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Introduction 

Hubert  and Subkoviak (1979) have recently proposed a confirmatory 
technique which allows testing whether  a given proximity matrix or 
some geometrical representation of  it can be said to possess certain pre- 
dicted structural properties. Their approach is essentially very simple. 
They compute  the correlation between the set of  values q(oi, oj), which 
are either the proximity values for objects oi and oj or a distance value 
for the respective point-representations, and the collection of  c(oi, oi), 
the numerical assignments given to these pairs on the basis of  some 
theory.  Thus, if an observation ofq(o i ,  o/.) > q(ok, or) were hypothesized, 
then, for example,  c(oi, o i) = 2 > 1 = c(ok, ol) might be defined. Having 
set up a "s t ructure"  function c in this way, a (linear or rank-order) corre- 
lation between c and q is then an index of  how well the actual data or 
distances correspond (linearly or ordinally) to this particular choice of  
numerical predictions. That is, " the theory used to generate the func- 
tion c(oi, oj) is given empirical support  if the two sets o f  elements, 
c(oi, o i) and q ( o i ,  Oj), have a similar patterning of  high and low entries" 
(Hubert  and Subkoviak, 1979, p. 363). 

In order to be able to evaluate the probabili ty with which such a 
correlation can be expected to occur for random data, it is possible sim- 
ply to compute  the correlations for all - or a reasonably large sample - 
of  the permutat ions of  the sets of  c(oi, o i) o r  q(oi, o])  values, respec- 
tively. If  the observed correlation then exceeds some sufficiently high 
percentage point  of  the cumulative distribution of  the generated set o f  
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coefficients, it is possible to reject the null hypothesis of  randomness. 
Although this approach is, in principle, a useful one, it may often not 

be very interesting to test such a relatively weak hypothesis. It seems 
that a more common type of  research question would involve testing 
two competing hypotheses rather than just one hypothesis versus pure 
noise. In the following, we illustrate such a test by using one of  the data 
sets that  was also employed by Hubert and Subkoviak to illustrate their 
procedure. This test, which does not require the generation of  empirical 
test distributions, is particularly interesting in the context  of  con- 
firmatory multidimensional scaling analyses, as is shown below. 

A Test for Predictor Effectiveness 

Hotelling (1940) described a statistical method for distinguishing 
which of  two or more predictors is most "effective" in explaining a 
common dependent variable y.  For simplicity, let there be just two 
predictors, Xl and x2, with fixed values, and a dependent variable y con- 
sisting of fallible data. The null hypothesis that we are concerned with 
in this paper asserts that the residual variances about the regression lines 
of  y on xl and y on x2, respectively, do not differ statistically. Note 
that  this hypothesis is not the same as the one in the usual test for com- 
paring two correlation coefficients, insofar as (a) it involves a common 
dependent variable y,  and (b) the independent variables x~ and x2 are 
not subject to random variation but are fixed - just as in tests for the 
significance of  regression coefficients. 

Assume, then, that each observed value Yi consists of  a true compo- 
nent r~i and an error term ei, i.e., Yi = "t?i + ei, where ei is taken ran- 
domly from a normal distribution with variance o 2. Moreover, E(Yi )  = 

r~i = ~i + (31Xu + (32x2i, i.e., the expected value of  Yi is a linear combina- 
tion of  x~ and x2. For convenience, the predictor variables xl and x2 can 
be standardized to z-score form. This makes ~,Zu = 0 = Nz2i  and Nz~i = 

1 = ~,z~i, where zk is the standardized Xk, k = 1, 2. The regression 
weights for predicting y from zl and z2, respectively, are then 

bk = ~-,iYiZki , k = 1, 2 (1) 

The unexplained variance, u~,  is equal to ~i(Yi- fii)2= ~'[Yi- (ak + 
bkZk i ) ]  ~, with ak = Y. This simplifies to 

~ - ' i ( Y i  - -  y ~ ) 2  - -  ( ~ _ , i Y i g k i ) 2  = U~ (2) 

Now, evaluation of  the difference between u~ and u~ leads to 

u~ u~ = b 2 b~ (3) 
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o r  

bl = b2 (4) 

as our H0. Thus, bl -- b2 = ~ , i Y i Z l i  - -  ] ~ i Y i Z 2 i  = ] ~ i Y i ( Z l i  - z 2 i ) .  Replacing 
Yi by Hi + ei in the last term, and computing its variance, yields 
E i o 2 ( z u -  z2i) 2. To estimate a 2, y is regressed on Zl and z2 simulta- 
neously and the residual variance, s 2, is set equal to 02. The significance 
of  the difference b~ - b2 can then be tested by an ordinary t-test, t = 
(b l  - b 2 ) / x / N i s 2 ( z u  - z2i) 2, with n - 3 degrees of  freedom (see Healey, 
1955; Williams, 1959; Lingoes and Borg, 1980). 

An equivalent, but more convenient formula is provided by Hotelling 
(1940). To use it, only the following correlations are required: r~ = 
r(y, x 0 ,  r2 = r(y, x2), and ro = r(x~, x2).  The statistic 

(rl - r2)[(n - 3)(1 + ro)/D] 1/2 

where 

= 1 r l  r2 

D r~ 1 ro 

r2 ro 1 

(5) 

is then distributed as t with n - 3 degrees of freedom. If  the probability 
for a given t-value "is sufficiently s m a l l . . ,  we have a corresponding 
degree of  confidence that the variate chosen because of  higher correla- 
tion in the sample has actually a higher correlation than the other in the 
populat ion" (Hotelling, 1940, p. 278). 

The statistic (5) is distributed as t only if the assumptions discussed 
above are met. That is, the values of  y have to be independently and 
normally distributed with equal variance, and the expected values of  y 
must be a linear function of  xl and x2. In the context  in which we want 
to use the test, the dependent variable y will be a set of  dissimilarity 
scores or distance estimates. (The predictors xl  and x2 are some fixed 
numerical vectors and no assumptions are involved on their side.) For 
such a y-variable, it is not always possible simply to assume indepen- 
dency and normality. The first problem, i.e. that  errors be uncorrelated, 
does not  appear to be a very serious one. Yet, in any case, the issue may 
be eliminated entirely by substituting the values in y by their respective 
ranking numbers. This weakens the test somewhat in cases where y is a 
metric variable, but has other advantages (see below). As to the distribu- 
tion assumption, it has been shown, for example, that  for ratio-scaled 
distance estimates the non-central • or the log-normal distributions are 
more reasonable models than the normal curve (Ramsay, 1969, 1977). 
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Although, except  for small values, the former distributions do not 
differ greatly from the normal one, it is quite unnecessary to worry 
about  such distributional properties at all, since Lingoes and Borg 
(1980) have demonstrated that the test is extremely robust  with respect 
even to serious violations of  the normality assumption. Finally, the 
linearity assumption requires also that the values in xl and x2 be sub- 
stituted by their respective ranking numbers to allow for perfect corre- 
lations. Moreover, if xl and x2 are distances of  non-metric MDS solu- 
tions, the  ranking-number substitutions have the advantage of  linearizing 
the relationships between y and xk,  k = 1, 2 (Weeks and Bentler, 1979). 
Lingoes and Borg (1980) have theoretically and empirically investigated 
a great variety of  different assumptions and transformations and have 
come to the conclusion that - with the ranking-number substitutions - 
"one need but  assume that y is a random variable or a random permuta- 
tion for the statistical inference to be valid" (Lingoes and Borg, 1980, 
p. 15). 

EXAMPLE 1 : A DIRECT COMPARISON OF THE EFFECTIVENESS OF TWO 
STRUCTURE MATRICES 

In the following illustrations, we use Glushko's data on pattern good- 
ness and redundancy (Glushko, 1975). Since these data were also used 
by Huber t  and Subkoviak (1979),  the reader can easily see where and 
how our and their approaches differ from each other. 

Glushko was interested in testing the hypothesis  that "a pattern's 
goodness is related to its redundancy as measured by the number  of  
patterns inferred from or equivalent to i t"  (Glushko, 1975, p. 158). He 
constructed seventeen dot-patterns (Fig. 1), and set up 136 cards each 
representing a different pair of  patterns. The subjects were then asked 
to indicate which pattern on each card was the "be t te r"  one. Summing 
the preferences over all twenty  subjects, a 17 • 17 preference matrix 
was obtained. Proximity measures were then derived, based on the fol- 
lowing logic: "Since dissimilar goodness between two patterns is 
implied by frequent choice of  either over the other, the absolute value 
of  the difference between the observed and the expected frequency Of a 
goodness preference represents the similarity of  the pattern goodness of  
the two p a t t e r n s . . . ,  (Glushko, 1975, p. 159). Since there were twenty  
subjects, the expected (chance) preference value for each pair was 10. 
Thus, subtracting 10 from each entry of  the preference matrix and 
taking the absolute value, the proximity matrix in the lower half of  
Table I is generated. 

It may be observed in Fig. 1 that the set of  patterns is partitioned 
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Fig. 1. The Seventeen Patterns used in Glushko's Experiment. Equivalence Sets 
correspond to the Number of Rotations in 90 ~ Increments and Reflections that 
Generate the Same Dot Pattern. 

into three groups on the basis of  their " redundancy" ,  i.e. the number of  
different configurations resulting from reflections or rotations of  a 
given pattern in 90 ~ increments. Pattern 3, for example, thus generates 
four different " T "  configurations, whereas pattern 1 looks the same 
under all of  these transformations, or, in other words, "i t  suggests only 
itself". 

Hubert and Subkoviak (1979) used these group measures directly as 
a structural hypothesis. They therefore defined the upper half matrix 
in Table I as their "structure matrix".  Correlating all corresponding 
values in both halves of  this table yields r = 0.64, which is higher than 
any value of  the empirical test distribution. It is thus concluded that 
the equivalence-set hypothesis is significantly better than chance. 

As Hubert and Subkoviak pointed out themselves, other monotonic  
transformations of  this structure matrix might also be considered. 
Indeed, the theory says that  the goodness of  a pattern is simply 
"related to its redundancy as measured by the number of  patterns 
inferred from or equivalent to i t"  (Glushko, 1975, p. 158). Specifying 
what "related" means, would, so it seems, require that  the corre- 
spondence be at least weakly monotonic.  If  the structure matrix in 
Table I is weakened such that  its elements are required to express only 
such a monotonic  hypothesis, it has to be decided whether,  by so 
doing, the percentage of  variance explained in the data can be signifi- 
cantly increased. 
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Although m a n y  monotonic  transformations might be considered 
here, we choose a particularly simple one which is likely to increment 
the correlation between the structure values and the data. This transfor- 
mation is a mapping of  the proximities in Table I into the structure 
matrix such that the rank order of  the image values corresponds to the 
rank order of  the structure coefficients. Such a mapping is known as a 
"rank image t ransformat ion" (Guttman,  1968). The structure matrix 
will then contain all the small-proximity data in those blocks that prev- 
iously contained the zeros; the block consisting of  3's in Table 1 will 
then absorb the smallest remaining proximities, etc. Thus a structure 
matrix is obtained that is monotonic  with Hubert  and Subkoviak's. 
(Strictly speaking, it is only weakly monotonic  since, for example, 
some of  the largest elements in the "zero"-block are equal to the 
smallest values in the "three"-block,  etc. There are, however, only few 
such "weak"  links.) This structure matrix can be brought into optimal 
correspondence to the proximities by  permuting the elements within 
each block such that the sum of  the squared differences is minimized. 
Lingoes and Roskam (1973) term this method the "primary approach 
to ties". 

The correlation between this monotonic  structure matrix and the 
data is computed  as r = 0.69, which is only slightly higher than the mea- 
sure for the values in Table I (r --- 0.64). However,  applying Hotelling's 
test to these results, a t-value of  2.13 with 133 degrees of  freedom is 
found,  which indicates that the difference is significant. It can therefore 
safely be concluded that the redundancy hypothesis in its strong, 
metric form makes bet ter  than chance predictions, but  some monotonic  
version of  the theory is even bet ter  and further theory development in 
this direction may  prove fruitful. 

EXAMPLE 2: A CONFIRMATORY MULTIDIMENSIONAL SCALING 
APPROACH TO THE REDUNDANCY HYPOTHESIS 

Glushko (1975) analyzed his data not  in the confirmatory fashion 
that Hubert  and Subkoviak (1979) proposed. Rather,  he scaled the 
proximity matrix via an ordinal MDS procedure and interpreted the 
resulting two-dimensional configuration. He found that one dimension 
allowed a partitioning of  the space into three regions which contained 
points belonging to just  one redundancy class. (There were just two 
errors.) Moreover, these regions were ordered along this dimension as 
predicted. A hierarchical cluster analysis induced the same three "cu ts"  
into the space. In Fig. 2, a similar scaling configuration obtained via 
SSA-I (Lingoes, 1973) is represented. Its stress is S = 0.11. 
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Fig~ 2. SSA-I Representation of Proximity Matrix in Table I (lower half). 

The horizontal axis in Fig. 2 reflects the group-membership informa- 
tion. It can be seen, however, that points 10 and 11 are not  in their 
appropriate regions: 10 should be located more to the left, 11 to the 
right. 

It can be enforced, o f  course, that these points move such that the 
regionalization hypothesis is perfectly expressed by the configuration. 
For  that purpose, we use the CMDA procedure recently developed by 
Borg and Lingoes (1979, 1980) and Lingoes and Borg (1978). CMDA 
allows specification of  certain side constraints on the distances of  the 
MDS configurations. In this case, we impose some inequalities on the 
distances which will make point 10 closer to any point  in its appropri- 
ate group {3 . . . . .  9} than to any point in {11, ..., 17}; the opposite con- 
straints are imposed on point 11. With these restrictions, CMDA pro- 
duces the configuration in Fig. 3, which perfectly satisfies the redun- 
dancy-class conditions. Except  for points 10 and 11, Fig. 3 is not  greatly 
different from Fig. 2. However,  the fit o f  these two points is now much 
worse and, consequently,  the total stress is increased by  some 5%, to 
S =  0.16. 

The question to be asked now is, of  course, how such an increment 
in stress should be evaluated. We give here a statistical answer by using 
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Fig. 3. CMDA Configuration of Glushko's Proximity Data with Weak Contiguity 
Constraints on Points 10 and 1 1. 

Hotelling's test again. For that purpose, the distances computed from 
the SSA and the CMDA solutions are used as the two predictor sets xl 
and x2 for the dependent variable y consisting of the proximity values. 
(Remember though that ranking numbers are substituted for the values 
in all three variables.) A t-statistic of 3.149 with 133 degrees of free- 
dom is obtained in this comparison. This value is significant, indicating 
that the unconstrained and the constrained MDS solutions are indeed 
reasonably different in explaining the proximities. It is probably worth- 
while, therefore, to take a closer look at the patterns 10 and 11 since 
they are, in fact, responsible for this difference. It may be that the sub- 
jects make use of other redundancy features besides the indicated mo- 
tions. 

In the preceding scaling analysis, however, only the weakest of a 
hierarchy of "contiguity" hypotheses was used. Lingoes (1979) has 
recently described in quite some detail how such predictions may 
gradually be strengthened. The strongest-contiguity type, in his sys- 
tem, is a clustering which requires each point in a given region to be 
closer to every other point within this region than to any outside point. 
Yet, that is just what .Hubert and Subkoviak's structure matrix implies 
if it is interpreted ordinally under the primary approach to ties. (The 
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Fig. 4. CMDA Configuration of Glushko's Proximity Data with Strong Clustering 
Constraints on the Equivalence Sets. 

primary approach to ties means that it is not insisted that  all distances 
in a given group should be equal - as the structure matrix in Table I 
indicates - but that  they should simply be smaller/greater than those in 
the respective adjacent blocks.) Since the constraints for a CMDA 
scaling analysis also are formulated by setting up a structure matrix, 
Table I may be taken directly in order to generate a strong-contiguity 
solution for these data. The result is shown in Fig. 4. 

The effects of  the clustering constraints are obvious from visual 
inspection of  the configuration in Fig. 4. The stress is increased to S = 
0.23, which is more than twice that  for the SSA solution (S = 0.11) and 
also substantially higher than that  obtained for the weak-contiguity 
hypothesis (S = 0.16). 

It is, of  course, clear that this solution is significantly worse than the 
SSA result. It is also not surprising that it differs significantly from the 
weak-contiguity solution (t = 3.45 with 133 degrees of  freedom). 

Discussion 

The test described above is not intended to be a substitute for the 
procedure proposed by Hubert and Subkoviak (1979), although it 
represents an alternative if it is desired to answer such a null hypothesis 
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as used by them. The necessary comparison correlation would then be 
one taken from the empirically generated test distribution. We feel, 
however,  that  the researcher is typically not  interested in testing a struc- 
tural hypothesis  against pure noise. Under such conditions,  Monte Carlo 
techniques would not  only be more  complicated and expensive but  also 
unnecessary: Hotelling's test does not  require such computat ions.  

The test has been generalized to deciding among more than two 
predictors. We have not  discussed this problem here since it, too,  does 
not  seem to be the typical question a researcher is asking. The inter- 
ested reader may here consult Hotelling (1940) or Williams (1959). 

In concluding, we would like to ment ion  an important  comment  
made by an anonymous  reviewer. S/he pointed out  that " the  test does 
no t  take into account  the amount  of  prior informat ion used in gener- 
alizing a structured model.  Suppose a highly structured model  based on 
theoretically impor tant  hypotheses  fits slightly but  significantly worse 
than a completely explora tory  model.  The structured model  would still 
be preferred" .  Exact ly  the same point  is also made by Lingoes and Borg 
(1980).  We must admit that we have no simple solution for this prob- 
lem, nor  do we know anyone who does. Therefore,  we can only recom- 
mend that  the statistical results o f  our tests are considered as just 
another  piece of  informat ion in the process of  theory  construct ion in 
which the ul t imate statistical test is provided by invariance of  findings 
over a large number  of  replications. 
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