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Abstract. Techniques of time series data analyses developed over the past decades are reviewed. We
discuss the theoretical principles and mathematical descriptions of these analytical techniques that
have been developed by scientists with different backgrounds and perspectives. These principles not
only provide the guidelines to evaluate each particular technique but also point to directions for the
development of new methods. Most time series analyses can be divided into three categories: discon-
tinuity analysis, wave analysis and correlation analysis. Techniques for analyzing one-dimensional
discontinuities have been well-developed and tested. The errors and ambiguities of discontinuity
analyses are reasonably well, but not as widely, understood. Techniques for wave analyses have been
developed for certain wave properties and are still under further active development. Problems in
using these techniques are recognized to a certain extent. Because of the complicity of the waves in
space and the limitation of probing, there are significant needs for the development of new methods.
Although simple techniques for two-satellite correlation analyses have been developed and tested for
some time, techniques for multiple satellites are in an embryonic stage. We expect to see significant
advances in the development of new techniques and new concepts. We believe, however, that the
problems in this area have not been fully appreciated.
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1. Introduction

Many of the observational data in space physics are obtained as time series. These
time series contain measured physical quantities, that may be scalars, vectors, ten-
sors, or multidimensional images. Examples of such quantities are temperatures
and densities of the plasma, magnetic or electric field vectors, pressure tensors,
and auroral images. These quantities can be measured either in space on a moving
platform or on a fixed platform such as the surface of the Earth. Thus the variations
in the time series may represent true temporal changes in the system or motion
through spatial gradients or some combination of the two. Since most data gathered
in space physics are initially in the form of time series, their use is widespread. To
analyze these time series data, many data processing methods, analysis techniques
and computer algorithms have been developed. In this review, we outline a set
of principles for data analysis methods, describe a number of well-established data
analysis techniques, discuss the uncertainties and limitations of each technique, and
suggest procedures and criteria which may reduce the uncertainties of the results
for some analyses. Many of the principles presented are derived for the first time.

Most time-series analyses can be divided into three categories: discontinuity
analysis, wave analysis, and correlation analysis. Discontinuity analysis determines
the orientation, thickness and motion of the interface between two different plasma
regions or regimes. The methods for discontinuity analysis are well developed.
However, due to the lack of wide recognition of the underlying assumptions, un-
certainties and validity of each method, there are still many problems in this area.
We present a comprehensive discussion of these problems. Wave analysis deter-
mines the properties and characteristics of a wave that identify which of the several
possible wave modes allowed in a plasma a particular observed fluctuation might
be. Techniques for wave analysis are under active development. We discuss the
principles of these methods. Since discontinuities can be considered as steepened
waves, some of the methods for wave analysis can be used in discontinuity analysis.
Correlation analysis determines the relationship between observations at two or
more spatially separated locations. Correlation studies can be performed in the
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time domain, for example to determine the time lags between observers. Correla-
tion analysis can also be performed in the frequency domain. We will give a brief
introduction to correlation analysis and discuss how to apply it to the analysis of
the data from a cluster of satellites.

From the beginning of the space age, scientists have sought means for quick
qualitative visual examination of large amounts of data. With plotted traces, one
can easily spot a discontinuity, estimate a wave frequency and correlate two traces
by overlaying them. Even today these qualitative visual analyses can be powerful
ways to check the results of an analysis, i.e., a quantitative result is suspicious if
one cannot verify the consistency of the result by visual inspection of the data. As
will be stressed in this paper, relying solely on automated computer analysis may
lead to completely wrong results. As a data analyst, one has to frequently return to
the examination of the original observations to perform what is often referred to as
a ‘sanity check’ or a ‘reality check’.

The first quantitative data analysis method for discontinuities was the mini-
mum variance analysis for discontinuity analysis proposed by Sonnerup and Cahill
(1967). In the 1970s, the wave analysis techniques using the magnetic field became
mature. Along with the improvements of the plasma measurements, in the 1980s
and 1990s, techniques incorporating plasma measurements have been under active
development. The correlation analysis of signals made at two or more observation
sites has become important since the launches of the ISEE satellites and it will
play the key role in analyzing the multiple satellites data in the International Solar
Terrestrial Physics (ISTP) program. While in theory the quantitative correlation
analysis is most straightforward compared with other analyses, in practice, there
are many problems associated with the coherence length of a phenomenon, com-
pared with the spacecraft separation, for example. We suspect that many problems
have not yet even been recognized. In the next few years, we expect to see major
progress in understanding of correlation analyses as a result of multiple-satellite
data analyses.

1.1. FRAME OF REFERENCE

Observational data are gathered in a frame of reference at rest with the observer.
Physical laws are often stated in a frame of reference that is moving with respect to
the observer. In particular, the Rankine–Hugoniot relations are given in the frame of
reference at rest with the discontinuity, and the wave dispersion relations usually
expressed in the plasma rest frame. In the non-relativistic limit, plasma density,
pressure, magnetic field, and wavelength are not dependent on the frame of refer-
ence, but velocity, electric field, and frequency are. While it is always important to
work in the appropriate frame of reference when dealing with a flowing plasma,
this is critically true in the supersonic solar wind.

The total time derivative of an observed quantityQ, which can be either a scalar
or a vector, is
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DQ

Dt
= ∂Q

∂t
+ (v · ∇)Q , (1.1)

wherev is the velocity of the observer relative to the frame of reference in which
the phenomena is described. The first term on the right is the temporal variation
in the frame of reference of the plasma (say) and the second term on the right is
the apparent temporal variation caused by motion through spatial gradients. Both
are observed by a moving instrument as temporal variations. For example, when
discussing observations of a wave in the plasma frame,v is the measured plasma
flow velocity, and the∂/∂t term is nonzero. For a steady phenomenon, the∂/∂t

term is zero (e.g., in the plasma frame) and the observed time variation is due to the
motion through stationary gradients. A time-domain correlation analysis assumes
that, in a particular frame, for example, a wave frame or a shock frame,∂/∂t =
0. Therefore the velocity derived from the timing difference is the sum of the flow
(convection) velocity and the propagation (phase) velocity. We recall that the group
velocity measures the velocity of the envelope of the variations whereas the varia-
tions themselves move at the phase velocity. The energy of the wave packet flows
with the group velocity and it is the group velocity that is restricted to velocities
equal to or less than the speed of light, not the phase velocity.

For magnetic field measurements, using the frozen-in Faraday’s law and diver-
gence free condition, Equation (1.1) becomes,

DB
Dt
= (B · ∇)v− (∇ · v)B . (1.2)

Assume a coordinate system̀,m, n with variations only along the normal or a di-
rection under one-dimensional assumption, for either a discontinuinty or a wave, in
which ∂/∂` and∂/∂m are zero. It is easy to show that the measured time variation
of the field is zero in the direction alongn. No stationarity assumption is made here
and this is true independent of the frame of reference. This particular feature of the
magnetic field is actually the basis of most data analysis techniques. Note that in
discontinuity analysis, one cannot always assume that the shock frame is known,
nor in wave analysis, that the wave is in steady state.

For other quantities, temporal variations in the frame in which a theory is ap-
plied, may affect the results of an analysis. For example, the observed electric field
variation is

DE
Dt
= ∂E′

∂t
+∇(v · E′)− ∂v

∂t
× B , (1.3)

whereE′ = E + v × B is the electric field in the frame of reference in which
the phenomenon is described. Note here that∇ × E = −∂B/∂t and we have
assumedv to be uniform in space. Whenv is not spatially uniform, more terms
appear. Under a 1-D assumption, neither component is zero in general. But for
1-D steady state, the tangential components of the variation vanish whereas the
normal component does not. This property of the electric field variation provides
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the foundation of the maximum variance analysis to be discussed in Section 2.5.
Note that this method requires the steady state assumption and thus is difficult to
apply to wave analyses. For discontinuity analysis, not only unsteadiness of the
discontinuity but also changes in the motion of the discontinuity relative to the
observer affect the results. Since in space, boundaries are often in oscillation and
not in simple motion, only on a few occasions is the latter effect unimportant. When
comparing measurements from two spacecraft at different times, more effects will
occur due to the relative motion between the spacecraft frame and the plasma frame
(see more discussion in Section 4.1.3).

1.2. COORDINATE SYSTEMS

1.2.1. Global Coordinate Systems
Three global coordinate systems are often used in space physics. A global coordi-
nate system is useful for studying phenomena of global effects.

1.2.1.1. GSE coordinate system.In the Geocentric-Solar-Ecliptic coordinate sys-
tem, thex direction is from the Earth to the Sun. Thez direction is along the normal
to the ecliptic plane and pointing to the north. They direction completes the right
handed coordinate system and points to the east, opposite planetary motion. The
statistical aberration of the solar wind by the Earth’s orbital motion is most readily
removed in this system. It is useful for problems in which the orientation of the
Earth’s dipole axis is not important, such as the bow shock and magnetosheath
phenomena.

1.2.1.2. GSM coordinate system.In the Geocentric-Solar-Magnetospheric coor-
dinate system, thex direction is also from the Earth to the Sun. Thez direction
lies in the plane containing the Sun–Earth line and the geomagnetic dipole, and
is perpendicular to the Sun–Earth line and positive north of the Sun–Earth line.
They direction completes the right-handed coordinate system. The GSMy andz
directions lie at an acute angle (around thex direction) to the GSE counterparts.
The GSM coordinates are most useful for studies of solar wind-magnetosphere in-
teraction and where the solar wind determines the geometry of the magnetosphere.
These include phenomena near and at the magnetopause/boundary layer, in the
outer magnetosphere and near earth magnetotail.

1.2.1.3. SM coordinate system.In the Solar Magnetic coordinate system, thez
direction is along the Earth’s magnetic dipole pointing north. Thex − z plane
contains the solar direction with roughly toward the Sun. Itsy direction is on
the dawn-dusk meridian and points to dusk in the same direction as the GSMy

direction. Thus the SMx andz directions differ from their GSM counterparts by
an acute angle of rotation related to the tilt of the dipole. The SM coordinates are
usually used in studies of the near earth phenomena, where the geomagnetic field
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Figure 1.1.Boundary normal coordinate system (Russell and Elphic, 1978).

controls the processes, such as the ionosphere, inner magnetosphere, and ground
observations.

1.2.2. Local Coordinate Systems
To study a local phenomenon or a global phenomenon in a local context, a local
coordinate system is most convenient. Three local coordinate systems are often
used in the literature.

1.2.2.1. Boundary normal coordinate system (LMN) (Russell and Elphic, 1978).
TheN̂ direction is along the normal of the boundary, which can be the bow shock or
the magnetopause, or a current sheet. The direction is usually chosen to be outward
from the Earth for both the bow shock and the magnetopause. TheL̂ direction
is along the geomagnetic field direction for the magnetopause and is along the
projection of the upstream magnetic field on the boundary for the bow shock. The
M̂ direction completes the right-handed coordinate system and points to dawn for
the magnetopause (see Figure 1.1). At the subsolar magnetopause, neglecting the
aberration caused by the finite velocity (29.5 km s−1) of the Earth through the
solar wind, the LMN coordinates are coincident with the GSM coordinates with
N̂ → x̂, L̂→ ẑ andM̂ →−ŷ.

The LMN coordinate system is useful only locally unless the boundary is planar.
In some cases, a satellite may move along a curved boundary, e.g., the magne-
topause, for a long period of time and cross it many times as the boundary rocks
back and forth. The normal of the boundary at each crossing may be different.
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When presenting the data in a fixed LMN coordinate system, one needs to be
extremely careful in interpreting the results because the direction of the normal
of the boundary may be varying. Similarly one should be cautious in using an
LMN coordinate system derived from either the magnetopause or bow shock well
away from that boundary such as in presenting the data from the bow shock to the
magnetopause. One should not interpret, for example, theN component along a
direction determined at the magnetopause as the normal component throughout the
magnetosheath.

1.2.2.2. Field-aligned coordinate system.The average magnetic field direction
(taken from thein situ measurements) is defined as a preferential direction. A
second direction is usually defined according to the symmetry of the system. For
example, for magnetospheric wave studies, the azimuthal direction parallel to the
direction obtained from the cross product of the magnetic field and the radially
outward direction is usually used as the second direction. This direction is eastward
in the Earth’s magnetosphere in the direction of electron drift. This direction is
useful for displaying the field perturbations associated with sheets of field aligned
currents that are roughly along shells of constant L-value or L-shells. Similarly,
for magnetosheath studies, one can define a surface in the sheath which belongs
to the family curves that are used for empirical models of the magnetopause and
bow shock. The second direction can then be defined perpendicular to the field and
along the surface.

1.2.2.3. Geomagnetic dipole coordinate system.The Geomagnetic Dipole coor-
dinate system has itsz direction along the geomagnetic dipole axis. The other two
directions are defined in terms of geomagnetic latitude and longitude by analogy
with geographic coordinates. Therefore, this coordinate system is useful in study-
ing phenomena observed in ionosphere and ground stations. In order to study the
global effects of these phenomena, an observation is often presented in geomag-
netic local time, which is equivalent to that in SM coordinates, and is the angle
between the meridian plane containing the Sun and that containing the point of
observation converted to hours and increased by 12 hours.

1.2.3. Spacecraft Coordinate System
For some vector quantities only two components are measured by our spacecraft.
Examples are the electric field, plasma waves and the plasma moments from certain
instruments. The two components are in the plane perpendicular to the space-
craft spin axis. Frequently, the spin axis is nearly along one of the GSE axes (for
magnetospheric missions) or perpendicular to the orbit plane (cartwheel mode for
ionospheric missions). The fraction and the direction of the background magnetic
field projected onto this plane are important to observations which deal with the
anisotropies with respect to the magnetic field. The spin modulation of the high
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time resolution signals can provide useful information. Often artifacts in measure-
ments are most easily detected in spacecraft coordinates.

1.3. MEASUREMENTS AND THEIR UNCERTAINTIES

A measured physical quantity is derived from measureable quantities by a instru-
ment. Therefore, its accuracy is limited by the instrument capability and the data
reduction procedures. As a data analyst, it is very important to understand the
principles of the instruments from which the data are measured and the schemes
of the data reduction that are used. In this section, we will discuss several general
issues concerning the measurements and data reduction. We will assume that the
measurements are accurate in other sections in the paper. The word ‘fluctuation’
used in this paper refers to deviations from the average of the measured quantity.
The word ‘noise’ refers to the unwanted signals that are not described by the ideal-
ized variations of a particular analysis method. It is important to point out that the
‘noise’ in one analysis can be a physical phenomenon for another analysis. Fluctu-
ations include both wanted signals and noise. If one chooses a wrong method, the
useful signals will be treated as noise.

1.3.1. Resolutions
1.3.1.1. Time resolution. Temporal resolution, the time between samples, is a
major limit in many data analysis methods. For example, to use the Minimum
Variance method (to be discussed in Section 2.2) requires the resolution to be at
least half of the crossing duration of a discontinuity, i.e., one needs a sample in
the middle of the crossing not just at either end. Temporal resolution also sets
an upper cutoff frequency, the so-called Nyquist frequency, which is half of the
sampling frequency, for Fourier analysis. Stated differently, in order to resolve a
waveform, the sampling frequency should be at least twice the wave frequency. If
frequencies above the Nyquist frequency are present when a signal is digitized it
appears to oscillate at the frequency below the Nyquist requency. Such a signal is
called aliased. The timing difference derived from correlation analysis is limited
by the accuracy of the clocks controling the measurements. Synchronization of
clocks of observers becomes very important when the timing differences are small.
Sometimes components of vectors are not sampled simultaneously. Sometimes the
time separation of sequential measurements is not uniform. Techniques exist for
accurately analyzing signals under these circumstances but add complexity to the
analysis.

If the bandwidth of the measurements is large compared to the frequency range
of the phenomenon of interest, i.e., if the temporal resolution is too high, time
domain analysis (which accept signals of any frequency) will be affected by ‘un-
wanted signals.’ For example, if within a discontinuity, there are waves which are
polarized in the normal direction of the discontinuity, they will affect the result
of a Minimum Variance analysis. Although these high frequency phenomena have
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their own physical significance they may be treated as ‘noise’ in analysis of low-
frequency phenomena. Therefore, in time domain analysis proper preparation of
the data by either running average or filtering is important to limit the band of
information to the time scale of the phenomenon of interest.

1.3.1.2. Amplitude resolution. Digitized measurements have finite amplitude res-
olution as well as finite temporal resolution. The result of the process is to add a
square wave, or finite steps to the data. When a Fourier analysis is performed by
digitized data, there is a minimum noise level set by the digitization ofD2/12FN ,
whereFN is the Nyquist frequency andD is the digital window. This digital noise is
spread uniformly over the bandwidth of the signal, i.e., 0 toFN and when decreas-
ing the bandwidth of the digitized signal by subsampling or ‘decimating’ as it is
sometime called, it is important to low-pass filter the signal, or else the entire digital
noise of the original time series will be added to the new narrower bandwidth. If
the digital noise is comparable to the measured signal, the noise is most readily
reduced by digitizing more finely than increasing bandwidth (Russell, 1972).

1.3.2. Field Measurements
One of the most accurately determined quantities in space is the magnetic field, if
attention is paid to considerations of linearity, magnetic cleanliness and bandwidth
relative to the Nyquist frequency. For an elliptical Earth orbiter its magnitude can
be calibrated each time at perigee where the field is known and the zero levels
of each sensor in the spin plane can be calibrated as the spacecraft rotates (e.g.,
Kepko et al., 1996). The intercalibration among different spacecraft can be done in
current-free regions (e.g., Khurana et al., 1996).

The electric field measurements are affected by spacecraft charge and Debye
length. The understanding of the calibration problem has been significantly im-
proved and the validity of the measurements has been tested (Mozer et al., 1979,
1983). Nevertheless, special caution should be taken in the regions with significant
plasma gradients and low plasma density.

High frequency (>10 Hz) electric field fluctuations are measured with electric
dipole antennae. Often only the components in the spin plane are measured. The
reliability of the data is generally good. The major limitation is caused by the
finite data rate which results in competition between the frequency and temporal
resolutions. For example, to infer the plasma density from waves at the plasma
frequency, one needs a fine frequency resolution, but to determine the polariza-
tion of a wave based on spin modulation, one needs a temporal resolution a few
times the spacecraft spin period. The corresponding oscillating magnetic field is
usually measured with wire coil antennae that are sensitive to the time derivative
of the magnetic field. A search coil magnetometer is a coil antenna with a highly
permeable core and is used at ELF and VLF frequencies, say 10 to 104 Hz.
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1.3.3. Plasma Moments
A plasma detector measures the number of particles1N in an energy range be-
tweenU andU +1U that tranverse in a time1t an area1A within an element of
solid angle1� around the normal toA. The differential direction (flux) intensity
is defined as

J = 1N/(1A1�1U1t) (1.4)

In principle,1A is the cross-section of the detector,1� and1U are the angular
and energy resolutions of the instrument, and1t is the sampling time which equals
the data rate for continuous measurements. To obtain a complete distribution func-
tion, the instrument has to scan all look-directions and energy ranges. Often the
angular and energy resolutions (and the signal-noise ratio) compete for the limited
telemetry.

The plasma distribution functionf is related toJ by (1N = f1v1r , U =
1
2mv

2,1r = v1A1t,1v = v21�1v),

f = m

v2
J , (1.5)

wherem andv are the mass and velocity of a particle being detected. With the
distribution function, the plasma moments, density, velocity, pressure and heat flux
(for a particular species), can be derived,

N =
vHC∑
vLC

∑
�

f v21�1v , (1.6)

V = 1

N

vHC∑
vLC

∑
�

vf v21�1v , (1.7)

P = m
vHC∑
vLC

∑
�

(v− V)2f v21�1v , (1.8)

T = P/N , (1.9)

wherevLC andvHC are the lower and higher cutoff velocities that are determined
by the lower and higher cutoff energies,ELC andEHC, and the spacecraft potential
8, and are

vLC,HC = 2

m

√
ELC,HC+ q8 , (1.10)

whereq is the electric charge of the particle. For a 2-D detector, an assumption is
needed in order to extrapolate the values of fluxes in undetected directions. This
assumption becomes important when the anisotropy of the plasma is high. Note
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Figure 1.2.Ratios of the measured to real moments (Song et al., 1997). The lower cutoff velocity
should be evaluated from the lower cutoff energy of the detector and the spacecraft potential at the
time. The temperatures, in eV, for1

2v
2
L = 20 eV ion detector and12v

2
L = 15 eV electron detector,

when the spacecraft is uncharged, are given for corresponding values in thex axis. Different lines
are for different bulk velocitiesv0 normalized by(2T0)

1/2, which are close to the Mach numbers.

that the effects of the spacecraft charge depend on the species and that the cutoff
velocities are very large for electrons compared with ions because of their small
mass.

The effects of a finite sampling energy range on the moment measurements
depend on the temperature and velocity of the plasma being detected (Song et al.,
1997). If the temperature is many times lower than the higher cutoff energy, the
higher cutoff has only minor effects. The lower cutoff has more extended effects.
In general, see Figure 1.2, the density and pressure are underestimated, and the
velocity and temperature overestimated. In order to reduce the errors, some data
analysts interpolate the points below the lower cutoff or fill the hole with best-fit to
a convective Maxwellian distribution. The energy resolution becomes an important
issue in order to accurately derive the moments of cold plasmas. Without a good
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energy resolution within the bulk of the distribution, the density cannot be derived
accurately.

In summary, it is very important for a data analyst to understand the scheme of
the algorithm with which plasma moments are derived. Caution should be taken
in particular for electrons, cold plasmas, plasmas with large anisotropy using 2-D
measurements, and plasmas of multiple populations.

1.3.4. Intercalibration
For quantitative data analyses, the calibration of a measurement becomes essential.
A calibration factor is often a function of time and plasma conditions. For example,
degradation of an instrument with time requires the measurements be calibrated
and recalibrated, and the calibration factor may change significantly across a shock
as the plasma condition differs (Sckopke et al., 1990; Song et al., 1997).

When data analysis involves more than one instrument, intercalibration among
these instruments becomes important. For example, the sonic Mach number is the
ratio of two moments measured by the same detector. Even though the absolute
value of each moment may not be accurate, one may suspect their ratio to be
reasonably accurate. The Alfven Mach number, on the other hand, involves three
measured quantities from two different instruments. The chance for error is much
greater. Another interesting example is that the nonlinear response of two instru-
ment could lead to significant differences in the same physical quantity (Petrinec
and Russell, 1993) and these differences may vary with the measured parameters.
One way to intercalibrate the magnetic field and plasma moments measurements is
to use the force balance requirement under some known conditions, such as near a
stagnation region (Song et al., 1993), see Figure 1.3 and its caption.

Quantitative comparison among measurements from different satellites requires
knowledge about the above issues for all satellites involved. Without careful inter-
calibration, one could draw a wrong conclusion. For example, the difference in
calibration for two satellites could make normal fluctuations of two physical quan-
tities into two clusters which lead to a linear relationship. This relationship could
be mistakenly interpreted as a dependence between the two physical quantities, see
Figure 1.4 for example.

Advances in technology and accumulation of experience have made multiple-
instrument multiple-satellite studies possible. Plasma density can be intercalibrated
by comparing particle measurements with plasma frequency measured by plasma
wave experiments or wave propagation experiment (e.g. Harvey et al., 1978). Plasma
velocity can be intercalibrated by comparing particle measurements with the field
convection velocity,E × B (e.g., Mozer et al., 1983). However, the latter velocity
has components only perpendicular to the magnetic field.
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Figure 1.3.An example of intercalibration between the magnetic field and plasma measurements.
At a stagnation region, the sum of the plasma pressure and magnetic pressure should be constant,
or the variations in the two should be anticorrelated with a factor of−1. The raw data panel (a)
shows that the two pressures are anticorrelated but with a factor differing from−1. A calibration
factor is introduced to the plasma pressure to make the slope−1. The intercalibrated plasma density
is compared with the densites measured by other instruments to validate the method (Song et al.,
1993).

Figure 1.4.Random uncorrelated fluctuations in quantitiesQ1 andQ2 measured from spacecraft A
and B which are not intercalibated can sometimes be misinterpreted as a linear relation betweenQ1
andQ2.
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1.4. PRINCIPAL AXIS ANALYSIS

Principal Axis Analysis provides the mathematical basis for the Minimum Variance
Analysis of discontinuity analyses in Section 2.2 and for the covariant matrix analy-
ses of wave analyses in Section 3.1. For more introductory readings, one is referred
to textbooks of multivariate analysis (e.g., Anderson, 1958). In space physics data
analyses, the multivariates are often the three components of the magnetic field,
B(ti). We define a so-called covariance matrix

Mαβ = BαBβ − Bα Bβ, α, β = 1,2,3 , (1.11)

whereBαBβ ,Bα andBβ are averages ofBα(t)Bβ(t), Bα(t) andBβ(t), respectively.
Similarly, the covariance matrix can also be defined in the frequency domain, or
Bα,β(t) are replaced byBα,β(ω). Whenα 6= β, Mαβ gives the cross-correlation
between the two involved components of the field, andMαα is the auto-correlation.
Principal Axis Analysis provides a tool for a coordinate transformation. In the new
coordinate system, the cross-correlation,M ′αβ , between two components vanishes,
or

M′ = T−1MT , (1.12)

whereT andT−1 are the transformation matrix and its inverse, andM′ is a diagonal
matrix. The magnetic field in the new coordinate system is

B′ = TB . (1.13)

Mathematically, to find such a transformation is to find the eigenvectorξ and
eigenvalueλ of M, or solve for

Mξ = λξ . (1.14)

BecauseM is a 3× 3 matrix, there are three solutions,ξ1, ξ2, andξ3 with λ1 ≥
λ2 ≥ λ3. The three eigenvectors referred to as the principal axes (in rows) form
the transformation matrixT and the three eigenvalues referred to as the maximum,
medium, and minimum eigenvalues, respectively, are the diagonal elements ofM′.
As will be discussed below, Minimum Variance Analysis (Sections 2.2 and 3.1)
assumesξ3 to be the normal direction of a discontinuity or the propagation direction
of a wave and Maximum Variance Analysis (Section 2.5) assumesξ1 (for a different
variable) to be the normal direction.

Loosely speaking, Principal Axis Analysis can be visualized as follows. The tip
of the measured (magnetic field) vector draws points around the average field in
three-dimensional space due to variations. A best-fit ellipsoidal surface centered
at the tip of the average field that approximates these points is then obtained. The
three axes of the ellipsoidal surface are the three principal axes. The lengths of
the principal axes represent the standard deviation of the field fluctuations about
the average field in the three directions, and their squares are the eigenvalues. The
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above picture describes very well the perturbations associated with a wave. In the
case of a discontinuity the field rotation across it is usually far less than 360◦. For
example, if the field rotates 180◦, the field vector will vary on only one side of the
maximum variation. In this case, the direction of the maximum eigenvector usually,
depending on the distribution of the variations, remains parallel to the direction of
the maximum variation, but the maximum eigenvalue will be different from the
maximum variation. It is worth mentioning that for linearly polarized perturbations
(in contrast to rotational perturbations) only one principal axis is determined and
the other two have no definitive direction. This behavior causes uncertainty in data
analyses and will be discussed in the corresponding subsections.

In general, in the frequency domain, the covariance matrix is complex. The
Principal Axis Analysis is concerned only with the real part of the matrix. The
meaning of the imaginary part of the matrix will be discussed in Section 3.1.

2. Discontinuity Analyses

There are many discontinuities in space. These can be classified by where they are
and what function they play, e.g., the bow shock, the magnetopause, interplanetary
shocks, solar wind discontinuities, the neutral sheet, and the heliospheric current
sheet. They can also be classified by the physical nature of the boundary, fast shock,
slow shock, rotational discontinuity or tangential discontinuity for example. The
field and plasma properties usually change significantly across a discontinuity. In
most theoretical studies a discontinuity is treated, for simplicity, as a one dimen-
sional problem, namely, the physical quantities change only along the normal of the
discontinuity. Observationally, while a spacecraft moves relative to a discontinuity,
it measures the upstream and downstream conditions in time series. For a scalar
quantity, the time series can be easily converted into a function of distance relative
to the discontinuity if the motion of the discontinuity relative to the spacecraft is
known assuming stationarity of the upstream conditions. For a vector quantity, to
understand the physical behavior of a discontinuity and the processes near it, it will
be convenient if the measurements are presented in a boundary normal coordinate
system as has been discussed in Section 1.2.2. Such a system can often result in
variations only in two dimensions and allow easier visualization and understanding
of the behavior of the plasma. To find such a coordinate system, the normal direc-
tion of the discontinuity has to be determined. Different methods of discontinuity
analysis have been developed to allow this determination. In Section 2.1, we briefly
introduce the background and principles for discontinuity analysis. In Sections 2.2
to 2.4, we describe and discuss the three most useful methods in discontinuity
analysis. In Section 2.5, we describe a method which has been proposed most
recently.



402 P. SONG AND C. T. RUSSELL

2.1. BACKGROUND

2.1.1. Rankine–Hugoniot Relations
The plasma conditions on the two sides of a discontinuity are linked by the Mag-
netohydrodynamic (MHD) equations which describe the requirements for macro-
scopic continuity, pressure balance, and energy budget. If the discontinuity is pla-
nar and stationary, the MHD equations can be simplified to the form known as the
Rankine–Hugoniot (R–H) relations. In isotropic plasmas, the R–H relations are

[ρun] = 0 , (2.1)

[ET ] = 0 , (2.2a)

[Bn] = 0 , (2.3)

[ρu2
n + P + B2

T /2µ0] = 0 , (2.4)

[ρunuT − BnBT /µ0] = 0 , (2.5)[(
ρu2

2
+ P

γ − 1
+ P

)
un + Sn

]
= 0 , (2.6a)

whereρ,u, P,E, γ, µ0, and S = E × B/µ0 are the density, velocity, pressure,
electric field, ratio of specific heats, magnetic permeability in vacuum and Poynting
vector, the square brackets denote the changes across the discontinuity, and the sub-
scriptsn andT denote the normal and tangential components to the discontinuity.
For most of the problems in space physics, the frozen-in condition is applicable, or
E = −u× B. Thus, Equations (2.2a) and (2.6a) can be written as

[(u× B)T ] = 0 , (2.2b)[(
ρu2

2
+ P

γ − 1
+ P

)
un + BT · (BT un − BnuT )

]
= 0 , (2.6b)

Equation (2.2b) holds upstream and downstream from a discontinuity even if the
frozen-in condition is broken within the thin layer of the discontinuity. The R–
H relations as written above hold in the shock frame rather than in the spacecraft
frame, so that

u = V − Vdisc , (2.7)

whereVdisc andV are the velocity of the spacecraft relative to the discontinuity and
the velocity of the flow measured in the spacecraft frame.

The R–H relations contain 8 equations and 19 parameters including the ve-
locity of the discontinuityVdisc. It is important to point out that the goal of data
analysis is often not to simply apply the R–H relations but to verify them, or to
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determine how well these relations hold in the situation being studied since several
approximations have been made in applying the R–H relations. Ideally, one should
substitute measured parameters in the left-hand side of Equations (2.1)–(2.6). The
difference between the upstream value and downstream value of the quantity in
each equation should be much smaller than either the upstream or the downstream
value if the R–H relations are verified, or

[Q]
|Q| ∼ 0 , (2.8)

whereQ is the quantity in each of the R–H relations. The ratio on the left-hand
side of Equation (2.8) gives the uncertainty of the analysis and Equation (2.8)
is used as the basis of the discussions of the uncertainty of each method in the
following subsections. If the R–H relations are not verified, one or more of the
approximations made may not be valid. There may be temporal variations and/or
curvature of the discontinuity, the anisotropy of the plasma, and/or significant pres-
ence of heat flow. Perhaps the identification of the nature of the discontinuity is
incorrect. In these cases, conclusions should be drawn carefully from the analysis.
However, at the present time, even in the best situation, with two spacecraft and
full three dimensional measurements, observations provide only 18 parameters (16
plasma and field parameters, one timing difference and one distance measurement).
Thus the R–H relations cannot be verified completely from observations and some
additional assumptions must be made. Usually, one may assume a subset of the R
–H relations as given, and then, use the remaining relations as confirmation. It is
however not appropriate to assume all the R–H relations as given and then to deter-
mine remaining unmeasured parameters using, for example, optimization because
different equations in the R–H relations have different uncertainties and because
the results of such fittings are often found not to be a solution of the R–H relations
(Chao, 1995). A cluster of four closely spaced satellites will enable us to verify the
R–H relations independently. We will discuss this issue later in Section 4.2.

If some assumptions must be made, choosing the right subset of R–H relations
can minimize the uncertainty of the results. Among the R–H relations, the continu-
ity of the normal magnetic field, Equation (2.3), has the least uncertainty since it is
not affected by time variations (see Equation (1.2)) and usually the magnetic field
is the most accurately measured quantity with relatively high time resolution as dis-
cussed in Section 1.3. Almost all the present methods of discontinuity analysis are
in fact based on this assumption. However, as will be discussed later in this section,
there are ambiguities in some instances. An alternative is to use the continuity of
the tangential electric field, Equation (1.3) or (2.2), if either the electric field or the
plasma velocity can be measured accurately in three dimensions with a relatively
high time resolution. We will discuss this method briefly in Section 2.5. Here we
emphasize that comparing Equation (1.2) with (1.3), the required assumptions for
the continuity of the tangential electric field are more than that for normal magnetic
field conservation. Unless the velocity can be measured accurately (see discussion
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in Section 1.3.3), Equation (2.2b) should not be used since it involves the cross
product of two vectors and the uncertainties in the measurements will be amplified
in the calculations. In this case, the conservation of mass, Equation (2.1), may
provide a relatively smaller uncertainty than other relations except Equation (2.3).
However, as has been discussed in Section 1.3.3, the calibration factors of plasma
moments may change significantly across the bow shock or the magnetopause.
One has to be extremely careful when using these moments. At the present time,
it is suggested not to assume Equations (2.4)–(2.6) as given, rather to use them as
confirmation, since they involve more complicated calculations and the effects of
the temperature anisotropy and the intercalibration between the magnetic field and
plasma measurements may become important.

Ideally, application of the Rankine–Hugoniot relations would involve simulta-
neous measurements both upstream and downstream of a discontinuity using two
independent measuring platforms. In practice such application is usually performed
using a single observatory moving across the discontinuity under the assumption
that the external conditions do not change. Often the dicontinuity is encountered
because there has been a temporal change in these conditions, so caution must
always be exercised and the time stationarity assumption verified when using the
R–H relations.

2.1.2. Types of Discontinuities
There are several simplified types of discontinuities which have been commonly
used to characterize and classify discontinuities (see the recent review by Lin and
Lee, 1994). A discontinuity is called a tangential discontinuity (TD) if there is
neither magnetic flux nor mass flux across it, orun = Bn = 0 in Equations (2.1)
and (2.3). A TD is a current sheet separating two different plasmas.

A discontinuity is called a rotational discontinuity (RD) if there is magnetic flux
across it but the density and the field strength (in an isotropic plasma) are same on
the two sides of it, orBn 6= 0, u1n = u2n 6= 0, [B] = [ρ] = 0, where subscripts
1 and 2 denote the values upstream and downstream of the discontinuity. The field
strength and density may change within an RD. An RD is a propagating, usually
non-linear, Alfven wave front and satisfies Equation (2.2) in the form of

[uT ] = un

Bn
[BT ] (2.9)

andun = Bn/
√
ρµ0. Equation (2.9) is the so-called Walen relation for isotropic

plasmas and will be further discussed in Section 2.7. AsBn, u1n andu2n go to zero,
an RD may degenerate into a TD. However, this TD is different from a general TD
because its velocity change has to be parallel to its field change but a general TD
has not.

A discontinuity is called a shock if there are both magnetic flux and mass flux
across it and if there is a change in the density, orBn 6= 0, u1n 6= u2n 6= 0, and
ρ1 < ρ2. A shock is associated with a dissipation process and usually with heating
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of the plasma. Across a shock, the flow velocity decreases from above to below a
characteristic speed, such as the fast mode speed, intermediate mode speed or slow
mode speed (for more discussion on the modes, see Section 3.3.1), in the frame at
rest to the discontinuity. Similar to a shock but withρ1 > ρ2, a discontinuity is
called a rarefaction wave. A rarefaction wave may occur in an expansion fan such
as formed when flow moves across a ledge and expands into a vacuum. In theory,
an expansion fan cannot steepen but in reality because of the rapid motion between
an expansion fan and the spacecraft, it can appear sharp in the time series data. An
observed discontinuity may be a superposition of these elementary discontinuities
and also may not be in steady state, but in the regions far from where a discontinuity
is generated, these elementary discontinuities are expected to separate because of
their difference in speed.

2.2. THE MINIMUM VARIANCE ANALYSIS

This method is based on the Principal Axis Analysis (Section 1.4) and the fact
that the magnetic field is divergence-free,∇ · B = 0, the derivative form of Equa-
tion (2.3) (see also the discussion of Equation (1.2)). For an infinitesimally thin
discontinuity, Equation (2.3) should hold across it if it is planar. If a structure
consists of many such discontinuities and they are parallel to each other, the sum of
the fluctuations normal to the discontinuity should be zero. In reality, the fluctua-
tions within the structure are equivalent to distortions of these thin discontinuities.
Thus locally, the normal direction of a discontinuity may not be the same as of the
overall structure, and thus there can be magnetic fluctuations along the direction
of the average normal. The minimum variance method assumes that the distortions
of these thin discontinuities from the overall structure are small compared to the
changes in the magnetic field in the plane of the boundary. Thus the field fluctu-
ations are smallest in the direction normal to the overall structure (Sonnerup and
Cahill, 1967). Therefore, to determine the normal direction of a discontinuity with
internal structure is equivalent to finding the minimum eigenvector direction of the
principal axis analysis (see Section 1.4).

Note that the minimum variance analysis assumes only that the variations are
smallest along the normal but the normal component of the steady field is not nec-
essarily smallest. As will be discussed next and in Sections 2.3 and 2.4, in theory,
the minimum variance method has a large uncertainty for tangential discontinuities
and shocks (see Figure 2.1 (Lepping and Behanon, 1980)) since both theoretically
consist of linearly polarized variations of the field and the normal may lie anywhere
perpendicular to this direction of the maximum change (see further discussion
in Section 2.7). In one situation minimum variance will give an accurate shock
normal, when there is a standing whistler mode precursor propagating upstream
along the shock normal. This is usually seen for subcritical shocks (Mellott and
Greenstadt, 1984) and it assumes the upstream whistler wave propagates in the
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Figure 2.1.The errors of the minimum variance analysis from a numerical experiment (Lepping and
Behannon, 1980). The upper (lower) panel shows the errors for TDs (RDs).ωT is the shear angle of
the field across a discontinuity. The errors for TDs are much greater than for RDs.

same direction as the shock wave does. The minimum variance method is most
useful for rotational discontinuities and other more complicated situations.

In principle, one may also apply the minimum variance method to the mass
flux, ρV, to determine the normal direction (Sonnerup et al., 1987), since in steady
state we have∇ · ρu = 0. However, in practice, due to temporal variations, the
most important cause of which comes from the relative motion between the dis-
continuity and the spacecraft (see Equation (1.1)), and relatively large uncertainties
in the plasma measurements, for example, due to changes in composition and/or
calibration factor (see Section 1.3.3) across the discontinuity, this method has a
much larger uncertainty than the magnetic field minimum variance in addition to
the uncertainties discussed below.

What limits the accuracy of the minimum variance method? Following the steps
of the description discussed above, we know that the minimum variance method
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can be limited by the data resolution and wave activity within the discontinuity.
As the determination of the principal axes is equivalent to a three-free-parameter
fit, a small number of data points will lead to a large uncertainty in the fit. In
an extreme case, if there is no measurement within the discontinuity, this method
should be used with caution since the minimum variance direction would then be
determined by the wave activity upstream and downstream. Therefore, high reso-
lution measurements and slow motion of the discontinuity relative to the spacecraft
will minimize the uncertainty. On the other hand, as the resolution increases, one
may be able to resolve the wave activity within the discontinuity. These waves may
cause uncertainty in the determination of the normal direction as well. As discussed
earlier, the assumption made in this method is that the infinitesimally thin sur-
faces within the overall structure have only small perturbations. Waves and small
structures within the discontinuity may destroy the validity of this assumption. For
example, if the magnetic perturbations within the structure due to structure and
waves are mainly along the normal, the minimum variance direction will not be the
normal direction for a discontinuity with a small field change across it. Filtering
the data to pass only frequencies consistent with the thickness of the structure will
help in reducing the uncertainty of the normal determination. The uncertainty of the
minimum variance analysis was first discussed quantitatively by Sonnerup (1971)
(in using Equation (13) of Sonnerup (1971) note that there is a typographical error
that 〈B2〉 should be〈B〉2) and then investigated comprehensively and numerically
by Lepping and Behanon (1980). Recently, Kawano and Higuchi (1995) used the
bootstrap method to estimate the errors in the minimum variance analysis.

In principle, one may select many different time intervals for the minimum
variance analysis and each of them provides a different normal. How to evaluate a
result of the minimum variance analysis? Here are the several key issues to check.

(1) Check the normal component of the field. After rotating the field into the
minimum variance coordinates, the average fields in the minimum variance direc-
tion on the two sides of the discontinuity should be the same at least in the regions
close to the discontinuity. Often a visual inspection can quickly determine whether
the rotation is good. Since the minimum variance analysis provides the direction
of smallest field fluctuations only within the selected time interval, if the interval
does not include all the major field changes, one may find that the average fields in
the minimum variance direction are different on the two sides of the discontinuity.
In the case of the magnetopause, the field in the minimum variance direction may
increase or decrease continuously on the magnetospheric side due to the curvature
of the magnetospheric field.

(2) Check the ratios of the eigenvalues. The square root of an eigenvalue
is the standard deviation of the field along that direction. Ideally the minimum
eigenvalue should be zero. In practice, if the minimum eigenvalue is much smaller
than the other two eigenvalues, the minimum variance direction is well determined.
Usually, a normal direction is considered as to be well determined if the minimum
eigenvalue is one order smaller than the intermediate eigenvalue, or the amplitudes
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of the perturbations along the normal are less than one third of the smaller one of
the two components perpendicular to the normal.

(3) Check the minimum eigenvalue. Select a different time interval across a
discontinuity to provide a set of normal directions. Since a smaller minimum eigen-
value indicates a better determination of the normal direction, one may choose the
normal direction with a smaller minimum eigenvalue but also with a smaller ratio
of the minimum and intermediate eigenvalues. However, usually, a shorter interval,
or a smaller number of data points provides a smaller minimum eigenvalue. In
the extreme case, if only three data points are selected, the minimum eigenvalue
may go to zero since the ellipsoidal surface degenerates into a plane. In this case,
the smaller minimum eigenvalue is obtained with some sacrifice in statistics. In
practice one should include in the analysis only the variations associated with the
discontinuity being analyzed. In principle, one should choose the normal direction
with a smaller minimum eigenvalue and a longer time interval. The ratio of the
minimum variation of the field and the strength of the average field should be very
small, less than few percent, or

√
λ3/|B| ∼ 0, whereλ3 is the minimum eigenvalue.

(4) Check the ratio of the minimum variation of the field to the average field in
the minimum variance direction, or

√
λ3/(j − 2)/Bmin whereBmin is the average

field in the minimum variance direction andj is the number of data points. A large
value of this ratio indicates a large uncertainty in the analysis as will be discussed
in the section of tangential discontinuity analysis. A large number of data points
will reduce the uncertainty. WhenBmin is extremely small, the discontinuity could
be a tangential discontinuity which needs to take additional caution when using the
minimum variance analysis.

The suggested procedures are as follows:
(1) In the time interval selection, try to minimize the number of the data points

on the two sides of the discontinuity but try to maximize the number of the data
points within the discontinuity. Too many data points on the two sides of the dis-
continuity will put too much weight on the fields on the two sides. More data points
within the discontinuity in general will increase the statistical significance of the
determination.

(2) Examine the fluctuations in the field during the crossing. If there are strong
waves present that are not part of the discontinuity structure being analyzed, low-
pass filter the data before a minimum variance analysis.

(3) Perform the minimum variance analysis for several different selected time
intervals and compare the results according to the discussion above. Experience
indicates that if the results are essentially the same for several neighboring ‘nested’
data segments, they are perhaps believable (Sonnerup, private communication,
1992).

(4) Compare with the normal directions predicted by geometric models if there
are any. Occasionally, one may find the normal direction determined by the mini-
mum variance is orthogonal to the model prediction. Most likely, this is caused by
the 90◦ ambiguity to be discussed in Section 2.7.
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(5) Since the difference among the normals determined from different time in-
tervals provides a measure of the uncertainty of the analysis, never draw qualitative
conclusions which may not be true given the uncertainty.

2.3. TANGENTIAL DISCONTINUITY ANALYSIS

In theory tangential discontinuities are those withBn and un zero. There is no
magnetic field or mass flux across a tangential discontinuity. As discussed in Sec-
tion 2.1, Equation (2.8), a good determination of the normal is indicated by a small
ratio between the difference and the average of the quantity in the R–H relation
across a discontinuity. Noting that the ratio of the standard deviation and the prob-
able error of the mean isj−1/2, the ratioj−1/21Bn/〈Bn〉, where1Bn and 〈Bn〉
are the minimum variation and the average of the field in the minimum variation
direction, provides a measure of the uncertainty of the minimum variance method
in verifying Equation (2.3). For a TD, since〈Bn〉 is small, the ratio becomes very
large and hence the minimum variance has a large uncertainty. The effect of such a
large uncertainty can be seen when one selects different intervals and finds different
normal directions but〈Bn〉 remains similar.

Since the magnetic field is tangential to a TD surface, the normal direction of
the discontinuity is perpendicular to the fields upstream and downstream, or

n‖B1× B2 , (2.10)

whereB1 andB2 are determined by selecting a relatively stable interval on each
side of the discontinuity. Ideally, this is done using simultaneous data from two
spacecraft. When one spacecraft is used care must be exercised to ensure that the
changes observed are solely due to the spatial gradients across the discontinuity.

The uncertainty in the determination of the normal for a tangential disconti-
nuity arises from the uncertainties in measurements of the two fields due to the
fluctuations near the discontinuity. The uncertainties for the measurements of the
two fields are the probable errors of mean, not the standard deviation. A large
number of data points in measuring each of the fields may reduce the uncertainty.
In reality, however, there may be temporal changes in the magnetic field near the
discontinuity of interest. Some are oscillations and others may be either gradual
or sudden changes. The effects of oscillations can be removed by averaging over
many wave cycles. Again if there are temporal changes in conditions as the spatial
discontinuity is crossed, the calculated normal will be affected. Finally, the uncer-
tainty of the TD method becomes large when the fields on the two sides are nearly
parallel to each other.

In summary, the tangential discontinuity analysis has a relatively small uncer-
tainty in determining the normal of a tangential discontinuity if the fields on the
two sides of the discontinuity are not parallel to each other (with a change only in
magnitude). However, one has to verify carefully that a discontinuity is a tangential
discontinuity before using the method. To minimize the uncertainty in the normal
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direction of the discontinuity, one should try to select time intervals as long as
possible on the two sides of the discontinuity to minimize the effect of the wave
but without major changes in the field on the two sides to minimize the effects of
changing external conditions.

2.4. COPLANARITY ANALYSIS

A discontinuity is called a shock if there are magnetic flux and mass flux through
the discontinuity and the velocity changes from supersonic relative to the discon-
tinuity to subsonic. This velocity change causes a change in the density across the
discontinuity. A shock is called a fast (slow) shock if the density changes in (out
of) phase with the magnetic field strength across the shock. Here we have ignored
the intermediate shocks in which the density and the field strength may vary either
in phase or out of phase but the rotation in the field tangential to the discontinuity
must be exactly 180◦. From the R–H relations, one can show that the magnetic
fields on the two sides of the shock and the normal of the shock are coplanar, and
that the normal is also perpendicular to the vector of(B1−B2) (Colburn and Sonett,
1966). The normal direction, thus, is

n‖(B1− B2)× (B1× B2) . (2.11)

The fields are coplanar only in the region in which there is no electric field along
the normal. In boundary normal coordinates, the non-coplanar component is almost
zero on the two sides of the shock. The normal component remains constant but
with a finite value through the shock. Consistent with this theorem, non-coplanar
magnetic fields are frequently observed within the quasi-perpendicular subcritical
shock associated with the dissipation, see Figure 2.2 for example. Under this cir-
cumstance the minimum variance analysis should be applicable as it is when there
is a standing wave upstream of the shock along the normal. When there is a sizable
non-coplanar component its magnitude can be used to derive the shock velocity
from a single spacecraft (Newbury et al., 1997). Since under typical conditions the
variations in both the normal and noncoplanar components are small, the minimum
variance analysis generally has a large uncertainty at the shock.

Similar to the tangential discontinuity analysis, ideally the calculation is made
with simultaneous measurements on two sides of the discontinuity. If as usual the
calculation is made from the measurements on a single spacecraft, uncertainty in
the coplanar analysis is mainly caused by temporal variations. Since usually there
are strong fluctuations near a shock, especially for a high Mach number shock,
the two fields should be measured in the regions which are relatively quiet. The
trailing wavetrains downstream from shocks are usually not coplanar with the nor-
mal. One should avoid selecting these regions as the downstream condition. For
a weak shock, the uncertainty for this method may become large since the fields
on two sides of the shock may be similar and the two vectors in the brackets in
Equation (2.11) are both close to zero (Russell et al., 1983).
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Figure 2.2.An example of bow shock crossings. The normal direction is determined using the copla-
nar analysis. Note thatBm, the non-coplanar component, is near zero on both sides of the shock.
If one used the tangential discontinuity analysis, the normal direction would be them direction. In
this case, because of a significant non-coplanar field within the shock, the minimum variance analysis
will provide correct normal direction. Without such a noncoplanar component, the minimum variance
analysis will have a very large uncertainty.

For a quasi-parallel shock, the normal of which is nearly parallel to the upstream
magnetic field, the average field change across the shock is small. The uncertainty
in the normal determination is expected to be large. Furthermore and more impor-
tantly, there are usually large amplitude fluctuations present near such a shock, and
the shock front is often not clearly defined. This makes the shock normal analysis
extremely difficult. Computer simulations have shown that the shock front under-
goes a continuous reformation process (Krauss-Varban and Omidi, 1993). There-
fore the stationarity approximation based on which the R–H relations are derived
may not be valid. How to analyze quasi-parallel shocks has not been systematically
investigated.

2.5. THE MAXIMUM VARIANCE ANALYSIS

The determination of the normal of a discontinuity from the minimum variance
analysis of the magnetic field has a very large uncertainty when the intermedi-
ate and minimum eigenvalues are close to each other. This is the usual situation
when the field shear across the discontinuity is small (e.g., when the major field
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change is in its strength) or when the observations cannot resolve the interior of
the discontinuity either due to low time resolution of the measurements or fast
motion of the discontinuity relative to the spacecraft. In these circumstances, the
maximum variance analysis of the electric field may offer a better determination
of the normal. The maximum variance analysis of the electric field is based on
the fact that the electric field is curl free in steady state (see also discussions on
Equation (1.3)) or

∇ × E = −∂B
∂t
= 0 . (2.12a)

Thus,

n×1E = 0 , (2.12b)

namely, the normal is along the electric field change. Analogous to the minimum
variance analysis of the magnetic field, the normal direction of the discontinuity is
along the maximum variance direction of the electric field.

The electric field data for the analysis can be from either direct measurements
of the electric field or the convective electric field derived from the magnetic field
and plasma velocity measurements according to the frozen-in condition, orE =
−v×B. If the electric field measurements are two dimensional, the third component
of the electric field can be obtained from the frozen-in condition, orE · B = 0.

The major uncertainty in this method comes from the temporal variation terms
in Equation (1.3). Both unsteadiness of the discontinuity itself and changes of its
motion relative to the observer will affect the results. In particular in the case of
the magnetopause, the boundary usually oscillates instead of being in constant
motion. Another important uncertainty comes from the relative motion between
the spacecraft and the boundary, even if the motion is steady. From Equation (2.2),
one obtains a tangential electric field change in the spacecraft frame,1ET =
Vdisc × (B2 − B1). To remove this effect, one has to transfer the electric field
into a frame which is at rest in the discontinuity. However, since the motion of the
discontinuity is in general unknown before the normal direction of the discontinuity
is determined, it is difficult to completely remove this effect. Sonnerup et al. (1987)
developed a method and gave a comprehensive discussions on how to minimize this
effect. One way to reduce this effect is as follows.

(1) Find the maximum variance direction of the electric field,n.
(2) Measure the average velocity and magnetic field alongn, vn andBn, within

the discontinuity.
(3) If the discontinuity is not a shock, calculate

un = ±Bn/√µ0ρ , (2.13)

whereun is similar to the flow velocity across the discontinuity, and we have
assumed that the discontinuity is a rotational discontinuity.

(4) The relative velocity of the discontinuity to the spacecraft is approximately
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Vdisc= νn − un . (2.14)

(5) Subtract the electric field due to the relative motion

E′ = E− Vdisc×B . (2.15)

(6) UsingE′ as corrected electric field, repeat the procedures above, untiln
does not change.

Another source of uncertainty in the maximum variance method is due to the
assumption of the frozen-in condition to calculate the electric field if it is not mea-
sured directly in three dimensions. Under the frozen-in approximation the effects
due to the Hall term, the resistivity term, electron pressure gradient term and elec-
tron inertial term in Ohm’s law have been ignored. These effects may be important
in sharp changes within a discontinuity.

The principles to evaluate a result of the maximum variance analysis is similar
to some of that for the minimum variance analysis discussed in Section 2.2. The
success of the method requires a much larger maximum eigenvalue than the other
two eigenvalues. The continuity of the normal component of the magnetic field
and tangential electric field can be used as a check on the results. The maximum
variance analysis does not require many data points within a discontinuity, a sig-
nificant advantage over the minimum variance analysis. However, since the plasma
velocity measurements have usually a lower time resolution than the magnetic field
measurements, fewer data points are obtained within and near a discontinuity. If the
fluctuations near the discontinuity are not small, the result may be very sensitive to
the number of the data points used in the analysis.

In summary, the maximum variance analysis of the electric field can be used as
an alternative in cases when the minimum variance analysis has a large uncertainty.
It should be used with caution.

2.6. DEHOFFMANN–TELLER FRAME AND WALEN RELATION TEST

The deHoffmann–Teller (HT) frame is one of the shock frames, ie., a frame at
rest in the discontinuity. Here we recall that frames at rest in the discontinuity can
have different tangential velocities. The HT frame moves along the shock front
with a velocity such that the magnetic field and velocity are parallel, and hence the
tangential electric field vanishes (see a brief review by Sonnerup et al., 1995). The
HT frame moves at a speed

VHT = Vi ± Bi
uin

Bn
(i = 1,2) , (2.16)

relative to to the observer. The plus and minus signs correspond to the normal
component of the velocity and magnetic field to be antiparallel and parallel, respec-
tively. In the normal incidence case, becauseV1T = 0, the downstream tangential
velocityV2T = (B2T u2−B1T u1)/Bn is in general nonzero. The flow is accelerated
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Figure 2.3.In the most advanced development (Sonnerup et al., 1987), the acceleration of the HT
frame can be introduced to improve the fit and hence the temporal variations of the HT frame can be
partially resolved.

tangentially in crossing the shock due to the kink force of the field. Since the
electric field in the HT frame is zero, the electric field in the spacecraft frame
is

Ei = −VHT × Bi . (2.17)

The proportionality between the electric and the magnetic field variations can be
used to determine the velocity of the HT frame. Practice indicates that a well-
determined HT frame can often be found in the magnetopause (Sonnerup et al.,
1990; Walthour et al., 1993). Since the HT frame is a shock frame (VHTn = Vdisc),
it can be used to solve the difficulty in determination of a shock frame discussed in
Section 2.5. However, in general, since the normal direction is unknown, it needs
iteration before a satisfictory result is reached. In its most developed form, using
the information from the maximum variance analysis of the magnetic and electric
fields and the minimum variance analysis ofVHT, through iteration, one can derive
not only the normal direction, but also the normal velocity and its acceleration, see
Figure 2.3, for example. The effect of the acceleration is important as seen in the
last term of Equation (1.3).

Equation (2.17) can also be written in the form of finite field perturbations. If
the magnetic field change is in thêL direction, and when the discontinuity has no
motion in the normal direction, the electric field change is in theN̂ direction, the
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HT frame moves mainly along thêM direction. To deriveVHT in Equation (2.17) is
equivalent to a three-parameter fit or a minimum variance problem. Sonnerup et al.
(1987) provided the expression for the covariance matrix. Here we should note that
unlessBi andVi outside the shock ramp are not coplanar,VHT and the magnetic
fields are all in a plane orthogonal to the shock surface. The derived electric field
change is along the shock surface and not along the normal direction.

For RDs, combination of Equations (2.5), (2.9), and (2.16) yields the Walen
relation in the spacecraft frame,

V = VHT ± CA , (2.18)

whereCA = B/
√
µ0ρ for an isotropic plasma andCA = √ξ0B/

√
µ0ρ for an

anisotropic plasma,ξ0 = µ0(P⊥ − P‖)/B2 is the anisotropy factor (Chao, 1970),
andP⊥ andP‖ are the pressures perpendicular and parallel to the magnetic field,
respectively. The plus and minus signs denote the RDs propagate antiparallel and
parallel to the magnetic field, respectively. The subscripti has been neglected
assuming that the relationship applies to every measurement.

The Walen relation is a more restrictive test for a discontinuity. It requires not
only a well determined HT frame but also that the discontinuity propagates with
the Alfven speed relative to the flow. A postive result of the test verifies the discon-
tinuity to be an RD. Here we should emphasize that a linear relationship between
the plasma velocity and magnetic field (or the Alfvén velocity) variations does not
necessarily imply the discontinuity to be an RD unless the offset between the two,
VHT (see Equation (2.16)) equals the proportional factor between the electric and
magnetic field variations (see Equation (2.17)).

2.7. SUGGESTED PROCEDURES FOR DISCONTINUITY ANALYSIS

As discussed in Sections 2.2 to 2.4, the three methods commonly used for discon-
tinuity analyses are for different purposes. None is intrinsically better than others.
However, different methods may provide different normal directions. For example,
the noncoplanar direction in the coplanarity analysis is very close to the normal
direction in the tangential discontinuity analysis for the same discontinuity (see
Figure 2.2 for an example). The minimum variance direction could be the non-
coplanar direction of a shock. Thus, the question is how to analyze a discontinuity
without a presumption about its type. The following is a suggested approach.

(1) Collect as much information as possible for the interesting discontinuity
in addition to the magnetic field, such as plasma measurements and the measure-
ments from other close spacecraft if there are any. These measurements may help
to constrain the results.

(2) Make an overview of the discontinuity to decide where are the upstream
and downstream regions and which major change is most interesting. There may
be more than one choice. Keep in mind that a single discontinuity, when its in-
ternal structure can be resolved, may appear to consist of more than one sharp
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changes, that a discontinuity can oscillate back and forth, and that two distinct
discontinuities could be very close to each other in time series records.

(3) Begin the analysis by using the minimum variance analysis with cau-
tion as discussed in Section 2.2. For low time resolution measurements or when
the discontinuity being studied moves fast relative to the spacecraft, there may
be no measurement within the discontinuity. In this case, the minimum variance
method can provide only the direction of maximum variance and the normal of the
discontinuity cannot be determined with only magnetic field measurements.

This step only provides hints to the nature of the discontinuity. One may only
guess the nature of the discontinuity from the results of the minimum variance
analysis. For example, if the field in the minimum variance direction is close to
zero, the discontinuity may be a tangential discontinuity. If the field in the min-
imum variance direction is not small and the field strength is similar on the two
sides of the discontinuity, the discontinuity may be a rotational discontinuity. If the
major field change is in only one component and the field strength changes, the
discontinuity may be a shock.

Further determinations of the properties of the discontinuity need plasma mea-
surements or assumptions.

(4) Make assumptions of the nature of the discontinuity if the processes as-
sociated with the discontinuity are known. In many of discontinuity studies, the
nature of the discontinuity has been carefully studied previously with particle mea-
surements and hence known, but the plasma moments are not available. In these
cases, assumptions of the nature of a discontinuity can be made, but keep in mind
that the results are conditional depending on the accuracy of the assumptions. For
most of bow shock studies, coplanarity is a good assumption. In fact, most of
these studies skip step 3 and use the coplanarity analysis directly. In most circum-
stances, the magnetopause can be considered as either a tangential discontinuity or
a rotational discontinuity. Thus one may try the tangential discontinuity analysis
if the minimum variance component is close to zero. The neutral sheet can be
considered as a rotational discontinuity. However, to analyze the neutral sheet
using the minimum variance method is difficult because the variance in one of
the tangential components(ŷ) can be very small. The field aligned current sheets
in the low beta magnetosphere can often be treated as tangential discontinuities.
For most interplanetary discontinuities, since their natures are unknown without
plasma measurements, an analysis using only magnetic field measurements cannot
be conclusive except if the field strength remains nearly constant across the discon-
tinuity. In this latter case, the discontinuity can be either a tangential discontinuity
or a rotational discontinuity and can be treated similarly to the magnetopause situ-
ation just discussed above. However, because often an interplanetary discontinuity
moves with a speed similar to that of the solar wind, the flow velocity relative to
the discontinuity is not easy to resolve. Caution should be taken when interpreting
it as either a TD or an RD. The main difficulty in analyzing an interplanetary
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discontinuity is the lower time resolution of the data caused by the fast passage
of the discontinuity.

With an assumption of the type of a discontinuity, one can determine the normal
direction of the discontinuity using the methods discussed in previous subsections.

(5) Use plasma measurements. With plasma measurements, if the normal direc-
tion of the discontinuity has been determined in the last step, the normal velocity
of the discontinuity can be determined, according to Equations (2.1) and (2.7),

Vdisc= ρ1V1n − ρ2V2n

ρ1− ρ2
. (2.19)

If the plasma velocity measurements are not three dimensional, an additional as-
sumption has to be made, hence more uncertainties are introduced, in the cal-
culations. Although this relationship is widely used, we would like to point out
that whenVdisc is much less than bothV1n andV2n, it could be in the range of
the uncertainty of the velocity measurements. In this case, Equation (2.19) is not
useful. The uncertainty in this calculation comes from these major sources. The
first is in the direction of the normal. This error is discussed above. The second is
the fluctuations upstream and downstream. In some cases, this source may not be
important. The third is due to the change in the calibration factor of the instrument
associated with the change of plasma state as discussed in Section 1.3.3. While
velocity measurements, at least of the solar wind ions are usually quite accurate,
the plasma density upon which Equation (2.19) depends are not so accurate. If the
temperature and speed of the plasma remain similar across the discontinuity, this
second source may not be important. Unfortunately under these circumstances, the
density change is small, leading to a very large uncertainty in the denominator
of Equation (2.19). At shocks, both the temperature and speed vary across the
discontinuity in such a way that the density calibration in some instruments can
be drastically affected (Petrinec and Russell, 1993). An example of where this
calibration change may have seriously affected measurements across the bow shock
can be found in Lepidi et al. (1996).

For interplanetary discontinuities, plasma measurements can help to determine
the type of a discontinuity. As discussed in step 4, its type can be determined
when there is no change in the field strength across the discontinuity. If there is
a change in the field strength, in the simplest case, the discontinuity is either a
tangential discontinuity or a shock. (If the plasma is anisotropic, even an RD can
be accompanied by a change in field strength.) As discussed before, the minimum
variance method has a large uncertainty in these two situations, and the tangential
discontinuity analysis and the coplanarity analysis provide two orthogonal normal
directions. Which of these two normals is correct? For a tangential discontinuity,
sinceu1n = u2n = 0, orV1n = V2n = Vdisc, the velocity differenceV1− V2 is tan-
gential to the discontinuity. Thus, comparing the direction of the velocity difference
with the two normals may eliminate one of the two. There is a possibility that the
three vectors are orthogonal to each other. Another way to distinguish a tangential
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discontinuity from a shock is to check the total pressure, the sum of the thermal
pressure and the magnetic pressureB2/2µo. For a tangential discontinuity, since
un = Bn = 0, from Equation (2.4), the total pressure remains constant across the
discontinuity. However, this method relies on a good intercalibration between the
magnetic field measurements and the plasma measurements. For slow shocks, since
the change in the total pressure is expected to be small, it is difficult to eliminate
the possibility of slow shocks solely based on the total pressure balance.

(6) Use the timing difference from two spacecraft. Measurements from two
spatially separated spacecraft may be able to determine the velocity of a discon-
tinuity. If the separation of the two spacecraft along the discontinuity is smaller
than the curvature of the discontinuity and the time scale of the variations of the
discontinuity is much larger than the time scale of the time delay between the
encounters of the discontinuity by the two spacecraft (the determination of the
time delay will be discussed in Section 4.1), the discontinuity can be considered as
a stationary planar wave front. The curvature of the discontinuity can be determined
by comparing the two normals from the two spacecraft if only a single crossing is
observed by each of them. The velocity of the discontinuity in the plasma frame
can be obtained by

Vdisc= L · n
1t
− V(1,2) cosη(1,2) , (2.20)

whereL ,1t , andη are the separation vector between the two spacecraft, the time
delay between the observations of the discontinuity from the two spacecraft and the
angle between the flow velocity, either upstream or downstream, and the normal of
the discontinuity. Note that Equation (2.20) requires both 3-D plasma measure-
ments and the normal direction. Therefore, this step is not independent of the last
two steps. It provides additional information and can be used in combination with
the last two steps or as a verification of the results from the last two steps.

2.8. R–HRELATIONS TEST

In the previous steps, we have used two of the R–H relations, the mass conser-
vation and the continuity of the normal field. These two relations have the least
uncertainty in practice. However, in steps 4 and 5, to determine the normal of
a discontinuity, we have approximated it by a simplified discontinuity. In fact,
a discontinuity may not be any of these simple discontinuities assumed rather a
combination of them. Also, an analysis may provide many different parameter sets
as the result of multiple interval selections. One should use these parameter sets to
test other R–H relations. With this step, one may find the best parameter set for
the study and estimate the uncertainty of the analysis. The uncertainty is the ratio
of the difference to the average of the quantity, Equation (2.8), in each of the R–
H relations. The conclusions of any analysis should be drawn consistent with this
uncertainty.
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In the procedure described above, the determination of the shock speed car-
ries enomous weight in determining the nature of a discontinuity. As discussed in
Section 1.3.3, the calibration factor of plasma measurements may change across a
shock. To accurately determine the shock velocity is extremely difficult. To solve
this problem, Chao et al. (1995) recently developed a method to derive the prop-
erties of a shock without predetermining the shock velocity and then derive the
shock velocity afterward. In their method, the R–H relations are combined and
written in normalized parameters, such as ratios of upstream and downstream val-
ues, angles, plasma betas, and Mach numbers. It is realized that to determine an
isotropic shock requires only any three independent such parameters. Therefore,
one can choose three observationally best determined parameters to substitute into
the normalized R–H relations and then derive those remaining. We suggest using
the ratio of the ratio of the magnetic field strengths,B2/B1, the upstream shock
angle and downstream plasma beta. All these three parameters are independent of
frame reference. The ratio of the magnetic field strengths has little uncertainty. The
shock angle depends only on the accuracy of the shock normal determination. As
shown in Figure 1.2, among three plasma moments, the uncertainty in the pressure
measurements is least and is even smaller for higher temperature plasmas. Thus
the downstream plasma beta is the most accurately measured quantity although its
absolute calibration needs to be verified.

An interesting finding by Chao et al. (1995) from a parametrical study is that
the ratio of the upstream and downstream plasma densities is less sensitive than
the ratio of plasma velocities. In other words, a small difference in the density
ratio corresponds to a large range of shock parameters. A small uncertainty in
the density measurements will hence cause drastically different conclusions about
the shock properties. Such temperature and velocity dependences of the density
calibration of several plasma instruments as found by Petrinec and Russell (1993)
would cause such uncertainties across almost any shock crossing. Therefore, it is
not recommended to use the density ratio as a primary parameter in shock normal
determination unless the density calibration on both sides of the shock is well
known.

Chao (1995) shows that in many cases, the parameters derived using the best fit
to all R–H relations are actually far from possible solutions of the R–H relations.
This result indicates that because of the complicated relationship among different
variables, the values of the unmeasured quantities determined from a best fit ac-
tually do not represent well the real values of these quantities for each set of the
parameters at a given point. It is not recommended to use a best fit of all R–H
relations.

In summary, using only magnetic field measurements one can determine the
normal direction of a discontinuity in simple cases. The minimum variance method
applies only if there are measurements within a discontinuity. It has a large uncer-
tainty for either a tangential discontinuity or a shock. The tangential discontinuity
and coplanarity analyses impose strong assumptions on the type of a discontinuity.
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They should be used carefully in combination with the minimum variance analysis
and plasma measurements.

3. Wave Analyses

Wave analyses are used to determine the properties and characteristics of waves,
such as propagation direction, wave frequency, wave amplitude, polarization, and
mode. With measurements at multiple locations one can determine the phase speed,
wave number, and etc. The waves of concern here are at frequencies near or lower
than the ion gyrofrequency, or so-called ULF (Ultra Low Frequency) waves, mea-
sured in the spacecraft frame. Waves of higher frequencies will be discussed briefly
in Section 3.6. We will focus on electromagnetic waves with emphasis on MHD
waves. Methods for wave analysis based solely on the magnetic field measure-
ments have been well developed and will be discussed as routine procedures in
Section 3.2. From measurements at a single site these analyses can provide only
the propagation direction (with an ambiguity in sign) and wave parameters in the
spacecraft frame. To resolve the Doppler shift and to determine the direction of
propagation, one needs to either use more than one satellite and plasma measure-
ments or to make assumptions on the mode of the wave and use the dispersion
relation calculated from theory as an accurate description of the wave. We note
that dispersion relations developed for small amplitude linear waves may not be
accurate for the large amplitude waves encountered in space. Also dispersion rela-
tions that ignore the interaction with the gyro and thermal motions, such as in the
Hall-MHD treatment, may be inaccurate in the moderate and high beta collision-
free plasmas in space. Related issues are discussed in Section 3.3. To identify
the mode of a perturbation is crucial to understand the underlying physics of the
processes that generate the wave. Several schemes to make the identification have
been developed in recent years and will be discussed in Section 3.4.

3.1. BACKGROUND

The most powerful tool in general use for wave analyses is the Fourier analysis. Its
principles can be found in most time-series data-analysis textbooks. However, in
space physics, we deal with Fourier analysis of vectors. For a wave the perturba-
tions in different components of a vector are correlated. This relationship defines
a covariance matrix in the frequency domain, or the so-called spectral matrix. The
Principal Axis Analysis can be used to analyze the covariance matrix in much the
same way as it is used above in the time domain analysis (McPherron et al., 1972).
Fourier analysis, the resultant spectral matrix, and the Principal Axis Analysis form
the main ingredients of the most popular wave analysis technique for waves in
space plasmas.
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3.1.1. Approximations
Most of the existing wave analysis techniques in the time domain are based on the
assumption that there is one dominant wave being analyzed. Most time series arise
from a combination of many waves from various sources. If the coupling among
different coexisting waves is weak, the analysis can be performed in the frequency
domain. Spectral analysis transforms the time series into a simple superposition
of waves of different frequencies. Usually when we analyze a wave we treat a
finite band of frequencies, i.e., several successive Fourier amplitudes are grouped
together. At each of the individual frequencies there is an amplitude and a phase,
or a cosine (in phase) and a sine (quadrature phase) amplitudes. If there is a single
source of all the wave amplitudes seen in this band, then the ratios of the ampli-
tudes seen in two different components of the magnetic field over the band will
be fixed (but not necessarily the amplitudes themselves) this quality is measured
by the parameter called coherence which varies from zero to unity. In practice a
random signal has a non-zero coherence whose value is determined by the number
of Fourier estimates in the band analyzed.

Many magnetospheric waves appear with clear sinusoidal patterns, however,
they may not be propagating but standing, in the sense they are the sum of two
waves propagating in opposite directions with nodes in the ionosphere. For these
waves, the Fourier analysis to be discussed in the following is applicable, but the
matrix analysis is not. We note that there is another type of standing wave, one
in which the wave propagation velocity is exactly balanced by the plasma bulk
velocity so that the wave train stays fixed relative to its source. Such waves can
be analyzed with the matrix method if the motion of the spacecraft or the source
carries the observer through the wave train. We note further that the special prop-
erty of the whistler mode that the group velocity exceeds the phase velocity allows
energy to be pumped into a phase standing wave.

If the amplitude of the fluctuations is large, the harmonic generation associ-
ated with the nonlinear effects will affect the analysis. We discuss this issue in
Section 3.5.

3.1.2. An Ideal Wave
The magnetic field vector can usually be measured relatively easily with adequate
accuracy and time resolution. Moreover, it carries most of the Poynting flux in
electromagnetic waves in plasmas of interest to us. (Here we recall that the ratio
of the electric to magnetic energies for an electromagnetic wave equals the ratio
of the phase velocity to the speed of light.) Thus it is often used to model wave
fluctuations. The magnetic vector for a monochromatic plane wave propagating in
thez direction is

Bx = Bx0+ δBx exp [−i(ωt − k · r)] ,
By = By0+ δBy exp [−i(ωt − k · r + φ)] , (3.1)
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Bz = Bz0 ,
where subscript 0 and prefixδ denote the average and deviation from the average,
respectively, andω, k, r andφ are the frequency, wave number, spatial vector, and
the phase, respectively. Since∇ · B = 0, k · δB = 0 for plane waves and therefore
δBz = 0. This is a most important feature in wave analyses. The power spectral
matrix is

P(ω) =


δB2

x δBxδBye
iφ 0

δBxδBye
−iφ δB2

y 0

0 0 0

 , (3.2)

wherePij (ω) = Bi(ω)B∗j (ω); i, j,= x, y, z; andBi(ω) is the Fourier transform
of Bi(t). The asterisk denotes the corresponding complex conjugate.

In general, the off-diagonal elements can be written as a real part plus an imag-
inary part. The real (imaginary) part corresponds to the component of whichδBi
andδBj are in or 180◦ out of phase (of phase shift of±90◦).

The intensity of the wave is defined as

I (ω) = TrP(ω) = δB2
x + δB2

y (3.3a)

and the ellipticity (Rankin and Kurtz, 1970)

ε = tanψ , (3.4a)

where

sin 2ψ = 2 Im(Pxy)

[(TrPxy)2− 4 |Pxy |]1/2
and Pxy is the 2× 2 subtensor ofP. For a linearly polarized wave,φ = 0 or
π, ε = 0. For a circularly polarized wave,φ = ±1

2π , δBx = δBy andε = ±1,
where the plus sign is for right-hand polarization and the minus sign is for left-hand
polarization.

3.1.3. Spectral Analysis
For a given interval, the spectral matrixP(ω) can be evaluated for a selected
frequency range,1ω. In general the matrix can be written as

P = Re(Pij )+ i Im(Pij ) . (3.5)

Its real part is symmetric, and its imaginary part is antisymmetric and consists of
only off-diagonal elements because the covariance matrix is Hermitian. The real
part can be diagonalized using the Principal Axis Analysis (see Section 1.4). In
principal axis coordinates, the matrix is
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P′ =


λ1

λ2

λ3

+ i Im


0 P ′xy P ′xz

−P ′xy 0 P ′yz

−P ′xz −P ′yz 0

 , (3.6)

whereλ1 > λ2 > λ3 and are real. The matrix for isotropic noise is

Pnoise= α


1

1

1

 . (3.7)

Comparing the above expressions with Equation (3.2), one finds thatλ3 corre-
sponds to the noise in thek direction. The wave intensity should then be defined,
if the noise is isotropic, as,

I = λ1+ λ2− 2λ3 . (3.3b)

As we discussed in Section 3.1.2, each imaginary element gives the correlation
of the fractions of the two corresponding components that have±90◦ phase shift.
Im (Pij )

′ should be equal to or less than
√
λiλj . If k is alongẑ′, Im P ′xz and ImP ′yz

should be very small. For a purely elliptically polarized wave with isotropic noise,
Im P ′xy =

√
(λ1− λ3)(λ2− λ3), and

√
λ1− λ3 and

√
λ2− λ3 are the lengths of the

major and minor axes of the polarization ellipse, respectively. For a nearly linearly
polarized wave,λ2 ≈ λ3. The ellipticity is

|ε| =
√
λ2− λ3

λ1− λ3
(3.4b)

and its sign is the same as of ImP ′xy . The sense of the polarization is determined by
the sign of ImP ′xy (right hand for plus and left hand for minus). The amplitude of
the wave can then be defined as

a =
√

I

1+ ε2
. (3.8a)

A linearly polarized wave can be decomposed as two circularly, but with oppo-
site senses, polarized waves. An elliptical polarized wave can also be decomposed
into two circularly polarized waves with opposite senses but different amplitudes.
Therefore, every wave has left-hand and right-hand components. One can show
that the amplitudes of the right- and left-hand components are (Kodera et al., 1977)

aR
L
= (λ1− λ3)± ImP ′xy

2
√
λ1− λ3

=
√
λ1− λ3

2
(1± ε) . (3.8b)
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3.2. ROUTINE WAVE ANALYSIS

In practice a time series of data usually contains some flags and gaps. Before any
wave analysis, one has to remove these flags and fill the gaps. Sometimes, spikes in
the data can be considered as flags if their time scale is much much smaller than the
period of the wave being studied. In general, deflagging reduces the wave power
at higher frequencies and degapping adds wave power to low frequencies. Some
instruments are operated periodically leaving periodic gaps in the data. The gaps
will create false wave power in the corresponding periods. After the preparation of
the data, one is ready for the routine wave analysis.

3.2.1. Coordinate System
A wave can be analyzed more easily by choosing a proper coordinate system. Since
one way to characterize a wave is to see if the wave is compressional or transverse,
we suggest the use of field-aligned coordinates as discussed in Section 1.2.2. In this
coordinate system, if the perturbations are mainly along the background magnetic
field direction, the wave is compressional, otherwise it is transverse.

Assume in magnetic field coordinates the field direction asẑ. In general
the spectral matrix is not diagonal,Pzz is the compressional power andPxx + Pyy
is the power transverse to the field. The real part of an off-diagonal element
RePij /

√
PiiPjj gives the portion of which the two components are in phase (when

positive) or 180◦ out of phase (when negative). Note hereij satisfies the right-hand
rule, otherwise a minus sign needs to be added. Similarly, ImPij /

√
PiiPjj gives

the portion of the signals that are±90◦ out of phase. The properties of a wave can
be decided by careful examination of each element of the spectral matrix as will be
discussed in Sections 3.2.3 to 3.2.6.

3.2.2. Detrending
Most wave analysis methods essentially perform Fourier analysis on a segment of
a time series data. A critical but implicit assumption of Fourier analysis is that the
time series is periodic. Thus a slow trend in the signal is transformed into a saw-
tooth variation by the Fourier analysis technique. Figure 3.1 shows the effects of
various detrending methods on subsequent Fourier analysis. The top line shows the
Fourier spectra of linear, quadratic or cubic trends of the field increasing from zero
to one nanotesla. The spectra for the three trends are almost identical. The slope is
about−2. This slope will have a profound effect on studying the slopes of spectra
as discussed in Section 3.2.3. The corresponding amplitude can be as large as 10%
in the low frequency range and decreases one order for every two-order increase
in frequency. A non-zero average of a constant signal has only minimal effects on
the spectral analysis as shown in the lowest line in Figure 3.1. A linear detrending
can remove a linear trend completely and lower the effects down to the level of
the non-zero average trace shown. Similarly quadratic detrending will remove the
power due to the quadratic trend. A linear detrending is effective to reduce the error
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Figure 3.1.Effects of the trends in the background field on the Fourier analysis. The magnitude of
the trend is one nanotesla over an interval of 2000 s. The lowest line show the spectrum of a contant
background. The noise (10 orders smaller than the trend) is associated with the finite digitization of
the calculation. The top line shows the spectra of linear, quadratic and cubic trends. The middle three
lines show the spectra of each specified trend after detrending.

in higher frequencies for a quadratic trend, but not as effective at lower frequencies
as shown in the second line from the bottom. The effects of a cubic trend are dif-
ficult to remove using either linear or quadratic detrending. The effects of higher
order trends are especially important for magnetospheric wave studies since the
measured background magnetospheric field compared with wave signals consists
of strong higher order trends when a spacecraft moves radially through the Earth’s
field. A popular method, in addition to linear and quadratic detrending, is so-
called prewhitening techniques. An example of such is the differencing method that
analyzes the difference between two neighboring measurements. In principle, the
differencing is similar to linear detrending between every two data points. Trends
are removed unevenly throughout the interval being studied. It works very well in
regions without discontinuities. In the differencing process, the power spectrum
has been increased by a factor ofω2. The additional factor is slightly smaller than
ω2 at the low frequency end (Takahashi et al., 1990).

3.2.3. Power Spectrum
After detrending the data, one can examine the power spectra of the waves. To make
the spectra, one selects a time interval which includes the wave activity of interest.
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Observed waves often are not perfectly sinusoidal for a long period. How many
wave cycles should be included for an analysis? The longest period in a Fourier
spectrum is determined by the length of the selected interval. If only one wave cycle
is selected, one would not obtain a meaningful peak in the spectrum. Furthermore,
any residual trend in the background will strongly affect the analysis. It is common
practice to select an interval containing at least five to six wave cycles in order
to derive a statistically significant result. The more wave cycles are included, the
better are its statistics, but the more chance has one to include waves of different
sources or effects of source variation.

The spectrum can be spiky. To enhance the robustness of the result, one can
average several Fourier estimates. The number of the total Fourier estimates in
the average is called ‘bandwidth’. Increasing the bandwidth improves statistical
significance of the spectrum, reduces the resolution of frequency, and increases the
lower-cutoff frequency of the spectrum.

To examine power spectra, firstly one may compare the power in the frequency
range of interest for the different components and the strength of the field. Usually,
the power for one or two components is much higher than that for the others. To
determine whether a wave is compressional or transverse one can compare the
power in the strength of the fieldPt (the compressional component) withPx+Py+
Pz−Pt (the transverse component) wherePx, Py , andPz are powers inBx,By, and
Bz, respectively.

Secondly, one may look for peaks in the spectra. A sharp peak indicates that
the wave is nearly monochromatic and a resonance of some sort may occur in the
process being studied. However, if a sharp peak occurs exactly at the frequency
of the spin of the spacecraft or at some multiple, it may be caused by an imper-
fect despinning process. Usually the spin tone occurs only in the two transverse
components to the spin axis and usually little in the field strength. A broad peak
may indicate that many wave modes contribute to the wave. If the plasma is not in a
rapid motion, or the Doppler shift is small (see detailed discussions in Section 3.3),
one may compare the peak frequency with the characteristic frequencies of the
plasma, such as the gyrofrequencies. If the wave frequency is much smaller than
the ion gyrofrequency, the wave is usually referred to, rightly or wrongly, as an
MHD wave. If the wave frequency is near the ion gyrofrequency, the wave may
be associated with ion gyromotion. Sometimes the trough between two peaks may
be also of interest since it may be associated with resonant absorption by particles
(Young et al., 1981; Anderson et al., 1991). Thus a trough could occur at a local
characteristic frequency for certain species.

Thirdly, one may examine the slope of the spectrum (LaBelle and Treumann,
1988). The slope may provide some information about cascading processes in the
frequency domain. Cascading processes describe the evolution of wave power in
wave number. A wave cycle may break into two wave cycles with smaller wave-
lengths or two wave cycles may coalesce to form one wave cycle with a longer
wavelength. If this process continues, a single wave mode may evolve into a spec-
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trum with many wave numbers. However, we should point out that to compare the
measured slopes with those given by theory is not as straight forward as many peo-
ple thought. The cascading processes are described in the wave number domain in
almost all theoretical work. They may appear differently in the frequency domain.
In interplanetary space, since the solar wind velocity is much greater than the phase
velocity for MHD waves, the measured spectrum is essentially due to the Doppler
shift and hence is proportional to that of the wave number. Thus, a power spectrum
in the frequency domain can be converted linearly into the wave number domain
if the waves at different frequencies propagate in the same direction (which needs
to be demonstrated), and is easily used in theoretical investigations. In other cases,
the conversion from the frequency domain to the wave number domain may not
be linear due to the dispersion. The slope of the power spectrum in the frequency
domain may not be purely due to cascading. We should point out that an imperfect
detrending process will strongly affect the analysis of the slope of a spectrum. One
way to check this is to examine whether the amplitude in the lower frequency end
is significantly smaller than a few percent of the trend in the background field.

3.2.4. Coherence
In any region in space several wave modes may coexist. Each mode has a particular
polarization at a particular frequency. When we observe these waves we measure
the sum of the wave modes and the noise of the observing system. One way to
separate these wave modes is to check the cross correlations between different
components as a function of frequency. Coherence analysis is a particular way of
using the cross-correlations, i.e., the off-diagonal elements in Equation (3.5). The
coherence is defined as the square-root of|Pij |2/(PiiPjj ). (See also Section 4.2).
In the coordinate system of the waves, for a purely compressional wave, the field
aligned component should have little coherence with the two transverse compo-
nents. On the other hand, for a transverse wave, the two transverse components
may have high coherence. Note, however, if one is not performing the analysis in
the coordinate system of the waves so that any wave might excite all three sensors
or directions of analysis, then high coherence could result in high coherence in
all these possible pairs of signals. Combining the information gained from the
coherence analysis with that from the power spectra, one may find sometimes
that different peaks in the power spectra correspond to different wave modes. In
coherence analysis, the phase difference between two components may also be
calculated,φij = Im Pij /|Im Pij | tan−1(Im Pij /RePij ). From the phase differ-
ence between the two transverse components, one may be able to determine the
polarization of a transverse wave. The phase difference can also be used for mode
identification as discussed in Section 3.4.

3.2.5. Propagation Direction
In principle, there are two methods to determine the propagation directionk. Com-
paring Equation (3.6) with (3.2), in analogy of the minimum variance analysis
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in the discontinuity analysis, one can takek either parallel or antiparallel to the
minimum eigenvector. This method is referred to as Born-Wolf method or principal
axis analysis (Born and Wolf, 1965). This method is based on the information con-
tained in the real part of the covariance matrix, sometimes called the cospectrum.
Its applicability is limited by the ratio ofλ2/λ3 in the same manner as the minimum
variance analysis. An alternative method is based on the information contained in
the imaginary part of the covariance matrix, sometimes called the quaspectrum.
Means (1972) shows that the unit vectork0 can be given by

k0
x = ±Im P ′yz/IP ,

k0
y = ∓Im P ′xz/IP , (3.9)

k0
z = ±Im P ′xy/IP ,

whereIP = (Im P ′2xy + Im P ′2xz + Im P ′2yz)1/2, the plus (minus) sign is for right
(left)-handed polarization.

The differences between the two methods were studied by Arthur et al. (1976),
who suggested that the Born–Wolf method may be better for linear polarization
and the Means method for circular polarization. One advantage of the Means
method is that it provides the sense of the polarization.

For a linearly polarized wave, the propagation direction cannot be well deter-
mined from the minimum variance analysis. If the waves are mainly compressional,
their propagation direction can be determined according to the coplanarity the-
orem assuming that they are either fast or slow modes (see more discussion on
wave modes in Section 3.3). The coplanarity theorem requires that the background
field, the perturbed field and the wave vector be coplanar for the fast and slow
mode waves. Since the perturbed field is perpendicular to the wave vector, the
propagation direction is (Russell et al., 1987)

k‖(1B× B0)×1B , (3.10)

where the direction of the perturbed field,1B, is in the direction of the maximum
variance.

The propagation direction cannot be well determined for nearly linearly polar-
ized intermediate mode waves.

3.2.6. Wave Properties
From principal axis analysis of the covariance matrix, one can derive properties of
the wave such as its amplitude, ellipticity and compressibility using the definitions
given in Section 3.1. For a linearly polarized wave the intermediate eigenvalue
and minimum eigenvalue may be close to each other, and hence the propagation
direction not well determined. In this case, the direction of the perturbed field
which is the direction of maximum eigenvector is well determined. If the linearly
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polarized wave is compressional (fast or slow mode), the propagation direction can
be determined according to the coplanarity theorem. On the other hand, for a nearly
circularly polarized wave, the maximum eigenvalue is close to the intermediate
eigenvalue. In this case, the propagation direction is well determined. If all three
eigenvalues are similar, say the differences are less than an order of magnitude,
the fluctuations are turbulent. Neither the propagation direction nor polarization
is well determined. Note that the wave properties are derived for only a selected
frequency band. When one integrates over the entire frequency range, the results
give the average properties over the whole spectrum and should be identical to the
results of principal axis time series analysis. Wave analysis needs the background
magnetic field for referencing the wave polarization. Thus if the wave properties
are obtained after detrending or filtering, one must make sure that the background
field be made available in the analysis.

3.2.7. Filtering
Filtering the time series data can be used to examine the behavior, amplitude for
example, of the wave changing with time or location in space. The interesting
issues here are generation or damping of the waves, the nodes of the field line
resonance and wave packets. Filtering may be performed in the time domain or the
frequency domain. In the time domain filters may be symmetric about the point
of interest with identical weights multiplying the data on either side of the central
point. Such filters have no phase lag, but have the disadvantage for real time use that
they look forward in time. Filters can also be recursive using only data previous to
the point in question. Such filters have phase variations with frequency but can be
used in real time situations. Filtering can also be done with weighting the powers
in the frequency domain. Such a filtering process is accomplished by multiplying a
filter function by the Fourier spectrum to be filtered, and then inverting the resultant
spectrum back to the time domain. An ideal filter function removes the variations
in the unwanted frequency range while keeping the rest unchanged. However, in
reality, this process may either introduce artificial fluctuations into the resulting
time series or leave some residual power in the frequencies to be filtered.

Figure 3.2 shows examples of commonly used filter functions using time do-
main weighting. One selects a filter according to the requirements of his/her analy-
sis. There are three major concerns in choosing a filter: how close to unity its
pass-band is, how close to zero its stop band is and how sharp the cutoff is. In
general, each filter is good in one or two of the three aspects. For example, the
rectangular window, Figure 3.2(a), has a sharp cutoff, but its stop band is not clean
and it creates artificial waves in the pass band. The Kaiser window, Figure 3.2(c),
has the broadest cutoff transition but with the lowest stop band response. The Han-
ning window, Figure 3.2(b), is a compromise between the rectangular and Kaiser
windows and is widely used in data analysis. Hamming window, not shown, is
similar to the Hanning window and is also popularly used.
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Figure 3.2.Response functions of three low-pass filter windows. (a) Rectangular window, (b) Han-
ning window, and (c) Kaiser window. The left panels show the linear response and right panels show
decibel response. The Nyquist frequency is 2 Hz and the high-cutoff frequency is 1 Hz.
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Figure 3.3.Hodograms of the wave packets upstream of the bow shock of comet Giacobini–Zinner
(Le et al., 1989). The upper frame shows the magnetic field measurements in minimum variance
coordinates. The lower two frames show the hodograms with the average field removed.

3.2.8. Hodogram
The polarization and the decay or growth of a wave can be most clearly presented
in form of hodograms (e.g., Russell et al., 1971; Le et al., 1989), see Figure 3.3
for example. Hodograms can be made either before or after filtering the data. In
particular, hodograms should be able to illustrate clearly the properties derived
from the wave analysis. If not, one should check over his/her analysis carefully.

3.2.9. Dynamic Spectra
A particular useful display of spectra is called the dynamic spectrun a time series
of power spectra. It contains the information discussed above in Sections 3.2.3 and
3.2.7. One may also examine the time evolution of the coherence and ellipticity
of the waves. To understand the properties of a wave, one still has to perform the
principal axis analysis, either explicitly or implicitly.



432 P. SONG AND C. T. RUSSELL

To make a dynamic spectrum, one needs to determine the number of data points,
or the length of the window, for each individual spectrum and the overlap of the
time series for successive spectra. Although a broad frequency range is presented
in a dynamic spectrum, the window length should be determined according to the
wave of most interest and the guidelines discussed in Section 3.2.3. The lower
frequency portion is in general under-represented and the higher frequency portion
may be less coherent. If a wave is present only over a finite time interval, in the
dynamic spectrum, it may ‘propagate’ outside of the finite interval because of the
length of the moving window. The presence of a discontinuity or a single spike in
the time series can cause much serious problems in a dynamic spectrum analysis.
The Fourier spectrum of a discontinuity or spike is broad-banded. It usually ap-
pears as a strip across all frequencies. Because an automated procedure to make a
dynamic spectrum does not recognize a discontinuity, a strip with enhanced power
will extend to a width of the window length on each side of the discontinuity (from
the start to the end when the window includes the discontinuity). This could be
potentially confused with a broadband wave of a finite region (unfortunately, this
is not a hypothetical problem.) Therefore, it is extremely important to examine
the original time series data and not to simply rely on a computerized automated
dynamic spectral analysis, for example, in a statistical study.

3.3. MODE IDENTIFICATION

With the routine wave analysis discussed in Section 3.2, we have determined the
frequency range of the wave of interest and overall properties of the wave, such as
the propagation direction, polarization, and frequency. However, since these results
are obtained in the spacecraft frame, the frequency in the plasma frame, wave-
length, and phase velocity of the wave in general remain unknown. The magnetic
field measurements from a single spacecraft alone in principle cannot determine
these wave parameters. To further understand a wave, one needs measurements
either from separated spacecraft or from plasma instruments.

Two major parameters of interest are the phase velocity and the frequency in
the plasma frame (the wave number then can be calculated). In this section we will
discuss how to identify a wave mode which gives the range of the phase velocity
and physical functions of a wave. In the next section, we will resolve the Doppler
shift and determine the frequency in the plasma frame.

3.3.1. MHD Modes in Homogeneous Plasmas
Waves at frequencies much lower than the ion gyrofrequency can be treated as
MHD waves in low beta plasma(β ≤ 0.1). We note that it is common to refer
to these low frequency waves as MHD waves even when the wave dispersion
cannot be derived by the MHD assumption. In the recent years, there has been an
increasing awareness that the dispersion and other properties of a wave described
by the MHD theory are different from that by the kinetic theory and may not be
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appropriate for moderate and high beta plasmas, with which we are often dealing
in space. Nevertheless, we base our discussion on MHD theory and point out where
caution should be taken.

In MHD linear theory for isotropic uniform plasmas, there are four modes,
the fast, intermediate, slow and entropy modes (e.g., Kantrowitz and Petschek,
1966; Kivelson and Russell, 1995). There is an ongoing debate on the existence
of the MHD slow mode. In linear kinetic theory, the slow mode is strongly Landau
damped in highβ plasmas when the electron temperature is smaller than the ion
temperature, as it is in the magnetosheath, plasma sheet and most of the mag-
netosphere, and its phase velocity is greater than the intermediate mode velocity
(Gary, 1992). However, in data analyses an observation should not eliminate the
slow mode from consideration solely on the basis of theory, because conditions
may exist that maintain this mode in the face of damping. In the following dis-
cussion, we will refer to the intermediate mode as the Alfvén mode to avoid the
implication of the ordering in the phase speeds.

The entropy mode is a nonpropagating perturbation with a zero phase velocity.
The phase velocities for the other three modes are derived from linear MHD theory,
to be,

v2
phase(f,s) = 1

2[(C2
S+ C2

A)±
√
(C2

S+ C2
A)

2− 4C2
SC

2
A cos2 θ] , (3.11a)

vphase(a) = CA cosθ , (3.11b)

whereCS, CA, andθ are the sound speed, Alfvén speed and the angle between the
wave vector and the background field. The subscriptsf ands stand for the fast and
slow modes and correspond to the plus and minus signs on the right-hand-side of
Equation (3.11a). The subscript A stands for the Alfvén mode. Their dependence
on θ andβ = 2C2

S/C
2
Aγ is given in Figure 3.4.

Characteristic features of each mode can be obtained from the perturbation
relations. The Alfvén mode is incompressible, and thus the perturbations should
be transverse. Both fast and slow modes are compressible and hence contain per-
turbations in both field pressure and plasma pressure. For the fast (slow) mode,
the two pressures vary in (180◦ out of) phase. These characteristics can be easily
differentiated in the power spectra (see Section 3.2.3) and coherence analysis (see
Section 3.2.4). In inhomogeneous plasmas, the Alfven mode may contain varia-
tions in density and the field strength. However, it requires that the variations in
the total pressure, the sum of the thermal and magnetic pressures, be zero. Here
we can see how important it is to have an accurate intercalibration between the
plasma and field measurements. Otherwise, an inhomogeneous Alfvén wave may
be misidentified as a homogeneous slow wave, and vice versa. Under this situation,
careful examination of the perturbation and propagation directions is extremely
important.

The fast mode propagates more isotropically than the other two propagating
modes. Since the other two modes do not propagate perpendicular to the magnetic
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Figure 3.4.MHD phase velocities as functions ofβ and field direction. The field direction is alongy.
RatioC2

S/C
2
A equalsγβ/2, quantitiesCA andCS are the Alfv́en and sound speeds, respectively. The

phase velocity for the entropy mode is zero, i.e., at the origin of each frame.CM is the magnetosonic
speed for perpendicular propagation equal to the square root of the sum of the squares of the Alfvén
and sound speeds.

Figure 3.5.Physical functions of the three propagating MHD modes.
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field, the fast mode most efficiently transmits the pressure perpendicular to the
field. The Alfvén mode bends and twists the magnetic field and the plasma motion.
The function of the slow mode is more interesting. As shown in Figure 3.5, if one
applies a pressure perturbation perpendicular to a flux tube, the field strength will
increase to conserve the flux while the cross-section of the tube decreases. If this
is done slowly then, the thermal pressure will decrease because the pressure has a
chance to equilibrate. Then the thermal pressure is anticorrelated with the magnetic
field pressure,B2/2µ0. This is accomplished by the plasma moving away from the
compressed region. Thus the role of the slow mode is to convert the perpendicular
pressure perturbations to parallel pressure perturbations. With these physical pic-
tures in mind, one can more readily understand why a particular mode exists in a
certain region.

3.3.2. Mirror Mode
The mirror mode instability can be derived from the MHD slow mode branch
with inclusion of a finite temperature anisotropy,T⊥/T‖. However, Southwood
and Kivelson (1993) showed that the instability is a result of kinetic effects. The
unstable condition is

T⊥
T‖
≥ 1+ 1

β⊥
, (3.12)

whereβ⊥ is the plasma beta evaluated using the perpendicular temperature. The
mirror mode is a purely growing mode with zero frequency in the frame of plasma.
It has a maximum growth rate whenk is about 70◦ from the field direction (Gary,
1992). The perturbations resulting from the instability convect with the plasma
flow and are observed as oscillating waves. Krauss-Varban et al. (1994) showed
that these perturbations correspond to the entropy mode in MHD. The mirror mode
is expected to exist downstream of the bow shock (Crooker and Siscoe, 1977; Lee
et al., 1988) and in outer magnetosphere where the plasma condition usually meets
the mirror instability criterion. The perturbations associated with the mirror mode
are similar to that of the perpendicular propagating slow modes. A major difference
between the two is that the phase velocity is zero for the former but non-zero for the
latter. However, when the slow mode phase velocity is small and the flow velocity
is dominant, the two modes are difficult to distinguish as discussed in Section 3.4.
The schemes discussed in the next subsection are designed to differentiate the slow
and mirror modes.

3.3.3. Transport Ratios
One way to identify a wave mode is to measure the phase velocity and compare
it with the expected dispersion relation (Hoppe et al., 1981). However, as will be
discussed in Section 3.4, to measure the phase velocity needs at least two spacecraft
and 3-D plasma measurements. A different approach is to determine the mode
according to the ratios among perturbations of different quantities. These ratios
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are referred to as transport ratios (e.g., Gary and Winske, 1992). Because of the
difference in the roles of waves, each mode has a particular set of values of the
transport ratios which can be calculated from theory.

3.3.3.1. Transverse ratio. The transverse ratio is defined as the ratio of the trans-
verse component of magnetic wave power to the compressional component power,
or

TR = δB⊥ · δB⊥/δB2
‖ (3.13)

whereδB⊥ · δB⊥ = δB · δB− δB2
‖ , andδB‖ is the amplitude in the magnetic field

strength. WhenTR � 1, the wave is transversely polarized and whenTR � 1,
compressionally polarized.

3.3.3.2. Compressional ratio. The compressional ratio is defined as the ratio of
the compression in the plasma to the magnetic field perturbation, or

CR = δN2

N2
0

B2
0

δB · δB . (3.14)

It represents the partition of the wave power between the plasma (density) and
magnetic field. Since usually the error in the thermal pressure measurements is
smaller than that in the density, as discussed in Section 1.3.3, it is recommended to
useδP/P0 to replaceδN/N0.

3.3.3.3. Phase ratio. It has been defined as

PR = δPi

Pi0

PB0

δPB
(3.15a)

and also by

PR = δN

N0

B0

δB‖
. (3.15b)

Since only the sign of the ratio concerns us, the two definitions are essentially the
same. In practice, the noise is lower for the first definition. This ratio determines
whether the compression in the magnetic field and plasma is in phase or out of
phase. It is useful only for compressional waves. For incompressible waves, the
two perturbations are dominated by noise.

3.3.3.4. Alfvén ratio. The Alfvén ratio is one of the earliest recognized transport
ratios, and is defined as

AR = δv · δv
C2

A

B2
0

δB · δB . (3.16)
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It is particularly useful for theoretical investigations.

3.3.3.5. Doppler ratio. The Doppler ratio is defined as

DR = δv · δv
v2

0

B2
0

δB · δB . (3.17)

It is different from the Alfvén ratio by a factor ofM2
A whereMA is the Alfvén

Mach number. This ratio is important because it contains not only the information
on the velocity fluctuations but also on the background flow itself, which is not
included in the Alfvén ratio. The background velocity becomes crucial when one
is to determine whether the phase velocity is greater or less than, or is significant
at all compared with the flow velocity. Under some approximations, the Doppler
ratio is related to the ratio of the frequency in the rest frame of the plasma to that
in the spacecraft frame.

An important feature of the above transport ratios is that they are independent of
frequency. Therefore, they can be generalized in the frequency domain by assuming
a spectrum is a simple superposition of waves of different frequencies. They are
also independent of the propagation direction, and hence isolated from the errors
and uncertainty that may occur when determining the propagation direction.

When comparing the observed transport ratios with those calculated from the-
ory, one could find that none of the modes in theory completely match the observa-
tions. In order to characterize a fluctuation with a mode, one has to choose a mode
that is ‘most likely’ to represent the wave. Different schemes will evaluate the
‘likelihood’ from different angles. Song et al. (1994) first introduced a hierarchical
scheme; Denton et al. (1995) proposed a parallel scheme. Recently, Omidi and
Winske (1995) systematically investigated the mode identification problem using
data from computer simulations.

3.3.4. Hierarchical Scheme
The scheme proposed by Song et al. (1994) is a qualitative and deterministic scheme.
One follows the chart shown in Figure 3.6 and makes a yes or no decision at each
point. The levels of the boxes have been determined according to the accuracies of
the measurements.

In the solar wind, the Alfvén velocity is much less than the flow velocity and
the lowest branch of this scheme does not apply.

3.3.5. Parallel Scheme
Denton et al. (1995) proposed a parallel scheme. In this scheme, all observed trans-
port ratios are treated to be equally accurate. Each observed ratio is then compared
with the theoretical values for all modes with different possible propagation angles.
A mode is identified as the one with the smallest sum of the differences between
theoretical and observational values of a select set of ratios.
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Figure 3.6.A hierarchical scheme of wave mode identification (Song et al., 1994). A given fluctuation
can be distinguished among four different modes. At each step, the user makes a yes–no decision.
The level of a box is determined according to the accuracy of the measurements. The scheme can be
implemented in the frequency domain assuming that the waves are linear superpositions.

3.4. FREQUENCY AND PHASE VELOCITY

If the frequency of a wave in the plasma frame isω and the plasma flows with a
velocity V relative to an observer, the frequency measured by the observer is

ω′ = ω+ k · V . (3.18)

This relationship can be derived from Equation (1.1) with a Fourier transforma-
tion. The second term on the right is the Doppler shift. Dividing both sides of
Equation (17) byk, we have

v′ = vphase+ V cos η , (3.19)

wherev′ = ω′/|k|, vphase, and η are the apparent velocity of the wave to the
spacecraft, the phase velocity of the wave and the angle between the flow velocity
and the propagation direction. The direction of the apparent velocity is along the
propagation direction.

With plasma measurements and the routine wave analysis discussed in the last
section,V cos η, the Doppler velocity can be determined. The apparent velocity
can be measured if there are two separated spacecraft,
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v′ = L · k0

1t
, (3.20)

whereL and1t are defined the same as Equation (2.20) and will be discussed
further in Section 4. This method fails when the separation of the two space space-
craft is along the wave front, orL · k0 = 0. If the uncertainty in the determination
of propagation direction which affects bothη and v′ is large, the result has an
extremely large uncertainty.

There have been debates about whether the apparent velocity defined by Equa-
tion (3.20) corresponds to the phase velocity or group velocity. Because the phase
velocity is the propagation velocity of the oscillations and the group velocity is the
propagation velocity of the envelope of a group of oscillations, the group velocity
corresponds to a time scale significantly longer than that of oscillations. Therefore,
if the timing delay is measured from the frequency range of the oscillations, the
apparent velocity corresponds to the phase velocity.

With measured frequency from the spectral analysis, the wave number, phase
velocity and the frequency in the plasma frame can then in principle be determined.
Without both 3-D plasma velocity and the timing difference measurements, to
resolve the phase velocity, one has to make assumptions.

In the solar wind, the phase velocity of fluctuations is usually much smaller
than the Doppler velocity. The phase velocity for entropy modes is zero in theory.
In these two cases, the apparent velocity is simlar to the Doppler velocity. The
wavelength can be derived with only one spacecraft. It is important to point out
however that to assume a fluctuation to be an entropy mode is to make a substantial
physical assumption. For example, some oscillations in the magnetosheath which
have been assumed to be mirror modes actually have a significant phase velocity
(Song et al., 1992).

For quasi-standing waves, the apparent velocity is much smaller than the phase
velocity. In this case, the Doppler velocity and the phase velocity are similar in
magnitude but opposite in direction.

In summary, wave properties can be determined by combining plasma and field
measurements, if a wave is nearly purely one of the four MHD modes. With more
than one spacecraft, the apparent velocity of the wave to the spacecraft and hence
the wavelength can be determined. The Doppler shift can be determined from 3-D
plasma measurements and the minimum variance analysis. Therefore, the prop-
erties of the wave can be quantitatively determined with two of the above three
determinations. The uncertainties for the three determinations are different. The
determination of the apparent velocity has the least uncertainty but requires two
spacecraft. The determination of the Doppler shift has the next to least uncertainty.
However, if the flow velocity measurements are two dimensional, an additional
assumption is needed and hence the uncertainty becomes larger. The phase velocity
calculated from MHD dispersion relations has a relatively large uncertainty since
the wave may not be purely a single mode and may not be in the linear stage, and
may not be quantitatively described by MHD at all.
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Figure 3.7.The Fourier spectrum of a steepened, or saw-tooth, wave. The frequency of the primary
wave is 1× 10−3 Hz and the amplitude of the perturbation equals the background field strength.

3.5. NONLINEAR EFFECTS

In the previous sections, we have discussed how to analyze waves of small ampli-
tudes. If the amplitude is large, nonlinear effects will become important.

3.5.1. Steepened Wave
If nonlinear effects involve the temperature, a wave will steepen into saw-tooth type
profile. Physically, the steepening process is a harmonics generation process: the
power at harmonics of the fundamental wave frequency is enhanced. The Fourier
spectrum of a saw-tooth wave, Figure 3.7, shows significant power in all harmon-
ics. Therefore peaks at high frequencies in a spectrum may not necessarily indicate
a set of waves, instead they could be simply the result of a single steepened wave.
A visual inspection of time series data should effectively prove or disprove the
possibility.

3.5.2. Large Amplitude Transverse Waves
It is possible that nonlinearity occurs only in the magnetic field in particular when
the plasma beta is high. The nonlinearity in the magnetic field alone may not lead
to wave steepening. Both the positive and negative variations in the transverse
components increase the magnitude of the magnetic field. As the result, there are
new issues in analyzing linearly polarized perturbations.

One of the most important issues in treating large amplitude field fluctuations
is 〈|B|〉 6= |〈B〉| where 〈 〉 denotes averaging in time domain. The difference
is significant in evaluation of the Alfvén velocity, plasmaβ and relative wave
amplitude of the field. Given a linearly polarized field perturbationB = (Bx0 +
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Figure 3.8.Power spectrum of the field strength for large amplitude field fluctuations. The frequency
of the primary wave is 1× 10−3 Hz and the amplitude of the perturbation equals the background
field strength. The angles given in the legend are the angle between the background field and the
perturbed field. Peaks appear at twice the fundamental and higher harmonics of the primary wave
when the wave is not purely compressional.

B1 cos ωt, By0,0), the average field is〈B〉 = B0 = (Bx0, By0,0) and the magni-
tude of the average field is

|〈B〉| =
√
B2
x0+ B2

y0 . (3.21)

The magnitude of the fieldB = |B| =
√
(Bx0+ B1 cos ωt)2+ B2

y0. The average
field strength is

〈|B|〉 = 1

T

T/2∫
−T/2
|B| dt . (3.22)

The difference between〈|B|〉 and|〈B〉| depends on the propagation angle. In gen-
eral, 〈|B|〉 is greater than|〈B〉|. They become the same for perpendicular prop-
agation whenBx0 > B1. When comparing observations with theory, one has to
decide which definition of the field strength corresponds to the value in theory.
Most theories of waves assume that a wave is superposed on an average field. In
these cases, one should use the definition given by Equation (3.21). Namely, one
should use the strength of the average field, instead of the average of the field
strength.

A most important phenomenon when analyzing large amplitude field fluctua-
tions is the appearance of the higher harmonics in the field strength in particular the
second harmonic because when a component of the field varies between positive
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and negative, both positive and negative perturbations contribute positively to the
field strength. The amplitudes of the harmonics in the field strength are

|B|m = 2

T

T/2∫
−T/2

B cosmωt dt m = 1,2,3, . . . . (3.23)

The harmonics and their amplitudes in the field strength can be significantly differ-
ent from those in the components. There is no general simple analytical expression
for the integral in Equation (3.23). The first harmonic in the field strength would
be dominant ifBx0 > B1. The second harmonic would be important ifBx0 <

B1. Therefore, one may expect a significant presence of the second harmonic in
the field strength for parallel propogation but not for perpendicular propagation.
Figure 3.8 shows the Fourier spectra of the field strength that result from mono-
chromatic large amplitude field fluctuations in one component (B0 = |B1| = 1).
The spectrum in the field strength depends strongly on the angle between the
background field and the perturbed field, namely the angle betweenB0 and B1.
The power in the first harmonic decreases and the power in the second harmonic
increases with the angle. Figure 3.9 shows an example in which wave power does
not show in the field strength in the fundamental frequency but in the second har-
monic. The dashed lines indicate spectra of white noise the energy density of which
is independent of frequency. The most significant peak at the low frequency end
of each component, as marked as F1, F2 and F3 has no significant corresponding
peak in the spectrum of the field strength. This is consistent with nearly parallel
propagating large amplitude waves as shown by the thin solid line in Figure 3.8.
Peaks in the spectrum of the field strength clearly appear at twice the frequencies of
the peaks in the components, as marked at 2F1, 2F2 and 2F3. At least one of them,
2F2, has no corresponding peak in the spectra of the components. Therefore, the
second harmonic in the field strength is a major indicator of the nonlinear effects
and creates problems in using wave analysis scheme based on linear theory, such as
in Figure 3.6. If one examined only the spectrum of the field strength, this second
harmonic peak could be mistakenly identified as a compressional wave. Therefore,
it is important to check the spectra of the components: for a compressional wave,
enhanced power should appear in at least one of the components.

3.6. PLASMA WAVE ANALYSES

Electric field measurements are often recorded with a dipole antenna mounted per-
pendicular to the spacecraft spin axis. During the spacecraft rotation, the electric
potential differences along the sensors are measured. The electric field variations
with scales longer than or comparable to the length of the antenna can be derived
by examining these potential differences with respect to the spin modulation and
antenna’s orientation. These signals are often Fourier analyzed on-board and the
Fourier components are transmitted to the ground. The magnetic field fluctuations
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Figure 3.9.Fourier spectra of large amplitude (∼ average field) magnetic field perturbations. The
scales for the three components have been shifted upward by one decade consecutively. The dashed
lines indicate spectra of a slope of−1. The most significant peak at the low frequency end of each
component, as marked asF1, F2 andF3 has no corresponding peak in the spectrum of the field
strength. But there are peaks at twice these frequencies in the field strength, as marked at 2F1, 2F2
and 2F3.
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are usually measured by a search coil magnetometer in the same instrument pack-
age. If all six components of the electric and magnetic fields are available, one is
able to determine the Poynting flux of each wave. Analyzing plasma wave measure-
ments largely relies on the dynamic spectral analysis as discussed in Sections 3.2.3
and 3.2.9.

Here are some general guidelines to reading the spectra. If the enhancements
appear in both the electric and magnetic fields, the waves are eletromagnetic. From
the Faraday’s law, loosely speaking, the ratio between the power in the two com-
ponents is the square of the phase velocity. For example, if the two spectra have
a similar slope in a frequency range, the dispersion is weak in this range. If the
strength of the electric component increases faster with frequency than the mag-
netic component, the phase velocity increases, and vice versa. If the enhancements
occur only in the electric component, the waves are electrostatic. In this case, from
Faraday’s law, the wavevector is parallel to the electric perturbations and the phase
velocity cannot be derived by using the ratio between the electric and (zero) mag-
netic amplitudes. Observationally, the latter may be largely determined by noise.
Polarizations of the wave and the propagation direction (of electromagnetic waves)
may be derived by examining the spin modulation of the signals (Scarf and Russell,
1988; Strangeway, 1991; Song et al., 1998).

To interpret a plasma wave is generally more difficult than low frequency waves.
The first difficulty one encounters is whether the wave is generated where it is
observed or not. Near the source region, a wave does not need to satisfy any
particular dispersion because of the combination of the wave growth and possible
strong spatial damping. One cannot assume a region of greater wave amplitude is
the source region because a greater amplitude does not necessarily mean a greater
wave energy flux. The phase velocity of a plasma wave is sensitive to the local
plasma conditions. Strong waves usually occur in the region of rapid changes in
plasma parameters. Many wave modes may be reflected at these boundaries which
complicates the possible interpretations. One has to examine carefully the plasma
parameters associated with the wave and estimate the unstable conditions for each
of the possible modes.

4. Spatial Correlation Analyses

Correlation analysis studies the relationship between measurements from different
observation points. The observers can be either separated spacecraft in space or
different ground stations. When a disturbance or a wave travels from one observer
to another, it is observed with a timing difference in the time domain or a phase
difference in the frequency domain between the two observers plus any change of
the disturbance during the travel time period. From the timing or phase difference
and the separation between the two observers, one is able to determine the wave
number of the wave. The change in the signal while propagating reduces the level
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of the correlation between the two observed signals and thus the time or phase
difference may be a function of frequency and possibly time.

4.1. BACKGROUND

4.1.1. Correlation Analysis in the Time Domain
If two observers measure the same quantity at different locations and the two time
series data areQ(0, t) andQ(L , t), where we have assumed that the location of
the first observer as the origin and the separation between the two observers isL ,
the cross-correlation coefficient is defined as

α12(τ) = 1

K

t2∫
t1

Q(0, t − 1/2τ)Q(L , t + 1/2τ) dt , (4.1)

wheret1 and t2 are the start and stop times of the selected interval, andK is the
normalization factor and is

K =
 t2−1/2τ∫
t1−1/2τ

Q2(0, t) dt

t2+1/2τ∫
t1+1/2τ

Q2(L , t) dt


1/2

.

The time lag with the highest cross-correlation coefficient can be used as the timing
difference,1t , between the two observers. The integration is realized through the
summation over the time window. In general, a narrower width of the window
provides a greater maximum of the correlation coefficient because the noise within
the window width may be likely weaker. For discontinuity analysis, one should
select a narrower window because for an ideal discontinuity, the cross-correlation
coefficient decreases as[1+ (|1t − τ |)/(t2 − t1)]−1. When the window is much
greater than the time shift, the correlation coefficient appears flat. For wave analy-
sis, a wider window, which includes several wave cycles will be statistically more
significant.

If a wave is monochromatic, the correlation coefficient will periodically in-
crease to unity and hence there is an ambiguity in determining the time lag. For-
tunately, the waves in space are not purely monochromatic and one usually has
no difficulty to find a peak in the correlation coefficient with the greatest value.
One still has to be careful since in some situations it is possible that the greatest
correlation occurs associated with observations of different wave fronts.

What limits the resolution of the timing difference? If a wave is purely mono-
chromatic, the resolution of the timing difference may be infinitely high, and de-
pends on the accuracy of the clocks rather than the resolution of the data. However,
because the waves in space are not monochromatic, as just discussed above, and
also because a wave may change slightly as it propagates from one observer to
another, or be slightly different at some distance along the wavefront where the
second observation is made, there is uncertainty in the timing difference. This
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uncertainty is anti-correlated with the value of the highest correlation coefficient
and equal to or smaller than the resolution of the data. For example, since a dis-
continuity departs most from an ideal monochromatic wave, the uncertainty in the
timing difference is the highest and equals half of the time resolution of the data.
To minimize the uncertainty in timing discontinuities, one should use the data with
the highest resolution and filter the noise before an analysis. Otherwise, in common
practice cross-correlation analysis is replaced by simply timing the delay of the
discontinuity between the two observers. When multiple waves are present, each
of them may have a different time delay. One needs to band-pass filter the data
before the correlation analysis. Otherwise, the time delay will be determined by
the wave of greatest power and the correlation coefficient will be smaller.

4.1.2. Correlation Analysis in the Frequency Domain
In the frequency domain, correlation analysis studies the phase difference between
observations at two locations. From this phase difference, one may be able to
determine the wave number.

If two time series data areQ(0, t) andQ(L , t) and their Fourier spectra are
Q(0, ω) andQ(L , ω), the cross-correlation coefficient is

C12(ω) = 〈Q(0, ω)Q
∗(L , ω)〉

K ′(ω)
, (4.2)

K ′ = [〈Q2(0, ω)〉〈Q2(L , ω)〉]1/2 ,
where the asterisk stands for the conjugate and〈 〉 indicates an ensemble aver-
age. The ensemble average is performed in time domain and equals the Fourier
spectrum of the corresponding quantity in Equation (4.1) (e.g. Jenkins and Watts,
1968). Note here that Equation (4.2) is different from that given in most theoretical
studies. In theoretical studies, the ensemble average is performed over wavevector.
While the wave vectors are obviously known in theory, observationally we believe
that with a very limited number of observers we are still far from being able to
resolve multiple wave modes at a single frequency.

Since the correlation coefficient in the frequency domain is complex, it can be
written as

C12(ω) = κ2(ω)eiφ(ω) , (4.3)

whereκ(ω) andφ(ω) are coherence and phase lag, respectively. The coherence
gives a measure of wave versus noise. The noise can be either due to random
fluctuations or due to waves with a finite coherence length compared with the
separation between the two observers. The coherence length along a wavefront
is the spatial scale of the wave. The coherence length normal to the wavefront is
roughly the traveling distance of the wave, including both convection and propa-
gation, within its decay time. For example, since the convection speed of the solar
wind is much greater than the phase velocity, the waves in the solar wind often have
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larger coherence length along the flow than transverse to the flow. The difference
between random fluctuations and waves with a coherence length shorter than the
separation is that the power spectra are broad for the former and at least one of
them is peaked for the latter.

If the noise is due to random fluctuations, the phase difference of a wave be-
tween two observers is

φ(ω) = k · L + h2π , (4.4)

whereh = 0,±1, . . . . Thus, the wave number can be determined, but with the so-
called 2π ambiguity. Here the direction of the wave vector is determined from the
methods discussed in Sections 3.1 and 3.2. Since the frequency in Equation (4.4)
is in the spacecraft frame, further determination of the wave properties needs to
consider the Doppler shift, Equation (3.18). The time lag can be calculated from
1t = φ(ω)/ω, which is a function of frequency.

In summary, correlation analysis can determine either the propagation speed of
a discontinuity or the wavelength of a wave. For a discontinuity, the correlation
analysis has to be performed in the time domain. For a wave, the analysis can
be performed in either the time domain or the frequency domain. The analysis
in the frequency domain contains the information about the phase as functions of
frequency and hence can provide a better overall view of the waves at different
frequencies. The result of an analysis in the frequency domain is in principle the
same as in the time domain with prefiltering. These analyses are restricted to waves
of a single source.

4.1.3. Relationship between the Quantities in Satellite Frame and Plasma Frame
In Section 1.1, we discussed the relationship between a quantity in the satellite
frame and in the plasma frame for a single spacecraft. When comparing observa-
tions from two satellites at different times, the variations other than simple convec-
tion from one satellite to the other will affect the data analysis. These variations
include spatial (between the two satellites) and temporal (between the two times)
variations due to the physical evolution of the phenomenon being studied, and
changes in the velocity and spacecraft separation.

The difference between the quantityQ measured by satellitei at locationr at
time t and by satellitej separated by a distanceL ij from satellitei at timet + τ is,
see Figure 4.1 for the geometry,

1ij
τ Q = Qj(r + L ij − vτ, t + τ)−Qi(r , t) , (4.5)

whereτv should be understood as
∫

v dt. A time domain correlation analysis is
to provide time shift1t = τ with a minimal difference, i.e.,1ij

τ Q goes to zero.
Taylor expanding Equation (4.5) and retaining the terms up to the second order, the
difference operator is
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A(x,t)

A'(x - vτ, t+τ)

B(x+L,t)B'(x+L- vτ, t+τ)

vτ

Figure 4.1.Geometry of two separated spacecraft relative to a wave front. Satellite A is located at
point A and satellite B at point B. The plasma element that is measured by satellite A at timet and
the plasma element at point A′ is measured att + τ . Similarly, the plasma element that is measured
by satellite B att + τ is from point B′. A correlation analysis compares measurements at different
locations and/or different times.
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(4.6)

We should point out that the validity of the Taylor expansion relies onL ij − vτ to
be much smaller thanLc andτ to be much smaller thantc, whereLc andtc are the
coherence length and coherence time, respectively. Whereas the measured quantity
can contain discontinuities. Namely,L ij is not necessarily much smaller than the
scale of the discontinuities (in the normal direction). As long as the correlation
analysis provides a meaningful correlation, the Taylor expansion is valid. The terms
in the first bracket are due to the linear effects. The main differences observed by
the two spacecraft are caused by the temporal variations in the plasma frame and
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the spatial non-uniformity of the plasma along the motion direction and along the
separation direction of the two spacecraft. The function of the correlation analysis
is to provide aτ that minimizes the value in this bracket. Namely, the correla-
tion analysis converts linearly the temporal variations in the spacecraft frame into
spatial variations in the plasma frame of reference. It is less capable of providing
information about spatially static structures in the spacecraft frame. In general the
nonlinearities in the temporal and spatial variations will result in a residue for these
terms. This residue reduces the correlation coefficient of the analysis. The terms in
the second bracket are due to the nonlinear effects of temporal variations. The terms
in the third bracket are due to the nonlinear effects of nonsteady state, nonuniform
plasma motion. Similarly, the terms in the fourth bracket are due to the temporal
and spatial changes in the separation between the two spacecraft.

In most cases, the variations in the separation vector (the fourth bracket) are
negligibly small. The velocity variation (the third bracket) could become signif-
icant near an oscillating boundary and for a circularly polarized wave the veloc-
ity of which could be twisted by the wave perturbations, in particular when the
background velocity is small.

For a single spacecraft,L = 0, the first order terms recovers Equation (1.1).
Note that the velocity in Equation (4.6) is not necessarily the plasma velocity but
could be the velocity of any frame relative to the spacecraft. In a shock frame or
a wave frame,∂/∂t = 0. The first order term is(L ij − vτ) · ∇. In the ideal 1-D
case,1ij

τ = 0 whereτ is defined as the time delay with the maximum correlation
coefficient, and it yields equations (2.20) and (3.20) by noting that the speed of
the wave frame relative to the spacecraft is the sum of the phase velocity and the
plasma frame speed.

4.1.4. Data Analysis of Observations from a Cluster of Satellites
A ‘cluster’ of spacecraft refers to four closely separated satellites. The relative
locations of the satellites can be represented in general by an irregular tetrahedron.
Regulated by orbital dynamics, the shape of the tetrahedron changes with time. If
the change in their relative distance is much less than in the relative distance itself
during the interval of the event being studied, the change of the tetrahedron may
be neglected. The uncertainties in the determination of the relative locations and
in the intracalibration of the instruments among the satellites determine the lower
limit of the uncertainty of any analysis.

In principle, when the cluster is not coplanar, the propagation direction of a 1-D
discontinuity or a 1-D steady state wave can be determined without the assump-
tion that the propagation direction is along the minimum variance direction. With
the approximation that the propagation direction is along the minimum variance
direction, either the unsteadiness of the wave (in the wave frame), or a 2-D steady
state structure or wave can be resolved under certain conditions. A moving flux
tube with a constant shape is an example of a 2-D steady state structure. A purely
periodic surface wave in the wave frame is an example of the 2-D steady state
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wave. For a given perturbation, even with a noncoplanar cluster of satellites, there
is no general conclusive interpretation. One has to make approximations about each
of the extension in three dimensions (bounded, periodic, or uniform) and its time
dependence (pulsating, periodic, or steady). Differences in these approximations
lead to different interpretations, which has been the major cause of existing contro-
versies in the science community. Each of these approximations, however, can be
tested both using either the information from other instruments or techniques that
are not included in this article as standard techniques, and using the constraints
provided by statistics and physical consequencies.

In the following sections, we discuss the application of correlation analysis to
multiple spacecraft observations. Most discussion is based on the authors’ expe-
rience from previous missions and recent results from other groups. We empha-
size that the problems with massive multiple spacecraft data analysis have not yet
been fully exposed. Significant modification may be needed when applying the
following principles.

4.2. ONE-DIMENSIONAL DISCONTINUITY ANALYSES

As discussed in Section 2.1.1, to completely determine observationally the prop-
erties of a 1-D steady state discontinuity, more than one satellite is needed. The
central issue is to determine the direction and magnitude of the velocity of the
shock frame relative to the spacecraft without imposing the conservation laws
which should be verified by the results. The timing difference between spacecraft
i andj is

1tij = L ij · Vdisc/V
2
disc . (4.7)

Note that, as discussed at the end of Section 4.1.3, the above expression is
accurate to the first order and only for an ideal steady-state 1-D discontinuity. In
comparison, Equation (1.2) does not require the steadiness approximation. With
four spacecraft,Vdisc can be uniquely determined if the four spacecraft are not
coplanar. With five noncoplanar spacecraft, Equation (4.7) can become overdeter-
mined andVdisc can be determined using best-fit, for example, or average over the
severalVdisc obtained from each subset of the four time differences (Russell et al.,
1983). In practice, one may obtain several time delays crossing a discontinuity for
each pair of spacecraft, for example, one at the leading edge, one in the middle
and one at the trailing edge, when using high resolution data. If one assumes that
the difference between the two time delays is not due to temporal variation of
the thickness, averaging these sets will improve the statistical significance of the
results.

Using the resultantVdisc and Equation (2.7), one can derive the quantities in
the R–H relations. The accuracy of the time delay is limited by the temporal
resolution of the data when the fluctuations within the discontinuity cannot be
resolved. A greater time delay compared with the temporal resolution implies a
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Figure 4.2. As a surface wave passes by two spacecraft, a few timing differences and normal
directions can be obtained in order to determine the parameters of the surface wave.

smaller uncertainty in the timing, whereas during this longer interval, there is a
greater chance for the discontinuity to change its properties. If the resolution is
sufficiently high, the thickness of the discontinuity then can be determined from
the duration of the crossing. If the spacraft are relatively close, a major uncertainty
arises from the determination of the relative locations of the spacecraft.

If the type of the discontinuity is known or the techniques discussed in Section 2
are applicable, a combination of the timing method with those in Section 2 will
improve the statistical significance of the results. In addition, one may be able to
find intervals when the discontinuity lies between the spacecraft and hence some
of them provide the upstream conditions while others the downstream ones. Quan-
tities in Equations (2.10) and (2.11) can be substituted with those simultaneously
measured by different satellites instead of those measured at different times from
the same satellite.

Since each method has its own uncertainty, when averaging results from dif-
ferent methods, how to weigh each of them becomes important. Russell et al.
(1983) documented several cases and provided comprehensive discussions on the
uncertainties.

Nonsteadiness of a discontinuity is observed as the difference in the duration
of the discontinuity crossing registered among different satellites and the differ-
ence in the time shifts. It can be treated as the variation around the average. The
nonsteadiness includes the temporal variations in the discontinuity’s orientation
(i.e., its normal direction) and the thickness, and the changes in the shock velocity
relative to the satellites.

4.3. TWO DIMENSIONAL STRUCTURES

4.3.1. Surface Wave Analyses
Surface waves in magnetospheric physics refer to the wavy motion of a discontinu-
ity. To describe such a motion, the most important parameters are the wavelength
and the displacement, as well as the period. The wavelength is measured along
the discontinuity surface in the direction of the surface wave propagation and the
displacement is normal to the average surface. Simple boundary oscillations are a
1-D approximation when the wavelength is infinity. With a finite wavelength, the
discontinuity is bent. As expected, the boundary normal varies. If the thickness of
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the boundary is much smaller than the curvature of the boundary the discontinuity
analysis methods discussed in Section 2 are applicable. The normal direction of the
boundary can be determined by each of the crossings. The variation in the normal
direction can then be measured by the satellites, see Figure 4.2 for example. With
multiple satellites, one is able to determine the characteristics of a surface wave
(Song et al., 1989). Mottez and Chanteur (1994) discussed a similar technique to
analyze a general 3-D thin surface using a cluster of satellites.

A different approach has been recently developed using the ‘remote sensing’
technique (Walthour et al., 1993). As a boundary oscillates, the plasma and field
parameters in the regions adjacent to the boundary vary. For example, the math-
ematical description of a surface wave is an exponential decay in the amplitude
of the perturbation away from the boundary (e.g., Southwood, 1968). From these
variations, a satellite can remotely sense the boundary and its motion when it
approaches to and departs from the boundary. This new technique requires high
quality measurements. It has been tested by using two-satellite data (Walthour
et al., 1994).

4.3.2. Flux Tube
When the plasma beta is not extremely large, the anisotropy in a plasma introduced
by the field often results in structures that have similar sizes in the two directions
across the field and their greatest scale size along the field. Usually such a structure
has properties distinct from its surrounding plasmas. Russell et al. (1990) provided
a collection of comprehensive discussions on flux tubes from various regions in
space. The majority of previous observations are based on single spacecraft mea-
surements. The geometry of a structure, for example, a flux transfer event (Russell
and Elphic, 1978) or a plasmoid, is often deduced from time series data (which pro-
vides the variation in one dimension), the region where it is observed on a statistical
basis (which provides the scale of the second dimension), and the assumption that
the structure is very long in the third dimension. Sometimes, observations from
multiple satellites are available. Examination of these events confirms the general
geometry people have developed for these phenomena.

A cluster of spacecraft can provide much more detailed information about these
flux tubes. A general approach to analyzing these structures is similar to that of
surface waves.

It is worth mentioning that since a flux tube does not satisfy the 1-D approxi-
mation, the minimum variance direction across the event may not have any definite
meaning. For example, unless there are other indications, one should not take the
mininum variance direction as the direction of the symmetric axis because the
axial field may increase toward the axis due to a pinch process that arises from
an axis-aligned current within the tube.
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4.4. DETERMINATION OF ELECTRIC CURRENTS

The electric current is a very important physical quantity in space physics. How-
ever it is extremely difficult to measure in space. Because the conductivity in a
collisionless plasma is poorly known, Ohm’s law cannot be used to evaluate the
current. In theory, there are two ways to measure the current. They are

J =
∑
i

qiρivi , (4.8)

J = 1

µ0
∇ × B , (4.9)

where subscripti denotes each charge species. As discussed in Section 1.3.3, it
is difficult to measure accurately the fluxes of the species that carry most of the
current due to the intrinsic limitation of particle detectors and spacecraft charging.
This is particularly true in collisionless plasmas where particle gyro motions are
dominant. In most regions in the magnetosphere, the relative drift between ions
and electrons is small. The limitation of instruments further reduces the ability
of resolving such a small difference. For example, as shown in Equation (1.10),
the effective cutoff velocity of a detector depends on the species. The spacecraft
charge will have much greater effects on electron detection than on ion detection.
When the spacecraft is strongly negatively charged, the difference in the errors in
the velocity measurements will produce a large error in evaluating Equation (4.8)
even if the detector has a similar small lower cutoff energies for electrons and ions.
Although there are several reports on the determination of the electric current using
Equation (4.8), see Frank et al. (1981), for a partially successful test, we remain
cautious about quantitative use of the current from direct particle measurements.

4.4.1. Single Satellite
Equation (4.9) has been widely used to estimate the current. Almost all previous
single satellite usage was based on a 1-D current sheet assumption. In 1-D

Jm = 1

µ0
1Bl/D ,

Jl = − 1

µ0
1Bm/D , (4.10)

whereD is the thickness of the current sheet across which1B is evaluated. To
determineD from a time difference, one needs to know the velocity of the current
layer relative to the spacecraft. Therefore all discussions given in Section 2 on
determination of the shock frame apply here.
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Figure 4.3.Field differences at two satellite locations which can be used to infer the current (El-
phic, 1989). The upper four panels show the magnetic field measurements from two magnetopause
crossings from ISEE 1. The lower four panels show the differences between the ISEE 1 and 2 field
measurements.

4.4.2. Dual Satellites
When measurements from two satellites are available, there are two simple ap-
proaches to estimate the current. The first approach is to take the difference be-
tween the simultaneous field measurements from the two satellites assuming that
the current sheet is one dimensional and lies between the two spacecraft. This
corresponds to theτ = 0 case in Equation (4.6). The first-order terms gives the
same expression of the current as in Equation (4.10), but the field differences are
evaluated from simultaneous measurements at different locations. The current can
then be determined as functions of time (Elphic, 1989). The resultant time series is
often highly fluctuating and spiky, see Figure 4.3, for example. The causes for such
fluctuations could be multiple: there may exist physically meaningful small scale
structures within the current layer, the relative motion among sub-current sheets
in the normal direction can result in varying time-space conversion, and the 1-D
approximation to these structures may break down. When the 1-D approximation
breaks down, the time series of the field differences cannot be simply interpreted
as currents.

Taking an orthogonal approach, one may compare the timing of the same field
measured by the two satellites. This corresponds to setting the left-hand side of
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Equation (4.6) zero. Under the assumption that the structure of the current is sta-
tionary, but the motion of the current changes with time, retaining the first order
terms, the velocity of the current layer can then be calculated by dividing the satel-
lite separation along the normal of the current by the timing difference between the
two satellites’ measuring of the same magnetic field, as shown by Equation (4.7).
When the velocity of the current layer is known, from Equation (4.10) one can
determine the current according to the time series of each satellite, see Figure 4.4.
In theory, the currents derived from the two satellites should be the same if the
current is in steady state. In fact, the resultant currents are different, indicating that
the current is not in a steady state. How to reconcile this inconsistency remains to
be investigated.

Often the two spacecraft are on the same side of the current sheet (after passing
through or before the crossing) at different times. These data on the same side
can be used to help test the 1-D time stationary assumption by combining the two
approaches above.

4.4.3. Multiple Satellites
The above techniques rely on the 1-D assumption of the current. The measurements
from a cluster of satellites will enable us to determine the spatial derivatives and
hence the current in Equation (4.9) without the 1-D assumption. The spatial deriv-
ative method applied to a quasi-stationary current system is very different from the
analysis of a fast moving current structure. In the former case, correlation analysis
may not be able to provide a meaningful timing difference. Therefore the approach
of settingτ equal to zero is used. In the latter case,τ can be determined and hence
more information is available to measure the current and its motion velocity.

4.4.3.1. Quasi-stationary currents. A current system can be considered as quasi-
stationary if|1ijB| � |1τB|Lij /τV , where V is the velocity of the current system
relative to the spacecraft (note here that whenV = 0, τ goes to infinity). In
other words, the measured temporal variation in the field is much smaller than
the difference among satellites. This assumption is applicable for a cluster moving
slowly through a current region that is thicker than the separation of the satellites.
The electric current density can be determined by (Dunlop et al., 1988),

Jijk = 1

µ0

1ijB · L jk −1jkB · L ij
(L ij × L jk)2

. (4.11)

The direction ofJijk is outward along the normal direction of the surface formed
by spacecraft i, j, and k. Four suchJijk can be obtained. The current density within
the cluster can be calculated by averaging the four current densities. The direction
of the current,̂J is parallel to the vector summation ofJijks, and its magnitude is

J = (Jijk|L ij × L jk|)
Ĵ · (L ij × L jk)

. (4.12)
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Figure 4.4.Two-satellite determination of the current (McComas et al., 1986). Under the 1-D steady
state assumption of the current structure, the velocity of the current motion can be determined, middle
panel, and then the current density can be derived, lower panel.

An important test of the result is to check whether the sum ofJijk · (L ij × L jk) is
much smaller than each of them.

We should emphsize that the approach under the steady state approximation is
not the same as the approach when the spacecraft separations are much smaller
than the spatial scale of the current structure. When two spacecraft see basically
different things, the correlation analysis does not provide anything meaningful.

4.4.3.2. Traveling current structures. Current systems in space often move quickly
relative to the satellites. A boundary or surface, that is neither necessarily thinner
than the spacecraft separation nor planar, can pass a cluster of spacecraft quickly
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without significant changes in itself. Under this circumstance, the correlation analy-
sis can provide very important information. Note here that more than one time shift
(here one may use the measured timing difference directly instead of performing a
correlation analysis because to perform the correlation analysis at each of the edges
is usually very difficult) can be determined for a single passage of the current for
each pair of spacecraft, at its leading and trailing edges. Averaging the velocities
obtained from Equation (4.7) for all satellite pairs, one yields the velocity of the
current structure. Here we recall that there is no assumption made on the shape
or normal of the structure when using Equation (4.7) and hence it is applicable
to structures of any regular shape. The geometry of the current structure can be
examined according to the timing difference of each pair from the average and
their relative locations.

With the derived velocityV0, the current density at spacecrafti can be calcu-
lated by

Ji = 1

µ0
∇ × Bi = 1

µ0
V0
−1× δBi

δti
, (4.13)

where prefixδ denotes the difference measured from the same spacecraft at differ-
ent times, andV−1

0 = (1/Vx, 1/Vy, 1/Vz). Although this expression is meaningful
in theory, in practice the fluctuations in the smallest component of the velocity and
the magnetic fluctuations perpendicular to the smallest velocity component may
cause a very large uncertainty in the calculation. One should keep caution in using
it.

4.5. WAVE ANALYSES

In wave analysis, the time derivatives in Equation (4.6) are, in general, not zero in
the spacecraft frame. The approach that setsτ = 0 will eliminate all the terms of
frequency and hence cannot be used to analyze waves. With a non-coplanar cluster
of four spacecraft, in principle, one is able to determine the frequency, wavelength
and phase velocity of a planar wave if its wavelength is of the order of spacecraft
separation. For waves with a wavelength that is either much greater or smaller than
the spacecraft separation, there is no general method to derive all these three wave
parameters.

For perturbations that can be approximated as 1-D, but not necessarily mono-
chromatic, one can follow the general steps.

(1) Select the perturbations of interest and band-pass filter the time series data.
Note that if the wave is not monochromatic, the spectrum will have finite width.

(2) Perform wave analysis to determine the direction of the wave propagation
for each spacecraft, and take the average of these vectors as the direction of the
wave vector.

(3) Perform correlation analysis for each component of the filtered data using
each pair of spacecraft.
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Figure 4.5.Many wave modes pass across a cluster of satellites (Neubauer and Glassmeier, 1990).

(4) Calculate the apparent velocity of the perturbation from the correlation
analysis and compare its direction with the direction of the wave derived from
the wave analysis.

(5) Analyze the deviation of each quantity from its corresponding average. In
general, these deviations can be attributed to temporal variations that may not be
directly related to the wave.

The biggest difficulty one may face here is that there is too much information
and some of these pieces are in conflict. While one could use average and nor-
malization to enhance the robustness of the results, we suggest one leave enough
room for different possible interpretations because we think that at this moment
we have very limited knowledge about the problems inherent in an analysis of
such complexity.

Neubauer and Glassmeier (1990) proposed the concept of wave-telescope. As
illustrated in Figure 4.5, when a wave propagates across a cluster of satellites, each
satellite observes a different phase according to the wave propagation direction and
the relative location among them. From these phase shifts, in theory, one is able to
derive the wave properties. There are established techniques in radio science to
analyze such information. While this proposal is intriguing, we note that in space
wave analysis the signal-noise ratio is often low. Multiple modes in space plasma
often exist, see Section 3.3 for more details, and are difficult to distinguish. Often
when testing with a known wave, a scheme may work, but there may be multiple
solutions when the input is unknown.
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5. Discussion and Summary

Although it seems mathematically trivial, Equation (1.2) is one of the most impor-
tant results in our review. It describes all physical effects on the measured magnetic
field and provides a rigorous theoretical foundation for minimum variance analyses
of the magnetic field. It shows that the minimum variance analyses are based on
a one-dimensional assumption but do not require a steady state. If the minimum
variance analyses also depended on the steady state assumption as many people
percieved since it was first developed to analyze discontinuity, it would not have
been applicable to wave analysis.

Another fundamental result is the derivation of Equation (4.6) which provides
a unified theory for correlation analyses. Every existing correlation analysis tech-
nique can be found to be a special case of this equation. This expression specifies
clearly the assumptions upon which each technique is based. In developing data
analysis methods for Cluster missions, one needs to compare the methods against
this expresion in order to identify the effects that are neglected in the methods and
justify for the simplification. We emphasize that at the practical level there has not
yet been sufficient analysis of multiple satellites data to test and refine many of the
techniques discussed herein.

On one hand, discontinuity analysis is, among time series data analysis meth-
ods, best understood and its computer programs are most user-friendly. It is widely
used. However, on the other hand, the errors of the analysis have not been recog-
nized as widely as it should. Ocasionally, one may see in publication a discontinuity
is presented in boundary normal coordinates with an unequal normal magnetic field
across it.

Multiple parameter best fits are often used to determine unmeasured shock
parameters. As we now know that this method in practice usually has a large
uncertainty and may provide a large range of solutions with a small difference
in input parameters. Here we again urge caution in using this method.

In wave analysis, a common trend is that fewer and fewer people actually ana-
lyze the time series data itself, and more and more people rely on dynamic spec-
trograms. Ocasionally, one sees that a field rotation is interpreted as broadband
emission that last for a period of the window length. Here we strongly urge analysts
to examine the original time series data. On the other hand, there is a significant
room for further improving the techniques of wave analysis.

In addition to mastering the various analysis methods, an analyst has to possess
adequate knowledge of the data set he/she is using. From our experience, direct
collaboration with an builder of the instrument is an effective way to ensure that
the data is utilized correctly. However this is still no substitute for the proper
documentation of the instruments and the data stream.
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