /310 = —0.067 -EM — —6.45*%

First stage regression is (log) population size on dust storm county time series. Since Bg
is to be estimated (see Equation (16)) we retain the same 1%, 5%, and 10% critical values
(ty) for the null hypothesis that § (or §;) = 0 given in Table 1. Zz,, /s ¢ (,,) is also defined
as in Table 1. Stars (*) indicate rejection of Hy: 819 = 0 and Hy: 711 = 0 at 1% probability.

the “velocity” of the time series is constant). Indeed, Panel C does evidence
stationarity in the long and the short differenced time series — but we cannot
accept the null that 7;; = 0 in either series.

Cointegration

However, before we leave the population size form in favor of the differenced
time series, we can (and should) investigate cointegration between the dust
storm and (log) population size time series. As we noted earlier, it is possible
that time series that trend may trend together, in which case methods for
assessing causality will still be appropriate. Table 2 presents results from our
multilevel test of cointegration.

The evidence in Table 2 is not at all equivocal. The multi-level Engle—
Granger tests support stationarity and a “fixed” constraint on By in the
1962-1988 and 1969-1988 time series. As a consequence, we apply the fixed
coefficient restriction on slopes of all exogenous terms in our subsequent
tests of distributed lag structure and Granger causality and we investigate
the causal relationship between dust storms and (log) population size.

Distributed-lag structure

Figures 3 and 4 display the improvement in model fit (A_,; 1) in the unres-
tricted model of Equation (21) over the restricted model of Equation (20) for
the 1962—-1988 and 1969-1988 time series. A difference in the —2LL above
the critical value of 3.84 (shown as the horizontal line in the figures) indicates
a preference in the model fit of the lag structure of the unrestricted model.
Figure 3, constructed from the A_j;; between unrestricted and restricted
regressions of dust storms at time ¢ on (log) population at ¢t — 1,7 — 2, ...,
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Figure 3. Distributed lag structure dust storms = (log) population.

t — k, evidences four distributed lag regressions with statistically signific-
ant improvement in model fit in the 1962—-1988 time series. Only one short
(1969-1988) series model attains statistical significance (at a 5% probab-
ility). Figure 4 repeats this exercise for regressions of (log) population on
dust storms. Here, the pattern is reversed as nine 1969-1988 time series at-
tain statistical significance in improvement in model fit, yet only three long
(1962-1988) series models show a change in —2LL above the critical value.

Based on this information our preferred lag structures to be used in the
Granger causality models will maximize lag length in the 1962—-1988 time
series while building a shorter lag model around the single statistically signi-
ficant model improvement in the 1969—1988 series regression of dust storms
on (log) population. This strategy results in a 14-year lag structure for the
1962-1988 series regression of dust storms on (log) population, a 15-year
lag structure for the 1962-1988 series regression of (log) population on dust
storms, a 9-year lag structure for the 1969-1988 series regression of dust
storms on (log) population, and an 11-year lag structure for the short series
regression of (log) population on dust storms. The first three choices employ
maximum (statistically significant) lag structures as shown in the figures. The
final choice of lag length (the 11-year lag for the 1969—1988 (log) population
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Figure 4. Distributed lag structure (log) population = dust storms.

regression) is motivated by fitting a shorter lag structure to the shorter time
series - which is consistent with the single choice of lag length available for
the dust storm regression.

Although our choice of lag structures is empirically derived, the advantage
of this outcome is that we can use the differences in lag structures (that is, high
order lag length in the long time series and more moderate lag length in the
short time series) to assess robustness in our determination of Granger caus-
ality. In addition, it is important to recognize that the distributed-lag structure
determined here is intended to ensure that the lagged effect of population on
dust storms and dust storms on population is not prematurely truncated in the
Granger causality tests. It is quite probable that the choice of the long lag
structure derives more from the number of cross-sectional units and less from
the scant information left in the time series at these long lag lengths. This
is not particularly troublesome for two reasons. First, the longer lags with
simply enter the Granger models as “irrelevant” included variables, while the
shorter lags will capture the deterministic lag structure — in which case we
are proceeding under the procedure advocated by Davidson and MacKinnon
(1993). Second, if statistical evidence of a feedback system is determined,
the lag structure of this dynamic system will not necessarily correspond to
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the recursive distributed-lag structure found here. This remains to be shown
by the impulse response functions.

It is, however, worth noting at this point that previous research by eco-
nomic historians on short-term and long-term fluctuations in climate and
population is consistent with the extended lag structures we find here (Lee
1981; Galloway 1985, 1986). Although this research used much shorter
distributed-lags (up to four years) than we find here, the time series were
detrended around an 11-year moving average, the net result of which is that
the temporal reach of climatic conditions on their population outcomes can
be quite long.

Granger causality models

Each of the stages in the analysis thus far have been simply diagnostics to
our Granger causality models for panel series. Our ultimate interest has al-
ways been in determining the causal relationship between population and the
environment. Table 3 presents the empirical evidence of this relationship.

Using the preferred distributed lag structures from above we assess
Granger causality in the 14- and 15-year lag models for the 1962—-1988 time
series and in the 9- and 11-year lag models for the 1969-1988 time series.
Panel A reports results from the regressions of storm storms on (log) popula-
tion. We then reverse the causal order by regressing (log) population on dust
storms and display the results in Panel B. The summary evidence is given
in the A_j;1 (the improvement in model fit of the second stage regression
over the first stage regression) relative to A s. (the difference in degrees of
freedom in the regressions). In each case, the improvement in model fit is
statistically significant at (at least) a 5% probability. In other words, the ad-
dition of information from the bivariate panels improves prediction of the
event — either number of dust storms (Panel A) or size of population (Panel
B) — above and beyond what is expected from prior occurrences of that event.
Table 3 clearly points to bilateral causality between the time series — (log)
population size (Granger) causes dust storms and dust storms (Granger) cause
(log) population size.

Impulse Response Functions

Because of the difficulty in interpreting the magnitude, the lag structure,
and even the direction of effects in dynamically interrelated autoregressive
and distributed lag models, we omitted the structural coefficients from Table
3. We can, however, visualize the causal impact through impulse response
functions. Figures 5 and 6 illustrate these reciprocal impacts in the 1962—
1988 and 1969-1988 time series. In both figures, the solid line forecasts the
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Figure 5. Impulse response functions. 1 s.d. shock to 1962—-1988 time series.

response pattern of dust storms to a (one standard deviation) shock in the
(log) population size series and the dashed line maps the population response
to a shock in the dust storm series.

The response patterns in the longer (1962—1988) time series of Figure 5
are particularly impressive. Focusing first on the population response to dust
storms, if a county witnesses a large increase in dust storms, its population
falls into an approximately 15-year trough before it recovers slightly and then
the shock leaves the (county time series) system. This response pattern is of
nearly identical duration to that given by the search for a distributed-lag struc-
ture. On the other hand, if a county’s population were to suddenly increase,
Figure 5 shows that that increase would be followed by an almost immediate
and dramatic increase in dust storms of several years duration before boun-
cing around between net decreases and net increases and leaving the system.
This response pattern shows that when treated as a dynamic system the lagged
impact of (log) population on dust storms is of much shorter duration than that
suggested by the recursive (14-year) distributed-lag model.
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Figure 6. Impulse response functions. 1 s.d. shock to 1969-1988 time series.

Figure 6 gives the response patterns in the shorter (1969-1988) times
series with more cross-sectional (county) units. The response of dust storms
to a shock in (log) population is nearly identical to that seen in Figure 5.
Although less definitive of the anticipated direction and strength of response,
we still see in Figure 6 the extended trough in the population response to
a shock in dust storms — though the extended decline in population does
not begin until fourth year following the intervention. Both systems return
to equilibrium in about twelve years.

Discussion

In the introduction to this paper we promised two things: (1) to test directly
the interrelationship between population and environmental change, and (2)
to do so through the development of a hybrid method that combines a se-
quence of well-known techniques for (pure) time series analysis with a new,
but widely accessible, approach known as multilevel modeling. Both of these
achievements deserve further comment.



INVESTIGATING DUST STORMS AND POPULATION IN THE GREAT PLAINS 327

We have already acknowledged that the Wiener—Granger method is a
necessary but not a sufficient demonstration of causality in bivariate time
series. Indeed, regardless of how literal Woody Guthrie may have intended the
phrase “Blowin’ Down the Road” to be, we use it as allegory, rather than fact.
Dust storms do not blow people out of their counties, but they do ruin their
crops, precipitate foreclosures on their farms, weaken their local econom-
ies, and make opportunities elsewhere seem more attractive. Likewise, dust
storms are not the result of increasing numbers of people stamping their feet
in concert until the ground loosens and swirls away in a Spring or Autumn
gust, but there is a well-documented human antecedent to be found in land
use practices and urban and industrial development.

We are aware that in directly linking dust storms to population size we are
perhaps asserting a broader definition of causality than some of our readers
will be willing to accept. On the other hand, dust storms are a concrete and
direct measure of an (undesirable) environmental quality and surely there is
something elegant in measuring the concept of population as population size.
Our preference has been to start simply, and on this score, it is clear that
population and environmental change is reciprocal - with the specifics being
told in the tables and figures above.

We have also shown how a well-developed branch of hierarchical linear
modeling, the linear growth model, converges with the methodology of (pure)
time series analysis. We are well aware of the attention econometricians have
given to panel data analysis and that efforts have been made previously to
bring this literature together with the (pure) time series techniques cited in
this paper (cf. Pakes & Griliches 1984; Holtz-Eakin et al. 1988). We believe
that what recommends our approach is, similar to Empirical Bayes (EB) es-
timation, multilevel modeling is a way of “borrowing strength” in order to
obtain improved estimates of individual effects. The concept of “borrowing
strength” is useful in situations where sparse data are a problem for the pre-
diction of the behavior (Kreft & de Leeuw 1998). In panel data analysis, data
is generally sparse in either the time or cross-sectional dimension as one often
has relatively few time points but many cross-sectional units or relatively few
cross-sectional units but many time points. The solution for this problem is
solved by EB/ML estimation, using all information over cross-sectional units
and time together. In our application, the prediction for each county separ-
ately will be a mixture of the relationship in its own data and the relationship
in the total or pooled data. In EB/ML estimation all estimates are more or less
shrunken to the mean, thus by estimating all county time series together, the
time series are “borrowing strength” from the pooled data.

Given the wide availability of software for multilevel modeling and the
rapidly growing expertise in a number of disciplines for applying that soft-
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ware, our approach opens a path along which researchers well-versed in
growth curve analysis can move seamlessly into a powerful set of methods
largely under the purview of econometricians.

Notes

1. The method is described in a hypertext file available on the Census Bureau
webpage at http://www.census.gov/population/methods/stco99.txt. The population es-
timates we use were downloaded from the Bureau of Economic Analysis — Re-
gional Economic Information System’s “Personal Income, Total Income, & Per Cap-
ital Personal Income by County and Metropolitan Area: 1969-96” file available at
http://www.bea.doc.gov/bea/regional/reis/. The annual population estimates in this file
were derived by the Bureau of the Census.

2. Most of our discussion of time series methods in this section was informed by Gujarati
(1995, esp. chapters 17, 21, and 22) and Mills (1990). In general specific citations will
not be provided as this material is widely available in standard econometric texts.

3. In aregression of the form given by Equation (4) (and by extension, Equations (11)—(12),
critical values of the test statistic, (£,,), for a null hypothesis that 8jo = 0 are given in
Fuller (1996, Table 10.A.2, second panel). The 1%, 5%, and 10% critical t;, values, at
n = oo, are —3.42, —2.86, and —2.57, respectively. Obviously these are considerably
larger (in absolute value) than the 7-scores used in hypothesis testing in ordinary linear
regression. For discussion, see Fuller (1996, chapter 10).

4. Stationarity in the velocity of a time series is indicated by rejection of Hy: f1p = Oina
level-2 equation of the same form as given in Equation (12) (i.e., §; = B1o + u1;) but in
which the level-1 equation is:

ADyj = 7o +8; D]_; + €4,

where D;;, for convenience, denotes AY;; = (Y;; — Yi—1i)-
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