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Abstract. Montague [7] translates English into a tensed intensional logic, an
extension of the typed A-calculus. We prove that each translation reduces to a for-
mula without A-applications, unique to within change of bound variable. The proof
has two main steps. We {first prove that translations of English phrases have the
special property that arguments to functions are modally closed. We then show that
formulas in which arguments are modally closed have a unique fully reduced A-normal
form. As a corollary, translations of English phrases are contained in a simply defined
proper subelass of the formulas of the intensional logic.

Introduction. In this paper we consider A-normal forms in an inten-
gional logic motivated by its relevance to natural language. The system
investigated is that of Montague’s The proper treaiment of quantification
in ordinary English [7], here referred to as [PTQ]. [PTQ] correlates English
phrases with logical expressions. Each derivation of an English phrase
is mapped, or translated, into an expression in the intensional logic, IL.
IL extends the usual typed A-calculus; it includes operators for intension,
extension, necessity, and tense. This logie, but without tense, was intro-
duced by Montague earlier in [6] and axiomatized and investigated by
Gallin [5].

We investigate the question of when expressions in IL have 2 unique
A-reduced form. A counterexample shows that this uniqueness does not
hold for IL in general. However, it does hold for all expressions with
a simple property that depends only on the form of the expression. Mon-
tague’s translations all have this property.

These questions arose because the translations given by the rules
of [pTq] directly are long and difficult to comprehend. One reason is that
substitution rules in the English syntax are translated into applications
of A-functions in the logical syntax. It is natural to attempt to simplify
the translations by eliminating all the 2-applications by A-reduction.
In [prqQ] Montague gives his examples in fully reduced form, although
he gives no discusgion of reduction. The reduced forms are more com-
prehensible to the reader and easier to interpret in a model. This increased
ease also carries over if, as in our case, the entire process is implemented
on a computer (see [2], [3], and [4]).

* This research is supported in part by National Science Foundation Grant
BNS 76-23840.
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We obtain the main result in two steps. The first is a theorem on
the form of translations of English phrases. We show that in translations
of English phrases and in their reductions, the arguments to functions
are always modally closed, hence A-applications are always contractible.

The second step is a theorem on the intensional logic itself. It is well-
known that for the usual typed A-caleulus there is a fully reduced normal
form, unique to within change of bound variable. In intensional logic,
in contrast, A-reduction does not yield a unique normal form. We show,
however, that if all arguments to functions are modally closed, there is
a unique normal form. This combines with the result on translations to
yield the main result.

Example. Before proceeding to the formal development, we give
an example illustrating the stages of the process to be investigated.

Congider the English sentence John eats & fish. One of the derivations
given for this sentence in [PTQ] is displayed in the figure. Nonterminal
nodes are labeled by syntactic rules and syntactic categories, using TS
for sentence and TE for term. The derivation uses the rule S14, which
substitutes a term phrase (a fish) for a variable (he,) in a sentence form
(John eats him,).
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The word-for-word or direct translation is

[P (32) [fish(2) A[VP1(@)])(*aw [2QTV Q1] (* [eat (MR RI())])])-

Reducing the outermost A-application yields

Ax) [ fish(@) [V Ay [[x@ [V QICD] (* [eat(“ARTVRIW))])]] (w)]-

The subexpression [Y/*4y...] can now be reduced to [1y...]. Reducing
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this 4 next yields

Q)| fish (@) A [2Q[VQI(“)] (* [eat (AR [V EY(@))])]}
Confinuing in this way leads to the redueed form
(o) | fish(w) A [eat ("AR[YRI(@))] (")),

in which the only A-function lacks an argument.

Montague further transforms the formulas by introducing exten-
sional constants where possible and by replacing certain unary functions
by binary predicates. For the formula under consideration the result is
Su) [fisk™ (w) Afind*(§, u)].

The extensional forms are equivalent to the others only by assuming
some meaning postulates and are not further considered here.

Basic Definitions. For convenience, we repeat Montague’s definition
of meaningful expression.

Types. The set of iypes is the smallest set ¥ such that (1) ¢, t € ¥,
{2) whenever a, be Y, (a,b) €Y, and (3) whenever a € Y, {s,a)> e Y.

Meaningful expressions. There are denumerably many variables and
infinitely many constants of each type. The set of meaningful expressions
of type a is the smallest set such that:

(1) Every variable and constant of type @ is in ME,.

(2) I Aewmm, and w is a variable of type b, then lud € ME, .

(3) If A ewmBg,, and Bewms,, then A(B)eMm,. i

(4) IfA, Bewms,, then A = B e ME,.

(3) If @, Rewmr, and % is a variable, then 1@, [QAR], [QVR],
[@—R], [@<R], Au)Q, (Vu)@Q, 1@, HQ, WQ € uE,.

(6) If A emE,, then [*A] e MEy 4.

(1) If AewMBy,, then [VA]cME,.

By a meaningful expression or formula of intensional logic is understood
a member of ME, for any a.

If % is a variable of type @, then AuB is understood as denoting that
fanction from objects of type a which for any such object », takes as
value the object denoted by B when # is understood as denoting z. The
expression 4 (B) is as usual understood as denoting the value of the func-
tion denoted by A for the funectional argument denoted by B. The logical
symbols [, W, H may be read “it is necessary that”, “it will be the case
that”, “it has been the case that”, respectively. The expression [*A4]
is regarded as denoting the intension of the expression 4. The expression
{VA] is well-formed only when A denotes an intension; in such a case
[VA] denotes the corresponding extension.
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Modally closed formulas. We define a subclass of meaningful expres-
sions that have the property that their syntactic form forces theéir deno-
tations to be independent of the point of reference at which they are
evaluated. The class of modally closed (MO) formulas is the smallest class
such that:

% is M¢C for every variable u.

[A4] is Mo for every formula A.

A(B) is MC whenever 4 and B are Mc.

[A = B] is Mc whenever 4, B are McC.

AuA is MC whenever A is McC.

(6) O is Mc for every formula @ of type i.

(7) 7€ is MC whenever @ is MC.

(8) (Hu)@ is Mc and (Vu)Q is Mc whenever Q is MC.

(9) [@AR] [QvER] [@Q—~R], and [Q<—R] are MC whenever @, B
are MC.

1
2
3
4
b
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This definition of modally closed is essentially that of [5]. It differs
only in the addition of (6)-(9) for formulas of sentence type (M=) that
are introduced by Gallin only as abbreviations. (6)-(9) can easily be
proved from Gallin’s definitions. Formulas which contain W and H are
not translatable into Gallin’s system. Note that formulas W@ and H@
are not modally closed, [VA] is not modally closed, and constants are
not modally closed.

Direct Translation. A direci translation of an English phrase i
a translation of a derivation tree for the phrase into a meaningful ex-
pression of the logic by rules T1-T17 of [Prq]. The relevant parts of these
rules are given in the course of the proof of Theorem 1. The abbreviations
used in [pPrq] are eliminated in the statements of the translation rules
in order to display funetional arguments more clearly.

Theorem 1 shows that in direct translations all functional arguments
are variables or of the form [*D], hence are modally closed.

THEOREM 1. If o function application C(B) ocours in & direct tran-
slation A, then the functional argument B is either a variable or an expression.
of the form ["D]. Hence, B is modolly closed.

Proor: By induction on the construction of direct translations.

StaTEMENT of BASIS. If O(B) occurs as part of the direct translation.
of a basic phrase of English, B is a wvariable or is of the form ["D].

Proor of Basis: The translations of basic phrases are given by rule
T1. We verify that the result holds in each subease of T1.
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T1(a). If A is a basic expression other than be, necessarily, and the
bagic terms, i.e. members of BTE, then A franslates into g(4), where-
g{A) is a constant and hence contains no funection applications.

T1(b) be translates into APAx[YP](My[Ye# = Vy]). The only subexpres-
sion that is an argument of a function is "Ay[Ve = Vy].

T1(e) mecessarily translates into Zp[D[Vp]], which has no function
applications.

T1(d). The members of BTE, John, Mary, Bill, and wninety, translate-
into j*, m*, b* and n* respectively. By definition, 4% is AP[VP]("4).
The only funectional argument is *4, which is of the proper form.

T1(e). he, translates into AP[YP](x,), where the functional argument
is a wvariable.

Induction step: We assume the property holds for all component ex-
pressions of the dirvect translation A, and show that it s true of A. The proof’
is by cases on the translation rules T2 through T17.

T2. This gives the translation corresponding to the rule that forms.
terms from common nouns by adding determiners. The three possible
results are:

for every, AP(Vz)[8 (x)—~[YPl(x)];

for the, AP(Ay)[(Va)[§' (#)o2 = yIA[VPI(y)];

and for a, AP (I2)[8' (x) A[VP](x)], where 8’ is the translation of common:
noun phrage. The only new function applications have variables # and y
as arguments, and by induction all functional arguments of 8 are va--
riables or are of the form [*4].

T3. This translates the rule that adds a relative clause to a common
noun phrase. The result is Az[F'(2)AQ’'], where B’ and @' are transla--
tions. As above, # is a variable, and K’ and ' have the property by in-
duction. We note that [8] (p. 261 fn.) corrects T3 to avoid collision of
variables by replacing # in @’ by a new variable y. This clearly does not
affect the property.

T4 through T10. These give translations for the rules of function appli-
cation. The translations are all fo the form E’(*B’). The only new argu--
ment is AB’.

T11. Sentence conjunetidn and digjunction, [@'AR’] and [@'VvR'], in-
troduce no new function applications.

T12. Verb phrase conjunction and disjunction have the translations
A [C'(2)A B ()] and Az[C'(x)vE'(x)]. The new function applications.
have the variable  as argument.

T13. Term phrase disjunction translates into AP[A’(P)v B’'(P)], where.
the only new argument is the variable P.
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T14. Quantification over sentences has the translation A’(*1xQ’). The
only new argument is of the form [AD].

T15 and T16. Quantification over a common noun phrase or an in-
trangitive verb phrase has the translation Ayd’(*Az[E’'(y)]). The argu-
ment of B’ is a variable and the argument of A’ is of the proper form.

T17. The translations of the rules of tense and sign are ~J4'( \E'),
WA'(\E'), TIWA'("E'), HA'("E"), and T1HA'("E’). The new function
application in each of them is A’("E’), which has an argument of the
proper form. ‘

Definitions of Reductions. The results to be proved are about the
formulas that can be obtained from direct translations by application
-of reductions of the ZA-calculus. Some definitions are needed.

A-contraction. A A-application is a formula of the form [inAT(B).
The A-application is coniractible if either (i) B is modally closed or (ii)
no free oecurrence of » in 4 lies in an intensional context of A, that is,
‘within the scope of a *, [J, H, or W in A. If [AzA4A](B) is a contractible
part of a formula, then its contraction is any result of first changing bound
variables in 4 to avoid variable collisions and then substituting B for
each free occurrence of # in the modified A.

EI-contraction. An EI-formula is a formula of the form [Y[*C]].
It is always contraciible; its contraction is C.

The only contractible parts of a formula are the contractible A-appli-
cations and the FI-formulas.

Reduction. Let A be a formula that contains a contractible part B
with contraction €. Then a contraction of A is the result E of replacing
B by C in A. We say that A reduces to E, or red(4, E). We denote by
contr(A, F) the formula B that is contracted. The relation red* is the
reflexive transitive closure of red and change of bound variable.

Reduced forms. A formula is in reduced form if it contains no con-
tractible parts. It iy fully reduced if it is reduced and contains no A-appli-
-cations.

Translations. By a translation of an English phrase we mean its
direct translation 4 by the rules of [PTQ], or any formula ¥ such that
red*(4A, ), that is, any F resulting from 4 by reduction.

Medal closure. We now prove that reduction of translations preserves
modal closure of functional arguments. We begin with some lemmas
about properties preserved by substitution.
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Notation. Let Sub(B, x, A) be the result of substituting B for all free
oceurrences of x in A.

LeMMA 1. Let B be a subexpression of A. Let A’ be the result of repla-
cing an occurrence of B in A by an expression B’. Let A be mc. If B is not
Mc or if both B and B’ are MC, then A’ is MO,

ProoF: The proof is by induction on the construction of the modally
closed formula 4. We follow the numbering of the definition of modally
eloged. ‘

We note first that if 4" is B’, then A’ is Mc. For in this case 4 is B, 4
is Mo, that is, B is Mc. So by hypothesis B’ is M0, that is, A’ is Mo. This
will be used in each case of the induction below.

BAsis:
{1) A ¢s a variable. Then A is B and A’ is B'. 8o A’ is MO by the argu-
ment above.

Induction step:
{2) A is [MO]. A’ is either B’ or [A(C'] where O’ is the result of replacing
B by B’ in C and thus Mc by definition.
{3) 4 is C(D). A" is B’ or O'(D) or C(D’). Since 4 is Mc, ¢ and D are
MC by definition. If A’ is ¢'(D) then ¢’ is M¢ by induction, so 4’ is MC
by definition. Similarly, if 4’ is C(D’). (b} A4 is AuC. A’ is B’ or JuC'.
By induction €’ is MC so by definition A’ is M.
The remaining arguments are similar: (4), (7), and (9) are like (3); (6)
is like (2); and (8) is like (5).

LevmA 2.  Substituiion of a modally closed expression for all free
occurrences of a variable in & modally closed expression yields a modally
closed expression.

ProoOF: The proof is a finite induetion on the number of occurrences
of the variable. At each step we are substituting a modally closed ex-
pression for a modally cloged expression, so the result is modally closed
by Lemma 1.

LevmMA 3. (Substitution preserves modal closure of arguments).
If all functional arguments of A are modally closed, and B and all of its
Sfunctional arguments are modally closed, then all functional arguments of
Sub(B, z, A) are modally closed.

Proor:

(1) If the occurrence of x replaced by B is not in a functional argu-
ment then the new functional arguments introduced by the substitution
are just the functional arguments of B, which are modally closed by
hypothesis.
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(2) If # occurs in a functional argument of 4, then we are substi-
tuting a modally closed expression B for a variable in a modally closed
expression. Hence by Lemma 2 the result is modally closed. The other
new functional arguments in the result are those of B and are modally
closed by hypothesis.

One more lemma is needed before we can present Theorem 2.

Levma 4. (Reduction preserves modal closure of functional argu-
ments). If all functional arguments of A are modally closed and A reduces
to B, then oll functional arguments of E are modally closed.

Proor: We show that each type of contraction preserves modak
closure of functional arguments.

(1) A-contraction consists of first a possible change of bound variables.
and then substitution. Change of bound variables replaces variables with
other variables. Clearly this preserves modal closure of all expressions
and subexpressions. The substitution replaces a subexpression [AzC](B})
by Sub(B, x, (). By Lemmas 2 and 3, all arguments that are subex-
pressions of Sub(B, #, 0) are Mc, and by Lemma 1, any modally closed
expression that containg the expression [AxC](B) that has been replaced
by Sub(B, », C) remains MC.

(2) EI-contraction replaces a subexpression of the form [VAC] with
0. The result holds by Lemma 1 and because the subexpressions of ¢
are unchanged.

The theorem now follows immediately.

THEOREM 2. In translations, the argumenis to functions are modally
closed.

ProoF: By an induetion on translations. The basis is provided
by Theorem 1 on direct translations. The induction step is by Lemma 4.

The next theorem shows that anh even stronger property holds of the
arguments of translations: they are either variables or of the form [AC].
Even though Theorem 2 would obviously follow from this, we have
deliberately chosen to prove it separately, using Lemma 4. Proving it
in that way makes it clear that Theorem 2 would apply to any system
in which the arguments of direct franslations are modally closed, a weaker
constraint than that required for Theorem 3.

Levma 5. If all functional arguments of A are either variables or
of the form [C], and B and all of its arguments are also of these two forms,
then all arguments of Sub(B, x, A) are of these forms.

ProoF: The proof is similar to that of Lemma 3.

(1) If the occurrence of # replaced by A is not a functional argument
then the new functional argurnents introduced by the substitution are
just the arguments of B, which have the desired property by hypothesis.
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(2) If z occurs in a functional argument, then there are two cases.
If the argument is @, substitution preserves the property, because B
and its arguments have the property. If the argument is [*C] it remains
in that form, and the other functional arguments introduced have the
property because they are the arguments of B.

LrvMA 6. Reduction preserves the property that functional arguments
are either variables or of the form ["C].

ProoF: As for Lemma 4. The only change is in part (1), A-reduction,
where Lemma 5 is used in place of Lemmas 2 and 3.

THEOREM 3. In translations, functional argumenis are either variables
or of the form ["C].

Proor: By an induction, with the basis by Theorem 1 and the
induction step by Lemma 6.

A-Normal forms. For the typed A-calculus it is well-known that
every expression has an irreducible A-normal form, unique to within
change of bound variable. It is natural to ask whether this is also true
for the intensional logic IL. One might suspect a problem for several
reasons: the definition of contractible part is more complicated in IL;
the intension operator provides A-abstraction over points of reference,
but since there is no actual variable over points of reference no change
of bound variable is possible; and there can be complex interactions of
the intension operator with A’s.

By Theorem 2, in translations all funetional arguments are modally
closed. Thus, for application to English, we can use this modal closure
a8 a hypothesis and show that translations have a unique fully reduced
normal form. (Following our main result we show the necessity of this -
hypothesis).

The proof extends the proofs given in [1] and [9] for the typed A-cal-
culus. Modifications for IL appear in the definition of order of the con-
tractible part [Y[*4]] and in Lemma 7.

Order of contractible parts. We introduce a measure of the complexity
of contractible parts, based on the types occurring. The order of the type
@, Hka, is simply the number of left angle-brackets oceurring in the symbol
for a. It is immediate that for all ¢ and b, Fa < F:{a, b, and Hae < 4
(s, @y. The order of a contractible part is defined by H[wd](B) = #<b, a)
and [Y [*A]] = #<s, a), where A is of type a and B is of type b.

Minimal contractible part. A. eontractible part is minimal if it con-
tains no proper subformulas that are contractible.

LeMMA 7. Let A be a formula in which all functional arguments are
modally closed. If A has a minimal contractible part B of order k, then the
contraction of B contains mo contractible part of order k or greater.
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Proor: Immediate for FI-contraction.

For A-contraction we note that if [AxC](D) is minimal, then its con-
traction can contain (or be) a contractible part in only two ways:
(i) Dis [AyE] of type {f, ey = d and » occurs in C in a subformula z(F).
The order of the resulting contractible part [AyE](F) is #<{f, e> = Hd
< H{d,¢> = k.
(i) D is ["H] where {s, ¢) = d and # occurs in C in a subformula [Va].
The order of the resulting contractible part [Y[AE]] is (s, ) = d
< Hdd,e> =k

D can contain no Z-applications, since by the hypothesis they would
be contraetible and hence D would not be minimal.

REMARK. Lemma 7 does not require its hypothesis, but without
it the proof is more difficult. The proof requires that the minimal con-
tractible part B cannot contain an uncontractible A-application that
becomes contractible when B is reduced. This follows from two obser-
vations: (i) If D is not modally closed, neither is Sub(B, x, D), and
(if) If O contains y in an intensional context, so does Sub(B,x, C),
provided # is not y.

LeEvMA 8. Let A be a formula in which all functional argumenis are
modally closed. If A reduces to D by contraction of B to C, all new conitractible
paris of D are contained in C.

Proor: There are no new A-applications not contained in ¢. Under
the hypothesis, all old A-applications are already contractible.

REMARK. Lemma 8 needs the hypothesis, as the following example
shows.

[Au’u](Y " v) has only one contractible part [V #], which is of order 1.
The A-application is not contractible because [V"v] is not modally closed
and [“u] is an intensional context. After contraction of the argument,
the formula is [Au”u](v), which is a contractible part of order (e, (s, e>>
= 2, where both # and v are of type e.

LemMymA 9. Let A be a formula in which all functional arguments are
modally closed. If D results from A by contraction of a minimal contractible
part of order k, then any new coniractible parts of D are of order less than k.

Proor: By Lemmas 7 and 8.

Let N* be the set of all finite tuples of natural numbers, ordered by
the relation > as follows:
Byy ey By > Y1y ovey Yp» L (8) > m or (b) # = m and there exists &
such that for all ¢ (0 <t < k), @y = Yp— a0d 2, _, < ¥Y,_,. (This is
sometimes called “reverse lexicographic order”.)
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Levwma 10. If X,, X,, ... is & sequence of elements of N* such that
X, < X;,,, then this sequence is fintle.

Ag Pietrzykowski observes, the lemma is easily proved by a double
induction on the length of X; and on the value of its rightmost com-
ponents.

Definition of L. We define a mapping L of formulas into N*: for
any formula 4, L(4) = {i,, ..., i), Where ¢; is the number of contractible
parts of order j in A.

Lrvma 11. ZLet A be a formula in which all functional arguments
are modally closed. If D results from A by contraction of a minimal con-
tractible part B, then L(A) > L(D).

ProOF: Lt L(A) = {Gyy.ueylpy .oy iy andlet B =k (1< k< m).
Comparing D with 4, D has one fewer contractible part of order &, possibly
some new contractible parts of order less than k&, but no new contractible
parts of higher order, by Lemmea 9. Hence, L(D) = {fy, ..., jz_1, tx—1,
gi1y +++y by . By the definition of the ordering relation, L(4) < L(D).

LevMA 12. Let A< be & formula m which all Sfunctional arguments
are modally closed. Then there is a fully reduced formula A<{n) such that
red* (A (1>, A {n)).

Proor: Let A{d>, A(2>,... be a sequence of formulag such that
red(A4 {1y, AG+1)) (4 > 1), and eontr(4{i), AL +1)) is minimal. If
A (> is not fully reduced, then it has at least one minimal contraetible
part, so there exists an 4 (¢+1) such that red(4 (4>, A< +1>). Bubt by
Lemma 11, L(4 &) > L(AG+1)) for all ¢ > 1. Hence by Lemma 10,
the sequence L(4 <)), L{A42)>),... must be finite. Thus there exists
a fully redueed formula 4 () and red*(A 1>, A<{n)).

Coro1LARY. Let A be a formula in which all funciional arguments
are modally closed. Then reduction by contraction of minimal parts yields
a fully reduced formula B such that red* (4, B).

Definition: Let [A] denote the equivalence class defined by change
of bound variables on A.

LevvA 13 (Uniqueness). Let A1) be a formula in which all func-
tional arguments are modally closed. If red*(A <1y, Aln)), red*(A (1), B),
and both A<n> and B are fully reduced, then A<{n) and B are the same
up 1o change of bound wvariable, i.e. [A{n)| = [B].

Proof: TLet red(A ), AL+1)) for 1 <i<n—~1. We assume that
JA{n>| # |B] and obtain a contradiction.

Let & be a number such that red*(A <k)>, B) and not red* (A {k+1>, B).
Obviously such a % exists and (1 < k<< n—1). Since red*(A (k), B), there
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exists a sequence Ak> = B{1),B{2>,...,B{(m> =B (m=2) such
that red (B>, B{i+1>) holds for 1 < i << m—1. (The reduction sequence
here might include some non-minimal contractions).

We introduce the definition of the image(s) of an expression ¥ under
reduction. Let red(B, C) and let ¥ be a subexpression of B. If contr (B, C)
is equal to ¥, then there are no images of # in (. If ¥ does not overlap
contr (B, C), then the image of ¥ in O is just the corresponding occurrence
of B in C. If conir (B, 0) is a proper subexpression of I, then the image
of Hin O is E’', where red(H, B') by contr(B, C). If E is a proper subex-
pression of conir (B, 0), then there are three cases. If contr(B, 0) is [VAD],
then the image of ¥ is the corresponding occurrence of ¥ in C. If contr (B, 0)
is [JxD](F), E occurs in D, and red(D, D') by contr (B, (), then the image
-of B is the corresponding expression Sub(F, #, B')in D', where [E| = [E'[.
Tf contr(B, C) is [AxD](F) and E oceurs in ¥, there may be zero or more
images of F in (. They are the occurrences of ¥ in the copies of F' that
are introduced for the free # in D (after change of bound variable in D).
If red (B, C) and red(C, D) and FE is a subexpression of B, then the images
of B in D are the images of the images of F in C. We note that the image
of a contractible part is always a contractible part.

Now let B = conir(A<k>, A<{k+1)) and let E(1,1> = E and for
1<i<mlet BG,1), ..., E{,n) be the subparts of B{¢) that are the
images of the F (i, j> under the replacement induced by the reduction
of B —1) to B¢y, (Note that B might be duplicated, or might disappear,
so that n; may be 0).

There must exist B{p)> (1L < p < m) such that no image E{p) of ¥
is present, for otherwise B would have a confractible part. Now define
the sequence B'{1)>,..., B'{m—1) as follows: for 1< i< p, let B'{i)
be the result of replacing each E<{%,j> in B{i) by its contraction. For
p <i<m,let B'() = B{i+1). It can be seen that red* (B’ (i), B'{i+1))
for 1<i< m—2 and that [B'{m—1>] = [B{m)/. There are two cases
in showing that red*(B’'{p—1), B'{(p)>). If conir(B{p—1)>, B{p)) is an
image of H, then B’{p—1) is B<{p). If conir(B{p—1), B{p)) is not
itself an image of H, then it must be a A-contraction [Ax0](D) where the
final images of F occur in D and where # does not occur free in C. Then
red (B’ {p—1>, B{p)>) by the contraction of [A2C](D’) where red*(D, D)
by contracting all images of B in D. Moreover, since A<{k--1) is B'{1}>
we have that red*(A(k--1>, B'(2}). These two results imply that
red(A (k-+1)>, B) holds, which contradicts the definition of %k, and com-
pletes the proof.

TaroREM 4. If all functional arguments of A are modally closed,
there is a fully reduced formula B such that red*(A, B) and B is unique
1o within change of bound variable.

ProorF: Lemmas 7 through 12 prove existence; Lemma 13 proves
unigueness.
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The main result now follows.

THEOREM b. Translations of English phrases have a fully reduced
J-normal form, unique to within change of bound variable.

Proor: By Theorem 2 and Theorem 4.

Remarks on IL. An example shows that the unigque normal form
result does not extend to IL in general. Consider the formula

[2 2y ["y] = [u(2)] (@)](e)

where # and ¥ are variables of type a, ¢ is a constant of type a, and u
is a variable of type {a, {(s, a>>. Both A-applications are contractible.
Contracting the Az yields [2y["y] = [u(¢)]](¢), which cannot be further
contracted because ¢ is not modally closed and y oceurs in the intensional
context [*y]. Contracting the Ay first instead yields [An[*w] = [u(2)]|(e),
which cannot be further contracted because ¢ is not modally closed and
occurs in the intensional context [*#]. Both of these formulas are there-
fore reduced forms and they are not the same.

The example depends on the particular definition chosen for A-con-
traction. Each of the reduced forms obtained is equivalent to [Az["#]](c)
= u(e), which is in some sense further reduced. If we were to redefine
A-contraction to get this result, uniqueness might be provable. Some
combination and modification of the axiom schemata AS4.1 through
AS4.7 and AS6 of [B] (pp. 19-20) could be used in this way.

Conclusions. Our results are a first step toward the characterization
of the subset of formulas of intensional logic that are obtained as transla-
tions of English sentences. These formulas have unique fully reduced
normal forms, in contrast to the general case for the intensional logic.

The main theorems have immediate application in computer proces-
sing of the expressions obtained as translations of English phrases from
the [prq] fragment. The unique normal form can be obtained by con-
tractions of minimal parts, and this process will always terminate. The
resulting form is easier to comprehend than the direct translation and
is an appropriate form for display or for evaluation.
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