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An Approximate Test for Homogeneity of
Correlated Correlation Coefficients
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Abstract. This paper develops and evaluates an approximate procedure for testing homogeneity of
an arbitrary subset of correlation coefficients among variables measured on the same set of individu-
als. The sample may have some missing data. The simple test statistic is a multiple of the variance
of Fisher r-to-z transformed correlation coefficients relevant to the null hypothesis being tested and
is referred to a chi-square distribution. The use of this test is illustrated through several examples.
Given the approximate nature of the test statistics, the procedure was evaluated using a simulation
study. The accuracy in terms of the nominal and the actual significance levels of this test for several
null hypotheses of interest were evaluated.
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1. Introduction

A common situation in social science research involves a comparison a set of
correlation coefficients between variables measured on the same subjects. For
example:
(1) In an evaluation of several instruments for scoring a certain attribute, testing

for the homogeneity of correlation coefficients between scores obtained using
these instruments.

(2) Suppose that there are several, possibly nested instruments of differing length
(hence, differing costs) for scoring current health status and the objective is to
relate the current health status score to the medical cost or utilization. If all the
current health status scores from different instruments are equally correlated
to the dependent variable (medical costs) then the shortest instrument may be
used to reduce costs.

An important difference between these two problems is that in the former, all
possible p(p−1)/2 pairwise correlation coefficients among, say p, score variables
are being tested for equality whereas in the second example only a subset of p− 1
of the p(p − 1)/2 possible pairwise correlation coefficients are involved in the
null hypothesis. The means and variances are the nuisance parameters in the first
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problem and the means, variances and the remaining (p− 1)(p− 3)/2 correlation
coefficients are the nuisance parameters in the second problem.

There are other examples in longitudinal studies where there is a need for
comparing correlated correlation coefficients:

(3) Equality of the correlation coefficients between the same variable measured at
several, say p, occasions.

(4) Equality of the correlation coefficients between two variables, say X and Y ,
measured at p occasions.

Again, these two examples differ because in the first, all possible pairwise correla-
tion coefficients are involved in the null hypothesis, whereas in the second example,
only a subset of correlation coefficients are involved in the null hypothesis.

The objective of this paper is to develop and evaluate a simple procedure for
testing the equality among a set of correlated correlation coefficients that is applic-
able to both situations. These procedures also allow for missing data assumed to be
generated by an ignorable missing data mechanism (Rubin, 1976). The proposed
test statistic can be calculated using a hand-held calculator or a spreadsheet. In
Section 2, we describe the test for the equality of all p(1−p)/2 pairwise correlation
coefficients and illustrate its application using examples. In Section 3, the same
test statistic is used illustrate the test for equality of arbitrary set of correlation
coefficients. Given the approximate nature of the test, a simulation study was also
conducted to study the actual significance levels of nominal 5% tests. The results
from this simulation study are reported in Section 4 and finally, Section 5 concludes
the paper with a technical justification for this procedure.

Many authors beginning with Pearson and Filon (1898) and Hotelling (1940)
have considered the problem of comparing correlated coefficients. These authors
focussed on four-variate and trivariate normal distributions respectively. Hotelling
(1940) used restrictive assumptions on the covariance structure which was relaxed
by Williams (1959). Dunn and Clark (1969, 1971) proposed tests, again for four-
variate and trivariate normal distributions, based on Fisher’s r-to-z transformation.
They and others (Neill and Dunn (1975) and Steiger (1980)) also demonstrated
the superiority of using z over r for small sample sizes and extreme sample cor-
relations through simulations. Nonparametric procedures have been derived by
Bennett (1978) and Choi (1977). Also, Steiger (1980) provides extensions and a
comprehensive review of the literature.

The basic asymptotic results on the covariance between the correlation coeffi-
cients used in this article are derived in Olkin and Siotani (1976). Olkin and Finn
(1990, 1995) discuss a variety of examples for testing the equality of special sets
of correlated coefficients and develop appropriate likelihood ratio tests. These tests
are computationally intensive and require special software packages to implement
them, especially, when some data are missing. The approximate tests developed in
this paper can be applied to those situations but in simple and easy-to-use form.
Meng et al. (1992) developed an approximate test for the equality of correlation
coefficient between a set of predictor variables and a common dependent variable
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(Example 2 above). Also, Raghunathan et al. (1996) compare approximate proced-
ures for comparing correlated correlation coefficients between two different pairs
of variables measured on the same subjects (Example 4 above). The test statistic
discussed in this paper can be applied to these situations as well.

2. Test for Equality of all Pairwise Correlation Coefficients

Based on a sample of size n (with, possibly, missing data on some variables), sup-
pose that the variables Xi and Xj are observed on nij individuals and the sample
correlation coefficient between these two variables is rij where i �= j = 1, 2, . . . ,
p. Suppose the population correlation coefficient between the variables Xi and Xj
is ρij .

Let zij = 0.5×log[(1+rij )/(1−rij )] denote Fisher’s r-to-z transform of rij . Let
uij = √

nij − 3(zij − z̄W ) be the standardized Fisher transform of the correlation
coefficient rij where z̄W is the weighted average,

z̄W =
∑

ij (nij − 3)zij∑
ij (nij − 3)

.

The proposed test statistic is

Q =
∑
ij

u2
ij . (1)

The p-value for testing the hypothesis that all the correlation coeffcients are the
same (i.e., Ho: ρij = ρ; i, j = 1, 2, . . . , p, i �= j ) is obtained by referring Q, to a
chisquare distribution with ν degrees of freedom, where

ν = p(p − 1)

2
− 1 − r̄W (p − 2)(pr̄W + 2)

(1 + r̄W )2
,

where

r̄W = exp(2z̄W )− 1

exp(2z̄W )+ 1
.

We now illustrate the application of the above procedure using an example.

2.1. EXAMPLE 1

Table I gives the correlation matrix between scores on two tests on verbal (X1,
X2), two tests on quantitative reasoning (X3, X4) and two tests on reading and
comprehension (X5, X6) skills administered to 48 subjects. However, only 24 of
the 48 subjects were given the second reading and comprehension test (X6) because
the remaining 24 subjects were asked some other questions in lieu of this test. The
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Table I. Correlation matrix of test scores and the details for the calculations of test
statistic and the degrees of freedom

Variable Statictic X2 X3 X4 X5 X6

X1 r 0.641 0.772 0.841 0.631 0.745

z 0.758 1.020 1.221 0.743 0.962

u −0.925 0.834 2.181 −1.026 0.301

X2 r 0.643 0.650 0.820 0.604

z 0.759 0.775 1.157 0.699

u −0.925 −0.810 1.749.−0 901.

X3 r 0.761 0.621 0.860

z 0.996 0.727 1.292

u 0.672 −1.136 1.821

X4 r 0.627 0.742

z 0.737 0.955

y −0.071 0.270

X5 r 0.615

z 0.717

u −0.821∑
(n− 3)z 34.111 80.055 134.640 151.377 97.146∑
(n− 3) 45 90 135 180 105∑
u2 0.856 1.551 5.865 6.549 4.966

objective is to test whether the correlation coefficients between scores measuring
different functional abilities are equal. The sample size is nij = 48 everywhere
except that it is 24 for the correlation coefficients in the last column. The number
of correlation coefficients tested for homogeneity is 6 × 5/2 = 15.

Table I gives the intermediate results in the calculation of the test statistic Q
and the degrees of freedom. First, Fisher’s r-to-z transforms are computed which
are given as the second entry in each cell of Table I. Based on the sums given in
Table I,

z̄W = 34.111 + 80.055 + 134.640 + 151.377 + 97.146

45 + 90 + 135 + 180 + 225 + 105
= 0.896

and therefore,

r̄W = exp(2 × 0.896) − 1

exp(2 × 0.896) + 1
= 0.714.
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Given the value of z, n and z̄W , u is computed as
√
(n− 3)(z− z̄W )

2 and given
as the third entry in each cell of Table I. The value of Q-statistic given in Equation
(1) is, therefore,

Q = 0.856 + 1.551 + 5.865 + 6.549 + 4.966 = 19.787,

and the degrees of freedom is

ν = 15 − 1 − 0.714 × 4 × (6 × 0.714 + 2)

1.7142
= 7.888.

The resulting p-value is 0.0105 thus rejecting the null hypothesis of the homogen-
eity of the correlation coefficients between various test scores at the standard 0.05
level of significance.

3. Test for Equality of Arbitrary Set of Correlation Coefficients

We now consider the test for the equality of an arbitrary subset of correlation coef-
ficients that involve nuisance correlation coefficients in the variance expression.
Suppose that we are interested in testing the equality of only a subset of k of all
possible p(p − 1)/2 pairwise correlation coefficients. Let d = k(k − 1)/2 be the
number of pairs of correlation coefficients that are in the null hypothesis, of which,
d1 are between nonoverlapping pairs of variables and the remaining d2 = d − d1

pairs involve a common variable. For example, based on a sample from a p = 4
dimensional multivariate normal population, we are interested in testing the null
hypothesis Ho : ρ12 = ρ13 = ρ34. Here k = 3, d = 3 and the pairs (ρ12, ρ13),
(ρ13, ρ34) are overlapping (that is, d2 = 2) and the remaining pair (ρ12, ρ34) is
nonoverlapping (that is, d1 = 1). The correlation coefficients not involved in the
hypothesis (ρ14, ρ23, ρ24) are nuisance correlation coefficients, and these number
l = p(p − 1)/2 − k.

Let r∗ be the median of the sample estimates of the l nuisance correlation coeffi-
cients. LetQ, z̄W and r̄W be exactly the same as defined before except that they are
based only on the k sample correlation coefficients involved in the null hypothesis.
The degrees of freedom for the chisquare statistic Q is

ν = k − 1 − 2
C1d1 + C2d2

k
,

where

C1 = [r̄2
Wr

2∗ + (2r∗ − r̄2
W)(1 − 2r̄2

W)]
2(1 − r̄2

W)
2

and

C2 = 2r2∗
(1 + r̄W )2

.
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Again, we illustrate the application of this procedure using two examples.

3.1. EXAMPLE 2

It has been argued in the psychometric literature that the speed of response-choice
reaction time is positively associated with intelligence as measured by psychomet-
ric tests. Several studies have tried to relate several components of reaction times
to intelligence. The correlation matrix given in Table III comes from one such
study (Chan et al. (1991)) based on a sample of 479, 9-year old Chinese children
in Hong Kong. The reaction time was measured using 12 attributes covering the
components (1) movement time (MT): the time it takes to move the hand from one
button to another, (2) simple reaction time (RT): the decision time in response to
a signal, (3) choice reaction time: the decision time in response to more than one
signal and (4) between-reaction times standard deviation over repeated tests on the
same individual.

In the experiment, the fast reaction and movement times were assigned low
scores, hence the negative correlation with intelligence means the positive asso-
ciation between reaction time and intelligence. Here the objective is to test the
equality of the k = 12 correlation coefficients in the first row of the correlation
matrix given in Table II, with p = 13.

The nuisance correlation coefficients are the l = (13 × 12)/2 − 12 = 66,
the correlation coefficients among the various measures of reaction and movement
times. The median of the nuisance correlation coefficients is r∗ = 0.26. The Q-
statistic measuring the variability of Fisher transformed correlation coefficients in
the first row of Table III is 6.2429 with r̄W = −0.17 based on k = 12 correlation
coefficients. Substituting these numbers in the expression for C1 and C2 in Section
2.3 we get, C1 = 0.4927 and C2 = 0.785. Because d = d1 = 12 × 11/2 = 66, we
have

ν = 12 − 1 − 66 × 0.4927/12 = 8.2902.

The resulting p-value is 0.6929. This p-value may be compared with 0.6868 ob-
tained using an alternative procedure discussed in Meng et al. (1992), essentially
the same.

3.2. EXAMPLE 3

For the second illustration we use the correlation coefficients given in Table II of
Wheaton (1978) and is summarized in Table III. Measures of psychological (X1)
and psychophysiological (X2) disorders are obtained at the baseline on n = 603
patients and these same measures are obtained sometime later (X3 and X4 respect-
ively). Suppose that we wish to compare the correlation coefficient r14 (between
X1 and X4) and r23 (between X2 and X3).
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Table III. Intercorrelations among four measures of disorder

First occasion Second occasion

Psychological Psychophysical Psychological Psychophysical

disorder (X1) disorder (X2) disorder (X3) disorder (X4)

Psychological – 0.45 0.53 0.38

disorder (X1)

First occasion

Psychophysical – 0.25 0.31

disorder (X3)

Psychological – 0.55

disorder (X3)

Second occasion

Psychophysical –

disorder (X4)

Data abstracted from Table II of Wheaton (1978). The sociogenesis of psychological disorder:
Reexamining the cusal issues with longitudinal data, American Sociological Review 43, 383–403.

The null hypothesis of interest is Ho: ρ14 = ρ23. The corresponding sample
correlation coefficients are r14 = 0.38, r23 = 0.25, thus giving z̄W = 0.325
and rW = 0.314. Also, from Table III, the median of the nuisance correlation
coefficients is r∗ = 0.49. The test statistic Q is 6.75. Here d1 = d = 1, k = 2 and
hence C1 = 0.45 and ν = 0.55 which yields p = 0.0022. This same data set is
analyzed in Raghunathan et al. (1996) using an alternative method which yielded
p = 0.0014.

4. Simulation Study

As described in the next section, the tests developed in this paper are based on
asymptotic arguments and certain approximations. Consequently, we conducted a
simulation experiment to find the actual levels of nominal 5% tests based on the two
tests described above in specific situations. In the first simulation experiment, the
objective was to test the null hypothesis of a common pairwise correlation coeffi-
cient among p variables based on a sample of size n. The data were generated from
a multivariate normal distribution with mean zero, variance one and the common
correlation coefficient ρ (i.e., the data were generated assuming the null hypothesis
to be true). The conditions of the simulations were as follows:

– ρ = 0.1, 0.2, 0.3, 0.5 and 0.7
– p = 3, 4, 5, 7 and 10
– n = 25, 50, 75, 100, 150, 300 and 500

Thus, this simulation experiment can be considered as a 5 × 5 × 7 factorial
experiment. In each of the 175 cells, 10,000 data sets were generated and for each
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data set a 5% nominal test was constructed for the homogeneity of all the p(p −
1)/2 correlation coefficients. The proportion of rejections as a percent of 10,000
replications was computed as an estimate of the actual level of the nominal 5% test.
The levels of the test across all simulation conditions were between 3% and 7%.
The actual levels were less than 5% for small p and large ρ and greater than 5%
for small p and small ρ. The actual levels were then analyzed using the analysis
of variance technique with 3 factors ρ, p and n. The factor n, the sample size,
had negligible effect and the following regression model explained 94% of the
variability in the actual levels,

Actual Level = 4.3167 − 5.8982ρ + 0.1510p + 0.5962ρ × p.

The above equation may be useful in predicting the actual level of the nom-
inal 5% test, given the common correlation coefficient estimate r̄W and the
dimensionality p.

In the second simulation experiment, the null hypothesis of interest was Ho =
ρ12 = ρ13 = ρ35 = ρ in a p-variate normal distribution. Here the simulation
conditions were as follows:

– p = 5, 7 and 10
– ρ=0.1, 0.2, 0.3, 0.5 and 0.7 and
– n=25,50,75,100,150,300 and 500

Again 10,000 data sets were generated for each of 105 combinations of the factors
from a multivariate normal distribution with mean zero, variance one and an arbit-
rary positive definite random correlation matrix except that ρ12 = ρ21 = ρ13 =
ρ31 = ρ35 = ρ53 = ρ (i.e., assuming that the null hypothesis is true and arbit-
rary values for the nuisance correlation coefficients). The nominal 5% tests were
constructed for each data set as described in Section 2.3 and the actual level was
defined as the percentage of rejections in 10,000 replications.

All the levels were between 4% and 6% and in the ANOVA of levels, none
of the factors were significantly associated with the actual levels. Based on this
simulation study, it seems that the simple chisquare tests for testing homogeneity
of all or a subset of the product moment correlation coefficient has desired levels
and should be adequate for most practical purposes.

5. Technical Justification

It is well known that, even for the modest size samples, Fisher r-to-z transform,
z = 0.5 × log[(1 + r)/(1 − r)] is approximately normally distributed with mean
z(ρ) = 0.5 × log[(1 + ρ)/(1 − ρ)] and variance 1/(n − 3) where ρ is the
population correlation coefficient and n is the sample size. Similarly, it can be
shown, using the same arguments as in Olkin and Siotani (1976), that for a sample
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from a multivariate normal population and when the data are missing at random,
u∗
ij = √

(nij − 3)(zij − z(ρij )) has a standard normal distribution with

C1 = Cov(u∗
jk, u

∗
jh) = ρkh(1 − ρ2

jk − ρ2
jh)− ρjkρjh(1 − ρ2

jk − ρ2
jh − ρ2

kh)/2

(1 − ρ2
jk)(1 − ρ2

jh)

and

C2 = Cov(u∗
jk, u

∗
hm) = 1

2(1−ρ2
jk)(1−ρ2

hm)
(ρjh − ρjkρkh)(ρkm − ρkhρhm)

+(ρjm − ρjhρhm)(ρkh − ρkjρhj )

+(ρjh − ρjmρmh)(ρkm − ρkjρhm).

Under the null hypothesis, ρij = ρ for all i, j = 1, 2, . . . , p; i �= j , the above
two covariances simplify to

C1 = Cov(u∗
jk, u

∗
jh) = ρ(3ρ + 2)

2(1 + ρ)2

and

C2 = Cov(u∗
jk, u

∗
hm) = 2

(
ρ

1 + ρ

)2

.

The same asymptotic results hold when z(ρ) in the definition of u∗
ij is replaced with

its estimate, z̄W = ∑
ij (nij −3)zij /

∑
ij (nij −3), (that is, for uij defined in Section

2). Further, it can shown that Q = ∑
ij u

2
ij can be written as a quadaratic form

UtAU where U is a d = p(p − 1)/2-dimensional vector (u12, u13, . . . , up−1,p)
t ,

A = Id − 1

d
E,

Id is an identity matrix of order d, E is a d × d matrix of ones and the superscript
t stands for matrix transpose. Let V denote a d × d covariance matrix of uij with
diagonal elements equal to 1 and the off diagonal elements are either C1 or C2

depending upon whether the correlation is between overlapping or nonoverlapping
correlation coefficients. The actual sampling distribution of the quadratic for Q is
same as that of a linear combination of independent chisquare random variables.
Instead, we approximate it by a chisquare random variable by matching the means
of the two distributions. That is,

Q ≈ χ2
ν

where ν = E(Q) = tr(AV ) where tr stands for the trace of the matrix (that is, the
sum of its diagonal elements).
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Now,

tr(AV ) = tr(V )− tr(EV )/d = d − (d + 2d1C1 + 2d2C2)/d

where d1 = p(p−1)(p−2)/2 is the number of overlapping pairs of correlation
coefficients and d2 = p(p− 1)(p − 2)(p − 3)/8 is the number of nonoverlapping
pairs of correlation coefficients. Algebraic simplification of the above expression
reduces tr(AV ) to

d − 1 − ρ(p − 2)(pρ + 2)

(1 + ρ)2
.

Since ρ may not be specified, its estimate under the null r̄W is substituted in the
above expression to obtain ν defined in Section 2.1.

For deriving the test procedure for an arbitrary subset k of p(p− 1)/2 possible
pairwise correlation coefficients, we make a simplifying assumption that all the
nuisance correlation coefficients are equal to ρ∗. Under this approximation,

C1 = ρ2ρ2∗ + (2ρ∗ − ρ2)(1 − 2ρ2)

2(1 − ρ2)2

and

C2 = 2ρ2∗
(1 + ρ)2

.

Noting that V is k × k matrix and U is k × 1 vector,

tr(AV ) = k − (k + 2d1C1 + 2d2C2)/k = k − 1 − 2
d1C1 + d2C2

k

where d1 and d2 are the number of overlapping and nonoverlapping pairs of correl-
ations coefficients respectively. Substituting the estimates r̄W and r∗ for ρ and ρ∗
respectively, we obtain the results given in Section 2.3.
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