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Abstract. Montague [7] t ransla tes  English into a tensed intensional  logic, an 
extension of the  t y p e d  J-calculus. We  prove t ha t  each t rans la t ion  reduces to a for- 
m~da wi thout  J-applicat ions,  unique to within change of bound variable.  The proof  
has  two main  steps. We first  prove tha t  t ransla t ions  of :English phrases have the  
special p rope r ty  t ha t  arguments  to functions are modal ly  closed. We then show t h a t  
formulas  in which arguments  are modal ly  closed have a unique fully reduced A-normal 
form. As a corollary,  t ransla t ions  of English phrases are contained in a s imply defined 
proper  subclass of the  formulas of the intensional  logic. 

Introduction. In  this paper we consider 2-normal forms in an inten- 
sional ,logic mot iva ted  by its relevance to natural  language. The system 
investigated is tha t  of Montague's The proper treatment of quantification 
in ordinary English [7], here referred to as []~TQ]. [PTQ] correlates English 
phrases with logical expressions. Each derivation of an English phrase 
is mapped,  or translated, into an expression in the intensional logic, IL.  
IL extends the usual typed  2-calculus; it includes operators for intension, 
extension, necessity, and tense. This logic, but  without  tense, was intro- 
duced by 1Vfontague earlier in [6] and axiomatized and investigated by  
Gallin [5]. 

We investigate the question of when expressions in IL have a unique 
~-reduced form. A counterexample shows tha t  this uniqueness does no.t 
hold for I L  in general, t towever,  it does hold for all expressions with 
a simple proper ty  tha t  depends only on the form of the expression. 1Kon- 
tague 's  translations all have this property.  

These questions arose because the  translations given by the rules 
of [PTQ] directly are long and difficult to comprehend. One reason is t ha t  
subst i tut ion rules in the English syntax are translated into applications 
of 2-functions in the  logical syntax. I t  is natural  to a t t empt  to simplify 
the  translations by eliminating all the ~-~pplieations by ~-reduction. 
I n  [PTQ] !Kontague gives his examples in fully reduced form, al though 
he gives no discussion of reduction. The reduced forms ~re more com- 
prehensible to the reader and easier to interpret  in a model. This increased 
ease also carries over if, as in our case, the  entire process is implementecl 
on a computer  (see [2], [3], and [4]). 

* This research is suppor ted  in pa r t  by  l~ational  Science Founda t ion  Gran~ 
B ~ S  76-23840. 
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We obtain the main result in two steps. The first is a theorem on 
the form of translations of English phrases. We show that  in translations 
of English phrases and in their reductions, the arguments to s 
are always modally elosed~ hence 2-applications are always contractible. 

The second step is a theorem on the intcnsional logic itself. I t  is well- 
known that  for the usual typed ~-caleulus there is a fully reduced normal 
form, unique to within change of bound variable. In intensional logic, 
in contrast, )~-reduction does not yield a unique normal form. We show, 
however, that  if all arguments to functions are modally closed, there is 
a unique normal form. This combines with the result on translations to 
yield the main result. 

Example. Before proceeding to the formal development, we give 
an example illustrating the stages os the process to be investigated. 

Consider the English sentence John eats a f ish.  One of the derivations 
given for this sentence in [e~Q] is displayed in the figure. 2gonterminal 
nodes are labeled by syntactic rules and syntactic categories~ using TS 
for sentence and TE for term. The derivation uses the rule S14, which 
substitutes a term phrase (a fish) for a variable (bee) in a sentence form 
(John eats himo). 

TS  
I 

S14 

I 
I 

bee 
I 1 

T E  TS  
I l 

$2 $4 
1 

I I I I 
a C2q T E  I V  

J 1 [ 
f i sh  John $5 

I I 
TV TE 

I [ 
eat bee 

The word-for-word or direct translation is 

l~educing the outermost g-application yields 

The  subexpression [v^~ty...] can now be reduced to [2?]...]. l~edueing 
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this ~ next  yields 
(3x) [ fish (x) A [2Q [V Q j ( Aj) ] (A [eat (^ ~R [v t~] ( x)) ])]. 
Oontinuing in this way  leads to the  reduced form 

(3x)[fish(x)^ [eat(^~R[vR](x))](Aj)], 
in which the only ~-function lacks an argument .  

~ o n t a g u e  lur ther  t ransforms the formulas b y  introducing exten- 
sionM constants  where possible and b y  replacing certain unary  functions 
b y  b inary  predicates.  Fo r  the lormula trader consideration the  result  is 
(3 u) [fish* (u) ^find* (j , u) ]. 
The extensional forms ~re equivalent  to the  others only b y  ~ssuming 
so~ne meaning postulutes  and are not  fur ther  considered here. 

Basic Definitions. For  eonvenience~ we repeat  ~ontague~s definition 
of meaningful expression. 

Types. The set of types is the  smallest set Y such tha t  (1) e, t e :Y, 
(2) whenever  a, b e Y, (a, b} e Y, and (3) whenever  a e Y, (s ,  a)  e :17. 

Meaningful expressions. There are denumerab ly  m a n y  variables and 
infinitely m a n y  constants  of each type.  The set of meaningful expressions 
of type a is the  smallest set such tha t :  

(1) Eve ry  var iable  and constant  of t ype  a is in _-M:E a . 
(2) I f  A e ~ E  a and u is a variable  of t ype  b~ then ~uA a 5IE<~,a >. 
(3) I f  d ff•E(a,b > and B @-~I:Ea~ then A(B) e ~  b. 
(4) HA~ B eNEa, then A = B eNE t. 
'(5) If  Q, R eNEa and u is a variable,  then ---]Q, [Q^R]~ [OvR], 

(3u)O, (Vu)O, HQ, wo 
'(6) I f  A e :~]~a, then [^A] e lV[E<s,a >. 
(7) I f  A e~E<s.~>, then I r A ]  e ~ .  

B y  a meaningful expression or formula of intensionM logic is unders tood  
member  of ~E a for any  a. 

I f  u is a variable  of t ype  a, then 2uB is unders tood as denoting tha t  
funct ion f rom objects  of t y p e  a which for any such object  x~ takes  ~s 
va lue  the  objec t  denoted b y  B when u is unders tood as denoting x. The 
expression A (B) is as usuM unders tood as denoting the  vMue oi the  lunc- 
t ion denoted b y  A for the  functional  a rgument  denoted b y  B. The logical 
symbols  [~, W, H m a y  be read "it  is necessary tha t" ,  "i t  will be the  case 
tha t " ,  "it  has been the case tha t" ,  respectively.  The expression [^A] 
is regarded ~s denoting the intension of the  expression A. The expression 
[VA] is well-formed only when A denotes an intension; in such ~ ease 
[VA] denotes the  corresponding extension. 



31~: J. Friedman, D. S. Warre~ 

x~fodally closed formulas. We define a subclass of meaningful  expres- 
sions t ha t  have  the  p roper ty  t ha t  their  syntact ic  form forces their  deno- 
tat ions to be independent  of the  point  of reference at  which they  are  
evaluated.  The class of modally closed (~c ) fo rmu la s  is the  smallest clnss 
such t ha t :  

(t)  u is ~io for every  variable ,u. 
(2) [AA] is ~0 for every  formula  A. 
(3) A(B)  is ~o  whenever  A and B are xo.  
(4) [A ----B] is ~o  whenever  A, B are ~c .  
(5) 2r is ~io whenever  A is ~o. 
(6) [::]Q is ~o  for every  formula Q of type  t. 
(7) -]Q is ~o  whenever  Q is MO. 
(8) ( ]u )Q is ~o  ~nd (Vu)Q is ~o  whenever  Q is ~o. 
(9) [QAR], [QvR] ,  [Q->R], and [Q,-~_R] ~re ~o  whenever  Q, R 

a r e  )/[o. 

This definit ion of modal ly  closed is essentially t ha t  of [5]. I t  differs 
only in the  addi t ion of (6)-(9) for formula.s of sentence type  (lvm,) t h a t  
are in t roduced by  GMlin only as abbreviations.  (6)-(9) can easily be  
proved  f rom Gallin's definitions. Formulas  which contain W and  H a re  
no t  t ransla table  into Gallin's system. Note  t ha t  formulas WQ and HQ 
are no t  modal ly  closed, [CA] is not  modal ly  closed, and constants  are  
no t  modal ly  closed. 

Direct Translation. A direct translation of an English phrase i 
a t ransla t ion of a der ivat ion tree for the  phrase into a meaningful  ex- 
pression of the  logic by  rules T1-T17 of [~TQ]. The re levant  par ts  of these  
rules are given in the  course of the  proof of Theorem 1. The abbreviat ions 
used in [ ~ q ]  are e l iminated in the  s ta tements  of the  t ranslat ion rules  
in order  to display funct ional  a rguments  more  clearly. 

Theorem 1 shows t h a t  in direct  translat ions all funct ional  a rgument s  
are variables or of the  form [AD], hence are modal ly  closed. 

Tm~OlCE~ 1. I f  a function application C(B) occurs in a direct tran- 
slation A,  then the functional argument B is either a variable or an expressio~ 
of the form [AD]. Hence, B is modally closed. 

P~OOF: By induct ion on the  construct ion of direct  translations.  

STATE~CErr Of BASIS. I f  C(B) occurs as part of the direct translation. 
of a basic phrase of English, B is a variable or is of the form [AD]. 

PlcooF of BASIS: The translat ions of basic phrases are given by  ru le  
T1. We verify t ha t  the  result  holds in each subcase of T1. 
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Tl(a). H A is a basic expression other  t han  be, necessarily, and the  
basic terms, i.e. members  of ~T~, then  A translates into g(A), where. 
g(A) is a constant  and  hence contains no funct ion applications. 

Tl(b) be t ranslates  into 2P2x[V/~](^~y[Vx ---- Vy]). The only subexpres- 
sion tha t  is an a rgument  of a funct ion is ^2y[Vx = Vy]. 

TI(e) necessarily t ranslates into 2p[D[Vp]] ,  which has no funct ion 
applications. 

Tl(d). The members  of B~E, John, Mary, Bill, and ninety, translate- 
into j*, m*, b*, and  n*, respectively. By  definition, A* is 2 P [ v p ] ( A A ) .  
The only funct ional  a rgument  is ^A, which is of the  proper  form. 

TI(e). he~ t ranslates into )~P[vp](x~), where the  funct ional  a rgument  
is a variable. 

I~duetion ste19: We assume the 19ro2erty holds for all eomTonent ex- 
pressions of the direct translation A, and show that it is true of A. The p roo f  
is by  cases on the  t ranslat ion rules T2 through T17. 

T2. This gives the  t ranslat ion corresponding to the  rule t ha t  form~ 
terms f rom common nouns by  adding determiners.  The three possible 
results are: 
for every, )~P(Vx)[S'(x)~[vt)](x)]; 
for the, 22 (3y) [(Vx) [S'(x) ~ x  -= y] ^ [v/~] (y)]; 
and  for a, ~ P ( 3 x ) [ S ' ( x ) ^  [vp](x)] ,  where S' is the  t ranslat ion of common  
noun phrase. The only new funct ion applications have  variables x and y 
as arguments ,  and by  induct ion all funct ional  arguments  of S'  are v a -  
riables or are of the  form [^A]. 

T3. This translates the  rule tha t  adds a relat ive clause to a common 
noun phrase. The result  is ~[E ' (x )^Q ' ] ,  where /~' and Q' are t rans la -  
tions. As ~bove, x is a variable, and E '  and Q' have the  proper ty  by  in- 
duction. We note t ha t  [8] (p. 261 fn.) corrects T3 to uvoid collision o f  
variables by  replacing x in Q' by a new variable y. This clearly does not  
affect the  proper ty .  

T~ through TIO. These give translations for the  rules of hmet ion  appli- 
cation. The translations are all fo the  form E'(^B') .  The only new a rgu-  
men t  is ^B'. 

T l l .  Sentence conjunct ion and disjunction, [Q'AR'] and [Q 'vR ' ] ,  in- 
t roduce  no new funct ion applications. 

T12. Verb phrase conjunction and disjunction have the  t ranslat ions 
2x [C'(x) ^ E ' (x ) ]  and ~x [C'(x) v E'(x)] .  The new funct ion appl ica t ions  
have  the  variable x as argument .  

T13. Term phrase disjunction translates into ~ P [ A ' ( P ) v B ' ( / ) ) ] ,  where~ 
the  only new argument  is the  var iable /~ .  
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s176 Quant i f icat ion over sentences has the  t ransla t ion A'(^)~xQ'). The 
on ly  new argument  is of the  form [^D].  

T15 and T16. Quantif icat ion over a common noun phrase  or an in- 
t rans i t ive  verb  phrase  has the  t ransla t ion 2yA'(A2x[E'(y)]). The argu- 
m e n t  of 9 '  is a var iable  and  the  a rgument  of _4' is of the  proper  form. 

T17. The translat ions of the  rules of tense and sign are 7A' (^9 ' ) ,  
WA'(AE')~ -7W_4'(AP'), HA'(^9')~ and 7HA' (^9 ' ) .  The new funct ion 

.application in each of t hem is _4'(AE'), which has an ~rgument  of the  
~ roper  form. 

Definit ions of  Reductions.  The results to be  proved  are about  the  
formulas  tha t  can be  obta ined f rom direct t ranslat ions b y  applicat ion 
.of reduct ions of the  k-calculus. Some definitions are needed.  

~-contrac~ion. A k-application is a formula of the  form [XxA](B). 
'The k-application is contractible if either (i) B is modal ly  closed or (if) 
no free occurrence of x in A lies in an intensionM context  of A, tha t  is, 
w i th in  the  scope of a A, [2, H,  or W in A. I f  [2xA](B) is a contract ible  
pa r t  of a formula,  then its contraction is any  result  of first  changing bound  
variables  in A to avoid  var iable  collisions and then subst i tu t ing B for 
each  free occurrence of x in the  modified A. 

EI-contraction. An 9I-formula is a formula of the  form [v [^G]]. 
:It is a lways contractible; its contraction is C. 

The only contractible parts of a formula are the  contract ible  ~-appli- 
ca t ions  and the  El - formulas .  

Reduction. Let  A be  a formula tha t  contains a contract ible  pa r t  B 
wi th  contract ion C. Then a contract ion of A is the  result  E of replacing 
B b y  C in A. W e  say tha t  A reduces to 9 ,  or red(A~ E). W e  denote  b y  
vontr(A~ 9) the  formula B tha t  is contracted.  The relat ion red* is the  
ref lexive t ransi t ive  closure of red and change of bound  variable.  

Reduced forms. A formula is in reduced form if it  contains no con- 
t r ae t ib le  parts .  I t  is fully reduced if it  is reduced and contains no ~-appli- 
cations. 

Translations. By a translation of an English phrase we mean its 

di rec t  t ranslat ion _4 b y  the rules of [PTQ], or any  formula 9 such ~hat 
red*(A,9), tha~ is, any  E result ing @ore A b y  reduct ion.  

Modal closure. We  now prove  tha t  reduct ion of translat ions preserves 
modal  closure of funct ional  arguments .  We  begin wi th  some lemmas 
.about propert ies  preserved b y  subst i tut ion.  
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_Yotation. Let Sub(B,  x, A) be the result of substituting B for all free 
occurrences of x in A.  

L E ~ A  1. Let B be a subexpression of A.  Let A '  be the result of repla- 
ying an occurrence of B in A by an expression B'. Zet A be ~c. I f  B is not 
~c  or i f  both B and B'  are xc ,  then A '  is ~[c. 

Pnoo~:  The proof is by  induct ion on the  construct ion of the  modal ly  
closed formula  A. We follow the  number ing of the  definition of modal ly  
closed. 

We note  first  thut  if A '  is B% then  A '  is ~c .  For  in this case A is B, A 
is ~c ,  t ha t  is, B is ~c .  So by  hypothesis  B '  is ~o, tha t  is, A'  is ~c .  This 
will be used in each case of the  induction below. 

]~ASIS: 

{1) A is a variable. Then A is B and A '  is B'. So A '  is _~o by the argu- 
ment above. 

Induction step: 
(2) A is [AG]. A '  is either B '  or [^C'] where G' is the  result  of replacing 
B by  B'  in G and  thus  ~ c  by  definition. 
(3) A is C(D). A '  is B'  or C'(D) or C(D'). Since A is ~c ,  G and D are 
~ c  by  definition. If  A '  is C'(D) then  C' is ~ c  by  induction, so A '  is ~ c  
by  definition. Similarly, if A '  is C(D'). (5) A is 2uC. A '  is B '  or ~uC'. 
:By induct ion C' is ~o  so by  definition A'  is ~c .  
The remaining arguments  are similar: (4), (7), and (9) are like (3); (6) 
is like (2); and (8) is like (5). 

LEM~V~A 2. Substitution of a modally closed expression for all free 
occurrences of a variable in a modally closed expression yields a modally 
closed expression. 

PROOF: The proof is a finite induction on the  number  of occurrences 
of the  variable. At  each step we are subst i tut ing a modal ly  closed ex- 
pression for a modal ly  closed expression, so the  result  is modal ly  closed 
by  Lemma 1. 

L ~ x  3. (Substi tut ion preserves modal  closure of arguments) .  
I f  all functional arguments of A are modally closed, and B and all of its 
functional arguments are modally closed, then all functional arguments of 
Sub(B,  x, A) are modally closed. 

PI~O OF : 

(1) If  the  occurrence of x replaced by  B is not  in a funct ional  argu- 
men t  then the  new funct ional  arguments  in t roduced by  the  subst i tut ion 
are just  the  funct ional  arguments  of B~ which arc modal ly  closed by  
hypothesis.  
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(2) If x occurs in a functional argument of A,  then we are substi- 
tut ing a modally closed expression B for a variable in a modally closed 
expression. Hence by Lemma 2 the result is modally closed. The other  
new functional arguments in the result are those of B and are modally 
closed by hypothesis. 

One more lemma is needed before we can present Theorem 2. 

LEMMA 4. (Reduction preserves modal closure of functional argu- 
ments). I f  all functional arguments of A are modally closed and A reducee 
to E, then all functional arguments of E are modally closed. 

P~OOF: We show that  each type of contraction preserves moda~ 
closure of functional arguments. 

(1) A-contraction consists of first a possible change of bound variab!e~ 
and then substitution. Change of bound variables replaces variables with 
other variables. Clearly this preserves modal closure of all expression~ 
and subexpressions. The substitution replaces a subexpression [2xC](B} 
by Sub(B,  x, C). By Lemmas 2 and 3, all arguments that  are subex- 
pressions of Sub(B,  x, C) are ~rc, and by Lemma 1, any modally close4 
expression tha t  contains the expression [),xC](B) that  has been replace4 
by Sub (B, x, C) remains ~c. 

(2) EI-contraetion replaces a subexpression of the form IV^C] with 
C. The result holds by Lemma 1 and because the subexpressions of C ~ 
are unchanged. 

The theorem now follows immediately. 

TI~EOlCE~ 2. In  translations, the arguments to functions are modall~f 
closed. 

PROOF: By an induction on translations. The basis is provided 
by Theorem 1 on direct translations. The induction stel) is by Lemma 4. 

The next theorem shows that  an even stronger property holds of the. 
arguments of translations: they are either variables or of the form [^C]. 
Even though Theorem 2 would obviously follow from this, we have  
deliberately chosen to prove it separately, using Lemma 4. Proving it. 
in tha t  way makes it clear tha t  Theorem 2 would ~pp]y to any system 
in which the arguments of direct translations arc modally closed, a weaker 
constraint than tha t  required for Theorem 3. 

LE~lvfA 5. I f  all functional arguments of A are either variables or 
of the form [aC], and B and all of its arguments are also of these two forms~ 
then all arguments of Sub (B, x, A) are of these forms. 

P~ooF: The proof is similar to that  of Lemma 3. 
(1) If the occurrence of x replaced by A is not a functional argumenl~ 

then the new functional arguments introduced by the substitution are 
just  the arguments of B~ which have the desired property by hypothesis. 
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(2) If  x occurs in a functional  argument~ then  there are two cases. 
I f  the  a rgument  is x~ substi tut ion preserves the  proper ty ,  because B 
~und its arguments  have the  proper ty .  H the  a rgument  is [AC] it  remains 
5n tha t  form, and the  other  functional  arguments  in t roduced have the  
p rope r ty  because they  are the  arguments  of B. 

L ~ v [ A  6. Reduction preserves the property that functional arguments 
are either variables or of the form E^C]. 

P~ooF:  As for Lemma  4. The only change is in par t  (1), X-reduction, 
~vhere Lemma 5 is used in place of Lemmas 2 and  3. 

THEOREM 3. In  translations~ functional arguments are either variables 
~or of the form [AC]. 

P~ooF:  By  an induction~ with the basis by  Theorem 1 and the  
5nduetion step by  Lemma  6. 

2-•ormal forms. For  the  typed  2-calculus it  is well-known tha t  
every  expression has an irreducible X-normal form~ unique to within 
change  of bound  variable. I t  is na tura l  to ask whether  this is also t rue  
fo r  the  intensional logic IL.  One might  suspect a problem for several 
reasons:  the  definition of contractible pa r t  is more complicated in I L l  
t h e  intension operator  provides X-abstraction over points of reference, 
b u t  since there  is no actual  variable over points of reference no change 
of bound variable is possible; and there  can be complex interactions of 
the  intension operator  with 2's. 

By Theorem 2, in translations all funct ional  a rguments  are modal ly  
,closed. Thus, for application to English, we can use this modal  closure 
as  a hypothesis  and show tha t  translat ions have a unique fully reduced 
norma l  form. (Following our main  result  we show the  necessi ty of this 
hypothesis).  

The proof extends the  proofs given in [1] and [9] for the  typed  X-cal- 
Culus. modifications for IL  appear  in the  definition of order  of the  con- 
~ractible pa r t  [v [AA] ] and in Lemma 7. 

Order of contractible parts. We introduce a measure  of the  complexi ty  
of  contractible parts,  based on the  types  occurring. The order of the type 
a, @a, is simply the  number  of left angle-brackets occurring in the  symbol  
for a. I t  is immedia te  t h a t  for all a and b, ~=a < @<a, b>, and @a < @ 
<s, a>. The order of a contractible part is defined by  :~=[XxA ](B) : :~=<b , a> 
and  =~[V[AA]] ~-- @(s, a), where A is of type  a and B is of t ype  b. 

Minimal contractible part. A contractible par t  is minimal  if it con- 
rains no proper subformulas t h a t  are contractible.  

LEM~A 7. Let A be a formula in which all functional arguments are 
modally closed. I f  A has a minimal contractible part B of order k, then the 
v.ontraetion of B contains no contractible part of order ~ or greater. 
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1Jl~OOF: Immed ia t e  for ]YI-contraction. 

For  2-contract ion we note  t ha t  if [2xO] (D) is minimal,  then  its con- 
t rac t ion  can contain (or be) a contract ible  pa r t  in only two ways :  
(i) D is [byE] of t y p e  ( f ,  e> = d and x occurs in C in a subformnla  x(~) .  
The order of the  result ing contract ible  pa r t  [hyE](~)  is @<f ,  e> = @d ~ 
< ~4(d ,  c} = k. 
(ii) D is [AE] where (s ,  e} = d and x occurs in C in a subformnla  [Vx]. 
The order of the  result ing contract ible  pa r t  IV [AE]] is @(s ,  e} = @d 
< @ ( d ,  c} = k. 

D can contain no h-applications, since b y  the  hypothes is  t hey  would  
be  contract ible  and hence D would  not  be  minimal. 

I~E~AIr Lelnma 7 does not  require its hypothesis ,  b u t  w i t h o u t  
it the  proof  is more difficult. The proof  requires tha t  the  minimal con- 
t ract ible  pa r t  B cannot  contain an uncontrac t ib le  A-application t ha t  
becomes contract ible  when B is reduced.  This follows f rom two obser- 
va t ions :  (i) If  D is not  modal ly  closed, nei ther  is Sub(B, x,  D)~ an4  
(ii) If  C contains y in an intensional context ,  so does Sub(B, x, C)r 
provided  x is not  y. 

LE~M_A 8. /Let A be a formula in which all functional arguments are 
modally closed. I f  A reduees to D by contraction of B to C, all new contractible 
parts of D are contained in C. 

PI~ooF: There are no new A-applications not  contained in C. U n d e r  
the  hypothesis ,  all old ).-applications are ahoeady contractible.  

~L~At~K. Lemlna 8 needs the  hypothesis ,  as the  following example  
shows. 

[huAu](VAv) has only one contract ible  pa r t  [rAy], which is of order L 
The h-application is not  contract ible  because [vA~] is not  Inodally closed 
and [Au] is an intensional context .  After  contract ion of the  arguinent ,  
the  forinula is [huAu](v), which is a contract ible pa r t  of order @(e, (s, e}} 
= 2, where bo th  u and v are of t ype  e. 

ImM~A 9. _Let A be a formula in which all functional arguments are 
modally closed. I f  D results from A by contraction of a minimal contractible 
~art of order k~ then any new contractible parts of D are of order less than k. 

Pl~ooF: B y  Lelnmas 7 and 8. 

Le t  h z* be  the  set of ~ll finite tuples of na tura l  nuinbers, ordered b y  
the  relat ion > as follows: 
(x~, . . . ,  x~} > {Yl, . . . ,  Y~} iff (a) u > m or (b) n = m and there exists k 
such tha t  for all i ( 0 < i < k ) ,  x~_ l = y m _ ,  and x._ k<y ,~_k .  (This is 
somet imes called "reverse iexicographic order".)  
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L I ~ A  10. I f  XI~ X 2 , . . .  is a sequence of elements of N* such that 
X~ < Xi+l,  then this sequence is finite. 

As Pietrzykowski obsexves~ the lemma is easily proved by a double. 
induction on the length of X~ and on the value of its rightmost com- 
ponents. 

Definition of L. We define a mapping Z el formulas into ~*:  for 
any formula A~ Z(A)  = ( i l ,  . . . ,  ik} , where ij is the number of contractible 
parts of order j in A. 

LEptA 11. Let A be a formula in which all functional argument~ 
are modally closed. I f  D results from A by contraction of a minimal con- 
traetible part B, then Z (A)  > Z(D). 

P~oo~: L e t Z ( A )  ---- ( i~  . . . ,  ik, . . .~i~} and le t  ~ B  = k (1 ~< k~< m)~ 
Comparing D with A, D has one fewer contractible part  of order k, possibly 
some new contractible parts of order less than k~ but no new contractible 
parts of higher order~ by Lemma 9. ]~enc% L(D) : ( j ~  . . . , j k_~ ik - - l~ .  
ik+~, . . . ,  i~}. By the definition of the ordering relation, Z (A) < L (D). 

LEptA 12. Let A (1} be a formula in Which all functional argumenta 
are modally closed. Then there is a fully reduced formula A (n} such tha~ 
red*(A (1} , A (n}). 

])~ooF: Let A(1}~ A(2}~ .. .  be a sequence el formulas such that  
r e d ( A ( i } ~ A ( i §  ( i ~ 1 ) ,  and e o n t r ( A ( i } ~ A ( i + l } )  is minimal. I f  
A (i} is not fully reduced, then it has at least one minimal contractible 
part, so there exists an A ( i + 1 }  such that  red(A ( i} ,  A ( i §  But by  
Lemma 117 L ( A ( i } ) > L ( A ( i §  for all i ~  1. Hence by Lemma 10, 
the sequence ~L(A(1}) , .L(A(2}) ,  . . .  must be finite. Thus there exists 
a fully reduced formula A ( n }  and red*(A(1} ,  A (n} ) .  

Co~o~L~Y. Zet A be a formula in which all functional argumenta 
are modally closed. Then reduction by contraction of minimal parts yields 
a fully reduced formula B such that red*(A~ B). 

Definition: Let /A /  denote the equivalence class defined by change 
of bound variables on A. 

L ] ~ r A  13 (Uniqueness). s A (1} be a formula in which all func- 
tional arguments are modally closed. I f  red* (A <1}, A <n>), red* (A <1> ~ B), 
and both A (n}  and B are fully reduced~ then A (n} and B are the same 
up to change of bound variable, i.e. /A (n} /  = /B/. 

Proof: Let red(A( i } ,  A ( i + l } )  for 1 ~ i ~ n - - 1 .  We assume that~ 
/A<n>/ # /B/  and obtain a contradiction. 

Let k be a number such that  red* (A <k>, B) and not red* (A (k §  B)~ 
Obviously such a k exists and (1 ~ k ~ n - - l ) .  Since red*(A<k>, B), there  
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exis t s  a sequence A ( k }  = B ( 1 } , B ( 2 } ~ . . . , B ( m }  = B  (m~>2) such 
t h a t  red(B (i},  B (i + l } )  holds for 1 ~ i ~< m- -1 .  (The reduct ion sequence 
here might  include some non-minimal  contractions).  

W e  int roduce the deiinit ion of the  image(s) oi an expression E under  
reduct ion.  Le t  red(B~ G) and let E be  a subexpression oi B. If  contr(B, C) 
is equal  to E,  then  there  are no images of E in G. If  E does no t  overlap 
vontr(B, C), then  the image of E in C is jus t  the  corresponding occurrence 
of E in C. If  contr(B, C) is a proper  subexpression of E, then  the  image 
of E in G is E', where red(E, E') b y  contr(B, C). If  E is a proper  subex- 
19ression oi eontr(B, C), then  there are three  eases. If  eontr(B, C) is iv AD] ' 
t h e n  the image of E is the  corresponding occurrence of E in C. If  contr (B, G) 
is [2xD](/~), E occurs in D, and red(D, D') b y  contr(B, C)~ then  the  image 
.of E is the  corresponding expression Sub(B, x, E') in D', where [E/ = /E']. 
I I  con t r (B ,  C) is [2xD] (1~) and E occurs in 2w, there  m a y  be zero or more  
images  of E in C. They are the  occurrences of E in the  copies of ~ t ha t  
a r e  in t roduced for the  free x in D (after change of bound  var iable  in D). 
I f  red(B, G) and red(G, D) and E is a subexprcssion oi B~ then  the  images 
of E in D are the  images of the  images of E in C. We  note  t h a t  the  image 
,of a contract ible  pa r t  is a lways a contract ible  par t .  

Now let E = v o n t r ( A ( k } , A ( k - k l } )  and let E ( 1 ,  1}- - - -E  and for 
1 < i < m let  E ( i ,  1}, . . . ,  E( i ,  hi} be  the  subpar ts  of B( i }  t ha t  are the  
images of the  E( i ,  j}  under  the  replacement  induced b y  the  reduct ion 
•I B ( i  --1} to B (i}. (Note tha t  E might  be  duplicated,  or might  disappear,  
;so t ha t  n t m a y  be 0). 

There mus t  exist  B(p}  (1 < p ~ m) such t ha t  no image E ( p }  oi E 
is present,  for otherwise B would  have  a contract ible  par t .  lqow define 
the  seqnence B '  (1} ,  . . . ,  B '  ( m - - l }  us follows: for 1 ~< i < 10, let  B '  ( i} 
be  the  result  of replacing each E( i~ j}  in B( i }  b y  its contract ion.  For  
2 ~< i < m, let  B'( i }  = B ( i §  I t  c a n b e  seen t ha t  red*(B'(i}, B ' ( i §  
fo r  1 ~ i ~ m--2 and tha t  /B ' (m--1}/  -~ /B(m}]. There are two cases 
in showing tha t  red*(B'(p--1}~ B'(p}).  Y~ contr(B(p--1}, B(p})  is an 
image  of E,  then  B' (p- -1}  is B(p} .  If contr(B(p--1} ,B(p})  is not  
itself an image of E, then  it  mus t  be  a 2-contraction [2xC](D) where the 
final images of E occur in D and where x does no t  occur  free in C. Then 
red(B'(p--1},  B(p})  b y  the  contract ion of [2xG](D') where red*(D, D') 
b y  contract ing all images of E in D. 3s since A (k + 1 }  is B '  (1} 
we have  t h a t  red* (A (Ir +1}, B' (2}). These two results  imply  t ha t  
red (A(k+l} ,  B) holds, which contradicts  the  definition of /r and com- 
pletes the  proof.  

TI~Ol~E~ 4. I f  all functional arguments of A are modally closed, 
there is a fully reduced formula B such that red*(A,B) and B is unique 
to within change of bound variable. 

P g o o r :  Lemmas  7 through 12 prove  existence;  L e m m a  13 proves  
~niqueness .  
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The main result  now follows. 

T ~ o ~ E ~  5. Translagons of English l~hrases have 
)~-normal form, unique to within change of bound variable. 

P~ooF:  B y  Theorem 2 and Theorem 4. 
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a fully reduced 

Remarks on IL .  An example shows tha t  the  unique normal  form 
result  does not  ex tend  to I L  in general. Consider the  formula 

= 

where x and y are variables of type  a, e is a cons tant  of t ype  a, and u 
is a variable  of t ype  (a ,  (s ,  a ) ) .  Bo th  X-applications are contractible.  
Contract ing the  Ax yields [~y[Ay] = [u(c)J](e), which cannot  be  fur ther  
cont rac ted  because e is not  modal ly  closed and y occurs in the  intensional 
con tex t  [^y].  Contract ing the ~y first instead yields [2x[^x] ---- [u(x)J](v), 
which cannot  be fur ther  cont rac ted  because e is not  modal ly  closed and x 
occurs in the  intensional context  [^x]. Bo th  of these formulas are there- 
fore reduced forms and they  are no t  the  same. 

The example depends on the  par t icular  definition chosen for 2-con- 
tract ion.  Each  of the  reduced forms obta ined is eqniv~lent to [2x [^x]] (e) 
-----u(c), which is in some sense fur ther  reduced.  I f  we were to  redefine 

A-contraction to get  this result~ uniqueness might  be  provable .  Some 
combinat ion and modificat ion of the  axiom schemata  ASd.X through 
ASr and AS6 of [5] (pp. 19-20) could be  used in this way.  

Conclusions. Our results are a first  step toward  the  characterizat ion 
of the  subset  of formulas of intensional logic tha t  are obta ined as transla- 
t ions of English sentences. These formulas have  unique ful ly reduced 
normal  forms, in contras t  to the  general case for the  intensional logic. 

The main  theorems have  immediate  application in computer  proces- 
sing of the  expressions obta ined  as translat ions of English phrases fro G 
the  [PTQ] fragment .  The unique normal  form can be  obta ined  b y  con- 
t ract ions of minimal parts ,  and this process will a lways terminate .  The 
resulting form is easier to comprehend than  the  direct t ranslat ion and 
is an appropr ia te  form for display or for evaluation.  
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