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This paper presents a hierarchical Bayes circumplex model for ordinal ratings data. The circumplex
model was proposed to represent the circular ordering of items in psychological testing by imposing
inequalities on the correlations of the items. We provide a specification of the circumplex, propose
identifying constraints and conjugate priors for the angular parameters, and accommodate theory-driven
constraints in the form of inequalities. We investigate the performance of the proposed MCMC algorithm
and apply the model to the analysis of value priorities data obtained from a representative sample of Dutch
citizens.
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1. Introduction

A classical finding in psychometrics is that similarity judgments of different colors can be
represented in a two-dimensional space in the form of Newton’s color circle (Shepard, 1962a,
1962b). Based on this work, similar circular representations proved useful for describing variations
among experiences or judgments in a wide range of psychological and related disciplines. For
example, affective states are commonly depicted by a circular structure based on the dimensions
of valence and arousal (Russell & Carroll, 1999). Numerous other applications can be found in
personality and social psychology (Lippe, 1995; Plutchik & Conte, 1997). The circular ordering of
the responses implies that the elements of the corresponding correlation matrix follow a so-called
circumplex structure with correlations first decreasing but then increasing as one moves from
the main diagonal. Guttman (1954) and Anderson (1960) suggested stochastic processes on the
perimeter of the circle that produce positive correlations obeying the circumplex structure with,
respectively, moving average and Markov properties. Models that allow for negative correlations
were developed by Cudeck (1986) and by Wiggins, Steiger, and Gaelick (1981). Browne (1992)
proposed an extension of Anderson’s (1960) model that allows for negative correlations.

We extend the work by Browne (1992) as follows. First, we introduce a Bayesian specifi-
cation of the circumplex for ratings data and present identifying constraints and conjugate priors
for the angular parameters. Second, we specify inequality constraints on blocks of variables
in the circumplex as defined by psychological theories. Third, we accommodate idiosyncratic
response-scale usage by persons (see, e.g., Rossi, Gilula, & Allenby, 2001) that, if not ac-
counted for, may substantially distort the derived circumplex. Since surveys are often burdened
with item nonresponse, we also capitalize on the Markov Chain Monte Carlo (MCMC) estima-
tion algorithm to impute missing values. As a result, our approach facilitates powerful tests of
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psychological theories based on a circumplex structure and controls for a number of nuisance
effects.

The next section describes the proposed model and discusses estimation and inference issues.
In section 3, the model is fitted to value ratings collected in The Netherlands, and it is investigated
whether the underlying data structure is consistent with the prominent circumplex value theory
of Schwartz and Bilsky (1987, 1990). Section 4 summarizes the paper.

2. Model

Subject i responds Wi,j to item j on an rating scale with H ordered categories. Such
scales are very common in psychology and other social science applications. We assume that the
observed response is driven by a latent variable Yi,j falling between two cutpoints:

wi,j = k iff ci,k−1 < yi,j < ci,k for k = 1, . . . , H,

where the cutpoints {ci,k} may vary from person to person. We consider it important to estimate
person-specific cutpoints, since response scale bias has been reported to be highly idiosyncratic
(Rossi et al., 2001). The cutpoints are ordered: ci,k−1 < ci,k , and the first two and last two cutpoints
are fixed without loss of generality: ci,0 = −∞, ci,1 = −1, ci,H−1 = 1, ci,H = ∞. The probability
of the ordinal response is

Pr(Wi,j = k) =
∫ ci,k

ci,k−1

f (yi,j ) dy for k = 1, . . . , H, (1)

where f is the density of Yi,j .
Browne (1992) proposed using trigonometric series to model the circumplex correlations

between items and developed a corresponding factor analytical model. We similarly specify a
random effects model for the latent response variable Yi,j to describe individual differences for
person i and item j :

Yi,j = µj + φi + αi sin(θj ) + βi cos(θj ) + εi,j

for i = 1, . . . , n and j = 1, . . . , J ; θ1 = 0; and 0 ≤ θj < 2π. (2)

The mean, latent response for item j is µj ; φi is a subject-specific random effect that captures
scale-usage effects, and αi sin(θj ) + βi cos(θj ) is a subject by item interaction term that provides
circumplex correlations. The error terms, {εi,j }, are mutually independent, normally distributed
random error terms with zero mean, and item-specific variances: var (εi,j ) = σ 2

j .
The model can be viewed as a three-factor model where φi, αi , and βi are subject-specific

factor scores. The first factor score φi is a random effect that takes into account subject-specific
scale-usage effects. These effects are artifacts of the measurement system and usually do not have
substantive, field-dependent implications: they reflect that subjects use systematically different
parts of the ordinal measurement scale. Respondents with a positive φi tend to use the upper
end of the rating scale, and respondents with a negative φi tend to use the lower end. We
will see in the application that ignoring scale-usage effects can severely distort the estimated
circumplex.

The other two factor scores αi and βi are individual-level random coefficients that have
substantive meaning for the psychological phenomenon under investigation: they represent bipolar
latent constructs. Their item-specific loadings, sin(θj ) and cos(θj ), are constrained to the unit
circle; thus, they are expressed in polar coordinates. With the appropriate assumptions about
these random effects and the constrained loadings, interitem correlations, after adjusting for
scale-usage bias, have a circumplex structure.
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We assume that the random effects, (φi, αi, βi), are mutually independent and normally
distributed with zero means and the following variances: var (φi) = λ2; var (αi) = τ 2

a ; and
var (βi) = τ 2

b . Circumplex correlations are obtained when τa = τb = τ . If these variances are un-
equal, then one can reparametrize the subject by item interactions as αiτa sin(θj ) + βiτb cos(θj )
were αi and βj are factor scores with mean 0 and variance 1. Then the loadings τa sin(θj )
and τb cos(θj ) are constrained to the ellipse. In the empirical application, we will compare the
circumplex model to this more general one.

After integrating out the random effects, the variance and covariances of the latent variables
for circumplex correlations (τa = τb = τ ) for the items conditional on the angles are

var (Yi,j ) = λ2 + τ 2
[

sin(θj )2 + cos(θj )2
] + σ 2

j

= λ2 + τ 2 + σ 2
j , (3)

cov(Yi,j , Yi,k) = λ2 + τ 2[sin(θj ) sin(θk) + cos(θj ) cos(θk)]

= λ2 + τ 2 cos(θj − θk). (4)

This covariance is a special case of Browne’s (1992) approximation using first-order, trigonomet-
ric polynomials. In the classical analysis of random-effects models, the variances and covariances
in equations (3) and (4) determine the error covariance matrix in the log-likelihood function. In
Bayesian inference, the random effects (φi, αi, βi) are frequently treated as unknown parameters
that are estimable: they are not just nuisance parameters.

2.1. Identifiability

The part of the circumplex correlation function that depends on item angles, τ 2 cos(θj − θk)
from equation (4), depends only on the differences in the angles so that the origin is arbitrary. Thus,
we fix θ1 to 0, but this alone does not identify the model, which can be seen as follows. Define
another set of angles as ψ1 = 0 and ψj = 2π − θj for j ≥ 2. Because sin(2π − θ ) = − sin(θ ) and
cos(2π − θ ) = cos(θ ), the likelihoods L[α, β, θ ] and L[−α, β,ψ] are equal. Consequently, in
addition to establishing the origin with θ1 = 0, we also need to establish the “positive” directions
for the angles.

The positive direction is implicitly identified when using block constraints, as defined in
the next section, where blocks of angles are consecutively ordered. Without block constraints,
we identify the positive directions by imposing the condition that one of the remaining angles,
say θ2, is between 0 and π . In theory, one can choose any angle, other than θ1, to constrain
the model. In practice, if the item selected, say item 2, has an angle close to zero (high pos-
itive correlation with item 1), then the model is “nearly” unidentified, which can be seen by
defining ψj = 2π − θj + 2θ2 for j > 1. Then cos(ψj − ψk) = cos(θj − θk) for j and k > 1,
and cos(ψj − 0) = cos(θj − 2θ2) ≈ cos(θj ) if θ2 is close to zero. Thus, we recommend se-
lecting an item for the 0 to π constraint that does not have a large positive correlation with
item 1.

We selected the cosine function in the covariance terms to represent the circumplex, but other
functions (see Browne, 1992) could be used as well. A function satisfies the circumplex properties
for correlations if it is even, continuous, monotonically decreasing on (0, π ), monotonically
increasing on (π, 2π ) with maxima of 1 at 0 and 2π , and a minimum of −1 at π . We choose
the cosine without loss of generality, however, since the angles and trigonometric function are
simultaneously unidentified for a finite set of items. If another function f has the circumplex
properties, then it is possible to define a new set of angles φ such that (φ, f ) and (θ, cos) result
in the same covariances and likelihoods for a finite set of items. However, strictly speaking,
the invariance only holds with respect to the likelihood. For the posterior distributions of the
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parameters for the two models defined through (φ, f ) and (θ, cos) to be equivalent, the prior for θ

would have to transformed into an equivalent prior for φ. In practice, since the prior specification
is often chosen as a compromise between realism and convenience, the transformed prior for φ

would rarely match a preferred direct specification of it. For example, an uninformative prior for
θ may not result in an uninformative prior for φ. 1

2.2. Block Constraints on the Angles

Substantive theory often postulates that subsets of angles in the circumplex, characterizing
the items in a certain domain, are less than or greater than other subsets of angles in other domains,
thus imposing blocks of constraints on the directions {θj }. In psychological theories on personality
and value priorities, such domains, consisting of groups of substantively homogeneous items,
are often distinguished. Suppose that there are K blocks of constraints, and let Bk be the set of
indices for the kth block. We are interested in specifying prior constraints on the order of these
blocks of angles. Without loss of generality we assume the blocks are ordered from 1, . . . , K

with θ1 = 0 belonging to the first block.
Expressing the block constraints is fairly straightforward, except for the fact that angles in

the first block can be on both sides of the origin. For blocks 2 to K , define the minimum and
maximum angles:

Bk = min{θj : j ∈ Bk} and Bk = max{θj : j ∈ Bk} for k = 2, . . . , K.

The “minimum” and “maximum” angles for the first block require some care because angles
in the first block can be on both sides of the zero value:

B1 =
{

2π if BK > max{θj : j ∈ B1},
min{θj : j ∈ B1 and θj > BK} if BK < max{θj : j ∈ B1},

B1 = max{θj : j ∈ B1 and θj < B2}.
That is, B1 is the smallest angle in the first block that is larger than the angles in the Kth block.
If no angle satisfies this requirement, it is defined to be 2π . B1 is the largest angle in the first
block that is smaller than the angles in the second block. With this nonstandard definition of
“minimum” and “maximum” for the first block, we obtain the ordering

0 ≤ B1 < B2 < B2 < · · · < BK < BK < B1 ≤ 2π.

These constraints are additional to θ1 = 0. In the presence of block constraints, one does not need
to constrain the angle of an item to be between 0 and π in order to establish the positive direction:
it is implicit in the blocking structure.

2.3. Distributions

Introducing matrix notation simplifies defining the circumplex model in equation (2) and its
distributions. The n × J matrix for the latent scores {yi,j } (subject i and item j ) from the cutpoint
model is

Y =




y1,1 · · · y1,J

...
. . .

...

yn,1 · · · yn,J


 =




Y ′
1,•
...

Y ′
n,•


 = [Y •,1 . . . Y •,J ],

1We thank one anonymous reviewer for pointing this out to us.
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where

Y i,• = J vector of latent item scores for subject i,

Y •,j = n vector of latent subject scores for item j .

The n × J matrix of error terms is

E =




ε1,1 · · · ε1,J

...
. . .

...

εn,1 · · · εn,J


 =




ε′
1
...

ε′
n


 .

The item specific J–vectors for means and angles are

µ =




µ1
...

µJ


 , θ =




θ1
...

θJ


 , XS =




sin(θ1)
...

sin(θJ )


 , and XC =




cos(θ1)
...

cos(θJ )


 .

The J × 2 factor loading matrix is represented as

X = [XS XC].

The J × J diagonal matrix of error variances is

� =




σ 2
1 · · · 0
...

. . .
...

0 · · · σ 2
J


 .

Factor scores and scale-usage effects are collected into n-vectors:

α =




α1
...

αn


 , β =




β1
...

βn


 , and φ =




φ1
...

φn


 .

With these definitions, equation (2) becomes

Y = φ1′
J + 1nµ

′ + αX′
S + βX′

C + E,

where 1K is a K vector of ones.
We use the bracket notation “[•]” of Gelfand and Smith (1990) to designate a distribution

or density for a random variable. The argument in the brackets identifies the distribution; for
example, [X] and [Y |X] are the distributions of X and Y given X, respectively. The model and
analysis require four distributions: uniform, normal, inverted gamma, and univariate extended
Von Mises. The densities for the first three, standard distributions are displayed below to establish
notation:

[v|a, b] = U (v|a, b) = (b − a)−1 for a ≤ v ≤ b,

[x|µ,�] = Nm(x|µ,�) = (2π )−1/2|�|−1/2 exp
[ − 1/2(x − µ)′�−1(x − µ)

]
,

[y|a, b] = IG(y|a, b) = ba

�(a)
y−(a+1) exp(−b/y) for y > 0.

The density for the extended Von Mises distribution is

[θ |d,Q, C] = V M(θ |d,Q, C) ∝ exp

{
−1

2
[ξ (θ ) − d]′Q[ξ (θ ) − d]

}
χ (θ ∈ C),
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FIGURE 1.
Extended Von Mises distribution.

where ξ (θ ) = [sin(θ ), cos(θ )]′, d is a two-dimensional vector, Q is a 2 × 2 matrix, χ (•) is the
indicator function, and C is a subset of [0, 2π ). Q does not need to be symmetric or positive
definite because the range of ξ is finite. Figure 1 graphs the extended Von Mises distribu-
tion for d = (sin(π ), cos(π ))′ and Q = 5I2 when C = [0, 2π ]. If Q is a matrix of zeros the
density is uniform. If d = (sin(θ̃), cos(θ̃))′, then the mode of the distribution is θ̃ . We will
restrict our attention to quadratic forms because the likelihood function for the angles takes
this expression, and the extended Von Mises is the natural conjugate prior distribution for the
angles.

The error terms of the latent variables are mutually independent and normally distributed:

[εi |�] = NJ (εi |0J ,�) where 0J is a J vector of zeros.

The random effects are also mutually independent and normally distributed:

[φ|λ2] = Nn(φ|0n, λ
2In), [α|τ 2] = Nn(α|0n, τ

2In), and [β|τ 2] = Nn(β|0n, τ
2In),

where In is the n × n identity matrix. Given the latent variables and cutpoints, the distribution of
the response for subject i is

Pr(wi,1, . . . , wi,J |ci, µ, φi, αi, βi, θ,�)

=
J∏

j=1

[∫ ci,wi,j

ci,wi,j −1

N1
[
yi,j |µj + φi + αi sin(θj ) + βi cos(θj ), σ 2

j

]
dyi,j

]
.

The prior distribution for the cutpoints is conditionally uniform:

[ci] ∝ χ (−1 < ci,2 < . . . < ci,H−2 < 1).

That is, given ci,k−1 and ci,k+1, the conditional distribution of ci,k is uniform:

[ci,k|ci,k−1, ci,k+1] = U (ci,k|ci,k−1, ci,k+1) for k = 2, . . . , H − 2.

The mean latent scores have a normal prior:

[µ] = NJ (µ|m0, V0),

and the error and random effects variances have inverted gamma distributions:[
σ 2

j

] = IG
(
σ 2

j

∣∣∣ r0

2
,
s0

2

)
, [λ2] = IG

(
λ2
∣∣∣u0,1

2
,
v0,1

2

)
, and [τ 2] = IG

(
τ 2
∣∣∣u0,2

2
,
v0,2

2

)
.
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The prior distribution for the angles is extended Von Mises:

[θj ] =
{

V M(θj |d0,Q0, [0, π ]) for j = 2,

V M(θj |d0,Q0, [0, 2π )) for j > 2,

with d0 = (0, 1)′, Q0 = 0.2I2 where I2 is the 2 × 2 identity matrix. This prior distribution is
fairly flat on [0, 2π ).

2.4. Markov Chain Monte Carlo Estimation

A primary goal of Bayesian inference is to compute the posterior distribution of the unknown
parameters given the data. The posterior distribution quantifies the uncertainty about unknown
parameters after observing the data. The posterior mean is the Bayes estimator under squared-error
loss, and the posterior standard deviation is a measure of uncertainty about the parameter. For
sufficiently large samples and well-behaved models, posterior distributions are approximately
normal, and there is approximately 95% probability that the true parameter is within ± two
posterior standard deviations of the posterior mean. For non-Bayesians, the posterior mean is
the point estimator, and the posterior standard deviation roughly resembles the standard error for
the point estimator. Estimation of the model is accomplished via MCMC (see Gelfand & Smith,
1990). The Appendix gives details for the application to the circumplex model. After an initial
transition period, the random deviates from MCMC can be treated as random draws from the
posterior distribution and used to numerically approximate posterior statistics of the parameters.
For example, the posterior mean is approximated by the average of the random draws.

The accuracy of these numerical approximations can be ascertained by the root mean squared
simulation error (RMSSE). The RMSSE is the standard deviation of the MCMC approximation
to the posterior mean and accounts for the autocorrelation in the Markov chain. The RMSSE
tends to decrease as one uses more iterations in MCMC. In comparison, the theoretical posterior
standard deviation does not depend on the estimation algorithm, and it tends to decrease as
sample sizes increase. It is important to differentiate between the posterior standard deviation
and the RMSSE. The first quantifies the posterior uncertainty about a parameter, while the latter
quantifies the accuracy of the numerical algorithm in approximating the posterior mean. We will
report the RMSSE to give an indication of the accuracy of the numerical approximations from
the MCMC algorithm.

2.5. Brier Scores

Brier (1950) proposed a squared error loss statistic that compares predictive probabilities and
random outcomes (see Gordon & Lenk, 1991, 1992). Let {zi} be n uncertain events where zi = 1
if the event occurs and zi = 0 otherwise. The Brier score is BS = n−1 ∑n

i=1(zi − pi)2 where pi

is the predictive probability for zi . Suppose that one uses m different predictive probabilities {qj }.
The Brier score can be decomposed into two components, called “calibration” and “refinement”:

BS = 1

n

m∑
j=1

n∑
i=1

χ (pi = qj )(zi − qj )2

= 1

n


 m∑

j=1

nj (qj − q̂j )2 +
m∑

j=1

n∑
i=1

χ (pi = qj )(zi − q̂j )2


,

nj =
n∑

i=1

χ (pi = qj ) and q̂j = n−1
j

n∑
i=1

χ (pi = qj )zi,
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where nj is the number of times that qj is used, and q̂j is the relative frequency of event j given
that one predicted it would happen with probability qj .

The first term of the decomposition is calibration and is related to bias. The calibration
measure is zero when the predictive probability and conditional relative frequencies are equal.
Clearly, calibration alone does not imply an accurate forecasting system. For instance, a system is
well-calibrated if it always reports the base rates for events; however, base rates may not be very
informative. The second measure, refinement, is similar to variance, and measures the propensity
of the prediction system to use values close to zero or one: in a well-calibrated system, forecasts
closer to zero or one are more useful than forecasts in the middle of the unit interval. DeGroot
and Feinberg (1982) showed that if two systems are well-calibrated and if system A is more
refined than system B, then B’s forecasts are equivalent to passing A’s forecasts through a noisy
filter.

Our fit measure is based on a modified Brier score. Instead of using the predictive probabilities
given the data in the computation, we compute the predictive probabilities given the parameters
� and the data, and use these to compute a Brier score on each iteration of the Markov chain:

BS(m) = 1

NH

n∑
i=1

J∑
j=1

H∑
k=1

δi,j

[
zi,j,k − P

(
Wi,j = k|�(m)

)]2

where N is the total number of observations; zi,j,k = 1 if person i responded k to variable j ,
and 0 otherwise; and δi,j = 1 if the variable is observed and 0 if it is missing. That is, missing
observations are excluded from the Brier score. The {BS(m)} are then used in computing posterior
means and standard deviations. This approach extends the Brier score to include calibration,
refinement, and uncertainty in the predictive probabilities.

2.6. Model Test on Synthetic Data

Before presenting the results of an empirical application of the model, we discuss the results
of a synthetic data analysis mimicking 16 variables measured on a seven point ordinal scale in
a sample of 100 persons. The angles θj were randomly generated under the constraints of four
blocks with four angles in each block. Each item independently had a 7% probability of deletion.
We estimated circumplex models with the correct constraints on the angles, with unconstrained
angles, and with incorrect constraints, assigning variable 3 to block 3 and variable 11 to block 1.
The incorrect constraints constitute a mild violation of the true model.

For each set of constraints, we ran 5, independent MCMC chains where each chain had
20,000 iterations. The initial burn-in period for each chain consisted of 10,000 iterations, and
every tenth, subsequent iteration was used for estimation resulting in 1000 iterations per chain
for estimation. The main reason for thinning the chains was to conserve memory. Starting values
for the parameters were generated from the prior distributions, which were fairly noninformative.
Convergence was checked with the potential scale reduction factor (PSRF) (Gelman & Rubin,
1992). The maximum univariate PSRFs for the angles were 1.006 without constraints, 1.003
with correct constraints, and 1.007 with incorrect constraints. The multivariate PSRFs (Brooks
& Gelman, 1998) were 1.017 without constraints, 1.011 with correct constraints, and 1.021 with
incorrect constraints. Brooks and Gelman (1998) conclude that PSRFs close to one indicate
that the MCMC simulations are close to the posterior distribution. The average and maximum
autocorrelations of lag one for the angles were 0.30 and 0.44 without constraints, 0.29 and 0.43
with correct constraints, and 0.31 and 0.48 with incorrect constraints. Autocorrelations of higher
lags rapidly decreased. These statistics along with plots of the random draws versus iterations
indicated convergence of the chain.

Although the posterior mean of the log-likelihood is a flawed measure for Bayesian model
selection, it is sometimes computed because of its similarity to the log-likelihood statistic in
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TABLE 1.
Estimated directions for the synthetic data. The constraints given to the program were
either: no constraints (“None”), the right constraints (“Good”), or the wrong constraints
(“Bad”). The true constraints sequentially assign four items to four blocks. The “Bad”
constraints incorrectly assume that item 3 belongs to block 3 and item 11 to block 1.

Posterior mean Posterior Std. Dev.

Item Block TRUE None Good Bad None Good Bad

1 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1 1.112 1.063 1.059 1.046 0.093 0.090 0.092
3 1 1.103 1.041 1.038 2.340 0.098 0.093 0.106
4 1 0.815 0.771 0.766 0.758 0.084 0.082 0.082

5 2 2.213 2.144 2.137 2.142 0.096 0.094 0.099
6 2 1.781 1.725 1.717 1.721 0.112 0.111 0.116
7 2 2.112 2.060 2.052 2.062 0.100 0.098 0.103
8 2 2.381 2.393 2.387 2.312 0.096 0.093 0.100

9 3 3.706 3.591 3.583 3.542 0.104 0.102 0.105
10 3 4.599 4.549 4.540 4.540 0.099 0.095 0.099
11 3 4.209 4.141 4.132 5.971 0.106 0.103 0.091
12 3 4.034 3.859 3.850 3.818 0.109 0.103 0.109

13 4 5.731 5.688 5.684 5.704 0.089 0.085 0.089
14 4 5.916 5.897 5.892 5.879 0.083 0.081 0.079
15 4 6.132 6.036 6.028 5.934 0.090 0.086 0.085
16 4 5.408 5.305 5.299 5.334 0.095 0.092 0.093

maximum likelihood estimation. For the simulation, the posterior means of the log-likelihood
for the model without constraints and correct constraints were nearly identical: −715.84 and
−715.50. For the incorrectly constrained model, it was much smaller: −956.39. Moreover, the
Brier scores were also nearly the same for the unconstrained and correctly constrained models:
0.01618 and 0.01617, and much larger, 0.02065, for the incorrectly constrained model.

The algorithm was able to recover accurately the grand means µj , error standard deviations
σj , and random effects standard deviations λ and τ , and all of the angles, except for items
3 and 11 with incorrectly specified blocks, as judged by their posterior means and posterior
standard deviations. The RMSSEs for the posterior means of the angles ranged between 0.00133
and 0.00209 for the unconstrained model, 0.00126 and 0.00182 for the correct constraints, and
0.00133 and 0.00206 for the incorrect constraints.

With incorrectly specified constraints, item 3 was incorrectly assigned to block 3 instead of
block 1. Its estimated angle, 2.340, is the minimum angle in block 3 (between 2.312 for item
8 and 3.542 for item 9), which results from trying to recover the observed covariance structure.
Similarly, item 11 was incorrectly assigned to block 1. Its estimated angle, 5.971, is the largest
estimated angle and close to 0 on the circle. It is slightly larger than the estimated angle for item
15, which has the maximum true angle 6.132.

The differences between the models with various sets of constraints are reflected in the
posterior means and standard deviations of the angles in Table 1. The posterior standard deviations
with correct constraints tends to be slightly smaller than the posterior standard deviations without
constraints. The information in the constraints leads to sharper estimators. This effect is stronger
with smaller sample sizes (indicated by simulations not reported here). Generally, the posterior
standard deviation with incorrect constraints are larger than the other two conditions, though not
uniformly. For example, the posterior standard deviation for the incorrectly assigned item 11 is
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smaller than that without constraints and with the correct constraints. Apparently, the algorithm is
trying its best to keep item 11 as close as possible to block 3 while still maintaining the incorrect
assignment to block 1. Overall, the correct constraints reduce the posterior uncertainty about
the angles. As one would anticipate, other simulations indicated that the amount of reduction
depends on the number of observations with the greatest impact for very small samples. With
large samples, the difference between the unconstrained and correctly constrained estimates are
very small. Not surprisingly, incorrect constraints can result in inconsistent estimators.

3. Application to Schwartz Value Ratings

3.1. Schwartz Value Theory

Building on work by Rokeach (1973), Schwartz and Bilsky (1987, 1990) provided a detailed
psychological theory of value content and structure. Values are defined as beliefs that pertain

TABLE 2.
Dimensions, domains, and values according to Schwartz’s theory.

Openness-to-change Conservation

Domain Values Domain Values

Self direction Creativity Security Family security
Freedom National security
Independent Social order
Curious Cleanliness
Choosing own goals Reciprocation of favors

Stimulation Daring Conformity Politeness
Varied life Obedient
Exciting life Self-discipline

Honoring elders
Tradition Humble

Accepting fate
Religious
Respect for tradition
Moderate

Self-transcendence Self-enhancement

Domain Values Domain Values

Benevolence Helpful Hedonism Pleasure
Honest Enjoying life
Forgiving Achievement Successful
Loyal Capable
Responsible Ambitious

Universalism Broad minded Influential
Wisdom Power Social power
Social justice Authority
Equality Wealth
World peace
World beauty
Unity with nature
Environment
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to desirable states or behaviors, transcend specific situations, guide selection or evaluation of
behavior, and are ordered by relative importance. They have been widely used in the social
sciences to explain, for example, voting behavior (Rokeach, 1973), mass media usage (Rokeach
& Ball-Rokeach, 1989), charity contributions (Manner & Miller, 1978), socially responsible
behavior (Anderson & Cunningham, 1972), ecological behavior (Ellen, 1994), and innovativeness
(Steenkamp, Ter Hofstede, & Wedel, 1999).

Schwartz and his collaborators postulate a comprehensive typology of the content and
structure of domains of values. They distinguish ten value domains, summarized in Table 2,
that are organized along two bipolar dimensions. The first dimension is defined as “openness
to change versus conservation,” and opposes values of self-direction and stimulation to those
of security, conformity, and tradition. The second dimension is called “self-enhancement versus
self-transcendence” and opposes values of universalism and benevolence to those of hedonism,
power, and achievement. The universal structure of values was investigated by Schwartz in a
number of studies conducted in different countries. Smallest space analysis (Guttman, 1968) of
the correlation matrices provided qualitative support for the postulates of the theory (Schwartz
& Sagiv, 1995). From those studies, it is apparent that the theory borrows strength from ideas of
circumplex representations. However, the circumplex model, although popular in psychology as
a model for the representation of attitudes (e.g., Plutchik & Conte, 1997), has not been directly
applied to the analysis of values, nor has Schwartz theory been subjected to statistical testing. Here
we set out to examine more rigorously the validity of Schwartz’s value system by investigating
the constraints that the theory imposes on the hypothesized circumplex structure.

3.2. Sample and Data

The data used here are part of a larger data set that was collected for the European Commis-
sion. A sample was drawn randomly from the household consumer panel of a market research
agency in The Netherlands. This panel is representative of the Dutch population with respect
to a large number of socio-demographic characteristics. For data collection, mail questionnaires
were sent out to households in The Netherlands. The questionnaires included the Schwartz values
measurement instrument, assessing 44 value priorities on 9-point scales. Before collecting the
data extensive pretests were conducted. After sending reminders, the overall response was around
70% (for more details on data collection, see Ter Hofstede, Steenkamp, & Wedel, 1999). The
sample size was 157 for a total of 6698 observations with 3% missing.

3.3. Results

We analyzed the Dutch value priority data with seven models derived from equation (2). The
first model has random scale-usage effects only and zeros-out the circumplex structure (αi = βi =
0 ). We estimated four different circumplex models (τa = τb = τ ). Model 2 is an unconstrained
circumplex without scale-usage effects (φi = 0). Models 3 to 5 are circumplex models with scale-
usage effects. Model 3 has value domain constraints, and Model 4 has value dimension constraints
(see Table 2). The latter is a weaker set of constraints as compared to the former. Model 5 is an
unconstrained circumplex model. Model 6 is a two-factor, elliptical model (τa 	= τb) that has a
more general correlation structure than the circumplex. It also has random scale-usage effects.
Model 7 allows for an unconstrained error covariance (cov(εi,j , εi,j ′ ) = σj,j ′ ) among items and
removes the random scale-usage effects and circumplex (φi = αi = βi = 0). The likelihood
function of a model with full error covariance and random scale-usage or circumplex factors is
not identified.

All models were estimated using 200,000 draws, with a burn-in of 100,000. After burn-
in, every 10th iteration was used in the computations for a total of 10,000 draws. We ran five
independent chains to evaluate convergence, resulting in a total of one million iterations. The
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TABLE 3.
Fit statistics for the Schwartz value data.

Number† of parameters Log-likelihood Brier score

Model 1 89a −10271 0.0162
Model 2 133b −9910 0.0158
Model 3 134c −9769 0.0157
Model 4 134c −9745 0.0157
Model 5 134c −9702 0.0156
Model 6 135d −9698 0.0156
Model 7 1034e −11743 0.0880

Model 1: Random scale-usage effects and no circumplex (αi = βi = 0)
Model 2: Circumplex (τa = τb), no scale-usage effects (φi = 0), no constraints
Model 3: Circumplex (τa = τb), random scale-usage effects, domain constraints
Model 4: Circumplex (τa = τb), random scale-usage effects, dimension constraints
Model 5: Circumplex (τa = τb), random scale-usage effects, no constraints
Model 6: Elliptical model (τa 	= τb), random scale-usage effects, no constraints
Model 7: Full error covariance
†Counting the number of parameters in Bayesian, random effects models is not straightforward.
We do not include the latent variables Yi,j , the individual-level cutpoints for the ordinal
model, the random effects (φi, αi, βi), nor the prior parameters.

a44 means µj , 44 error variances σ 2
j , and random effects variance λ2.

b44 means µj , 44 error variances σ 2
j , 44 angles θj , and random coefficient variance τ 2.

cSame as b plus random effects variance λ2.
dSame as c plus unique τa and τb instead of common τ .
e44 means µj and 44(44 + 1)/2 error variance and covariance terms.

multivariate PSRFs for the angles ranged between 1.002 for the model with dominan constraints
to 1.004 for the model without scale-usage effects. The first autocorrelation coefficients for all
angles for all models were less than 0.6, with most of the angles having much lower values. These
statistics, along with plots of the iterations, indicated that the chains had converged and mixed
fairly well.

Table 3 displays the fit statistics. The fit statistics indicate that the circumplex models
(Models 3, 4, and 5) with scale-usage effects fit better than the circumplex model without
scale-usage effects (Model 2) and the model with scale-usage and without the circumplex structure
(Model 1). Model 6 relaxes the constraint that the standard deviations for α and β are equal, thus
adding one parameter. Its Brier score is the same as that for circumplex Model 5, but its mean
likelihood is slightly better than the other circumplex models. The two random effects standard
deviations for Model 6 are τα = 0.22 and τβ = 0.29. The difference, 0.07, has a posterior standard
deviation of 0.03. We take this as support, though not conclusive, that the circumplex model with
one common factor variance holds. Model 7 is the most general model, but did not perform best: it
has a very large number of parameters relative to the sample size. These fits provide evidence that
Schartz’s value scales conform to the circumplex once scale-usage effects are properly handled.
Apparently, the proposed approach of dealing with the response scale bias is both effective and
important. For the circumplex models with different constraints the Brier scores are comparatively
close. However, the fit deteriorates slightly as domain constraints are imposed. Thus, the value
priority data seem to violate Schwartz’s theory of value domains to a certain extent, although
judged by the differences in fit between those models, the violations appear to be minor.

Table 4 reports the posterior means and posterior standard deviations of the estimated
circumplex angles for Models 3, 4, and 5, the circumplex models with scale-usage random
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TABLE 4.
Value angles for Netherlands data using three sets of constraints. “Full” is ordering
of angles based on value domains; “Partial” is ordering of angles based on bipolar
dimensions; “None” is unrestricted mode.

Dimension
Domain Posterior mean Posterior Std. Dev.

Values Full Partial None Full Partial None

Self-transcendence
Benevolence

Helpful 0 0 0 0 0 0
Honest 0.123 0.142 0.570 0.146 0.141 0.299
Forgiving 0.296 0.387 0.846 0.168 0.231 0.349
Loyal 0.330 0.351 0.828 0.156 0.176 0.293
Responsible 0.235 0.283 0.729 0.167 0.190 0.307

Universalism
Broad-minded 1.458 1.288 1.951 0.193 0.175 0.316
Wisdom 0.940 0.823 1.331 0.263 0.244 0.330
Social justice 0.532 0.255 0.694 0.166 0.183 0.320
Equality 1.005 0.840 1.265 0.260 0.253 0.348
World peace 0.579 0.394 0.896 0.174 0.191 0.303
World beauty 0.763 0.612 1.072 0.215 0.220 0.320
Unity with nature 0.643 0.436 0.931 0.192 0.211 0.319
Environment 0.976 0.838 1.304 0.219 0.210 0.316

Openness-to-change
Self-direction

Creativity 2.052 1.957 2.853 0.213 0.209 0.382
Freedom 1.592 1.407 1.564 0.206 0.184 0.314
Independent 1.845 1.577 1.697 0.278 0.257 0.362
Curious 1.970 1.855 2.395 0.218 0.217 0.355
Choosing own goals 1.906 1.735 2.124 0.216 0.208 0.315

Stimulation
Daring 2.314 2.074 3.477 0.188 0.181 0.324
Varied life 2.263 1.975 2.559 0.185 0.186 0.312
Exciting life 2.252 1.908 2.417 0.187 0.194 0.310

Self-enhancement
Hedonism

Pleasure 2.394 2.181 2.069 0.191 0.187 0.328
Enjoyment 2.398 2.193 2.289 0.191 0.187 0.329

Achievement
Successful 3.118 2.988 3.629 0.233 0.220 0.324
Capable 2.510 2.185 1.649 0.217 0.201 0.327
Ambitious 3.479 3.659 4.321 0.237 0.285 0.363
Influential 3.506 3.607 4.239 0.218 0.242 0.343

Power
Social power 3.935 3.784 4.324 0.266 0.263 0.337
Authority 3.954 3.828 4.390 0.240 0.235 0.333
Wealth 3.672 3.176 3.720 0.207 0.240 0.330
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TABLE 4.
cont’d

Dimension
Domain Posterior mean Posterior Std. Dev.

Values Full Partial None Full Partial None

Conservation
Security

Family security 5.572 5.831 0.175 0.184 0.221 0.437
National security 5.540 5.841 0.236 0.206 0.242 0.485
Social order 5.640 6.075 0.472 0.163 0.150 0.325
Cleanliness 5.007 4.932 5.471 0.228 0.228 0.321
Reciprocation of favors 4.917 4.926 5.711 0.318 0.346 0.513

Conformity
Politeness 5.818 5.919 0.182 0.139 0.196 0.390
Obedient 5.800 5.671 6.167 0.137 0.211 0.396
Self-discipline 5.849 6.142 0.800 0.136 0.123 0.326
Honoring elders 5.810 5.664 6.126 0.137 0.215 0.364

Tradition
Humble 6.041 5.328 5.614 0.135 0.339 0.386
Accepting fate 6.142 6.071 0.721 0.108 0.190 0.368
Devout 5.984 4.734 5.242 0.138 0.287 0.358
Respect for tradition 6.005 5.483 6.040 0.138 0.271 0.490
Moderate 6.111 6.019 0.427 0.118 0.178 0.323

effects and domain constraints (Full), dimension constraints (Partial), and no constraints (None),
respectively. The RMSSEs are small in all cases: they were less that 0.002 for the “Full” and
“Partial” and less than 0.003 for “None” models. Some of the posterior distributions for the
angles are bimodal because the support of the distribution spans zero. For example, if there are
constraints, angles in the first block can be less than zero. In these cases, we compute the posterior
means and standard deviations by “unrolling the circle” in post-processing the MCMC draws. If
the posterior distribution of θj is bimodal and if more than half of the posterior distribution is
between 0 and π , we recode MCMC draws θ

(g)
j for the gth iteration that are between π and 2π as

θ
(g)
j − 2π . Similarly, if more than half of the distribution is between π and 2π , we recode draws

that are between 0 and π as 2π + θ
(g)
j . This recoding does not change the circumplex variances

and covariances and is only used in approximating the posterior means and standard deviations.
Ignoring the bimodal distributions results in nonsensical posterior means and standard deviations:
if the posterior distribution is concentrated on both sides of 0, then the posterior mean will be
around π , a region of zero probability.

When comparing the models with the domain (Full) and the dimension (Partial) constraints, it
is apparent that only a few value angles, using the more general dimension constraints, differ from
the more exact ordering, using domain constraints. The violations to the constraints misplace the
angles in neighboring value domains within the value dimensions (Table 4). Most of the violations
using no constraints, compared to the domain and dimension constraints, occur for angles near
zero or 2π .

The posterior standard deviations indicate the uncertainty about the angles. Based on their
posterior means and standard deviations, the posterior distribution of the angles from the three
models are similar, with the exceptions of angles for conservation. Even here, though, the
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differences are more apparent than real if one keeps in mind that 0.1 radian is very close to
2π on the circle. In comparing posterior standard deviations, estimators using domain constraints
are more precise than using dimension constraints, which are, in turn, more precise than those
without constraints.

Figure 2 provides a graphical display of the posterior means for each of the three circumplex
models with random intercepts as well as of the model with fixed intercept. The radii of the
vectors for angles in the four dimensions have been jittered so that the points do not overlap.
Figure 2(a) shows significant distortions of the circumplex structure if scale usage is not taken
into account: the value angles are almost entirely confined to the positive quadrant. Figure 2(b)
graphs the angles for the unconstrained circumplex model with random effects, and Figures 2(c)
and 2(d) graph the angles with bipolar dimension and value domain constraints.

Inspection of Figure 2 reveals that, although the unconstrained circumplex does fit the
data marginally better, the differences in the locations of the values on the circumplex are
minor. To reveal their correspondence, Figure 3 presents scatter plots of the angles for the four
circumplex models. Figure 3(a) plots the angles from the unconstrained circumplex models with
and without scale-usage effects and reinforces the observation that scale-usage effects are needed.
Figures 3(b) and 3(c) plot the constrained models against the unconstrained one with scale-usage
effects. The points in the top left-hand corners are due to values in the conservation dimension
overlapping with those of self-transcendence in the unconstrained model. Finally, Figure 3(d)
plots the domain and dimension constrained models. These plots indicate that the circumplex
structures are quite similar: the estimated angles are virtually on a straight line. Because of the
few and minor violations of the dimension and domain constraints, we are inclined to conclude
that the Schwartz value theory holds fairly well in The Netherlands sample, even though the
model fit criterion points toward the unconstrained model.

Individual differences in the value judgments are depicted in Figure 4. This figure is based
on the domain constraints and displays average interaction effects. The averages are over the
cosines or sines of the angles in the same value domain for fixed values of α and β:

α

card(Bk)

∑
j∈Bk

sin(θj ) + β

card(Bk)

∑
j∈Bk

cos(θj ), (5)

where card(Bk) is the cardinality of Bk . Figure 4 contains four curves with α and β equal to ±1.
The figure illustrates that a person who has high values for self-transcendence has low values
for self-enhancement and moderate values for openness-to-change and conservation. Likewise, a
person with high values for openness-to-change has low values for conservation. Similar patterns
can be observed for the other two value dimensions.

4. Conclusion

Models for covariance structures are popular in the social sciences for assessing latent
psychological constructs from proxy variables that are intended to represent the psychological
domains in question. Whereas the exploratory factor analysis model has been used frequently since
1960, confirmatory factor models (Jöreskog, 1974) became popular in the 1970s for applications
where prior theory guided the identification of the underlying latent variable structure. However,
because of their linear form, these broad modeling frameworks can include only a subset of
relevant models for covariance structures. One of the significant exceptions, which is not included
in the confirmatory factor modeling framework, is the class of circumplex models (Guttman, 1954;
Browne, 1992) which imposes nonlinear constraints on the correlation matrix. These constraints
are derived from the ordering of the proxy variables on the circumplex and, thus, avoid the need
to achieve simple structure through either rotation or identifying constraints.
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(c) Dimension constraints
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FIGURE 2.
Sine versus cosine of posterior means of item angles for Schwartz value data. (a) No constraints and fixed intercepts; (b) no
constraints and random intercepts; (c) bipolar constraints and random intercepts; and (d) value domain constraints and
random intercepts. Angles are identified by their bipolar dimensions: T = self-transcendence, O = openness-to-change,
E = self-enhancement, and C = conservation.

In our Bayesian formulation of circumplex models for rating scales, we explicitly account
for idiosyncratic response scale-usage by using an individual level cutpoint approach that assumes
that respondents map an underlying latent trait onto the response scale and by a random effects
specification that allows for differential scale-usage tendencies. In the synthetic data application,
we demonstrated that the individual-level cutpoints can be recovered well even when the sample
size is small, while the empirical application showed that failure to accommodate response
scale usage seriously distorts the recovered circumplex structure. A potential drawback of our
Bayesian approach, however, is that as yet standard software is not available and that it requires
more computer time than maximum likelihood methods.

The circumplex model has been of much appeal to social science researchers because
of its implied properties for the correlation structure of the measured items. Our approach
yields a tractable representation that deals with different sources of person-specific heterogeneity.
Moreover, the Bayesian formulation of the model and the proposed MCMC algorithm allow us
to impose inequality constraints on the circumplex that are derived from substantive theory. In
the synthetic data analysis and empirical application we showed how to investigate the validity
of these constraints. We believe that these contributions will facilitate rigorous tests and further
increase the popularity of circumplex models for the analysis of psychological constructs in the
social sciences.
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Dimension constraints
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FIGURE 3.
Plots of angles from different circumplex models. (a) No scale-usage effects versus scale-usage effects without constraints;
(b) dimension constraints versus no constraints with scale-usage effects; (c) domain constraints versus no constraints with
scale-usage effects; and (d) domain constraints versus dimension constraints. T = self-transcendence, O = openness-to-
change, E = self-enhancement, and C = conservation.

Appendix

A. MCMC

All of the full conditionals, except those for the angles, are standard distributions. The
MCMC algorithm proceeds by drawing recursively from the full conditional distributions of the
parameters, as provided below. Each of those full conditional distributions takes a standard form,
with the exception of the full conditional for the angles, θ. We will use the matrix notation and
distributions in section 2.3. The algorithm was implemented in the GAUSS language, and the
code can be obtained from the first author.

A.1. Full Conditional for Yi,j for Observed Wi,j

[yi,j |Rest] ∝ N1
[
yi,j |µj + φi + αi sin(θj ) + βi cos(θj ), σ 2

j

]
χ (ci,wi,j −1 < yi,j ≤ ci,wi,j

),

where χ (•) is the indicator function. The full conditional distribution is a truncated normal
where the truncation depends on the cutpoints and the observed ordinal response. We use
the inverse cumulative distribution function transform to generate truncated normal random
variables.
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FIGURE 4.
Plot of average interactions for selected values of the random coefficients for the Schwartz value model with domain
constraints. The four curves are averaged interaction effects where the averaging is within value domains for different
combinations of α = ±1 and β = ±1 in equation (5). Line A has α = 1 and β = 1. Line B has α = 1 and β = −1. Line
C has α = −1 and β = 1. Line D has α = −1 and β = −1.

A.2. Full Conditional for Yi,j for Missing Wi,j

The model easily accommodates missing data assuming missing at random (MAR). If Wi,j

is missing, then Yi,j is normal:

[yi,j |Rest] = N1
[
yi,j |µj + φi + αi sin(θj ) + βi cos(θj ), σ 2

j

]
.

That is, one does not know which cutpoints yi,j would have fallen between.

A.3. Full Conditional for Cutpoints ci

Given ci,k−1, ci,k+1, and the latent variables Yi , the cutpoint ci,k is uniformly distributed.
Define yk = max{yi,j : wi,j = k} and yk+1 = min{yi,j : wi,j = k + 1}. Then

[ci,k|Rest] = U (ci,k| max(yk, ci,k−1), min(yk+1, ci,k+1) for k = 2, . . . , H − 2.

A.4. Full Conditional for µ

[µ|Rest] = NJ (µ|mn, Vn),

Vn = (
n�−1 + V −1

0

)−1
,

mn = Vn

(
�−1(Y − φ1′

J − αX′
S − βX′

C)′1n + V −1
0 m0

)
.
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A.5. Full Conditional for φ

[φ|Rest] = Nn(φ|mφ, vφIn),

vφ = (
1′

J �−11J + λ−2)−1
,

mφ = vφ(Y − 1nµ
′ − αX′

S − βX′
C)�−11J .

A.6. Full Conditional for α and β

[αi, βi |Rest] = N2[(αi, βi)
′|mαi,βi

, Vαi ,βi
],

Vαi ,βi
= (

X′�−1X + τ−2I2
)−1

,

mαi,βi
= Vαi,βi

X′�−1(Y i,• − µ − φi1J ).

A.7. Full Conditional for σ 2
j

[
σ 2

j |Rest
] = IG

(
σ 2

j

∣∣∣∣ rn

2
,
sn

2

)
,

rn = r0 + n,

sn = s0 +
n∑

i=1

[
yi,j − µj − φi − αi sin(θj ) − βi cos(θj )

]2
.

A.8. Full Conditional for λ2

[λ2|Rest] = IG

(
λ2

∣∣∣∣un,1

2

vn,1

2

)
,

un,1 = u0,1 + n,

vn,1 = v0,1 + φ′φ.

A.9. Full Conditional for τ 2

[τ 2|Rest] = IG

(
τ 2

∣∣∣∣un,2

2

vn,2

2

)
,

un,2 = u0,2 + 2n,

vn,2 = v0,2 + α′α + β ′β.

A.10. Full Conditional for θ

[θ |Rest] ∝ exp


−

n∑
i=1

J∑
j=1

1

2σ 2
j

[
yi,j − µj − φi − αi sin(θj ) − βi cos(θj )

]2


χ (θ ∈ C)

× exp


−1

2

J∑
j=2

[ξ (θj ) − d0]′Q0[ξ (θj ) − d0]
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∝
J∏

j=2

V M(θj |dj ,Qj , Cj ),

Qj = σ−2
j

[
α′α α′β
β ′α β ′β

]
+ Q0,

dj = Q−1
j

{[
α′

β ′

]
(Y •,j − µj 1n − φ) + Q0d0

}
.

where Cj is the constraint set for θj , and C = ⋃J
j=2 Cj . Because the prior distributions for

the angles are independent, the full conditionals depend on each other only through the con-
straints. Thus, generating from the full conditionals involves generating from univariate distribu-
tions, which we do by using the inverse cumulative distribution transform of a uniform random
deviate.

Our experience has been that once the random coefficients and angles are in the vicinity
of their true values, generating directly from the full conditionals works very well. However,
the algorithm can get “stuck,” because the random coefficients (X matrix in the posterior den-
sity) limit the range of values attainable for the angles and visa versa. Thus, given one set
of parameters, draws from the other set may not visit high probability areas of the parameter
space.

Therefore, we pursue a hybrid sampling strategy and, in addition to generating the angles
from their full conditional distributions directly, we include several methods for generating the
candidate angles and random coefficients in a Metropolis step at every iteration of the sampler.
First, we use a random walk to generate the angles where the jump distribution is a finite mixture
of L uniform distributions where the endpoints depend on the current angle and the constraints.
Figure 5(a) graphs the density of a typical mixture of uniforms, centered at zero, for the error
distribution. It puts large mass around zero, which implies that most candidates’ values, ψj ,
will be close to the current value, θj , and it allows large jumps with relatively low probability.
Figure 5(b) graphs the jump distribution given the current θj is 2.5 and the block constraints
imply that 0.5 < ψj < 2.8. With probability pl , the candidate value, ψj , for θj is generated from
a uniform that is proportional to χ (θj ∈ Cj )U (ψj |θj − ul, θj + ul) where ul is a prespecified
positive constant, and Cj are the constraints on θj given the other values of θ . Once we have
candidate values for the angles, we generate candidate values for the random coefficients α and
β. The candidate values for the angles and random coefficients are jointly accepted or rejected.
Because the acceptance rate, when all of the angles are simultaneously generated, is low, we also
generate and test each angle separately.

The constraints on the angles result in relatively complex expressions, though easy to
compute, for the acceptance probabilities. Without loss of generality, suppose θ1 = 0 is in the
first block B1, and there are K blocks. The indicies b1, . . . , bK will give the last angle that belongs
to the blocks:

1, . . . , b1 ∈ B1 and bk−1 + 1, . . . , bk ∈ Bk for k = 2, . . . , K.

The blocks follow the order in section 2.2.
Candidate values ψ2, . . . , ψM for the angles are generated sequentially. We will use the

definitions of the minimum and maximum angles, (Bk,Bk), from section 2.2. where it is to be
understood that these minimum and maximum angles change as current values of θm are replaced
by the candidates ψm as the candidates are generated. Define “∨” as the maximum operator,
and “∧” as the minimum operator. The random walk is a mixture of L uniform distributions: in
Figure 5(a) the endpoints for component l are ±ul with mixture probability pl . For angles in the
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first block, the jump distributions are

g1[ψm|ψ2, . . . , ψm−1, θm, . . . , θJ ] =
L∑

l=1

pl

χ (al,m,1 < ψm < bl,m,1)

bl,m,1 − al,m,1
,

al,m,1 = (BK − 2π ) ∨ (θm − ul),

bl,m,1 = B2 ∧ (θm + ul) for m = 2, . . . , b1.

If the candidate value ψm in the first block is negative, then it is recoded as 2π + ψm.
For angles in blocks k = 2 to K , the uniform random walk has density:

gk[ψm|ψ2, . . . , ψm−1, θm, . . . , θJ ] =
L∑

l=1

pl

χ (al,m,k < ψm < bl,m,k)

bl,m,k − al,m,k

,

al,m,k = Bk−1 ∨ (θm − ul),

bl,m,k = Bk+1 ∧ (θm + ul) for m = bk−1 + 1, . . . , bk.

where BK+1 = B1.
After generating the candidate angles {ψm}, candidate values of the random coefficients

{αc, βc} are generated from normal distributions in section A.6. The acceptance probability for
the candidates are

min

{
1,

[ψ, αc, βc|Y ]
∏K

k=1

∏bk

m=bk−1+1 gk[θm|θ2, . . . , θm−1, ψm, . . . , ψJ ][α, β|θ ]

[θ, α, β|Y ]
∏K

k=1

∏bk

m=bk−1+1 gk[ψm|ψ2, . . . , ψm−1, θm, . . . , θJ ][αc, βc|ψ]

}
,
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FIGURE 5.
Random walk jump distribution for angles. (a) Mixture of four uniforms. (b) Random walk based on mixture of uniforms
assuming that the current value of the angle is 2.5 radians and the block constraints imply that the angle is restricted
between 0.5 and 2.8 radians.



PSYCHOMETRIKA

where b0 + 1 = 2, and [θ, α, β|Y ] ∝ [Y |µ, φ, α, β, θ, σ ][θ ][α][β]. In addition to generating all
angles at once according to the random walk Metropolis, we generated them one by one.

In the model without block constraints, mixing is improved if one of the uniform distributions
in the mixture allows for reflections such as χ (Cj )U (ψj |π − θj − ul, π + θj + ul) for j = 2 and
χ (Cj )U (ψj |2π − θj − ul, 2π + θj + ul) for j > 2. The rational for the reflection is that the
random walk chain has to progress from a region of high probability, through a region of low
probability, to arrive at another area of high probability. For example, suppose that the current
value of the angle is 0.2, so cos(.2) is close to one and sin(.2) is close to zero. Angles close to
2π − .2 result in similar values for the sine, cosine, and covariances among Y variables. However,
for a random walk to reach 2π − .2, it has to pass through regions around π where the sines,
cosines, and covariances are very different. If .2 is a highly probable value for the angle, the
random walk will not reach the other side of the circle because of the low probability region that
intervenes. In the same vein, we included another Metropolis step where the possible candidate
values θN are determined from cos(θN ) = ± cos(θ ) for the current θ . Lastly, we included random
phase shifts in the algorithm, by adding a small random amount to each angle, which slightly
rotates the entire configuration and helps to escape from regions of low probability.

Our experience has been that these additional random walk Metropolis steps explore the
parameter space more rapidly than generating angles from their full conditional distributions
only. However, once the chain is in a high probability region, the additional Metropolis steps have
very low acceptance rates, especially those that are designed to jump to other sectors of the circle.
Then generating from the full conditionals is more efficient because none of the random deviates
are rejected. Although the Metropolis steps have very low acceptance rates, they seem to be very
important in mixing the chain: these large jumps are very seldom needed, but are essential in
probing different regions of the circumplex and in establishing in the burn-in period the global
configuration of angles that are consistent with the observed covariances when the model does
not have order constraints.

Another concern is using the iterations to estimate the posterior mean and standard deviation
of the angles. If an angle is close to 0 or 2π , then its posterior distribution will often be bimodal,
and the posterior mean, which will be around π , is not a valid estimator. In this situation, we
recode the iterations. If the majority of iterations are between 0 and π , then we recode θ between
π and 2π as 2π − θ . Similarly, if the majority of iterations are between π and 2π , then we
recode θ between 0 and π as 2π + θ . This recoding also needs to be performed across chains
when multiple chains are run to verify convergence. For example, if the true angle is 0 (or 2π ),
then some of the chains may have more iterations between 0 and π , while other chains will have
iterations between π and 2π . If the recoding was performed within each chain without regard for
the other chains, the PSRF convergence statistics would incorrectly signal that the chains had not
converged because some of posterior means would be close to zero while others would be close
to 2π . This false negative is a consequence of the support being a circle. Consistently recoding
the iterations across chains is required for the convergence statistics to give a true reading.
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