
Quality and Quantity, 12 (1978) 223-237 223 
@ Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 

WHAT WEIGHT SHOULD WEIGHTS HAVE IN INDIVIDUAL 
DIFFERENCES SCALING? 

INCWER BORG 

Rheinisch-Westfiilische Technische Hochschule, Aachen, West Germany 

and 

JAMES C. LINGOES 

The University of Michigan, Ann Arbor, U.S.A. 

Recently, individual difference scaling has become one of the most 
active fields of research in psychometrics. Numerous models and algo- 
rithms have been proposed but relatively little evidence as to the valid- 
ity of the produced representations is available so far. To shed some 
new light on this issue we will reanalyze some data collected by Green 
and Rao (1972) via PINDIS (Procrustrean INdividual Difference Scal- 
ing). PINDIS is intimately related to the model underlying all presently 
available individual difference scaling algorithms but differs in impor- 
tant aspects which will allow a deeper insight into validity and inter- 
pretability of individual weights generated by them. To make our 
points clear, we will compare our results with those produced by 
INDSCAL which is (a) presently the most popular procedure, and (b) 
also the method of analysis chosen originally by Green and Rao (1972). 

The INDSCAL procedure 

INDSCAL has been extensively described elsewhere (Carroll and 
Chang, 1970; Carroll and Wish, 1974a, 1974b) and thus it seems suffi- 
cient to outline only its main characteristics here. 

The problem in INDSCAL is to scale simultaneously a set of N indi- 
vidual proximity data matrices such that their relationship can be opti- 
mally explained by the weighted Euclidean distance model, i.e., by 

d$,j = [c c:‘&, - g&2 ] 1’2 , 
a=1 
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where d$‘i is the distance between stimuli p and 4 in individual i’s “pri- 
vate perceptual space”, g,, is the coordinate value of p on dimension a 
in the “group space”, and c$‘) is the squared weight associated with 
dimension a. Thus, it is attempted to estimate or explain each individ- 
ual’s perceptual space by an appropriately weighted group space which 
represents some average perception over all individuals. For computa- 
tional reasons, eqn. (1) is not used directly but converted to its scalar 
product form : 

where b$$ is the scalar product of stimuli p and 4 for individual i. In 
practice, b!i has to be estimated from the individual’s proximity matrix 
by using Torgerson’s additive constant procedure (Torgerson, 1958), 
since the d#s in eqn. (1) are only determined with respect to an arbi- 
trary origin (if one assumes that the data are interval-scaled). We can 
rewrite eqn. (2) in simplifying matrix notation as 

Bi = GCiG’ ) (3) 

where G is the n X m coordinate matrix of the group space, Ci an m X 
m diagonal matrix of dimension weights. Note that G is the same for all 
individuals which is indicated by the absence of the i-subscript. 

The scaling algorithm solves eqn. (3) for the unknowns G and all Ci’s 
(i = 1, . . . . N) such that the scalar product matrices, the Bi’s (i = 1, . . . . 
N), are optimally explained in a least-squares sense. G is normed such 
that its coordinate vectors have unit length. Individual differences are 
represented by the Ci’s which are often conceived of as points in an 
m-dimensional space and therefore collectively called “subject space” 
(5’S). An individual’s communality between his private perceptual space 
(i.e., in INDSCAL: his Bi) and the scalar products in his reconstructed 
or estimated space is represented by the squared length of his weight 
vector in SS. Although this is strictly true if and only if the coordinate 
vectors in G are orthogonal, this is usually a good approximation. 

The model in eqn. (3) has been generalized by dropping the diagonal- 
ity constraint for Ci and merely requiring that it be positive (semi-)- 
definite. The resulting Ci can then be further decomposed into 

Ci = TiniT; y (4) 

where Ti is orthogonal and ai diagonal, This is Carroll and Chang’s 
(1972) IDIOSCAL model which can be conceived of geometrically as 
an orthogonal, “idiosyncratic” rotation of G by Ti, followed by a 
dimensional weighting by ai. Obviously, this factoring of Ci is not 
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unique and, not surprisingly, other decompositions have also been pro- 
posed (Harshman, 1972; Tucker, 1972). 

Problems associated with the Green-Rao approach 

The described approach to the interpretation of the subject space is 
standard in the sense that it is assumed that the scatter of points repre- 
sents meaningful or useful information about individual differences 
(cf., e.g., Carroll and Wish, 1974a, b; Wish and Carroll, 1974). There 
are, however, two major problems associated with such an assumption 
and analysis: 

(I) The first problem is a more technical one related to the meaning 
of the distances among points in SS. In an INDSCAL-SS - defined by 
Carroll and Chang (1970) as the configuration of the ~6’)‘s (a = 1, . . . . m) 
for all i’s (i = 1, . . . . N) - the distances among the points represent 
apprbximately “profile distances” between reconstructed scalar prod- 
ucts from the respective private perceptual spaces (Carroll and ‘Wish, 
1974a), i.e., between the elements Of&i and hi: 

where i and i indicate two different individuals. Although this is usually 
a very good approximation, it is nevertheless not perfect and, in partic- 
ular, not easily interpretable. However, there exists a psychologically 
more attractive and also mathematically exact equivalence relation 
between distances based on the square roots of the weights and the 
intercontigurational distance d(hi, hj) = d(GC,“‘, GC/‘l’): 

(6) 

In addition, the cosine between vectors in this transformed space repre- 
sents the correlation between the estimated private perceptual spaces of 
i and j. Although the SS will thus have simpler properties if it is normed 
appropriately, a more fundamental problem remains unresolvable: the 
squared length of each subject vector represents the communality of a 
Bi and its estimate hi = GCiG’ if and only if G is column-wise orthogo- 
nal, i.e., uncorrelated. Related to this point is the fact that the square 
of a component of each weight vector represents the communality con- 
tribution of the respective dimension if and only if G is column-wise 
orthogonal (Lingoes et al. 1977). This is important since one might pre- 
fer to determine the similarity among individuals on the basis of their 
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configurational communality, that is their common explained variance, 
rather than on the basis of inter-configurational distances. If the coordi- 
nate vectors of G are correlated then the distances computed on the 
squared SS will not only represent these communality differences but 
also some interaction effects whose psychological meaning remains 
totally obscure. 

In the 3dimensional G reported by Green and Rao (1972) the coor- 
dinate axes are not orthogonal: correlations are r12 = .043, rz3 = -.440, 
and r23 = .330, where r& indicates a correlation coefficient between 
axes a and b. Thus, if a cluster analysis were run on the associated 
squared SS, it would use distances which do not only represent inter- 
subject similarity but also the non-orthogonality of G. This is clearly 
not a satisfactory state of affairs. Even for small correlations this may 
produce misleading clusters since the algorithms are usually very sensi- 
tive to even small displacements of points if the space is not clearly dis- 
continuous. 

(2) The second problem involved in the Green-Rao approach is less 
obvious: it is related to the validity of the point scatter in SS. The 
meaningful information in the data consisted of comparative disiances 
and, consequently, it seems natural to first ask what proportion of this 
information could be explained by transformations which preserve the 
relative distances before distorting weights are used. The validity and 
interpretability of the dimension weights must be evaluated against the 
amount of variance explained by admissible transformations. Clearly, if 
no substantial fit improvement can be achieved by differential weights, 
then one should rather assume unit weights, or, in other words, one 
should interpret inter-individual differences in the SS to be more a con- 
sequence of the mathematical procedures than of reliable inter-subject 
differences. It will be shown below that the Green-Rao data lead to a 
considerable scatter of points in SS, but that the additional explanation 
that is achieved by these differential weights is negligible, and thus the 
SS is insignificant and misleading if looked upon without knowledge of 
the performance of admissible transformations. In INDSCAL, this 
information is not available. 

The PJNDIS model 

The PINDIS model and algorithm have been described elsewhere in 
considerable detail (Lingoes et al. 1977; Lingoes and Borg, 1976b) and 
it suffices therefore to restate here only its relevant features. 

In PINDIS, it is necessary first to scale the individual proximity ma- 
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trices by some multidimensional procedure which yields an n X mi con- 
figuration Xi for each subject i (i = 1, . . . . N), where n indicates the num- 
ber of points, mj the dimensionality of the solution for individual i. 
These Xi’s are then used as input to PINDIS. In PINDIS, each Xi is cen- 
tered at the origin, and the total configuration is scaled to unit length, 
transformations which preserve relative distances. An n X max(mi) cen- 
troid configuration 2 which represents the perceptual space of the aver- 
age subject is then computed by a method similar to the one proposed 
by Gower (1975). The norm of 2 is the communality of all individuals. 
Each Xi is subsequently rotated/reflected such that the sum of squared 
distances between corresponding points in 2 and Xi is a minimum. 
These transformations are admissible in the sense that they preserve all 
inter-point distances. Finally, a measure of configurational similarity, 
Lingoes and Schonemann’s (1974) S, which reflects the amount of vari- 
ance of each Xi (fitted to 2 by such an orthogonal Procrustean rota- 
tion) that can be explained by Z, is computed. S is related to a correla- 
tion coefficient as S2 = 1 - r2(Z, Xi) and, thus, is not affected by differ- 
ences in the overall scale of Z and Xi. Expressed differently: S implic- 
itly takes a central dilation/contraction factor on either Z or Xi into 
account which is also an admissible transformation since only the rela- 
tions of the distances in Xi are considered to be meaningful. 

PINDIS then finds weights w$‘) for the dimensions of Z for each 
individual which maximize the correspondence between optimally reo- 
riented Xi’s and the individually weighted Z’s, the ZWi’s, where Wi is an 
m X m diagonal matrix with elements wi’) (a = 1, . . . . m). This step is 
analogous to the INDSCAL approach except that the minimization is in 
terms of distances between configurations and not scalar products 
derived from them. It may also be noted that Z was previously opti- 
mally rotated and that this position - as is G’s position in INDSCAL - 
is unique up to axes permutations. Obviously such a dimension-weight- 
ing transformation is not isotonic anymore, i.e., distance relations are 
now, in general, changed. We gain some information about the explana- 
tory power of this weighting over and above the isotonic approach used 
previously by the increment in the attained tit between Xi and ZWi: if 
the communality is not substantially better than previously, then the 
weights are clearly not likely to represent valid increments in psycho- 
logical information. Nevertheless, in spite of little overall improvement 
of S, some individuals may be definitely better representable by a 
weighted Z. In addition, PINDIS calculates individually optimal Z’s, 
i.e., reoriented (rotated) Z’s for each individual (Z,), which may also be 
substantially more powerful predictors for some or all subjects than the 
average-subject Z. Thus, not only can the overall importance of the 
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weighting - and, consequently, of the SS - be evaluated but important 
inferences about the group’s homogeneity under this transformation 
can also be attained. At the third stage of a PINDIS analysis, each point 
in Xi and Z is conceived of as the terminus of a vector emanating from 
the origin. After an optimal reorientation of Xi, each vector in Z is then 
weighted by vf) 0, = 1, . . . . n) such that the squared distance between 
its endpoint and the one of the corresponding vector in Xi is a mini- 
mum. Again, a fit value is computed which indicates the performance 
of this approach, i.e., the attained fit between Xi and V,Z, where Vi is 
diagonal with vr) @ = 1, . . . . n) as its elements. If considerable fit im- 
provement has been achieved by Viz over ZWj and/or the isotonic fit- 
ting, it is likely that this transformation represents some real interindi- 
vidual differences. The vector-weighting approach is particularly suited 
to detect cases in which the Xi’s are “scrambled” with respect to the 
average subject’s configuration (Z) and thus enables a deeper under- 
standing of the group’s homogeneity and the representativity of Z for 
all individuals in the study. This will become more evident below. 

The fourth step of PINDIS combines both previous transformations 
into one composite approach, finding Vi and Wj simultaneously. Z is 
thus mapped into ViZWia Since this last analysis is not of much use 
here, it will not be further discussed. 

Reanalysis of the Green-Rao data [ 21 

As in the Green and Rao’s original analysis, the data were initially 
processed by TRICON in order to generate unconditional proximity 
matrices. Since we used a more recent version of TRICON, however, 
the results of this step differ slightly from those reported by Green and 
Rao (1972). In particular, the newer program eliminated one subject 
(Nr. 17-1 in the G-R notation) altogether because of incomplete data. 
We have, therefore, only 41 subjects. (The slight differences in the 
proximity data are, of course, quite irrelevant for the purpose of this 
article.) 

For a PINDIS analysis, the 41 15 X 15 data matrices where then 
scaled via SSA-I (Guttman, 1968; Lingoes, 1973) in 2-dimensional 
spaces. The resulting configurations are the Xi’s* The stress coefficient 
was .1324 on the average with a standard deviation of .0382. Although 
this is not a particularly good representation, it is sufficient for the 
present purpose. 

A PINDIS analysis of the Xi’s generates first the centroid configura- 
tion Z (Fig. 1) which corresponds well to the group space reported by 
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Fig. 1. Centroid configurations (2) from PINDIS analysis. 

Green and Rao (1972). (For a list of the items used in the Green-Rao 
study, see Table I). Fitting the Xi’s to this Z yields an average commu- 
nality of r2(Xi, 2) = .7 196. This means that some 72% of the variance 
in all individual configurations can be explained by Z without any dis- 
tortions of the relative distances among the points. In order to be able 
to compare these results to those attainable from INDSCAL, Euclidean 
distances for all Xi’s were computed and analyzed via INDSCAL. The 
produced group space G is represented in Fig. 2. The correlation of G’s 
coordinate vectors is r = .3056. As is obvious from visual inspection 
alone, Z and G differ only in their orientation and in their norming. A 
more objective analysis via MFIT (Schonemann and Carroll, 1970; 
Lingoes, 1973) validates this impression: a clockwise rotation of Z by 
26.7” and a central dilation by 1.39 transforms Z such that the fit 
between the two spaces is r 2 = .9697. However, G and Z differ also in 
their norming: in G, each coordinate vector has length one, whereas Z 
represents directly the perceptual space of the average subject. Reori- 
enting Z optimally by rotating it by -3.38” and weighting G’s axes by 
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TABLE I 

Food items used in Green Rao study 

No. Food item Code 

1 Toast pop-up TP 
2 Buttered toast BT 
3 English miffin and marganine EMM 
4 Jelly donut JD 
5 Cinnamon toast CT 
6 Blueberry muffin and margarine BMM 
7 Hard rolls and butter HRB 
8 Toast and marmalade TMd 
9 Buttered toast and jelly BTJ 

10 Toast and margarine TMn 
11 Cinnamon bun CB 
12 Danish pastry DP 
13 Glazed donut GD 
14 Coffee cake cc 
15 Corn muffin and butter CMB 

Fig. 2. Group space (G ‘) : from INDSCAL analysis. 
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1.13 and .808 yields a fit of Y* = -9968 between these two configura- 
tions. Since G and Z are both uniquely oriented in the sense of having 
an optimal position with respect to the dimension-weighting transfor- 
mation, their differences are related to differences in norming and in 
the optimization criteria, a direct function of the coordinates in 
PINDIS, a derived function, i.e., scalar products, in INDSCAL. (It 
should be noted, however that using Euclidean distances in the Xi’s as 
input for INDSCAL eliminates the problems associated with its scalar- 
product estimation procedure.) 

As a next step, dimension weights are calculated for optimally reori- 
ented Xi?. This leads to an average fit of r2(Xi, ZWj) = .7456. The im- 
provement over the fit attainable by strictly admissible transformations 
is only 2.6%. The resulting SS (Fig. 3) is, therefore, not likely to repre- 
sent any real differential information. The scatter of subject points 
about the origin should not be interpreted substantively, in particular, 
since the introduction of two free parameters (the dimension weights) 
should, in general, lead to some fit improvement anyway. 

The corresponding SS for INDSCAL (Fig. 4) shows no less variability 
and might be quite misleading since in INDSCAL nothing is known 
about the performance of admissible transformations. This may then - 
apart from the technical issues discussed above - account for the diffi- 
culties that Green and Rao met in interpreting the clusters derived from 
the INDSCAL-SS. 

If the fit improvement was substantial, on the other hand, one could 

Fig. 3. Subject space (SS) associated with 2 (PINDIS). 

Fig. 4. Subject space (SS) associated with G (INDSCAL). 
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use a cluster analysis for a PINDIS-SS without the interpretational 
problems involved in INDSCAL, since the distances in a PINDIS-SS 
always represent the distances between all corresponding points in esti- 
mated private perceptual spaces. Furthermore, the squared length of a 
subject vector in PINDIS corresponds to this-subject’s communality 
independent of the orthogonality properties of Z: This means that the 
contribution of a dimension to the total communality will also be 
known exactly, whereas in INDSCAL this is only true if G is orthogo- 
nal. 

Note also that in the INDSCAL-SS (Fig. 4) there is one subject with 
a negative weight for one dimension. This indicates that the model is 
not correct for this individual. In PINDIS, negative dimension weights 
are entirely admissible: they simply mean that for such individuals the 
point-projections are reserved in some way relative to those in Z. 

Additional information provided by PINDIS 

So far, only a small fraction of the potentially useful information 
provided by PINDIS has been reported. Not only is the average tit value 
interesting but, of course, also the individual coefficients upon which it 
is based. In addition, we can also check if an individually reoriented Z, 
Zi, allows a much better explanation of Xi for some individuals. To 
illustrate these points, the fit values (communalities) for all individuals 
are presented in Table II. 

For some individuals, e.g., 5, 11, 3 1 and 32, one can see that some fit 
improvement is possible by “idiosyncratic” orientations of Z. (Note 
that these rotations are unique in contrast to those computed by IDIO- 
SCAL.) On the average, however, Zi’s do not account for much more 
variance in the Xi’s than Z. It is interesting to note that, for example, 
individuals 20, 32, and 38 are only very poorly explained by ZWj. In 
INDSCAL, where the communalities, i.e., the squared correlations 
between Bj and GCiG’, are .027, .223, and .OOl for these subjects, 
respectively, one might conclude that these individuals use other dimen- 
sions than those in G. Carroll (1972) comments on this matter as fol- 
lows: “A subject precisely at the origin [of the SS] . . . is not accounted 
for at all in this analysis; he has nothing at all in common with the 
other subjects, or, perhaps, is simply responding randomly (p.11 l).” 
This, however, is not necessarily true: the private perceptual spaces of 
these subjects may merely be scrambled relative to Z. The vector- 
weighting analysis in PINDIS, the third step described above, reveals 
this quite clearly. For subject 20, for example, we find that all the 
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TABLE II 

Communalities between individual configurations (Xi’s) and 2 for various transformations in 
PINDIS 

Subj. (Xi, Z) (Xi, ZWi) (Xi, ZiWi) (Xi, Viz) 

1 .I999 .8005 .8008 .8335 
2 .8520 .8713 .8714 .8926 
3 .9088 .9112 .9159 .9519 
4 .9194 .9222 .9283 .9488 
5 .5669 .6811 .I352 .8410 
6 .8939 .9056 .9065 .9376 
I .8376 .8469 .8480 .8692 
8 ,836s .9014 -9032 .8900 
9 .8518 .8520 .8849 .8977 

10 .7369 .7404 .7439 .8407 
11 .I165 .I958 .8803 .8631 
12 .7044 .7188 .7649 .8099 
13 .7833 .9152 .9161 .9154 
14 .I112 .7814 .8020 .9219 
15 .8982 .9175 .9175 .9339 
16 .6199 .6698 .6741 .I151 
17 .6871 .I165 .5805 .8015 
18 .7881 .8174 .8324 .8821 
19 .8050 .8469 .8493 .8540 
20 .I118 .1307 .1307 .7782 
21 .6179 .6310 .6631 .6754 
22 .9222 .9429 .9470 .9588 
23 .8770 .8794 .9005 .9184 
24 .8721 .8111 .8785 .8866 
25 .5101 .5135 .5419 .8383 
26 .682-l .6884 .6895 .I731 
21 ,825 1 .8280 .8385 .8712 
28 .7198 .7268 .7644 .8292 
29 .8493 .8931 .8936 .9199 
30 .8593 .8978 .9068 .9289 
31 .3929 .4067 .4695 .8143 
32 .2728 .2994 .3642 .6585 
33 .8498 .8700 .8716 .9448 
34 .7973 .8299 .8451 .8860 
35 .5126 .6170 .6623 .6976 
36 .6076 .6212 .6894 .6806 
31 .8137 .8192 .8322 .8786 
38 .0192 .0262 .0331 .4690 
39 .I011 .I426 .I418 .8903 
40 .I824 .8004 .8019 .8306 
41 .8559 .8581 .9178 .9178 

mean .7196 .I456 .I641 .8465 
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weights differ considerably from +l , among them 10 negative weights 
for the 15 points in 2. This means that in his perceptual space the food 
items are clustered differently. The item TMn, for example, is weighted 
by -1.05 which reverses the direction of its vector and positions TMn 
in the opposite quadrant. Thus, the item vectors are “flipped over”, 
stretched and shrunk such that their termini belong to different item 
groups. The communality for subject 20 under Vi2 is thereby increased 
to Y* = .7782, an improvement of 65% over ZWia Subject 20 could, 
therefore, have something in common with the other individuals, 
namely the dimensions, although not the clusters of 2. 

We now demonstrate graphically the function of vector weights for a 
relatively simple case. Individual 14 requires three weights substan- 
tially different from +l in order to tit 2 to his Xi; all other weights are 
sufficiently close to +l to be ignored here in this illustration. The 
respective weights are 1.7 for TP, -1.4 for CT, and 1.6 for BMM, which 
leads to the displacements of these points represented in Fig. 5. 

The communality is increased by such weighting to .92 19 from that of 
.7814 under the dimension-weighting transformation. As simple as this 
case is, it shows clearly that subject 14 associates CT with another 
group of items, in particular with BMM, whereas the average subject 
perceives CT to be most closely related to TP. 

The vector-weighting transformations for individual 14 are also inter- 
esting in another respect: the items TP, CT, and BMM are actually those 
stimuli in 2 which require weights different from +1 for almost all indi- 
viduals, whereas other item-points in 2 represent most corresponding 
individual points with very little shifting. Furthermore, there are no 
simple groups of weight patterns for these items among the individuals 
that would allow one to cluster subjects into types of similar percep- 
tion. It seems that the consensus as to where these items belong is low. 
On the other hand, inter-individual agreement is quite high in the sense 
that CT, TP, and BMM are always displaced such that the approximate 
ellipse that Z’s points form is preserved. Recognizing this higher-order 
invariance, one could, therefore, also try to interpret 2 as a circumplex 
rather than using the cluster and dimensional approach chosen by 
Green and Rao. 

Cases like these also shed some additional light on the interpretabil- 
ity of 2 since a large number of subjects with vector weight patterns 
consisting of coefficients very different from +l, in particular negtitive 
ones, indicate that 2 might not represent any subject’s private percep- 
tual space, but rather some confounding of essentially qualitatively dif- 
ferent individuals. The consequences in such a case are quite clear: one 
should cluster individuals first into groups of relatively homogeneous 
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Fig. 5. Function of vector weights: solid lines represent vectors in 2, dashed lines 
vectors in VjZ. 

perceptions on the basis of their vector weights and then investigate 
these groups separately. 

On the average, we find for the present data a communality of r2 = 
.8465 for the Vi2 approach which is over 10% better than the dimen- 
sion-weighting transformation. Thus, it seems likely that, in spite of the 
substantially higher numbers of free parameters (15 vs. 2 for the dimen- 
sion weighting), some real structural inter-individual differences relative 
to 2 are given in the data. 

Discussion 

As we have already repeatedly pointed out (Borg and Lingoes, 1976; 
Lingoes and Borg, 1976a) we recommend using PINDIS in a confirma- 
tory approach rather than in a purely exploratory way as implemented 
in this paper. In practical terms, this means that one should rotate Z 



236 

first to a position of hypothesized meaning and’ then determine all 
other transformations relative to this 2. This could be done by running 
PINDIS once, fitting the generated Z Procrustean-wise to some target 
matrix which represents the hypothesis, and using this reoriented Z 
then as a fixed hypothesis configuration in a second PINDIS run 
(PINDIS provides an option for the usage of such an externally gener- 
ated Z.). 

Although we have not addressed ourselves to substantive issues in 
this article, the PINDIS analysis is clearly suggestive that more could be 
said about the data than is possible by a dimensional or cluster 
approach. Some other potentially useful interpretational techniques are 
discussed in Lingoes et al. (1977). A study aiming at substantive find- 
ings could also profit considerably from a detailed facet-theoretical 
approach (cf. also Lingoes et al. 1977). 

Notes 

r Only a small fraction of Green and Rao’s analysis is referred to in this paper. Our 
intention is merely to remind the reader of some points that are relevant in this 
context. 

* We are grateful to Professor Green for sending us the complete data deck neces- 
sary for this study. 
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