SUPERCONNECTIONS AND HIGHER INDEX THEORY

J. LOTT

Abstract

Let M be a smooth closed spin manifold. The higher index theorem, as given for example in Proposition 6.3 of [CM], computes the pairing between the group cohomology of $\pi_1(M)$ and the Chern character of the "higher" index of a Dirac-type operator on M. Using superconnections, we give a heat equation proof of this theorem on the level of differential forms on a noncommutative base space. As a consequence, we obtain a new proof of the Novikov conjecture for hyperbolic groups.

I. Introduction

Let M be a smooth closed connected spin manifold. Let V be a Hermitian vector bundle on M. If M is even-dimensional, the Atiyah-Singer index theorem identifies the topological expression $\int_M \widehat{A}(M) \wedge \operatorname{Ch}(V)$ with the index of the Dirac-type operator acting on L^2 -sections of the bundle $S(M) \otimes V$, where S(M) is the spinor bundle on M [AS1].

When M is not simply-connected, one can refine the index theorem to take the fundamental group into account [Co3, Kas, Mo]. Let Γ denote the fundamental group of M. Let $\nu: M \to B\Gamma$ be the classifying map for the universal cover \widetilde{M} of M. For $[\eta] \in H^*(B\Gamma; \mathbb{C})$, higher index theory attempts to identify $\int_M \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \nu^*[\eta]$ with an analytic expression. The main topological and geometric applications of higher index theory are to Novikov's conjecture on homotopy-invariants of non-simply-connected manifolds [No], and to questions of the existence of positive-scalar-curvature metrics on M [Ro].

In order to motivate the statement of the higher index theorem, let us first recall how Lusztig used the index theorem for families of operators to prove a higher index theorem in the case of $\Gamma = \mathbf{Z}^k$ [Lu]. Let $T^k = \operatorname{Hom}(\Gamma, U(1))$ be the dual group to Γ and let L_{θ} be the flat unitary line bundle over M whose holonomy is specified by $\theta \in T^k$. Consider the product fibration $M \to M \times T^k \to T^k$. Suppose for simplicity that M is even-dimensional; then there is a bundle \mathcal{H} over T^k of \mathbf{Z}_2 -graded Hilbert spaces, where \mathcal{H}_{θ} , the fiber over $\theta \in T^k$, consists of the L^2 -sections of $S(M) \otimes V \otimes L_{\theta}$. There is also a family Q of vertical Dirac-type operators parametrized by T^k , where Q_{θ} acts on \mathcal{H}_{θ} . The analytic index Index(Q) of the family of elliptic operators, as defined in [AS2], lies in $K^0(T^k)$. An element $[\eta]$ of the group cohomology $H^{\ell}(\mathbf{Z}^k; \mathbb{C})$ gives a homology class $\tau_{\eta} \in H_{\ell}(T^k; \mathbb{C})$, against which the Chern character Ch (Index(Q)) $\in H^*(T^k; \mathbb{C})$ can be paired. The families index theorem [AS2] then implies

$$\int_{\tau_n} \operatorname{Ch} \left(\operatorname{Index}(\mathbf{Q}) \right) = \operatorname{const.}(l) \int_M \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \nu^*[\eta] , \qquad (*)$$

giving the desired analytic interpretation of the right-hand-side. The purpose of [Lu] was to apply (*) to the Novikov conjecture.

In order to extend these methods to nonabelian Γ , let us note some algebraic properties of the above construction. The algebra of continuous functions $C(T^k)$ acts on the vector space $C(\mathcal{H})$ of continuous sections of \mathcal{H} by multiplication. Upon performing Fourier transform over T^k , $C(\mathcal{H})$ maps to a certain subspace of the L^2 -sections of the pullback bundle $S(\widetilde{M}) \otimes \widetilde{V}$ on \widetilde{M} , this subspace thus being a $C(T^k)$ -Hilbert module in the sense of [Kas].

The generalization of Lüsztig's method to nonabelian Γ is based on a "fibration" $M \to P \to B$ which exists only morally, where B is a noncommutative space whose "algebra of continuous functions" is taken to be the algebra $\Lambda = C_r^*\Gamma$, the reduced group C^* -algebra [Co3]. (When $\Gamma = \mathbb{Z}^k$, $\Lambda \cong C(T^k)$.) Mishchenko and Kasparov define a Hilbert Λ -module of L^2 -sections of $S(\widetilde{M}) \otimes \widetilde{V}$, upon which a Dirac-type operator \widetilde{D} acts. The analytic index of \widetilde{D} lies in " $K^0(B)$ ", or more precisely in $K_0(\Lambda)$ [Mi, Kas]. The Mishchenko-Fomenko index theorem identifies the analytic index with a topological index [MF].

In order to pair these indices with the group cohomology of Γ , one needs additional structure on B. Let \mathfrak{B}^{∞} be a dense subalgebra of Λ containing $\mathbb{C}\Gamma$ which is stable under the holomorphic functional calculus of Λ [Co1]. (For example, if $\Gamma = \mathbb{Z}^k$, one can take \mathfrak{B}^{∞} to be $C^{\infty}(T^k)$.) Then $K_0(\Lambda) \cong K_0(\mathfrak{B}^{\infty})$. One can think of the image of $\mathrm{Index}(\widetilde{D})$ under this isomorphism as being a "smoothing" of $\mathrm{Index}(\widetilde{D})$.

One can then use the fact that $K_0(\mathfrak{B}^{\infty})$ pairs with the cyclic cohomology $HC^*(\mathfrak{B}^{\infty})$ of \mathfrak{B}^{∞} [Co1] to extract numbers from $\operatorname{Index}(\widetilde{D})$. In loose but more familiar terms, the Chern character $\operatorname{Ch}(\operatorname{Index}(\widetilde{D}))$ lies in the "cohomology" of B. More precisely, it lies in the cyclic homology group $HC_*(\mathfrak{B}^{\infty})$ [Co1, Ka]. One then wants to define a "homology class" of B which one can pair with $\operatorname{Ch}(\operatorname{Index}(\widetilde{D}))$. The correct notion of homology for B is given by the (periodic) cyclic cohomology of \mathfrak{B}^{∞} . In particular, given a group cocycle $\eta \in Z^l(\Gamma; \mathbb{C})$, one obtains an cyclic cocycle $\tau_{\eta} \in ZC^l(\mathbb{C}\Gamma)$ (eqn. (62)). If τ_{η} extends to an element of $ZC^l(\mathfrak{B}^{\infty})$ then Proposition 6.3 of [CM] gives

$$\left\langle \operatorname{Ch}\left(\operatorname{Index}(\widetilde{D})\right), \tau_{\eta} \right\rangle = \operatorname{const.}(l) \int_{M} \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \nu^{*}[\eta] .$$
 (**)

The special case when l = 0 is the L^2 -index theorem [At].

An equivalent and more concrete description of the above "fibration" is given by a vector bundle \mathcal{E} over M whose fibers are finitely-generated right projective \mathfrak{B} -modules for an appropriate algebra \mathfrak{B} [Mi]. We will use this latter description in making things precise, although we will move back and forth freely between the two pictures.

In another direction, using Quillen's theory of superconnections [Q], Bismut gave a heat equation proof of the Atiyah-Singer families index theorem on the level of differential forms on the base space [Bi]. Equation (*) is a consequence.

Analogously, we wish to give a heat equation proof of (**). Our original purpose was to study higher versions of spectral invariants, such as the eta invariant [Lo1]. These higher eta invariants should enter into a higher index theorem for manifolds with boundary. However, it turned out to be necessary to first understand the case of closed manifolds, i.e. equation (**), in terms of superconections. This is what we present here.

As in [Bi], we wish to produce an explicit differential form on B which represents Ch (Index(\widetilde{D})). First, one needs to know what a form on the noncommutative space B should mean. A differential complex $\overline{\Omega}_*(\mathfrak{B})$ was defined in [Ka], and its homology can be identified with a subspace of the cyclic homology of the relevant algebra \mathfrak{B} . In Section II we briefly review this theory. In this section we also consider integral operators on sections of \mathcal{E} and define their traces and supertraces.

In the case at hand, the relevant vector bundles $\mathcal E$ come from a flat $\mathfrak B$ -bundle over M. There is some choice in exactly which subalgebra $\mathfrak B$ of Λ is

taken. In Section III we consider a subalgebra \mathfrak{B}^{ω} of Λ consisting of elements whose coefficients decay faster than any exponential in a word-length metric. If $\Gamma = \mathbf{Z}$ then \mathfrak{B}^{ω} is isomorphic to the restrictions of holomorphic functions on $\mathbb{C} - 0$ to the unit circle, and so \mathfrak{B}^{ω} is like an algebra of "analytic" functions on B. (The technical reason for the appearance of this algebra is the existence of finite-propagation-speed estimates for heat kernels on \widetilde{M} .) The smooth sections $\Gamma^{\infty}(\mathcal{E}^{\omega})$ of the corresponding vector bundle \mathcal{E}^{ω} are shown to correspond to smooth sections of $S(\widetilde{M}) \otimes \widetilde{V}$ with rapid decay. Using this description, we make the trace of Section II more explicit.

By construction, the vector space of smooth sections of \mathcal{E}^{ω} is a right \mathfrak{B}^{ω} -module. Let $\nabla: \Gamma^{\infty}(\mathcal{E}^{\omega}) \to \Gamma^{\infty}(\mathcal{E}^{\omega} \otimes_{\mathfrak{B}^{\omega}} \Omega_{1}(\mathfrak{B}^{\omega}))$ be a connection on \mathcal{E}^{ω} . This is, in a sense, a connection in the vertical direction of \mathcal{E}^{ω} , when thought of as a vector bundle over M. Let Q be the Dirac-type operator on $\Gamma^{\infty}(\mathcal{E}^{\omega})$. Applying Quillen's formalism [Q], for any $\beta, s > 0$, the Chern character of \mathcal{E}^{ω} is defined to be

$$\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}) = \operatorname{STR} \exp\left(-\beta(\nabla + sQ)^{2}\right) \in \overline{\Omega}_{*}(\mathfrak{B}^{\omega}) . \tag{***}$$

To make this expression useful, one needs an explicit description of a connection on \mathcal{E}^{ω} . In Section IV we show that the simplest such connection comes from a function $h \in C_0^{\infty}(\widetilde{M})$ with the property that the sum of the translates of h is 1. Then (***) is a well-defined closed element of $\overline{\Omega}_*(\mathfrak{B}^{\omega})$, and its homology class is independent of s.

Given a group cocycle $\eta \in Z^l(\Gamma; \mathbb{C})$, if the corresponding cyclic cocycle $\tau_{\eta} \in ZC^l(\mathbb{C}\Gamma)$ extends to an element of $ZC^l(\mathfrak{B}^{\omega})$ then the pairing

$$\langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau_{\eta} \rangle \in \mathbb{C}$$
 $(****)$

is well-defined and independent of s. As usual with heat equation approaches to index theory, the $s \to 0$ limit of (****) becomes the integral of a local expression on M. In Section V we compute this limit. (The local analysis is easier than in [Bi], as there is no need to use a Levi-Civita superconnection.) The limit must involve $\nu^*[\eta]$, and it may seem strange that this could become a local expression on M, but this is where the choice of h enters. In Proposition 12 we find

$$\lim_{s\to 0} \langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau_{\eta} \rangle = \beta^{l/2}/(l!) \int_{M} \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \omega ,$$

where ω is a closed *l*-form on M whose pullback to \widetilde{M} is given by

$$\pi^*\omega = \sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_l}^* dh \ \eta(e, g_1, \ldots, g_l) \in \Lambda^l(\widetilde{M}) \ .$$

We then show that ω represents $\nu^*[\eta] \in H^l(M; \mathbb{C})$.

It remains to show that

$$\langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau_{\eta} \rangle = \left\langle \operatorname{Ch}_{\beta}\left(\operatorname{Index}(\widetilde{D})\right), \tau_{\eta} \right\rangle .$$
 (****)

For this, we find it necessary to work with the algebra \mathfrak{B}^{∞} and assume that τ_{η} extends to a cyclic cocycle of \mathfrak{B}^{∞} . In Section VI we sketch a proof of (*****). We reduce to the case of invertible \widetilde{D} , and then use a trick of [Bi] to show the equality. This completes the proof of (**).

One application of (**) is to the Novikov conjecture. Taking \widetilde{D} to be the signature operator, the right-hand-side of (**) becomes $const.(l)\int_M L(M)\wedge \nu^*[\eta]$, where $L(M)\in H^*(M;\mathbb{C})$ is the Hirzebruch L-polynomial. The Novikov conjecture states that this "higher" signature is an (orientation-preserving) homotopy invariant of M. One can show that $\mathrm{Index}(\widetilde{D})\in K_0(\Lambda)$ is a homotopy invariant of M [Mi, Kas, HS]. If the group Γ is such that one can apply (**) then the validity of the Novikov conjecture follows. In particular, in [CM] it was shown that if Γ is hyperbolic in the sense of Gromov [GH] then (**) applies. Thus our proof of (**) gives a new proof of the validity of the Novikov conjecture for hyperbolic groups. One can also apply (**) to find obstructions to the existence of positive-scalar-curvature metrics on M [Ro]. If one takes \widetilde{D} to be the pure Dirac operator then if M has positive scalar curvature, $\mathrm{Index}(\widetilde{D})$ vanishes. Thus if the group Γ is such that one can apply (**), $\int_M \widehat{A}(M) \wedge \nu^*[\eta]$ is an obstruction to the existence of a positive-scalar-curvature metric on M.

In [Lo1] a bivariant Chern character was proposed in the case of finitely-generated projective modules. The obstacle to defining a bivariant Chern character for more general projective modules was the lack of a good trace theory for Hilbert modules. In the present case there is such a trace. The smooth sections of $\mathcal{E}^{\infty} = \mathcal{E}^{\omega} \otimes_{\mathfrak{B}^{\omega}} \mathfrak{B}^{\infty}$ form a $(C^{\infty}(M), \mathfrak{B}^{\infty})$ -bivariant module, and the pairing $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ of the bivariant Chern character with τ_{η} is a cocycle in the space $C^*_{\epsilon}(C^{\infty}(M))$ of entire cyclic cochains [Co2]. In Section VII we compute the $s \to 0$ limit of $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$.

Heat equation methods were also used in the paper of Connes and Moscovici [CM] to attack the Novikov conjecture, and it is worth comparing

the two approaches. One difference is that we use heat kernels to form the Chern character of a superconnection as in (***), whereas in [CM] the heat kernels are used to form an idempotent matrix over an algebra of smoothing operators [CM, Section 2]. Theorem 5.4 of [CM] is similar to our Corollary 2, but is stronger in that it is a statement about $\mathbb{C}\Gamma$, whereas Corollary 2 is a statement about \mathfrak{B}^{ω} . We believe that there is some point to taking a superconnection approach to these questions, as there should be interesting extensions.

This paper is an extension of [Lo1], in which the finite-dimensional analog was worked out. An exposition of the Mischenko-Fomenko theorem and related results appears in [Hi].

I wish to thank Dan Burghelea and Jeff Cheeger for useful suggestions, and Henri Moscovici for helpful discussions.

II. Algebraic Preliminaries

Let \mathfrak{B} be a Fréchet locally m-convex algebra with unit, i.e. the projective limit of a sequence of Banach algebras with unit [Mal]. We first define a graded differential algebra (GDA) $\widehat{\Omega}_{*}(\mathfrak{B})$. This will be an appropriate completion of

$$\Omega_*(\mathfrak{B}) = \bigoplus_{k=0}^{\infty} \Omega_k(\mathfrak{B}) , \qquad (1)$$

the universal GDA of \mathfrak{B} [Co1, Ka]. As a vector space, $\Omega_k(\mathfrak{B})$ is given by

$$\Omega_k(\mathfrak{B}) = \mathfrak{B} \otimes (\otimes^k (\mathfrak{B}/\mathbb{C})). \tag{2}$$

As a GDA, $\Omega_*(\mathfrak{B})$ is generated by \mathfrak{B} and $d\mathfrak{B}$ with the relations

$$d1 = 0$$
, $d^2 = 0$, $d(\omega_k \omega_\ell) = (d\omega_k)\omega_\ell + (-1)^k \omega_k (d\omega_\ell)$ (3)

for $\omega_k \in \Omega_k(\mathfrak{B})$, $\omega_\ell \in \Omega_\ell(\mathfrak{B})$. It will be convenient to write an element ω_k of $\Omega_k(\mathfrak{B})$ as a finite sum $\sum b_0 db_1 \dots db_k$. Recall that the homology of the differential complex $\overline{\Omega}_*(\mathfrak{B}) = \Omega_*(\mathfrak{B})/[\Omega_*(\mathfrak{B}), \Omega_*(\mathfrak{B})]$ is isomorphic to a subspace of the reduced cyclic homology of \mathfrak{B} [Ka]. (This statement must be modified in degree zero, for which we refer to [Ka].)

Let $\Theta_*(\mathfrak{B})$ denote the GDA

$$\Theta_*(\mathfrak{B}) = \bigoplus_{k=0}^{\infty} (\otimes^{k+1}\mathfrak{B}) , \qquad (4)$$

with the product given by

$$(b_0 \otimes b_1 \otimes \ldots \otimes b_k)(c_0 \otimes c_1 \otimes \ldots \otimes c_\ell) = b_0 \otimes b_1 \otimes \ldots \otimes b_k c_0 \otimes c_1 \otimes \ldots \otimes c_\ell$$
 (5)

and the differential given by

$$d(b_0 \otimes b_1 \otimes \ldots \otimes b_k) = 1 \otimes b_0 \otimes b_1 \otimes \ldots \otimes b_k - b_0 \otimes 1 \otimes b_1 \otimes \ldots \otimes b_k + \ldots + (-1)^{k+1} b_0 \otimes b_1 \otimes \ldots \otimes b_k \otimes 1.$$

$$(6)$$

Give $\Theta_k(\mathfrak{B})$ the projective tensor product topology, with closure $\widehat{\Theta}_k(\mathfrak{B})$. Let

$$\widehat{\Theta}_*(\mathfrak{B}) = \prod_{k=0}^{\infty} \widehat{\Theta}_k(\mathfrak{B}) \tag{7}$$

denote the completion of $\Theta_*(\mathfrak{B})$ in the product topology.

PROPOSITION 1. $\widehat{\Theta}_*(\mathfrak{B})$ is a Fréchet GDA.

There is a natural embedding \mathfrak{e} of $\Omega_*(\mathfrak{B})$, as a graded differential algebra, in $\widehat{\Theta}_*(\mathfrak{B})$, with

$$e(b) = b$$
, $e(db) = 1 \otimes b - b \otimes 1$. (8)

Let $\widehat{\Omega}_*(\mathfrak{B})$ denote the closure of $\mathfrak{e}(\Omega_*(\mathfrak{B}))$ in $\widehat{\Theta}_*(\mathfrak{B})$.

COROLLARY 1. $\widehat{\Omega}_*(\mathfrak{B})$ is a Fréchet GDA.

Define $\overline{\widehat{\Omega}}_{\star}(\mathfrak{B})$ to be $\widehat{\Omega}_{\star}(\mathfrak{B})/[\overline{\widehat{\Omega}_{\star}(\mathfrak{B})},\widehat{\Omega}_{\star}(\mathfrak{B})]$. Let $\overline{H}_{\star}(\mathfrak{B})$ denote the homology of the differential complex $\overline{\widehat{\Omega}}_{\star}(\mathfrak{B})$.

Let $\mathfrak E$ be a Fréchet space which is a (continuous) right $\mathfrak B$ -module. If $\mathfrak F$ is a Fréchet space which is a (continuous) left $\mathfrak B$ -module, let $\mathfrak E \widehat{\otimes} \mathfrak F$ be the projective topological tensor product of $\mathfrak E$ and $\mathfrak F$. Let $\mathfrak H$ be the closure in $\mathfrak E \widehat{\otimes} \mathfrak F$ of

$$\operatorname{span}\{eb \otimes f - e \otimes bf : e \in \mathfrak{C}, f \in \mathfrak{F}, b \in \mathfrak{B}\}. \tag{9}$$

We put $\mathfrak{C} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F}$ to be the Fréchet space $(\mathfrak{C} \widehat{\otimes} \mathfrak{F})/\mathfrak{H}$.

With this definition, $\mathfrak{E} \widehat{\otimes}_{\mathfrak{B}} \widehat{\Omega}_{k}(\mathfrak{B})$ is isomorphic to the closure of the algebraic tensor product $\mathfrak{E} \otimes_{\mathfrak{B}} \Omega_{k}(\mathfrak{B}) \subset \mathfrak{E} \otimes_{\mathfrak{B}} (\otimes^{k+1} \mathfrak{B}) = \mathfrak{E} \otimes (\otimes^{k} \mathfrak{B})$ in $\mathfrak{E} \widehat{\otimes} (\widehat{\otimes}^{k}(\mathfrak{B}))$, where the latter has the projective tensor product topology.

For the rest of this section, we assume that $\mathfrak E$ is a finitely generated right projective $\mathfrak B$ -module. Let $\mathfrak F$ be a Fréchet $\mathfrak B$ -bimodule. Then there is a trace

$$Tr: Hom_{\mathfrak{B}}(\mathfrak{E}, \mathfrak{E} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F}) \to \mathfrak{F}/[\mathfrak{B}, \mathfrak{F}]. \tag{10}$$

To define Tr, write \mathfrak{E} as $e\mathfrak{B}^n$, with e a projector in $M_n(\mathfrak{B})$. Then an operator $T \in \operatorname{Hom}_{\mathfrak{B}}(\mathfrak{E}, \mathfrak{E} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F}) = \operatorname{Hom}_{\mathfrak{B}}(e\mathfrak{B}^n, e\mathfrak{F}^n)$ can be represented by a matrix $T \in M_n(\mathfrak{F})$ satisfying eT = Te = T. Put

$$\operatorname{Tr}(T) = \sum_{i=1}^{n} T_{ii} \qquad \left(\operatorname{mod} \left[\mathfrak{B}, \mathfrak{F} \right] \right) . \tag{11}$$

This is independent of the choices made. (We quotient by the closure of $[\mathfrak{B},\mathfrak{F}]$ to ensure that the trace takes value in a Fréchet space.)

LEMMA 1. Suppose that \mathfrak{E} and \mathfrak{E}' are finitely generated right projective \mathfrak{B} -modules and \mathfrak{F} is a Fréchet algebra containing \mathfrak{B} . Given $T \in \operatorname{Hom}_{\mathfrak{B}}(\mathfrak{E},\mathfrak{E}'\widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$ and $T' \in \operatorname{Hom}_{\mathfrak{B}}(\mathfrak{E}',\mathfrak{E}'\widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$ be the induced products. Then $\operatorname{Tr}(T'T) = \operatorname{Tr}(TT') \in \mathfrak{F}/[\overline{\mathfrak{F}},\overline{\mathfrak{F}}]$.

We omit the proof.

In the case that \mathfrak{E} is \mathbb{Z}_2 -graded by an operator $\Gamma_{\mathfrak{E}} \in \operatorname{End}_{\mathfrak{B}}(\mathfrak{E})$ satisfying $\Gamma_{\mathfrak{E}}^2 = 1$, we can extend the trace to a supertrace by $\operatorname{Tr}_s(T) = \operatorname{Tr}(\Gamma_{\mathfrak{E}}T)$.

Let M be a closed connected oriented smooth Riemannian manifold. Let \mathcal{E} be a smooth \mathfrak{B} -vector bundle on M with fibers isomorphic to \mathfrak{E} . This means that if \mathcal{E} is defined using charts $\{U_{\alpha}\}$, then a transition function is a smooth map $\phi_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to \operatorname{End}_{\mathfrak{B}}(\mathfrak{E})$. We will denote the fiber over $m\in M$ by \mathcal{E}_m . If \mathfrak{F} is a Fréchet algebra containing \mathfrak{B} , let $\mathcal{E} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F}$ denote the \mathfrak{B} -vector bundle with fibers $(\mathcal{E} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F})_m = \mathcal{E}_m \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F}$ and transition functions $\phi_{\alpha\beta} \widehat{\otimes}_{\mathfrak{B}} Id_{\mathfrak{F}} \in \operatorname{End}_{\mathfrak{B}}(\mathfrak{E} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F})$. Let $\Gamma^{\infty}(\mathcal{E})$ denote the right \mathfrak{B} -module of smooth sections of \mathcal{E} .

DEFINITION: Let $\operatorname{Hom}_{\mathfrak{B}}^{\infty}(\mathcal{E}, \mathcal{E} \widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$ be the algebra of integral operators $T: \Gamma^{\infty}(\mathcal{E}) \to \Gamma^{\infty}(\mathcal{E} \widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$ with smooth kernels $T(m_1, m_2) \in \operatorname{Hom}_{\mathfrak{B}}(\mathcal{E}_{m_2}, \mathcal{E}_{m_1} \widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$. That is, for $s \in \Gamma^{\infty}(\mathcal{E})$,

$$(Ts)(m_1) = \int_M T(m_1, m_2) s(m_2) dvol(m_2) \in \mathcal{E}_{m_1} \widehat{\otimes}_{\mathfrak{B}} \mathfrak{F}.$$
 (12)

DEFINITION: For $T \in \operatorname{Hom}_{\mathfrak{B}}^{\infty}(\mathcal{E}, \mathcal{E} \widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$,

$$TR(T) = \int_{M} Tr\left(T(m,m)\right) dvol(m) \in \mathfrak{F}/\overline{[\mathfrak{F},\mathfrak{F}]}. \tag{13}$$

PROPOSITION 2. TR is a trace.

Proof: We have

$$(TT')(m,m') = \int_{M} T(m,m'') \ T'(m'',m') dvol(m'') \ . \tag{14}$$

Then

$$TR(TT') = \int_{M} Tr \left(T(m, m'') T'(m'', m) \right) dvol(m'') dvol(m) =$$

$$\int_{M} Tr \left(T'(m'', m) T(m, m'') \right) dvol(m) dvol(m'') = TR(T'T) . \tag{15}$$

If the fibers of \mathcal{E} are \mathbb{Z}_2 -graded, we can extend TR to a supertrace STR on $\operatorname{Hom}_{\mathfrak{B}}^{\infty}(\mathcal{E},\mathcal{E} \widehat{\otimes}_{\mathfrak{B}}\mathfrak{F})$ by

$$STR(T) = \int_{M} Tr_{s} (T(m, m)) dvol(m) \in \mathfrak{F}/\overline{[\mathfrak{F}, \mathfrak{F}]}.$$
 (16)

III. 38^ω-Bundles

Let Γ be a finitely-generated discrete group and let $\| \circ \|$ be a right-invariant word-length metric on Γ . For $q \in \mathbb{Z}$, define the Hilbert space

$$\ell^{2,q}(\Gamma) = \left\{ f: \Gamma \to \mathbb{C}: |f|_q^2 = \sum_q \exp\left(2q||g||\right) |f(g)|^2 < \infty \right\}$$
 (17)

and let \mathfrak{B}^{ω} be the vector space

$$\mathfrak{B}^{\omega} = \bigcap_{q} \ell^{2,q}(\Gamma) \ . \tag{18}$$

LEMMA 2.

$$\mathfrak{B}^{\omega} = \left\{ f : \Gamma \to \mathbb{C} : \text{ for all } q \in \mathbb{Z} \text{ , } \sup_{g} \left(\exp\left(q\|g\|\right) \big| f(g) \big| \right) < \infty \right\}.$$

Proof: If $f \in \mathfrak{B}^{\omega}$ then for all $q \in \mathbb{Z}$, $\exp(2q||g||)|f(g)|^2$ is bounded in g, and so $\exp(q||g||)|f(g)|$ is bounded in g. Suppose that $f: \Gamma \to \mathbb{C}$ is such that for all $r \in \mathbb{Z}$,

$$\sup_{g} \left(\exp \left(r \|g\| \right) |(g)| \right) = C_r < \infty .$$

Then $\sum_g \exp\left(2q\|g\|\right) |f(g)|^2 \le C_r^2 \sum_g \exp\left(2(q-r)\|g\|\right)$. As Γ has at most exponential growth, by taking r large enough we can ensure that the last sum is finite.

PROPOSITION 3. \mathfrak{B}^{ω} is independent of the choice of $\| \circ \|$, and is an algebra with unit under convolution.

Proof: As all word-length metrics are quasi-isometric [GH], the independence follows. If $T \in \mathfrak{B}^{\omega}$ and $f \in \ell^{2,q}(\Gamma)$, we will show that

$$|T * f|_q \le const.(q, T)|f|_q. \tag{19}$$

If we then take both T and f in \mathfrak{B}^{ω} , the proposition will follow.

Let f_h denote f(h). Then

$$\left| \sum_{h} T_{gh^{-1}} f_{h} \right|^{2} \leq \left(\sum_{h} \exp\left(-q \|h\|\right) |T_{gh^{-1}}|^{1/2} |T_{gh^{-1}}|^{1/2} \exp\left(q \|h\|\right) |f_{h}| \right)^{2} \leq \left(\sum_{h} \exp\left(-2q \|h\|\right) |T_{gh^{-1}}| \right) \left(\sum_{h'} |T_{gh'^{-1}}| \exp\left(2q \|h'\|\right) |f_{h'}|^{2} \right).$$
(20)

Thus

$$\begin{aligned} |T*f|_{q}^{2} &= \sum_{g} \exp\left(2q\|g\|\right) \left| \sum_{h} T_{gh^{-1}} f_{h} \right|^{2} \leq \\ &\sum_{g} \left(\sum_{h} \exp\left(2q(\|g\| - \|h\|)\right) |T_{gh^{-1}}| \right) \left(\sum_{h'} |T_{gh'^{-1}}| \exp\left(2q\|h'\|\right) |f_{h'}|^{2} \right) \leq \\ &\sum_{g} \left(\sum_{h} \exp\left(2q\|gh^{-1}\|\right) |T_{gh^{-1}}| \right) \left(\sum_{h'} |T_{gh'^{-1}}| \exp\left(2q\|h'\|\right) |f_{h'}|^{2} \right) \leq \\ &\left(\sum_{k} \exp\left(2q\|k\|\right) |T_{k}| \right) \left(\sum_{\ell} |T_{\ell}| \right) \left(\sum_{h'} \exp\left(2q\|h'\|\right) |f_{h'}|^{2} \right) = \\ &\left(\sum_{k} \exp\left(2q\|k\|\right) |T_{k}| \right) \left(\sum_{\ell} |T_{\ell}| \right) |f|_{q}^{2} . \end{aligned}$$

Let Λ denote the reduced group C^* -algebra of Γ , namely the completion of $\mathbb{C}\Gamma$ with respect to the operator norm on $B(\ell^2(\Gamma))$, where $\mathbb{C}\Gamma$ acts on $\ell^2(\Gamma)$ by convolution.

There is a Fréchet topology on \mathfrak{B}^{ω} coming from its definition as a projective limit of Hilbert spaces. There is also a description of \mathfrak{B}^{ω} as a Fréchet locally m-convex algebra. Namely, put

$$\mathcal{P} = \left\{ T \in \Lambda : \text{for all } q \in \mathbb{Z}, T \text{ acts as a bounded operator by} \right.$$

$$\text{convolution on } \ell^{2,q}(\Gamma) \right\}. \tag{22}$$

By its definition, \mathcal{P} is equipped with a sequence of norms.

PROPOSITION 4. As topological vector spaces, $\mathfrak{B}^{\omega} = \mathcal{P}$.

Proof: By the proof of Proposition 3, \mathfrak{B}^{ω} injects continuously into \mathcal{P} . Applying an element T of \mathcal{P} to the element $e \in \bigcap_q \ell^{2,q}(\Gamma)$ gives a continuous injection of \mathcal{P} into \mathfrak{B}^{ω} . These two maps are clearly inverses of each other.

It follows that \mathfrak{B}^{ω} has a holomorphic functional calculus.

Note. \mathfrak{B}^{ω} is generally not holomorphically closed in Λ . For example, if $\Gamma = \mathbb{Z}$ then an element T of \mathfrak{B}^{ω} can be identified with its Fourier transform $T = \sum T_g z^g$, a holomorphic function on $\mathbb{C} - 0$. This identification gives $\mathfrak{B}^{\omega} \cong H(\mathbb{C} - 0)$. On the other hand, in this case $\Lambda \cong C(S^1)$. Taking for example $T = z \in H(\mathbb{C} - 0) \subset C(S^1)$, the spectrum of T in $C(S^1)$ consists of the unit circle. If f is the holomorphic function defined on a neighborhood of the unit circle by $f(w) = (w-2)^{-1}$, f(T) is well-defined in $C(S^1)$, but does not lie in $H(\mathbb{C} - 0)$.

Let Γ denote the fundamental group of M. Let \widetilde{M} denote the universal cover of M, on which $g \in \Gamma$ acts on the right by $R_g \in \operatorname{Diff}(\widetilde{M})$. Denote the covering map by $\pi: \widetilde{M} \to M$. As Γ acts on \mathfrak{B}^{ω} on the left, we can form $\widetilde{M} \times_{\Gamma} \mathfrak{B}^{\omega}$, a flat \mathfrak{B}^{ω} -bundle over M. Let E be a Hermitian vector bundle with Hermitian connection on M and let \widetilde{E} be the pullback of E to \widetilde{M} , with the pulled-back connection. Let $R_g^* \in \operatorname{Aut}(\widetilde{E})$ denote the action of $g \in \Gamma$ on \widetilde{E} .

Definition: $\mathcal{E}^{\omega} = (\widetilde{M} \times_{\Gamma} \mathfrak{B}^{\omega}) \otimes E$, a \mathfrak{B}^{ω} -bundle over M.

Fix a base point $x_0 \in \widetilde{M}$.

PROPOSITION 5. There is an isomorphism

$$L:\Gamma^{\infty}(\mathcal{E}^{\omega})\to \left\{f\in C^{\infty}(\widetilde{M},\widetilde{E}): \text{ for all } q\in \mathbf{Z} \text{ and all multi-indices } \alpha \right.,$$

$$\sup_{x} \left(\exp \left(qd(x_0, x) \right) \left| \nabla^{\alpha} f(x) \right| \right) < \infty \right\} \,.$$

Proof: By the construction of \mathcal{E}^{ω} , $\Gamma^{\infty}(\mathcal{E}^{\omega})$ consists of the Γ -equivariant elements of $C^{\infty}(\widetilde{M}, \widetilde{E} \otimes \mathfrak{B}^{\omega})$. Writing $s \in \Gamma^{\infty}(\mathcal{E}^{\omega})$ as $\sum_{g} s_{g}g$ with $s_{g} \in C^{\infty}(\widetilde{M}, \widetilde{E})$, the equivariance means that

$$R_{\gamma}^* \gamma s = s \text{ for all } \gamma \in \Gamma.$$
 (23)

This becomes $\sum_{g} (R_{\gamma}^* s_g) \gamma g = \sum_{g} s_{\gamma g} \gamma g$, and so $R_{\gamma}^* s_g = s_{\gamma g}$ for all $\gamma, g \in \Gamma$. Thus $s_g = R_g^* s_1$, and so $s = \sum_{g} (R_g^* s_1) g$.

Let L be the map which takes s to s_1 . We will show that L is the desired isomorphism. First, if $\widetilde{m} \in \widetilde{M}$ then

$$s(\widetilde{m}) = \sum_{g} (R_g^* s_1)(\widetilde{m}) \ g \in \widetilde{E}_{\widetilde{m}} \otimes \mathfrak{B}^{\omega} \ . \tag{24}$$

Thus for all $q \in \mathbb{Z}$, $\sup_g \left(\exp\left(q\|g\|\right) \big| s_1(\widetilde{m}g) \big| \right) < \infty$. By the smoothness of s, we have such an estimate uniformly for \widetilde{m} lying within a fundamental domain of \widetilde{M} containing x_0 . As \widetilde{M} is quasi-isometric to Γ [GH], there are constants A > 0 and $B \ge 0$ such that for all $x \in \widetilde{M}$ and $g \in \Gamma$,

$$A^{-1}||g|| - B \le d(xg^{-1}, x) \le A||g|| + B.$$
 (25)

Then

$$\exp(qd(x_0, x))|s_1(x)| \le \exp(qd(x_0, xg^{-1})) \exp(qd(xg^{-1}, x))|s_1(xg^{-1}g)| \le const. \exp(qd(x_0, xg^{-1})) \exp(qA||g||)|s_1(xg^{-1}g)|.$$
(26)

By choosing g so that xg^{-1} lies within a fundamental domain containing x_0 , we obtain from (26) that $\exp(qd(x_0,x))|s_1(x)|$ is uniformly bounded in x. The same argument applies to the covariant derivatives of s_1 .

Now suppose that $f \in C^{\infty}(\widetilde{M}, \widetilde{E})$ is such that for all $q \in \mathbb{Z}$ and all multi-indices α ,

$$\sup_{x} \left(\exp \left(qd(x_0, x) \right) \middle| \nabla^{\alpha} f(x) \middle| \right) < \infty . \tag{27}$$

Put $L'(f) = \sum_{g} (R_g^* f) \ g$. We must show that $L'(f) \in \Gamma^{\infty}(\mathcal{E}^{\omega})$. It will then follow that L' is an inverse to L.

By construction, L'(f) is Γ -equivariant. Let $\{V_{\alpha}\}$ be a collection of charts on M over which E is trivialized. Then we can reduce to the case that E is a trivial \mathbb{C} -bundle and $f \in C^{\infty}(V_{\alpha} \times \Gamma, \mathbb{C})$, with the above decay conditions. It is enough to show that when restricted to $V_{\alpha} \times \{e\}$, $\sum_{g} (R_{g}^{*}f)g$ represents a smooth map from V_{α} to \mathfrak{B}^{ω} . For $\widetilde{m} \in V_{\alpha} \times \{e\}$,

$$\left(\sum (R_g^* f)g\right)(\tilde{m}) = \sum f(\tilde{m}g)g , \qquad (28)$$

and so for all $q \in \mathbf{Z}$,

$$\exp(q||g||)|f(\widetilde{m}g)| \leq const. \exp(qA d(\widetilde{m}, \widetilde{m}g))|f(\widetilde{m}g)| \leq const. \exp(qA d(\widetilde{m}, x_0)) \exp(qA d(x_0, \widetilde{m}g))|f(\widetilde{m}g)| \leq const. \sup_{x} (\exp(qA d(x_0, x))|f(x)|) < \infty.$$
(29)

Thus $\sum_{g} (R_g^* f)$ g is a map from V_{α} to \mathfrak{B}^{ω} . Doing the same estimates using covariant derivatives gives the smoothness.

PROPOSITION 6. The algebra $\operatorname{End}_{\mathfrak{B}^{\omega}}^{\infty}(\mathcal{E}^{\omega}) \equiv \operatorname{Hom}_{\mathfrak{B}^{\omega}}^{\infty}(\mathcal{E}^{\omega}, \mathcal{E}^{\omega})$ is isomorphic to the algebra of Γ -invariant integral operators T on $L^{2}(\widetilde{M}, \widetilde{E})$ with smooth kernels $T(x,y) \in \operatorname{Hom}(\widetilde{E}_{y}, \widetilde{E}_{x})$ such that for all $q \in \mathbb{Z}$ and multi-indices α and β ,

$$\sup_{x,y} \left(\exp \left(q d(x,y) \right) \left| \nabla_x^{\alpha} \nabla_y^{\beta} T(x,y) \right| \right) < \infty .$$

We omit the proof, which is similar to that of Proposition 5.

Let $\phi \in C_0^{\infty}(\widetilde{M})$ be such that

$$\sum_{q} R_g^* \phi = 1 \ . \tag{30}$$

Let tr denote the local trace on $\operatorname{End}(\widetilde{E}_x)$.

Note. We now have defined three traces: tr is the trace on $\operatorname{End}(\widetilde{E}_x)$, Tr is the trace on $\operatorname{End}_{\mathfrak{B}^\omega}(\mathcal{E}_m^\omega)$ and TR is the trace on $\operatorname{End}_{\mathfrak{B}^\omega}^\infty(\mathcal{E}^\omega)$. If E is \mathbb{Z}_2 -graded, the corresponding supertraces are denoted tr_s , Tr_s and STR.

PROPOSITION 7. Representing an element $T \in \operatorname{End}_{\mathfrak{B}\omega}^{\infty}(\mathcal{E}^{\omega})$ by an operator $\widetilde{T} \in B(L^2(\widetilde{M}, \widetilde{E}))$ as in Proposition 6, its trace is given by

$$\operatorname{TR}(T) = \sum_{g} \left[\int_{\widetilde{M}} \phi(x) \operatorname{tr} \left((R_{g}^{*} \widetilde{T})(x, x) \right) dvol(x) \right] g \quad \left(\operatorname{mod} \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) (31)$$
$$= \sum_{g} \left[\int_{\widetilde{M}} \phi(x) \operatorname{tr} \left(\widetilde{T}(xg, x) \right) dvol(x) \right] g \quad \left(\operatorname{mod} \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) . \quad (32)$$

Proof: The proof is a matter of unraveling the isomorphisms of Propositions 5 and 6. Let $\{V_{\alpha}\}$ be a collection of charts on M over which E is trivialized. Then we can reduce to the case that E is a trivial \mathbb{C} -bundle. We have $\pi^{-1}(V_{\alpha}) \cong V_{\alpha} \times \Gamma$. For $\widetilde{m}_1, \widetilde{m}_2 \in V_{\alpha} \times \{e\}$, we can use isomorphisms to represent

$$T(m_1, m_2) \in \operatorname{Hom}_{\mathfrak{B}^{\omega}}^{\infty}(\mathcal{E}_{m_2}^{\omega}, \mathcal{E}_{m_1}^{\omega}) \cong \operatorname{Hom}_{\mathfrak{B}^{\omega}}(\mathfrak{B}^{\omega}, \mathfrak{B}^{\omega}) \cong \mathfrak{B}^{\omega}$$
 (33)

by $\sum_{g} \widetilde{T}(\widetilde{m}_1 g, \widetilde{m}_2) g$. Then

$$\begin{split} &\int_{V_{\alpha}} \operatorname{Tr} \left(T(m,m) \right) dvol(m) = \\ &\int_{V_{\alpha}} \sum_{g} \widetilde{T}(mg,m) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(mg\gamma, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma\gamma^{-1}g\gamma, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) \, \gamma g \gamma^{-1} \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) \left(g + [\gamma g, \gamma^{-1}] \right) dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{g} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right] \right) = \\ &\int_{V_{\alpha}} \sum_{\gamma} \phi(m\gamma) \, \widetilde{T}(m\gamma g, m\gamma) g \, dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{B}^{\omega}} \right) \right) dvol(m) \quad \left(\bmod \left[\overline{\mathfrak{B}^{\omega}}, \overline{\mathfrak{$$

$$\int_{\pi^{-1}(V_{\alpha})} \sum_{g} \phi(x) \, \widetilde{T}(xg, x) g \, dvol(x) \quad \left(\bmod \overline{[\mathfrak{B}^{\omega}, \mathfrak{B}^{\omega}]} \right) \, . \tag{34}$$

Using a partition of unity subordinate to $\{V_{\alpha}\}$ and adding the contributions of the various charts gives (31).

We now give the extension of the previous propositions to form-valued sections of \mathcal{E}^{ω} . With the notation of Section II, put $\mathfrak{F}^{\omega} = \widehat{\Omega}_{*}(\mathfrak{B}^{\omega})$. As in Proposition 5, we can represent an element f of $\Gamma^{\infty}(\mathcal{E}^{\omega} \widehat{\otimes}_{\mathfrak{B}^{\omega}} \mathfrak{F}^{\omega})$ of degree k as $\sum f_{g_{1}...g_{k}}dg_{1}...dg_{k}$, with each $f_{g_{1}...g_{k}} \in C^{\infty}(\widetilde{M}, \widetilde{E})$ a smooth rapidly decreasing section of \widetilde{E} . As in Proposition 6, we can represent an element K of $\operatorname{Hom}_{\mathfrak{B}^{\omega}}^{\infty}(\mathcal{E}^{\omega}, \mathcal{E}^{\omega} \widehat{\otimes}_{\mathfrak{B}^{\omega}} \mathfrak{F}^{\omega})$ of degree k by smooth rapidly decreasing kernels $K_{g_{1}...g_{k}}(x,y) \in \operatorname{Hom}(\widetilde{E}_{y}, \widetilde{E}_{x})$ such that $K = \sum K_{g_{1}...g_{k}}dg_{1}...dg_{k}$ is Γ -invariant. Then for $f \in \Gamma^{\infty}(\mathcal{E}^{\omega})$ we have

$$(Kf)(x) = \sum \int_{\widetilde{M}} K_{g_1 \dots g_k}(x, y) f(y) dvol(y) dg_1 \dots dg_k . \tag{35}$$

As in Proposition 7, we have

$$\operatorname{TR}(K) = \sum \int_{\widetilde{M}} \phi(x) \operatorname{tr} \left(K_{g_1 \dots g_k}(xg_0, x) \right) dvol(x) g_0 dg_1 \dots dg_k$$

$$\left(\operatorname{mod} \left[\widehat{\Omega}_*(\mathfrak{B}^{\omega}), \widehat{\Omega}_*(\mathfrak{B}^{\omega}) \right] \right) .$$
(36)

IV. The Chern Character

Now suppose in addition that M^n is even-dimensional and spin. Let S be the \mathbb{Z}_2 -graded spinor bundle on M, with the Levi-Civita connection, and let V be a Hermitian bundle on M with Hermitian connection. Take E to be $S \otimes V$. Let Q denote the self-adjoint extension of the Dirac-type operator acting on $C_0^\infty(\widetilde{M}, \widetilde{E})$ [At]. In terms of a local framing of the tangent bundle,

$$Q = -i\sum_{\mu=1}^{n} \gamma^{\mu} D_{\mu} , \qquad (37)$$

with the Dirac matrices $\{\gamma^{\mu}\}_{\mu=1}^{n}$ satisfying

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2\delta^{\mu\nu} \ . \tag{38}$$

Proposition 8. For T > 0, $e^{-TQ^2} \in \operatorname{End}_{\mathfrak{B}^{\omega}}^{\infty}(\mathcal{E}^{\omega})$.

Proof: First, e^{-TQ^2} is a Γ -invariant operator. By elliptic regularity, $e^{-TQ^2}(x,y)$ is smooth. Put N=[n/4]+1. Let ϵ be a fixed sufficiently small number. If $d(x,y) > \epsilon$, put $R=d(x,y)-\epsilon$. By the finite-propagation-speed estimates of [CGT], we have the estimate [Lo2]

$$\begin{split} \left| (Q^{2k} e^{-TQ^2} Q^{2\ell})(x,y) \right| &\leq \\ const. (R^2/T)^{-1/2} [R^{-2(k+\ell)} + R^{-2(k+\ell)-4N} + \\ R^{2(k+\ell)} T^{-2(k+\ell)} + R^{2(k+\ell)+4N} T^{-2(k+\ell)-4N}] e^{-R^2/4T} \; . \end{split} \tag{39}$$

The requisite bounds on the covariant derivatives of $e^{-TQ^2}(x,y)$ follow by standard methods. Then the proposition follows from Proposition 6.

Note. In the "fibration" picture, the fact that e^{-TQ^2} commutes with \mathfrak{B}^{ω} means that it corresponds to a family of vertical operators.

Let $h \in C_0^{\infty}(\widetilde{M})$ be such that

$$\sum_{g} R_g^* h = 1 . (40)$$

Given $f \in \Gamma^{\infty}(\mathcal{E}^{\omega})$, considering it as an element of $C^{\infty}(\widetilde{M}, \widetilde{E})$ by Proposition 5, define its covariant derivative to be

$$\nabla_g f = h \ R_g^* f \in C^{\infty}(\widetilde{M}, \widetilde{E}) \ . \tag{41}$$

Note that $C^{\infty}(M)$ acts on sections of $\Gamma^{\infty}(\mathcal{E}^{\omega} \widehat{\otimes}_{\mathfrak{B}^{\omega}} \mathfrak{F}^{\omega})$ by multiplication.

Proposition 9.

$$abla f = \sum_g
abla_g f \, \widehat{\otimes}_{\mathfrak{B}^\omega} dg$$

defines a connection

$$\nabla : \Gamma^{\infty}(\mathcal{E}^{\omega}) \to \Gamma^{\infty}(\mathcal{E}^{\omega} \widehat{\otimes}_{\mathfrak{B}^{\omega}} \widehat{\Omega}_{1}(\mathfrak{B}^{\omega})) \tag{42}$$

which commutes with the action of $C^{\infty}(M)$.

Proof: We first show that ∇ formally commutes with the action of $C^{\infty}(M)$. Given $\alpha \in C^{\infty}(M)$, α acts on $C^{\infty}(\widetilde{M}, \widetilde{E})$ by multiplication by $\pi^*(\alpha)$. Then

$$\nabla(\alpha \cdot f) = \nabla(\pi^*(\alpha)f) = \sum_{g} h \, R_g^*(\pi^*(\alpha)f) \, \widehat{\otimes}_{\mathfrak{B}^{\omega}} dg =$$

$$\sum_{g} h \, \pi^*(\alpha) \, R_g^* f \, \widehat{\otimes}_{\mathfrak{B}^{\omega}} dg = \alpha \cdot \nabla f . \tag{43}$$

Thus ∇ acts fiberwise on the vector bundle \mathcal{E}^{ω} . To make this explicit, as in the proof of Proposition 5 we can consider the element s of $\Gamma^{\infty}(\mathcal{E}^{\omega})$ corresponding to f to be a sum $s = \sum s_g g$, where $s_g \in C^{\infty}(\widetilde{M}, \widetilde{E})$ and $s_g = R_g^* f$. Then ∇s becomes

$$\sum_{g,k} R_g^*(hR_k^*f) g dk = \sum_{g,k} R_g^*h(R_{gk}^*f) g dk = \sum_{g,k} R_g^*h s_{gk} g dk . \tag{44}$$

Applied to a point $\widetilde{m} \in \widetilde{M}$, we have

$$\nabla \left(\sum_{g} s_{g}(\widetilde{m}) g \right) = \sum_{g,k} h(\widetilde{m}g) s_{gk}(\widetilde{m}) g dk . \tag{45}$$

Let

$$\nabla_m: \mathcal{E}_m^{\omega} \to \mathcal{E}_m^{\omega} \,\widehat{\otimes}_{\mathfrak{B}^{\omega}} \,\widehat{\Omega}_1(\mathfrak{B}^{\omega}) \tag{46}$$

be the restriction of ∇ to the fiber $\mathcal{E}_m^{\omega} \cong E_m \otimes \mathfrak{B}^{\omega}$ over $m = \pi(\tilde{m})$. Then ∇_m can be represented by

$$\nabla_{m} \left(\sum_{g} t_{g} g \right) = \sum_{g,k} h(\widetilde{m}g) t_{gk} g dk , \qquad (47)$$

where $t_g \in \widetilde{E}_{\widetilde{m}}$.

By hypothesis, $t = \sum_g t_g \ g \in \mathcal{E}_m^{\omega} \cong E_m \otimes \mathfrak{B}^{\omega}$. We must show that $\nabla_m(t)$ is in $\mathcal{E}_m^{\omega} \widehat{\otimes}_{\mathfrak{B}^{\omega}} \widehat{\Omega}_1(\mathfrak{B}^{\omega}) \cong E_m \otimes \widehat{\Omega}_1(\mathfrak{B}^{\omega})$.

As in Section II, let us think of $E_m \otimes \widehat{\Omega}_1(\mathfrak{B}^{\omega})$ as embedded in $E_m \otimes \mathfrak{B}^{\omega} \widehat{\otimes} \mathfrak{B}^{\omega}$. Then $\nabla_m(t)$ is formally represented as

$$\nabla_m(t) = \sum_{g,k} h(\widetilde{m}g) \ t_{gk} \ g(1 \otimes k - k \otimes 1) =$$

$$\sum_{g,k} h(\widetilde{m}g) \ t_{gk} \ g \otimes k - \sum_{g,k} h(\widetilde{m}g) \ t_{gk} \ gk \otimes 1 =$$

$$\sum_{g,k} h(\widetilde{m}g) \ t_{gk} \ g \otimes k - \sum_{g,k} h(\widetilde{m}g) \ t_{k} \ k \otimes 1 =$$

$$\left(\sum_{g} h(\widetilde{m}g)g \otimes \sum_{k} t_{gk} \ k\right) - t \otimes 1 =$$

$$\left(\sum_{g} h(\widetilde{m}g)g \otimes (g^{-1}t)\right) - t \otimes 1 \ . \tag{48}$$

As h has compact support, the g-sum in $\sum_{g} h(\tilde{m}g)g \otimes (g^{-1}t)$ is finite, and it follows that (48) makes sense in $E_m \otimes \mathfrak{B}^{\omega} \widehat{\otimes} \mathfrak{B}^{\omega}$.

We now show that ∇_m is a connection. If $\gamma \in \Gamma$,

$$\nabla_{m}(t\gamma) = \nabla_{m} \left(\sum_{g} t_{g} g\gamma \right) = \nabla_{m} \left(\sum_{g} t_{g\gamma^{-1}} g \right) =$$

$$\sum_{g,k} h(\tilde{m}g) \ t_{gk\gamma^{-1}} \ gdk = \sum_{g,k} h(\tilde{m}g) \ t_{gk} \ gd(k\gamma) =$$

$$\sum_{g,k} h(\tilde{m}g) \ t_{gk} \ g(dk)\gamma + \sum_{g,k} h(\tilde{m}g) \ t_{gk} \ gkd\gamma =$$

$$\nabla_{m}(t)\gamma + \sum_{g,k} h(\tilde{m}g) \ t_{k} \ kd\gamma = \nabla_{m}(t)\gamma + td\gamma \ . \tag{49}$$

Then

$$\nabla_m(tb) = (\nabla_m t)b + t \widehat{\otimes}_{\mathfrak{B}^{\omega}} db \tag{50}$$

D

for any $b \in \mathfrak{B}^{\omega}$.

As h is smooth, it follows that ∇ is also a connection.

Note. There is a strong relationship between the connections ∇ considered here and the partially flat connections of [Ka, Chapitre 4].

Define the superconnection

$$D_s = \nabla + sQ \in \operatorname{Hom}^{\infty} \left(\mathcal{E}^{\omega}, \mathcal{E}^{\omega} \, \widehat{\otimes}_{\mathfrak{B}^{\omega}} \, \widehat{\Omega}_{*}(\mathfrak{B}^{\omega}) \right) \,. \tag{51}$$

Then $D_s^2 \in \operatorname{Hom}_{\mathfrak{B}^{\omega}}^{\infty} (\mathcal{E}^{\omega}, \mathcal{E}^{\omega} \widehat{\otimes}_{\mathfrak{B}^{\omega}} \widehat{\Omega}_*(\mathfrak{B}^{\omega}))$ is given by

$$D_s^2 = s^2 Q^2 + s(\nabla Q + Q \nabla) + \nabla^2 . \tag{52}$$

Here $\nabla Q + Q \nabla$ is given explicitly by

$$(\nabla Q + Q\nabla)(f) = \sum_{g} (\partial h) \ R_g^* f \, \widehat{\otimes}_{\mathfrak{B}^{\omega}} dg \ , \tag{53}$$

where $f \in C^{\infty}(\widetilde{M}, \widetilde{E})$ and

$$\partial h = [Q, h] = -i \sum_{\mu} \gamma^{\mu} \partial_{\mu} h , \qquad (54)$$

and ∇^2 is given by

$$\nabla^{2}(f) = \sum_{g} \sum_{g'} h \ R_{g}^{*} h \ R_{gg'}^{*} f \widehat{\otimes}_{\mathfrak{B}^{\omega}} dg \, dg' \ . \tag{55}$$

Put

$$\mathfrak{P} = -\left(s(\nabla Q + Q\nabla) + \nabla^2\right) , \tag{56}$$

and for $\beta > 0$ define

$$\exp(-\beta D_s^2) \in \operatorname{Hom}_{\mathfrak{B}^{\omega}}^{\infty} \left(\mathcal{E}^{\omega}, \mathcal{E}^{\omega} \, \widehat{\otimes}_{\mathfrak{B}^{\omega}} \, \widehat{\Omega}_*(\mathfrak{B}^{\omega}) \right) \tag{57}$$

to be

$$\exp(-\beta D_s^2) = \exp(-\beta s^2 Q^2) + \int_0^\beta \exp(-u_1 s^2 Q^2) \mathfrak{P}$$

$$\exp(-(\beta - u_1) s^2 Q^2) du_1 + \int_0^\beta \int_0^{u_1} \exp(-u_1 s^2 Q^2) \mathfrak{P} \exp(-u_2 s^2 Q^2) \mathfrak{P}$$

$$\exp(-(\beta - u_1 - u_2) s^2 Q^2) du_2 du_1 + \dots$$
(58)

As only a finite number of terms of the expansion of (58) contribute to the degree-k component of $\exp(-\beta D_s^2)$, it is clear that (58) converges.

DEFINITION: For s>0, the Chern character $\mathrm{ch}_{\beta,s}(\mathcal{E}^\omega)\in\overline{\widehat{\Omega}}_{even}(\mathfrak{B}^\omega)$ is given by

 $\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}) = \operatorname{STR} \exp(-\beta D_s^2) . \tag{59}$

Proposition 10. $\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega})$ is closed.

We omit the proof, which is straightforward.

PROPOSITION 11. The class of $\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega})$ in $\overline{H}_{*}(\mathfrak{B}^{\omega})$ is independent of $s \in (0,\infty)$.

Proof: Formally,

$$\frac{d}{ds}\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}) = d(-\beta \operatorname{STR} Q e^{-\beta D_s^2}) . \tag{60}$$

It is straightforward to check that this equation is valid. Then if $s_1, s_2 \in (0, \infty)$,

$$\operatorname{ch}_{\beta,s_1}(\mathcal{E}^{\omega}) - \operatorname{ch}_{\beta,s_2}(\mathcal{E}^{\omega}) = d\left(-\beta \int_{s_2}^{s_1} \operatorname{STR} Q e^{-\beta D_{s}^2} ds\right). \tag{61}$$

Let η be an antisymmetric left-invariant (unnormalized) group k-cocycle. Then η defines a cyclic k-cocycle τ_{η} on $\mathbb{C}\Gamma$ by

$$\tau_{\eta}(g_0, \dots, g_k) = \eta(g_0, g_0 g_1, g_0 g_1 g_2, \dots, g_0 g_1 \dots g_k) \text{ if } g_0 g_1 \dots g_k = e$$

$$\tau_{\eta}(g_0, \dots, g_k) = 0 \text{ if } g_0 g_1 \dots g_k \neq e \qquad [Co1].$$
(62)

Suppose that there are constants C and D so that

$$|\tau_{\eta}(g_0, \dots, g_k)| \le C \exp\left(D(||g_0|| + \dots + ||g_k||)\right).$$
 (63)

Then τ_{η} extends to a k-cocycle on \mathfrak{B}^{ω} and so can be paired with $\operatorname{ch}_{\beta,s}$. By Proposition 11, the pairing $\langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau_{\eta} \rangle$ is independent of s.

V. Small-Time Limit

Proposition 12.

$$\lim_{s \to 0} \langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau_{\eta} \rangle = \beta^{k/2} / (k!) \int_{M} \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \omega , \qquad (64)$$

where ω is the closed k-form on M given by

$$\pi^*\omega = \sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_k}^* dh \ \eta(e, g_1, \ldots, g_k) \in \Lambda^k(\widetilde{M}) \ . \tag{65}$$

Proof: First, let us consider the contribution to $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ coming from the term

$$(-1)^k \int_0^\beta \dots \int_0^{u_{k-1}} \exp(-u_1 s^2 Q^2) s(\nabla Q + Q \nabla) \exp(-u_2 s^2 Q^2)$$

$$s(\nabla Q + Q \nabla) \dots s(\nabla Q + Q \nabla) \exp(-(\beta - u_1 - \dots - u_k) s^2 Q^2) du_k \dots du_1$$
(66)

of $\exp(-\beta D_s^2)$. Written out explicitly, this will be

$$\sum_{s} (-1)^{k} \int_{0}^{\beta} \dots \int_{0}^{u_{k-1}} \int_{\widetilde{M}} \phi(x_{0}) \operatorname{tr}_{s} \left[R_{g_{0}}^{*} \exp(-u_{1}s^{2}Q^{2})s(\partial h) R_{g_{1}}^{*} \right] \\ \exp(-u_{2}s^{2}Q^{2})s(\partial h) R_{g_{2}}^{*} \dots s(\partial h) R_{g_{k}}^{*} \\ \exp\left(-(\beta - u_{1} - \dots - u_{k})s^{2}Q^{2}\right) (x_{0}, x_{0}) \\ \operatorname{dvol}(x_{0}) \operatorname{d}u_{k} \dots \operatorname{d}u_{1} \tau_{n}(g_{0}, \dots, g_{k}) =$$

$$(67)$$

$$\sum (-1)^{k} \int_{0}^{\beta} \dots \int_{0}^{u_{k-1}} \int_{\widetilde{M}} \phi(x_{0}) \operatorname{tr}_{s} \left[\exp(-u_{1} s^{2} Q^{2}) s R_{g_{0}}^{*}(\partial h) \right]$$

$$\exp(-u_{2} s^{2} Q^{2}) s R_{g_{0}g_{1}}^{*}(\partial h) \dots s R_{g_{0}\dots g_{k-1}}^{*}(\partial h)$$

$$\exp\left(-(\beta - u_{1} - \dots - u_{k}) s^{2} Q^{2}\right)$$

$$R_{g_{0}\dots g_{k}}^{*} \left[(x_{0}, x_{0}) dvol(x_{0}) du_{k} \dots du_{1} \tau_{\eta}(g_{0}, \dots, g_{k}) \right]$$
(68)

$$\sum_{s(\partial h)(x_1g_0)} \sum_{s(\partial h)(x_1g_0)} \sum_{s(\partial h)(x_2g_0g_1)} \sum_{s$$

Because for small s the heat kernels are concentrated near the diagonal, the only terms which will survive in the $s \to 0$ limit will have $g_0 \dots g_k = e$. Furthermore, the $s \to 0$ limit reduces to a question of local asymptotics on \widetilde{M} . By the Getzler calculus [G], (69) equals $(2\pi)^{-n} \int_{T\widetilde{M}} \operatorname{tr}_s(\sigma P)_{s^{-1}} dx d\xi$, where P denotes the operator appearing in (69), σP is its symbol in the Getzler calculus and $(\sigma P)_{s^{-1}}$ is the rescaled symbol. A straightforward

calculation gives that in the limit $s \to 0$, this becomes

$$\sum (-1)^{k} \beta^{-k/2} \left(\int_{0}^{\beta} \dots \int_{0}^{u_{k-1}} du_{k} \dots du_{1} \right) \int_{\widetilde{M}} \phi(x) \widehat{A}(x) \wedge \operatorname{Ch}(\widetilde{V})(x) \wedge dh(xg_{0}) \wedge \dots \wedge dh(xg_{0} \dots g_{k-1}) \eta(g_{0}, g_{0}g_{1}, g_{0}g_{1}g_{2}, \dots, g_{0}g_{1} \dots g_{k-1}, e) =$$

$$(70)$$

$$\sum (-1)^k \beta^{k/2} / (k!) \int_{\widetilde{M}} \phi \ \widehat{A}(\widetilde{M}) \wedge \operatorname{Ch}(\widetilde{V}) \wedge R_{g_0}^* dh \wedge \dots \wedge R_{g_0 \dots g_{k-1}}^* dh$$

$$\eta(g_0, g_0 g_1, g_0 g_1 g_2, \dots, g_0 \dots g_{k-1}, e) = \tag{71}$$

$$\beta^{k/2}/(k!)\int_{\widetilde{M}}\phi \ \widehat{A}(\widetilde{M}) \wedge \operatorname{Ch}(\widetilde{V}) \wedge \widetilde{\omega} \ ,$$
 (72)

where $\widetilde{\omega} \in \Lambda^k(\widetilde{M})$ is given by

$$\widetilde{\omega} = \sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_k}^* dh \, \eta(e, g_1, \ldots, g_k) . \tag{73}$$

Now let us consider the contribution to $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ coming from a term of $\exp(-\beta D_s^2)$ which contains a ∇^2 , such as, for example,

$$(-1)^{k} \int_{0}^{\beta} \dots \int_{0}^{u_{k-1}} \exp(-u_{1}s^{2}Q^{2}) \nabla^{2} \exp(-u_{2}s^{2}Q^{2}) s(\nabla Q + Q\nabla) \dots$$
$$s(\nabla Q + Q\nabla) \exp(-(\beta - u_{1} - \dots - u_{k})s^{2}Q^{2}) du_{k} \dots du_{1}.$$
(74)

Written out explicitly, this gives

$$\sum (-1)^{k} \int_{0}^{\beta} \dots \int_{0}^{u_{k-1}} \int_{\widetilde{M}} \dots \int_{\widetilde{M}} \phi(x_{0}) \operatorname{tr}_{s} \left[\exp(-u_{1} s^{2} Q^{2})(x_{0}, x_{1}) \right] \\ h(x_{1} g_{0}) h(x_{1} g_{0} g_{1}) \exp(-u_{2} s^{2} Q^{2})(x_{1}, x_{2}) s(\partial h)(x_{2} g_{0} g_{1} g'_{1}) \dots \\ s(\partial h)(x_{k} g_{0} g_{1} g'_{1} g_{2} \dots g_{k-1}) \exp\left(-(\beta - u_{1} - \dots - u_{k}) s^{2} Q^{2}\right) \\ (x_{k} g_{0} g_{1} g'_{1} g_{2} \dots g_{k}, x_{0}) dvol(x_{k}) \dots \\ dvol(x_{0}) du_{k} \dots du_{1} \tau_{n}(g_{0}, g_{1}, g'_{1}, g_{2}, \dots, g_{k}) .$$

$$(75)$$

By the Getzler calculus, in the $s \to 0$ limit, (75) becomes

$$\sum (-1)^{k} \beta^{-(k-1)/2} \left(\int_{0}^{\beta} \dots \int_{0}^{u_{k-1}} du_{k} \dots du_{1} \right) \int_{\widetilde{M}} \phi(x) \widehat{A}(x) \operatorname{Ch}(\widetilde{V})(x)$$

$$h(xg_{0})h(xg_{0}g_{1})dh(xg_{0}g_{1}g'_{1}) \wedge \dots \wedge dh(xg_{0}g_{1}g'_{1}g_{2} \dots g_{k-1})$$

$$\eta(g_{0}, g_{0}g_{1}, g_{0}g_{1}g'_{1}, \dots, g_{0}g_{1}g'_{1}g_{2} \dots g_{k-1}, e) =$$

$$(76)$$

$$\sum (-1)^{k} \beta^{(k+1)/2} / (k!)$$

$$\int_{\widetilde{M}} \phi \ \widehat{A}(\widetilde{M}) \wedge \operatorname{Ch}(\widetilde{V}) \wedge R_{g_{0}}^{*} h \wedge R_{g_{0}g_{1}}^{*} h \wedge R_{g_{0}g_{1}g'_{1}}^{*} dh \wedge \dots$$

$$\wedge R_{g_{0}g_{1}g'_{1}g_{2}\dots g_{k-1}}^{*} dh \ \eta(g_{0}, g_{0}g_{1}, g_{0}g_{1}g'_{1}, \dots, g_{0}g_{1}g'_{1}g_{2}\dots g_{k-1}, e) = (77)$$

$$\pm \beta^{(k+1)/2} / (k!) \int_{\widetilde{M}} \phi \ \widehat{A}(\widetilde{M}) \wedge \operatorname{Ch}(\widetilde{V}) \wedge \widetilde{\omega}' , \qquad (78)$$

where $\widetilde{\omega}' \in \Lambda^k(\widetilde{M})$ is given by

$$\widetilde{\omega}' = \sum R_{g_1}^* h \wedge R_{g_1'}^* h \wedge \ldots \wedge R_{g_k}^* dh \ \eta(e, g_1, g_1', g_2, \ldots, g_k) \ . \tag{79}$$

As $\eta(e, g_1, g'_1, g_2, \ldots, g_k)$ is antisymmetric in g_1 and g'_1 , it follows that $\widetilde{\omega}'$ vanishes. The same argument shows that all of the terms involving ∇^2 vanish.

LEMMA 3. The form $\widetilde{\omega}$ of (73) is a closed Γ -invariant form on \widetilde{M} .

Proof: $\widetilde{\omega}$ is clearly closed. For all $\gamma \in \Gamma$, we have

$$R_{\gamma}^{*}\widetilde{\omega} = \sum R_{\gamma g_{1}}^{*} dh \wedge \ldots \wedge R_{\gamma g_{k}}^{*} dh \, \eta(e, g_{1}, \ldots, g_{k}) =$$

$$\sum R_{g_{1}}^{*} dh \wedge \ldots \wedge R_{g_{k}}^{*} dh \, \eta(e, \gamma^{-1} g_{1}, \ldots, \gamma^{-1} g_{k}) =$$

$$\sum R_{g_{1}}^{*} dh \wedge \ldots \wedge R_{g_{k}}^{*} dh \, \eta(\gamma, g_{1}, \ldots, g_{k}).$$
(80)

From the cocycle condition, this equals

$$\sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_k}^* dh \left[\eta(e, g_1, \ldots, g_k) - \eta(e, \gamma, g_2, \ldots, g_k) + \ldots + (-1)^k \eta(e, \gamma, g_1, \ldots, g_{k-1}) \right].$$
(81)

But for all r,

$$\sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_k}^* dh \, \eta(e, \gamma, g_1, \ldots, \widehat{g}_r, \ldots, g_k) =$$

$$\pm \left(\sum_{g_r} R_{g_r}^* dh \right) \wedge \sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_{r-1}}^* dh \wedge R_{g_{r+1}}^* dh \wedge \ldots \wedge R_{g_k}^* dh \, \eta(e, \gamma, g_1, \ldots, \widehat{g}_r, \ldots, g_k)$$

$$(82)$$

and

$$\sum_{g_r} R_{g_r}^* dh = d \left(\sum_{g_r} R_{g_r}^* h \right) = d(1) = 0 . \tag{83}$$

Thus only the first term of (81) contributes, and so

$$R_{\gamma}^* \widetilde{\omega} = \sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_k}^* dh \ \eta(e, g_1, \ldots, g_k) = \widetilde{\omega}.$$
 (84)

End of Proof of Proposition 12: From Lemma 3, there is a closed form ω on M such that $\widetilde{\omega} = \pi^*(\omega)$. Then

$$\int_{\widetilde{M}} \phi \ \widehat{A}(\widetilde{M}) \wedge \operatorname{Ch}(\widetilde{V}) \wedge \widetilde{\omega} = \int_{M} \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \omega \ . \tag{85}$$

We now wish to show that the cohomology class of the closed form $\widetilde{\omega}$ is the pullback to M of the cohomology class $[\eta]$ on $B\Gamma$. To do so, it is convenient to first relax the smoothness conditions on $\widetilde{\omega}$.

Let h be a Lipschitz function on M of compact support with

$$\sum_{g} R_g^* h = 1 \ . {86}$$

As the distributional derivatives of a Lipschitz function are L^{∞} -functions, it makes sense to define $\widetilde{\omega}_h$ by

$$\widetilde{\omega}_h = \sum R_{g_1}^* dh \wedge \ldots \wedge R_{g_k}^* dh \, \eta(e, g_1, \ldots, g_k) , \qquad (87)$$

a closed Γ -invariant L^{∞} k-form on \widetilde{M} , and let $\omega_h \in \Lambda^k(M)$ be such that $\pi^*\omega_h = \widetilde{\omega}_h$. It is known that one can compute the de Rham cohomology of M using flat forms (i.e. L^{∞} -forms τ such that $d\tau$ is also L^{∞}) [Te].

Lemma 4. The cohomology class of ω_h is independent of h.

Proof: Let h' be another choice for h. Then

$$\widetilde{\omega}_{h} - \widetilde{\omega}_{h'} = \sum \left[R_{g_1}^* d(h - h') \wedge \ldots \wedge R_{g_k}^* dh + \ldots + R_{g_1}^* dh' \wedge \ldots \wedge R_{g_k}^* d(h - h') \right] \eta(e, g_1, \ldots, g_k) . \tag{88}$$

Put

$$\widetilde{\sigma}_r = \sum R_{g_1}^* dh' \wedge \dots R_{g_r}^* (h - h') \wedge \dots \wedge R_{g_k}^* dh \ \eta(e, g_1, \dots, g_k) \ , \tag{89}$$

a flat (k-1)-form on \widetilde{M} . Then

$$\widetilde{\omega}_h - \widetilde{\omega}_{h'} = d \left(\sum_{r=1}^k (-1)^{r+1} \widetilde{\sigma}_r \right).$$
 (90)

Furthermore, for all $\gamma \in \Gamma$,

$$R_{\gamma}^{*}\widetilde{\sigma}_{r} = \sum R_{g_{1}}^{*}dh' \wedge \dots R_{g_{r}}^{*}(h - h') \wedge \dots \wedge R_{g_{k}}^{*}dh \ \eta(\gamma, g_{1}, \dots, g_{k}) =$$

$$\sum R_{g_{1}}^{*}dh' \wedge \dots R_{g_{r}}^{*}(h - h') \wedge \dots \wedge R_{g_{k}}^{*}dh \left[\eta(e, g_{1}, \dots, g_{k}) - q_{k}(e, \gamma, g_{2}, \dots, g_{k}) + \dots + (-1)^{k} \eta(e, \gamma, g_{1}, \dots, g_{k-1}) \right].$$
(91)

As

$$\sum_{g} R_g^* dh = \sum_{g} R_g^* dh' = \sum_{g} R_g^* (h - h') = 0 , \qquad (92)$$

it follows that $\widetilde{\sigma}_r$ is Γ -invariant. Then $\omega - \omega' = d\sigma$, where $\sigma \in \Lambda^{k-1}(M)$ is such that

$$\pi^* \sigma = \sum_{r=1}^k (-1)^{r+1} \widetilde{\sigma}_r . \tag{93}$$

0

Let X be the simplicial complex whose ordered cochain complex is the standard complex of Γ [Br]. The k-simplices of X are (k+1)-tuples of distinct elements of Γ . We will take Γ to act on the right on X. Then the simplicial complex X/Γ is a model for $B\Gamma$. For a vertex v, let b_v denote the barycentric coordinate (on a simplex containing v) corresponding to v. Let j be the continuous piecewise linear function on X given by

$$j(x) = 0 \text{ if } x \in [g_0, \dots, g_k] \text{ and } g_0 \neq e, \dots, g_k \neq e$$

$$b_e \text{ if } x \in [g_0, \dots, g_k] \text{ and } g_i = e \text{ for some } i.$$

$$(94)$$

Lemma 5. $\sum_{g} R_g^* j = 1$.

Proof: Suppose that $x \in [g_0, \ldots, g_k]$. Then

$$\sum_{g} (R_g^* j)(x) = \sum_{g} j(xg) = \sum_{i=0}^k j(xg_i^{-1}) = \sum_{i=0}^k b_e(xg_i^{-1}) = \sum_{i=0}^k b_{g_i}(x) = 1.$$
(95)

Let $\widetilde{\omega}_i$ be the polynomial form on X, with coefficients in C, given by

$$\widetilde{\omega}_j = \sum R_{g_1}^* dj \wedge \ldots \wedge R_{g_k}^* dj \ \eta(e, g_1, \ldots, g_k) \ . \tag{96}$$

Let ω_i be the polynomial form on X/Γ such that $\widetilde{\omega}_i = \pi^* \omega_i$.

We define a k-cocycle $\widetilde{\eta} \in C^k(X;\mathbb{C})$ by putting

$$\langle \widetilde{\eta}, [\gamma_0, \gamma_1, \dots, \gamma_k] \rangle = \eta(\gamma_0^{-1}, \dots, \gamma_k^{-1}) .$$
 (97)

By the left invariance of the group cocycle η , $\tilde{\eta}$ is right-invariant on X. With abuse of notation, let η denote the corresponding simplicial cocycle on X/Γ .

PROPOSITION 13. As elements of $H^k(X/\Gamma; \mathbb{C})$, $[\omega_j] = [\eta]$.

Proof: Let A denote the de Rham map from polynomial forms on X to $C^*(X)$. Then

$$(A\omega_{j})[\gamma_{0},\ldots,\gamma_{k}] = \sum_{j} \eta(e,g_{1},\ldots,g_{k}) \left\langle R_{g_{1}}^{*}dj \wedge \ldots \wedge R_{g_{k}}^{*}dj, [\gamma_{0},\ldots,\gamma_{k}] \right\rangle = \sum_{j} \eta(e,\gamma_{i_{1}}^{-1},\ldots,\gamma_{i_{k}}^{-1}) \left\langle R_{\gamma_{i_{1}}^{-1}}^{*}dj \wedge \ldots \wedge R_{\gamma_{i_{k}}^{-1}}^{*}dj, [\gamma_{0},\ldots,\gamma_{k}] \right\rangle ,$$

$$(98)$$

where $i_1, \ldots, i_k \in \{0, 1, \ldots, k\}$. Now (98) equals

$$\sum \eta(e, \gamma_{i_1}^{-1}, \dots, \gamma_{i_k}^{-1}) \left\langle db_{\gamma_{i_1}} \wedge \dots \wedge db_{\gamma_{i_k}}, [\gamma_0, \dots, \gamma_k] \right\rangle . \tag{99}$$

A simple calculation gives that (99) in turn equals

$$\sum_{r=0}^{k} (-1)^{r+1} \eta(e, \gamma_0^{-1}, \dots, \widehat{\gamma_r}^{-1}, \dots, \gamma_k^{-1}) = \eta(\gamma_0^{-1}, \dots, \gamma_k^{-1}) . \tag{100}$$

Thus $A(\omega_j)$ is the cochain η . As the de Rham map is an isomorphism on complex cohomology [GM], the proposition follows.

Let ν be the canonical (up to homotopy) map $\nu: M \to B\Gamma$ classifying the universal cover \widetilde{M} , with lift $\widetilde{\nu}: \widetilde{M} \to E\Gamma$.

Proposition 14. As elements of $H^*(M, \mathbb{C}), [\omega] = \nu^*([\eta]).$

Proof: Let us triangulate M. Upon subdivision, we can homotop ν to be a simplicial map. Then with $h = \tilde{\nu}^* j$, we have $\omega_h = \nu^* \omega_j$. Thus as elements of $H^*(M, \mathbb{C})$,

$$[\omega_h] = [\nu^* \omega_j] = \nu^* [\omega_j] = \nu^* [\eta] .$$
 (101)

By Lemma 4, $[\omega_h]$ is independent of the particular choice of h, and the proposition follows.

COROLLARY 2. For all s > 0,

$$\langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau_{\eta} \rangle = \beta^{k/2}/(k!) \int_{M} \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \nu^{*}([\eta]) .$$
 (102)

Note. One can equally well pair $\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega})$ with any element of $HC^*(\mathfrak{B}^{\omega})$. Modulo growth conditions, there is a way of producing an element $\tau \in HC^k(\mathfrak{B}^{\omega})$ from a conjugacy class $\langle x \rangle$ of Γ and a k-cocycle of the group $\Gamma_x/\{x\}$, where Γ_x is the centralizer of x in Γ and $\{x\}$ is the subgroup generated by x [Bu]. (The cocycle (62) comes from the special case when $\langle x \rangle = \langle e \rangle$.) However, the cyclic cohomology classes corresponding to $\langle x \rangle \neq \langle e \rangle$ will pair with $\operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega})$ to give zero. The reason is that a cyclic k-cocycle τ based on $\langle x \rangle$ will have $\tau(g_0, \ldots, g_k) = 0$ if $g_0g_1 \ldots g_k \notin \langle x \rangle$. However, by the proof of Proposition 12, in the $s \to 0$ limit one sees that the terms with $g_0g_1 \ldots g_k \neq e$ do not contribute to $\langle \operatorname{ch}_{\beta,s}(\mathcal{E}^{\omega}), \tau \rangle$.

VI. Reduction to the Index Bundle

We first review some of the results of [MF]. Recall that Λ is the reduced group C^* -algebra of Γ . Let $\mathcal E$ denote the $\mathbb Z_2$ -graded Λ -bundle over M given by $\mathcal E = (\widetilde M \times_{\Gamma} \Lambda) \otimes E$. The L^2 -sections $\Gamma^0(\mathcal E)$ of $\mathcal E$ form a right Λ -Hilbert module. The Dirac-type operator $\widetilde D$ is an odd densely-defined unbounded operator on $\Gamma^0(\mathcal E)$. One can find finitely-generated right projective Λ -Hilbert submodules F^{\pm} of $\Gamma^0(\mathcal E^{\pm})$ and complementary Λ -Hilbert modules $G^{\pm} \subset \Gamma^0(\mathcal E^{\pm})$ such that $\widetilde D$ is diagonal with respect to the decomposition $\Gamma^0(\mathcal E^{\pm}) = G^{\pm} \oplus F^{\pm}$, and writing $\widetilde D = \widetilde D_G \oplus \widetilde D_F$, in addition $\widetilde D_G: G^{\pm} \to G^{\mp}$ is invertible. By definition, the index of $\widetilde D$ is

$$\operatorname{Index}(\widetilde{D}) \equiv [F^+] - [F^-] \in K_0(\Lambda) ; \qquad (103)$$

this is independent of the choice of F^{\pm} .

Now suppose that \mathfrak{B}^{∞} is a densely-defined subalgebra of Λ which is stable with respect to the holomorphic functional calculus on Λ , and $\mathfrak{B}^{\omega} \subset \mathfrak{B}^{\infty} \subset \Lambda$. A standard result in K-theory is that $K_0(\Lambda) \cong K_0(\mathfrak{B}^{\infty})$ [Bo, Appendice]. There is a Chern character $\operatorname{Ch}_{\beta}$ from $K_0(\mathfrak{B}^{\infty})$ to $\overline{HC_*(\mathfrak{B}^{\infty})}$, the reduced cyclic homology of \mathfrak{B}^{∞} [Ka]. Let η be a group k-cocycle on $\mathbb{C}\Gamma$ which extends to an element τ_{η} of the cyclic cohomology of \mathfrak{B}^{∞} . By the explicit formula (62), τ_{η} is a reduced cyclic cohomology class if k > 0.

We will sketch a proof of the following proposition. Many of the details are as in [Bi].

Proposition 15.

$$\left\langle \operatorname{Ch}_{\beta}\left(\operatorname{Index}(\widetilde{D})\right), \tau_{\eta} \right\rangle = \beta^{k/2}/(k!) \int_{M} \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \nu^{*}([\eta]).$$

Proof: Define \mathcal{E}^{∞} to be $(\widetilde{M} \times_{\Gamma} \mathfrak{B}^{\infty}) \otimes E$. An examination of the proof of [MF] shows that F^{\pm} and G^{\pm} can be chosen to be of the form $F^{\pm} = \mathcal{F}^{\pm} \otimes_{\mathfrak{B}^{\infty}} \Lambda$ and $G^{\pm} = \mathcal{G}^{\pm} \otimes_{\mathfrak{B}^{\infty}} \Lambda$, where \mathcal{F}^{\pm} and \mathcal{G}^{\pm} are subspaces of $\Gamma^{\infty}(\mathcal{E}^{\infty})$. (This uses the fact that \mathfrak{B}^{∞} is stable with respect to the holomorphic functional calculus in Λ .) Write $\widetilde{D}_{\mathcal{F}^{\pm}}$ and $\widetilde{D}_{\mathcal{G}^{\pm}}$ for the restrictions of \widetilde{D} to \mathcal{F}^{\pm} and \mathcal{G}^{\pm} respectively. Put

$$\mathcal{H}^{\pm} = \mathcal{G}^{\pm} \oplus \mathcal{F}^{\pm} \oplus \mathcal{F}^{\mp}. \tag{104}$$

For $\alpha \in \mathbb{C}$, define $R_{\alpha}^{\pm} : \mathcal{H}^{\pm} \to \mathcal{H}^{\mp}$ by

$$R_{\alpha}^{\pm} = \begin{pmatrix} \widetilde{D}_{\mathcal{G}^{\pm}} & 0 & 0\\ 0 & \widetilde{D}_{\mathcal{F}^{\pm}} & \alpha\\ 0 & \alpha & 0 \end{pmatrix} . \tag{105}$$

We have that $\widetilde{D}_{\mathcal{G}^{\pm}}$ is invertible. Put

$$S_{\alpha}^{\pm} = \begin{pmatrix} \tilde{D}_{\mathcal{F}^{\pm}} & \alpha \\ \alpha & 0 \end{pmatrix} \tag{106}$$

and let

$$S_{\alpha}^{\pm} \otimes_{\mathfrak{B}^{\infty}} \Lambda : F^{\pm} \oplus F^{\mp} \to F^{\mp} \oplus F^{\pm}$$
 (107)

be the extension to a bounded operator on finitely-generated Hilbert Λ modules. As \widetilde{D}_F is a bounded operator, it follows that $S^{\pm}_{\alpha} \otimes_{\mathfrak{B}^{\infty}} \Lambda$ is invertible for α large. Then the fact that \mathfrak{B}^{∞} is stable under the holomorphic

functional calculus in Λ implies that S_{α}^{\pm} is also invertible for α large. Thus R_{α}^{\pm} is invertible for α large. We define $\exp(-\operatorname{TR}_{\alpha}^2)$ by the Duhamel expansion in α . As R_{α} differs from $\widetilde{D} \oplus 0$ by a finite-rank operator in the sense of [Kas], there is no problem in showing that $\exp(-\operatorname{TR}_{\alpha}^2)$ is well-defined.

Extend the \mathfrak{B}^{ω} -connection ∇ on \mathcal{E}^{ω} to a \mathfrak{B}^{∞} -connection on

$$\mathcal{E}^{\infty} = \mathcal{E}^{\omega} \otimes_{\mathfrak{B}^{\omega}} \mathfrak{B}^{\infty}. \tag{108}$$

Let $\nabla_{\mathcal{F}}$ be a \mathfrak{B}^{∞} -connection on \mathcal{F} and let

$$\nabla' = \nabla \oplus \nabla_{\mathcal{F}} \tag{109}$$

be the sum connection on \mathcal{H} . Define the Chern character

$$\operatorname{ch}_{\beta,s,\alpha}(\mathcal{H}) = \operatorname{STR} \exp\left(-\beta(\nabla' + sR_{\alpha})^{2}\right) \in \overline{\widehat{\Omega}}(\mathfrak{B}^{\infty})$$
 (110)

by a Duhamel expansion in ∇' . For $\alpha = 0$, we have

$$\operatorname{ch}_{\beta,s,0}(\mathcal{H}) = \operatorname{ch}_{\beta,s}(\mathcal{E}^{\infty}) - \operatorname{STR} \exp(-\beta \nabla_{\mathcal{F}}^{2}) . \tag{111}$$

Now STR $\exp(-\beta \nabla_{\mathcal{F}}^2) \in \widehat{\Omega}(\mathfrak{B}^{\infty})$ represents $\operatorname{Ch}_{\beta}([\mathcal{F}])$ [Ka]. If we can show that $\operatorname{ch}_{\beta,s,0}(\mathcal{H})$ is zero in $\overline{H}_{*}(\mathfrak{B}^{\infty})$ then we will have that as classes in $\overline{H}_{*}(\mathfrak{B}^{\infty})$,

$$\operatorname{ch}_{\beta,s}(\mathcal{E}^{\infty}) = \operatorname{STR} \exp(-\beta \nabla_{\mathcal{F}}^{2}) = \operatorname{Ch}_{\beta}([\mathcal{F}]) = \operatorname{Ch}_{\beta}\left(\operatorname{Index}(\widetilde{D})\right), \quad (112)$$

and the proposition will follow.

A standard homotopy argument shows that the class of $\mathrm{ch}_{\beta,s,\alpha}(\mathcal{H})$ in $\overline{H}_*(\mathfrak{B}^{\infty})$ is independent of α . Take α large enough that R_{α} is invertible.

We define a pseudodifferential calculus as in [MF], except that the symbol $\sigma(m,\xi)$ will take value in End $\mathfrak{B}^{\infty}(\mathcal{E}_m^{\infty})$. Then R_{α} is an elliptic first-order ψ do. (In terms of the "fibration" picture, it corresponds to a smooth family of elliptic first-order vertical ψ do's.) As in the usual calculus of ψ do's, R_{α} has a parametrix P_{α} , an order -1 ψ do, such that

$$I - R_{\alpha}P_{\alpha} = K_{1\alpha} \text{ and } I - P_{\alpha}R_{\alpha} = K_{2\alpha} , \qquad (113)$$

where $K_{1\alpha}$ and $K_{2\alpha}$ are smoothing operators. It follows that

$$(R_{\alpha})^{-1} = P_{\alpha} + K_{2\alpha}(R_{\alpha})^{-1} \tag{114}$$

is also an order -1 ψ do.

Define a connection $\nabla''_{\mathcal{H}^-}$ on \mathcal{H}^- by

$$\nabla_{\mathcal{H}^{-}}^{"} = (R_{\alpha}^{-})^{-1} \nabla_{\mathcal{H}^{+}}^{\prime} R_{\alpha}^{-}$$
 (115)

and define ∇'' to be $\nabla'_{\mathcal{H}^+} \oplus \nabla''_{\mathcal{H}^-}$. Then

$$\nabla_{\mathcal{H}^+}^{\prime\prime} - \nabla_{\mathcal{H}^+}^{\prime} = 0 \tag{116}$$

and

$$\nabla_{\mathcal{H}^{-}}^{"} - \nabla_{\mathcal{H}^{-}}^{'} = (R_{\alpha}^{-})^{-1} \left(\nabla_{\mathcal{H}^{+}}^{'} R_{\alpha}^{-} - R_{\alpha}^{-} \nabla_{\mathcal{H}^{+}}^{'} \right)$$
 (117)

is an order -1 operator. We have a homotopy of connections on H from ∇' to ∇'' given by $\nabla' + u(\nabla'' - \nabla')$, $u \in [0,1]$. It follows as in [Bi, Prop. 2.10] that $\mathrm{ch}_{\beta,s,\alpha}(H) = \mathrm{STR} \exp \left(-\beta(\nabla'' + sR_{\alpha})^2\right)$ represents the same class in $\overline{H}_*(\mathfrak{B}^{\infty})$ as $\mathrm{STR} \exp \left(-\beta(\nabla'' + sR_{\alpha})^2\right)$.

We claim that if STR $\exp(-\beta(\nabla'' + sR_{\alpha})^2)$ is expanded in ∇'' , the terms vanish algebraically. To see this formally, write $\nabla'' + sR_{\alpha}$ in terms of the decomposition $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ as

$$\nabla'' + sR_{\alpha} = \begin{pmatrix} \nabla'_{\mathcal{H}^{+}} & sR_{\alpha}^{-} \\ sR_{\alpha}^{+} & (R_{\alpha}^{-})^{-1}\nabla'_{\mathcal{H}^{+}}R_{\alpha}^{-} \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & s^{-1}(R_{\alpha}^{-})^{-1} \end{pmatrix} \begin{pmatrix} \nabla'_{\mathcal{H}^{+}} & I \\ s^{2}R_{\alpha}^{-}R_{\alpha}^{+} & \nabla'_{\mathcal{H}^{+}} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & s(R_{\alpha}^{-}) \end{pmatrix}$$

$$(118)$$

and so formally,

$$STR \exp \left(-\beta (\nabla'' + sR_{\alpha})^{2}\right) = STR \exp \left(-\beta \begin{pmatrix} \nabla'_{\mathcal{H}^{+}} & I\\ s^{2}R_{\alpha}^{-}R_{\alpha}^{+} & \nabla'_{\mathcal{H}^{+}} \end{pmatrix}^{2}\right)$$

$$\in \overline{\widehat{\Omega}}_{*}(\mathfrak{B}^{\infty}) . \tag{119}$$

However, expanding (119) in $\nabla'_{\mathcal{H}^+}$, one finds that (119) vanishes for algebraic reasons.

(To see this last point, consider an analogous statement in the finitedimensional case. For $A, B \in M_N(\mathbb{C})$ put

$$\mathbf{M} = \begin{pmatrix} A & I \\ B & A \end{pmatrix} \in M_{2N}(\mathbb{C}) \ . \tag{120}$$

Then $det(M) = det(A^2 - B)$ and if $A^2 - B$ is invertible,

$$\mathbf{M}^{-1} = \begin{pmatrix} (A^2 - B)^{-1}A & -(A^2 - B)^{-1} \\ I - A(A^2 - B)^{-1}A & A(A^2 - B)^{-1} \end{pmatrix} . \tag{121}$$

Thus Str $M^{-1} = 0$. If $\lambda \notin \text{Spec}(M)$, by changing A to $A - \lambda I$, we obtain that $\text{Str}(M - \lambda I)^{-1} = 0$. Then by the functional calculus, if f is a holomorphic function in a neighborhood of Spec(M), Str f(M) = 0.)

This formal argument can be made rigorous as in [Bi, Prop. 2.17].

Note. If M is odd-dimensional then one can use Quillen's formalism [Q] to define the odd Chern character

$$\operatorname{ch}_{\beta,s}(\mathcal{E}^{\infty}) = \operatorname{Tr}_{\sigma} \exp\left(-\beta(\nabla + sQ\sigma)^{2}\right) \in \overline{\widehat{\Omega}}_{odd}(\mathfrak{B}^{\infty}) . \tag{122}$$

The operator \widetilde{D} gives an element $\operatorname{Index}(\widetilde{D})$ of $K_1(\mathfrak{B}^{\infty})$ [Kas]. Using a suspension argument as in [BF], one can show that Proposition 15 also holds in the odd case.

COROLLARY 3 [CM]. If Γ is a hyperbolic group in the sense of Gromov [GH] then for all $[\eta] \in H^*(\Gamma; \mathbb{C})$, the higher-signature $\int_M L(M) \wedge \nu^*([\eta])$ is an (orientation-preserving) homotopy invariant of M.

Proof: Let \mathfrak{B}^{∞} be the algebra

$$\mathfrak{B}^{\infty} = \left\{ A \in \Lambda : \widetilde{\partial}^{k}(A) \text{ is bounded for all } k \in \mathbb{N} \right\}, \tag{123}$$

where $\tilde{\partial}$ is the operator of [CM, p. 383]. By [CM, p. 385], if $[\eta] \in H^*(\Gamma; \mathbb{C})$ then $[\eta]$ can be represented by a group cocycle η such that τ_{η} extends to a cyclic cocycle on \mathfrak{B}^{∞} . Letting \tilde{D} be the signature operator, the result of Mishchenko and Kasparov [Mi, Kas, HS] on the homotopy invariance of

$$\operatorname{Index}(\widetilde{D}) \in K_0(\Lambda) \cong K_0(\mathfrak{B}^{\infty}) \tag{124}$$

along with Corollary 2 implies the result. (As usual when dealing with the signature operator, it is irrelevant whether or not M is spin.)

VII. Bivariant Extension

Let \mathfrak{A} be the C^* -algebra C(M). Then $(\Gamma^0(\mathcal{E}), \widetilde{D})$ forms an unbounded (\mathfrak{A}, Λ) Kasparov module, and so gives an element of $KK(\mathfrak{A}, \Lambda)$ [BJ]. A bivariant Chern character $\mathrm{ch}_{\beta,s}$ was defined in [Lo1] in the case of finite-dimensional projective modules, and it was indicated that the bivariant Chern character should be well-defined whenever there is a good notion of trace on the Hilbert modules. Such is the case here. The bivariant Chern character is a combination of Quillen's superconnection Chern character [Q] and the entire cyclic cocycle of [JLO]. In the setup of Section IV, given $\eta \in Z^k(\Gamma; \mathbb{C})$ such that τ_η pairs with \mathfrak{B}^{∞} , there is a corresponding entire cyclic cocycle $(\mathrm{ch}_{\beta,s}, \tau_\eta) \in C^*_{\epsilon}(C^{\infty}(M))$. It is given explicitly as follows:

DEFINITION: For $a_0, \ldots, a_m \in C^{\infty}(M)$,

$$\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle (a_0, \dots, a_m) = \beta^{-m/2} \left\langle \int_0^{\beta} \dots \int_0^{u_{m-1}} \operatorname{STR} a_0 \exp(-u_1 D_s^2) \right.$$

$$[D_s, a_1] \exp(-u_2 D_s^2) [D_s, a_2] \dots [D_s, a_m] \exp\left(-(\beta - u_1 - \dots - u_m) D_s^2\right)$$

$$du_m \dots du_1, \tau_{\eta} \right\rangle. \tag{125}$$

(Note that the $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ (1) of equation (125) equals the $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ of Proposition 12.)

As before, the class of $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ in $H_{\epsilon}^{*}(C^{\infty}(M))$ is independent of s. As in Section V, we can take the $s \to 0$ limit to obtain that $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ is cohomologous to the entire cyclic cocycle $\langle \operatorname{ch}_{\beta,0}, \tau_{\eta} \rangle$ given by

$$\langle \operatorname{ch}_{\beta,0}, \tau_{\eta} \rangle (a_0, \dots, a_m) = \beta^{k/2} / (k!m!) \int_M \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \omega \wedge a_0 da_1 \wedge da_2 \wedge \dots \wedge da_m .$$
(126)

Here ω is the differential form of (65).

If $W \in K^0(M)$ is represented by a projection $p \in M_r(C^\infty(M))$, let $\operatorname{Ch}_*(p)$ be the entire cyclic cycle of [GS]. Then we obtain that $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ ($\operatorname{Ch}_*(p)$) is proportionate to $\int_M \widehat{A}(M) \wedge \operatorname{Ch}(V) \wedge \omega \wedge \operatorname{Ch}(W)$. Note that in the case of the signature operator, the entire cyclic cohomology class of $\langle \operatorname{ch}_{\beta,s}, \tau_{\eta} \rangle$ is not a homotopy invariant, as otherwise one could take $[\eta]$ to be a 0-group cocycle and conclude that the rational L-class is a homotopy invariant, which is false.

References

- [AS1] M. ATIYAH, I. SINGER, The index of elliptic operators: III, Ann. Math. 87 (1968), 546-604.
- [AS2] M. ATIYAH, I. SINGER, The index of elliptic operators: IV, Ann. Math. 93 (1971), 119-138.
- [At] M. ATIYAH, Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32/33 (1976), 43-72.
- [Bi] J.-M. BISMUT, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Inv. Math. 83 (1986), 91-151.
- [BF] J.-M. BISMUT, D. FREED, The analysis of elliptic families II, Comm. Math. Phys. 107 (1986), 103-163.
- [BJ] S. BAAJ, P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules Hilbertiens, C.R. Acad. Sci. Paris 296, Ser. I (1983), 875-878.
- [Bo] J.-B. Bost, Principe d'Oka, K-théorie et systèmes dynamiques noncommutatifs, Inv. Math. 101 (1990), 261; and references therein.
- [Br] K. Brown, Cohomology of Groups, Springer-Verlag, New York (1982).
- [Bu] D. Burghelea, The cyclic homology of group rings, Comm. Math. Helv. 60 (1985), 354-365.
- [CGT] J. CHEEGER, M. GROMOV, M. TAYLOR, Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53.
- [CM] A. CONNES, H. MOSCOVICI, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), 345-388.
- [Co1] A. CONNES, Noncommutative differential geometry", Publ. Math. IHES 62 (1985), 41-144.
- [Co2] A. Connes, Entire cyclic cohomology of Banach algebras and characters of θ -summable Fredholm modules, K-Theory 1 (1988), 519-548.
- [Co3] A. Connes, Cyclic cohomology and noncommutative differential geometry, Proc. ICM 1986 at Berkeley, AMS (1987), 879-889; and references therein.
- [G] E. GETZLER, Pseudodifferential operators on supermanifolds and the Atiyah Singer index theorem, Comm. Math. Phys. 92 (1983), 163-178.
- [GH] E. GHYS, P. DE LA HARPE, EDS., Sur les Groupes Hyperboliques D'après Mikhael Gromov, Birkhauser, Boston (1990).
- [GM] P. GRIFFITHS, J. MORGAN, Rational Homotopy Theory and Differential Forms, Birkhauser, Boston (1981).
- [GS] E. GETZLER, A. SZENES, On the Chern character of a theta-summable Fredholm module, J. Func. Anal. 84 (1989), 343.
- [Hi] N. Higson, A primer on KK-theory, in "Operator Theory, Operator Algebras and Applications", Proc. Symp. Pure Math. 51, AMS (1990), 239-283.
- [HS] M. HILSUM, G. SKANDALIS, Invariance par homotopie de la signature à coefficients dans un fibré presque plat, preprint, Collège de France (1990).
- [JLO] A. JAFFE, A. LESNIEWSKI, K. OSTERWALDER, Quantum K-theory. I. The Chern character, Comm. Math. Phys. 118 (1988), 1-14.
- [Ka] M. KAROUBI, Homologie Cyclique et K-théorie, Astérisque 149 (1987).
- [Kas] G. Kasparov, Operator K-theory and its applications: elliptic operators, group representations, higher signatures, C*-extensions, Proc. ICM 1983

- at Warsaw, North-Holland, Amsterdam (1984), 987-1000; and references therein
- G. KASPAROV, Equivariant KK-theory and the Novikov conjecture, Inv. Math. 91 (1988), 147-201.
- [Lo1] J. Lott, Superconnections and noncommutative de Rham homology, preprint (1990).
- [Lo2] J. Lott, Heat kernels on covering spaces and topological invariants, to appear, J. Diff. Geom.
- [Lu] G. Lusztig, Novikov's higher signature and families of elliptic operators, J. Diff. Geom. 7 (1971), 229-256.
- [Mal] A. Mallios, Topological algebras selected topics, North-Holland, Amsterdam (1986).
- [Mi] A. MISHCHENKO, C*-algebras and K-theory, Springer LNM 763 (1974), 262-274.
- [MF] A. MISHCHENKO, A. FOMENKO, The index of elliptic operators over C*-algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 831-859.
- [Mo] H. Moscovici, Cyclic cohomology and invariants of multiply-connected manifolds, Proc. ICM 1990 at Kyoto, to appear; and references therein.
- [No] S. Novikov, Pontryagin classes, the fundamental group and some problems of stable algebras, in "Essays on Topology and Related Topics, Mémoires Dédiés à Georges de Rham", Springer, Berlin (1969), 147-155.
- [Qu] D. QUILLEN, Superconnections and the Chern character, Topology 24 (1985), 89-95.
- [Ro] J. ROSENBERG, C*-algebras, positive scalar curvature and the Novikov conjecture, Publ. Math. IHES 58 (1983), 197-212.
- [Te] N. TELEMAN, The index of signature operators on Lipschitz manifolds, Publ. Math. IHES 58 (1983), 39-78.

Submitted: October 1991

John Lott
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109
e-maik lott@math.lsa.umich.edu