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P E R S O N A L  P R O B A B I L I T I E S  O F  P R O B A B I L I T I E S  

ABS'rRACT By definition, the subjective probability distribution of a random event is 
revealed by the ('rational') subject's choice between bets - a view expressed by F. Ram- 
sey, B. De Finetti, L. J. Savage and traceable to E. Borel and, it can be argued, to 
T. Bayes. Since hypotheses are not observable events, no bet can be made, and paid 
off, on a hypothesis. The subjective probability distribution of hypotheses (or of a 
parameter, as in the current 'Bayesian' statistical literature) is therefore a figure of 
speech, an "as if', justifiable in the limit. Given a long sequence of previous observa- 
tions, the subjective posterior probabilities of events still to be observed are derived by 
using a mathematical expression that would approximate the subjective probability 
distribution of hypotheses, i f  these could be bet on. This position was taken by most, 
but not all, respondents to a 'Round Robin' initiated by J. Marschak after M. H. De- 
Groot's talk on Stopping Rules presented at the UCLA Interdisciplinary Colloquium 
on Mathematics in Behavioral Sciences. Other participants: K. Berth, H. Chernoff, 
R. Dorfman, W. Edwards, T. S. Ferguson, G. Graves, K. Miyasawa, P. Randolph, 
L. J. Savage, R. Schlaifer, R. L. Winkler. Attention is also drawn to K. Borch's article 
in this issue. 

I. INTRODUCTION 

The discussion that  follows originated at one o f  the bi-weeldy sessions o f  

the Interdisciplinary Col loquium on Mathematics  in Behavioral  Science, 

Universi ty o f  California at Los Angeles (J. Marschak,  chairman).  1 A 

paper  by Morr is  H. D e G r o o t ,  on  Stopping Rules, elicited comments  on  

the fol lowing question. Suppose all probabilities are defined as 'subjec- 

tive', 'personal '  - i.e., as being revealed by a "rational' ,  'consis tent '  

decis ion-maker 's  choices under  uncer ta inty:  if he prefers to bet  on  one 
rather  than on  another  event, the former  event is said to  be the subjec- 
tively more  probable  one. Moreover ,  a few rather  plausible quasi-logical 
postulates o f  ' ra t ional i ty '  o f  choices imply that  such 'subjective p rob-  

abilities' have indeed the properties o f  a mathemat ica l  'probabi l i ty  mea- 
sure'. Ou r  quest ion is: wha t  meaning,  if any, can be assigned to the p rob-  

ability o f  a hypothesis,  law, theory that  is itself a probabil i ty distr ibution 
so that  its falsity or  t ru th  is not ,  in general, an observable event on which 
bets can be made  and paid off? I f  an urn is sealed, bets can be taken, 
bo th  before and after some drawings were made,  on  what  the ou tcome 
of  subsequent  drawings will be. Fo r  these outcomes  will be observed and 
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the bets paid off. But no bets can be paid off on the content of the urn 
itself unless it is unsealed. Most laws, theories, hypotheses are urns sealed 
forever. Statisticians who speak of the prior and posterior distribution 
of a statistical parameter use, in fact, a figure of speech which deserves 
clarification. J. Marschak's comments were therefore circulated to a num- 
ber of workers in this field. Several have answered. A 'Round Robin' 
(the late L. J. Savage's favorite term) resulted. Its publication was per- 
mitted by all contributors. They are (alphabetically): 

Karl Borch 
Herman Chernoff 
Morris H. DeGroot 
Robert Doff`man 
Ward Edwards 
T. S. Ferguson 

Koichi Miyasawa 
Paul Randolph 
L. J. Savage 
Robert Schlaifer 
Robert L. Winkler 

Students of the fundamentals of decision theory and statistical inference 
know, and it is partly shown in the attached Bibliography, that most of 
the contributors have continued to work in the field. 

As the reader will see, most respondents agreed that, to assign prob- 
ability to the truth of a probabilistic theory is to use a figure of speech, 
an 'as if', that is justified in the limit. For, given a sufficiently long se- 
quence of observed events, one can compute approximate subjective 
probabilities of events still to be observed, by using as an intermediate 
step a mathematical expression which could be called the subjective 
probability distribution of hypotheses if it were possible to bet on a 
hypothesis. A few of the respondents, however, denied the existence of 
the problem itself, by permitting to associate the term 'subjective prob- 
ability' with a subject's naming a number, and not necessarily with his 
choosing between bets. 

The topic of the present discussion is far from outdated. Bruno de 
Finetti has treated rather recently (1971) the 'Probability of a Theory 
and Probabilities of Facts', with extensive reference to an instructive 
example provided by I. J. Good (1969). 

I wish to add two remarks of my own. One concerns a question of 
history and of definition. It was raised by L. J. Savage in response to 
Item 7 of my comments. Did Thomas Bayes (1763) interpret probabil- 
ities as subjective ones, revealed by the bets of a rational decision-maker? 
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Was The Reverend a 'personalist', anticipating Borel (1924), Ramsey 
(1924--28), de Finetti (1937), Savage (1954)? Today's term 'Bayesian 
statistics' seems mostly to denote the use of prior and the derivation of 
posterior probabilities (by 'Bayes' Theorem'); in addition, viewing him- 
self as a decision-maker, the 'Bayesian statistician' is supposed to con- 
cern himself with the expectation of the 'loss' (the negative of the econo- 
mists' 'gross payoff' or 'benefit') and of sampling cost. But, to be truly 
'Bayesian', does he not have, in addition, to interpret his prior and poste- 
rior probabilities as subjective ones? It is not very important, of course, 
what labels we use, provided we agree on their meaning. Yet there may be 
some advantage if, in addition, we agree with history when the label is a 
historical name. ~ Let me quote 'Definition 5' of Bayes: 

"The probability of any event is the ratio between the value 
at which an expectation depending on the happening of the 
event ought to be computed [J.M.'s italics], and the value of 
the thing expected upon its happening". 

Does not the 'ought to' indicate a norm of behavior, stating what we 
would now call 'consistent', 'rational' behavior? To the value (u dollars, 
say) that you would gain if the uncertain event happens, there 'ought to' 
correspond in your mind a smaller but sure value (c dollars) such that 
you are indifferent between gaining u upon the happening of the uncertain 
event and gaining c with certainty. Hence there ought to be in your mind 
also a ratio of these two numbers, c/u=p (say), which Bayes calls the 
probability of that uncertain event. This argues, I think for my ascribing 
him the personalistic view. Note also that he calls our c the 'value at which 
an expectation depending on the event ought to be computed'. This ac- 
tually agrees with the modern use of ('mathematical') expectation: for 
Bayes obviously assumes that the payoff if that uncertain event does not 
happen is =0, so that indeed, if p=c/u then u p + 0 . ( 1 - p ) = c .  This in- 
terpretation of Bayes' term 'expectation' is confirmed for the case when 
the bettor's loss > 0, in Bayes' 'Proposition 2': 

"'If a person has an expectation depending on the happening 
of an event, the probability of the event is to the probabil- 
ity of its failure as his loss is if it fails to his gain if it hap- 
pens." 
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I-Iere 'the person (who) has an expectation' considers a fair bet. That is, 
denoting his gain and loss (both uncertain) by u and/, up + ( -  l) (1 - p )  = 0 ,  

hence p / ( 1 - p )  =l/u. If p were smaller the consistent person would not 
accept the bet, given I and u. 

As remarked in my Item 7 this presupposes, in terms of modern deci- 
sion theory, that utility is linear in the dollar amounts - an assumption 
rejected by Bayes' contemporary Daniel Bernoulli and his Petersburg para- 
dox. This difficulty- not present in the more general approaches of Ramsey 
and Savage - was recognized by their fellow-personalist de Finetti in the 
English-language revision (1964) of his pioneering 'La prtvision ...' (1937). 
It is perhaps true that money utility is almost linear for small monetary 
gains and losses, and personal probabilities are revealed by the ratio l/u 
in a bet accepted by a consistent (e.g., an appropriately experienced) 
bettor: this is believed by both de Finetti and Savage (1962). Others - e.g., 
Tversky (1972)- believe z that, typically, small monetary differences fail 
to be discriminated by the subject. This results in faulty elicitation of the 
subject's probabilities by the observer. 

My second remark refers to the 'objective' probability of my Item 6. 
I would now prefer the word 'intersubjective'. When a person considers 
a coin to be 'symmetrical', or a sequence of trials in an experiment to be 
'repeated and independent'; when, in short, a person regards those 
random events as 'exchangeable" in de Finetti's sense, this is revealed by 
the (rational) person's choice: if two events are exchangeable he is indif- 
ferent on which of them to bet. If  two or more persons, all rational, agree 
that those trials are exchangeable they will agree (by definition) that 
certain prior probabilities are equal although they may disagree about 
their size. Moreover: even in the presence of this latter, prior, disagree- 
ment (provided only that they agree which events have non-zero prob- 
ability), their agreement about exchangeability of successive trials will 
entail, when these trials are sufficiently numerous, an almost complete 
agreement on the size of the subjective posterior probability of each 
particular outcome of the experiment; (and also on the 'as if' subjective 
probabilities of hypotheses, as mentioned above). For this posterior prob- 
ability will be approached by that outcome's observed (hence 'objective') 
relative frequency. To put it differently: each of the rational subjects whose 
prior choices reveal agreement that certain trials are exchangeable, will 
come closest to choosing the same bet a posteriori as the best, if each of 
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them computes expected utility on the basis of observed relative frequen- 
cies (which are the same for all subjects) used as posterior probabilities. 4 

May 1974 J A C O B  M A R S C H A K  

University o f  California, 
Los Angeles 

U N I V E R S I T Y  OF C A L I F O R N I A  

W E S T E R N  M A N A G E M E N T  SCIENCE I N S T I T U T E  

I N T E R D I S C I P L I N A R Y  C O L L O Q U I U M  ON 

M A T H E M A T I C S  IN T H E  B E H A V I O R A L  S C I E N C E S  

Los Angeles, February 11, 1966 

MORRIS  H. D E G R O O T  

S T O P P I N G  R U L E S  

(Outline) 

Consider an experimenter who can take independent observations 
g l ,  X2 .... sequentially from a population whose distribution involves 
some unknown parameters. After each observation Xn the experimenter 
can either stop sampling and receive a specified reward r (gl , . . . ,  X,) that 
depends on the values X1,..., X, that he has observed, or pay a specified 
price (typically a constant cost per observation) and observe Xn+ 1. It may 
also be true that at some stage (possibly random) the experimenter is 
forced to stop sampling and accept his reward. The total gain of the 
experimenter when he stops is the reward r (X  1 .... , X,3 that he receives 
minus the amount spent on sampling. The problem is to find a stopping 
rule that maximizes his expected total gain. 
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I. D I S T R I B U T I O N A L  A S S U M P T I O N S  A N D  N O T A T I O N  

In the problem to be discussed, it is assumed that the observations 
2"1, X2 . . . .  are normally distributed with unknown mean 0 and variance 1. 
The parameter 0 is assumed to have a normal prior distribution with 
mean # and variance o -2. Symbolically, 

0 ,-~ N (#, o-2). 

The marginal distribution of  an observation X is then N (/~, 1 + o-2) and 
the posterior distribution of 0 given X = x  is 

o-2 
\ 1 + o-2,1 u 

The symbols q7 and # denote the density function and the distribution 
function of the N (0, 1) distribution. The following function ~k occurs 
throughout the discussion: 

oo 

~k(t) = [" (x -- t) d#( t )  = qT(t) - t[1 - #( t ) ] .  
i t t  

t 

It has the property that 

r ( -  t) = r  + t 

and its derivative is given by 

r  ( t )  = - [1 - a~ ( t ) ] .  

The inverse function ~k-1 is also used. For any numbers x and y, write 

x v y = {the maximum of x and y}.  

I I .  SOME S P E C I F I C  P R O B L E M S  

1. Sampling without recall. In this problem the experimenter's reward 
when he stops is Am, the value of  the last observation that he has taken. 
There is a fixed cost c per observation. The experimenter's total gain when 
he stops is X n - n e .  His position at any stage of the sampling process is 
described by the triple (r, p, o 2) where r is the reward that he will receive 
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if he stops without further sampling and (/z, 0-2) are the parameters of the 
current posterior distribution of 0. 

Let V (r, It, 0-2) denote the value to the experimenter of  being in posi- 
tion (r, ~, 0-2). It is the expected total gain following the optimal proce- 
dure from position (r, It, a2). 

2. Forced stopping. In this problem there is no cost of sampling. How- 
ever, at any stage of  the process, if the experimenter decides to continue 
sampling, there is a fixed probability p ( 0 < p <  1) that he will be forced 
to stop after the next observation and accept its value as his reward. His 
total gain when he stops is X,. His position (r,/t, 0-2) at any stage and its 
value V (r, p, 0 -2) are as defined above. 

3. Sampling with recall. If the experimenter stops sampling after having 
observed )(1 .... , Xn his reward is XI v X2... v X,, the largest of the obser- 
vations that he has taken. There is a fixed cost c per observation. The 
experimenter's total gain when he stops is 

](1 v . . . v  X n - n c .  

His position (r, It, 0-2) at any stage and its value V (r, ~, 0-2) are as defined 
above. 

4. Variations on the above. Further problems involve (i) discounted 
observations, (ii) guaranteed minimum rewards, (iii) a choice of popula- 
tions from which to sample at each stage, (iv) a reward function of the 
form X. vX ._ l  v ... v X . _  k. 

Carnegie Institute of  Technology 

1. M A R S C H A K  

D O  P E R S O N A L  

P R O B A B I L I T I E S  O F  P R O B A B I L I T I E S  

H A V E  A N  O P E R A T I O N A L  M E A N I N G ?  

1. The operational meaning of personal probabilities is easily established 
when they are defined on the set of events that will influence the conse- 
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quences of an ideally 'consistent' ('rational') person's actions. That is, 
the personal probability P (Z) of event Z for consistent Mr Smith can be 
revealed (or at least approximated, as I shall explain presently) by his 
choices: not just by the purely linguistic exercise of asking him to name 
a number, as has been done by some contemporary experimenters, with 
results that can be used to predict future words, not future actions. 

2. However, 'Bayesian statisticians' use, in addition, personal ('prior') 
probabilities defined, not on the set of events, but on the set of prob- 
ability distributions over this set. For example, DeGroot's p and cr char- 
acterize a (normal) prior distribution of the parameter 0 which, in turn, 
characterizes the distribution of the random sequence of identically 
distributed variables, whose values do affect the decision-maker's payoff. 

3. The operational meaning of a prior distribution of distributions, in 
terms of the decision-maker's choices, is not obvious. Yet, after recapit- 
ulating the meaning of personal (and also of objective) probabilities of  
events, I shall try to extend it to the prior distributions of distributions, 
much inspired by a brief exchange of opinions with our speaker today. 

4. Let X be the set of states x of Nature (not controlled by the decision- 
maker). When x is in the subset Z of Xwe say that event Z has happened. 
Thus a probability measure P on Xwill determine the probabilities P (Z), 
P (Z ' )  .... of the events Z, Z ' ,  .... When a person takes an action whose 
consequence if Z happens, is preferable to its consequence if Z does not 
happen, we say that he bets on Z. 

5. Now, a probability measure P on X is called personal with respect 
to Mr Smith if, given any two events Z, Z ' ,  he prefers to bet on Z rather 
than on Z '  whenever P (Z) > P (Z'), and is indifferent when ever P (Z) = 
= P (Z'). (Note again: personal probability is revealed by what the person 
does, not by his stating verbally a number!) It has been shown by F. Ram- 
sey (1926-28), B. de Finetti (1937), L. J. Savage (1954) that, for a person 
obeying the rules of logic supplemented by a few plausible consistency 
postulates, personal probabilities of events, in the sense just stated, do 
exist, along with a numerical utility function on the set of consequences 
of his actions. Utility is defined as a variable, whose expectation (com- 
puted on the basis of personal probabilities) the person's chosen action 
will maximize over the set of all available actions. 

6. Moreover, in the case of certain ideally symmetrical, interchange- 
able events (ideal coins, ideally repeatable samples) rules of logic will 
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make the personal probability of an event the same for all consistent 
persons, thus making this probability 'objective'. 

7. T. Bayes himself 11963), followed by de Finetti (and also by R. Car- 
nap (1962) in a paper presented in this Colloquium, March 10, 1961) 
consideredpersonal probabilities as revealed by choices between bets in- 
volvingdifferent monetary odds. Thus P (Z) = p for a consistent Mr Smith, 
if he accepts any bet on Z in which the ratio of his money losses to his 
money gains is smaller than p/(1 - p ) .  But this presupposes, too narrowly, 
a linear utility function of  money. Let me state a more general approach. 
First establish that Smith is indifferent between betting on a clock's 
twirled hand's stopping within any two equal arcs of  the circumference. 
This will reveal that he assigns certain ideal symmetry properties to the 
physical mechanism used. Now following the spirit of  a suggestion by 
E. Borel (1924) : if Smith prefers betting on event Z ('rain tomorrow')  to 
betting on the hand's stopping within a 30 ~ arc but not  to betting on its 
stopping within a 60 ~ arc, then for him 

1/12 ~< P (Z) ~< 1/6, 

and so on in an obvious succession of  steps. This 'Borelian' procedure 5 is 
analogous to that of  the ear-doctor's assessing your hearing capacity, or 
the analytical chemist's titration (and is subject to the same limitations 
except as an ideal). 

8. Consider now n urns in which the proportions, p, of  red balls are 
equal, respectively, to p~,..., Pn" Suppose you know that one and only one 
of  the n urns is being used in a sequence of  drawings. Let f (p~)= f i  be 
the personal probability you assign to the event ('hypothesis') that the 
urn used is the i-th urn. The function f ( .)  is your  prior probability of  the 
parameter p viewed as an n-valued random variable. We have 

(1) ~ fi = 1 ; f~ -- f (P i )  >>- O, i = 1,.. . ,  n.  
i=1  

You will never find which of  the n events actually takes place, i.e., which 
urn is being used. Therefore the numbers f~ cannot be established directly 
by asking you to choose between bets on the i-th event and on the arcs 
of  our dial. 

9. But here is an indirect method. We shall draw balls, with replacement. 
Before the first drawing, I use on you the Borelian procedure to establish 
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your  personal probability that the ball will be red; call this number r 1. 
Then dear ly  the numbers f~ are related to known numbers rl ,  p l , . . . ,  pn 
by the relation 

(2) r~ = ~ f,p,, 
i = l  

subject to the constraints (1). Let x t =  1 or 0 according as the t- th ball 
drawn is or is not  red. Applying the Bayes theorem (an identity implied 
by the definition of  conditional probabilities), the n posterior probabil- 
ities, given the result xl  of  the first drawing, are (summing here and 
henceforth over i) 

fiPJ~f~Pi if  x~ = 1 ~ i  = 1 
f~ (1 - p i ) / ~ . f ~  (1 - -p i )  if xl  oj n 

Your  personal probability, after the first drawing, that the second drawing 
will be red (x 2 = 1) is therefore equal to 

r2 = r2(1) = ~,f~P~/2fiPi if  xl  = 1 , 

r2 = r2 ( 0 )  = ~ f~p ,  (1 - p i ) / ~ f i  (1 - p i )  if x 1 = 0 . 

I know x t ;  and I establish your  r 2 by the Borelian procedure; we have 
now added one more equation to (1) and (2), with the f i  as unknown and 

rl ,  r2, Pl ,  .... Pn known. In general, writing 

Yt = xl  + x2 + "" + xt, t = 1, 2, . . .  

Yo = 0,  

your  personal probability (ascertainable by the Borelian procedure), 
rt+l, that the (t + 1 ) - t h  ball will be red is 

( 3 )  r t+ 1 = rt+ 1 (Yt)  = y" f~P~'+ 1 (1  - -  p , ) t - , ,  t = O, 1 . . . .  

f ~ p p ( 1  - -  p , ) ' - ' ~  ' 

I f  t + 1 = n - -  1, i.e. if the Borelian procedure was applied n -  1 times (i.e., 
n - 2  drawings were made) we have as many equations as we need to 
determine f l  ..... f , ,  subject to (1). The numbers rt+ a elicited from the 
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consistent man must also obey the inequality in (1). Moreover, his values 
for r,, r,+~ . . . .  must be such that the system of  equations and the in- 
equality are satisfied by some values f l ,  ..-, f , .  Thus if n = 2  and p~ ~Pz  
then (without loss of  generality) pl  > r~ >Pz  and 

f l  = (ra - Pz)/(Pl  - P2) 

f z  = (Pl - rl) / (Pl  - P2), 

and hence, for  n = 2 ,  all the subsequent values r2, ra,. . ,  are fixed without 
ever making a drawing - provided you are 'consistent'. 

However, let p range continuously from 0 to 1. Then the vector [f~] is 
replaced by a density function f (p); or, more generally, we try to find 
the distribution function F (p) f rom the functional equations 

1 

S py,+l (1 -- p)t-Y' dV(p) 
0 

(3') rt+l = 1 , t = 0, 1, ..., T 
j" pY' (1 - p)t-  y, dF (p) 
0 

Can we conjecture that, with T finite, F cannot be ascertained from the 
sequence rl ,  ..., tr+ 1 exactly? And that an approximate solution will, in 
some sense, converge to F as T increases? 

10. Now return to the case of  a finite number n of  hypotheses (i.e. of  
values o f  the parameter p). We can modify our procedure so that no 
actual drawings need take place, even when n > 2. I can use the Borelian 
dial to establish the personal probability q(t, Yt) which you assign to the 
following event: in a sequence of  t drawings with replacement, Yt 
balls will be red. Then 

,,_y, f t \  
(4) q(t, y,) = ,=,~ f~p~"(1 -- PO kYt) ; 

here the integers t and Yt can vary arbitrarily, independently of  n, provided 
t/> 1 and 0 ~< Yt <~ t. We can therefore produce as many as n equations of  
the form (4), all linearly independent in the J]. I f  you are consistent, the 
f i  will satisfy the constraints (1). Moreover any additional equation of  
the form (4) elicited by another application of  the Borel dial should be 
satisfied by the same values of  the f~. 
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11. Again, similarly to the case of (3'), no finite number of such applica- 
tions will suffice to determine the distribution function F (p) when p is 
continuous and (4) becomes 

(4') 
q(t, y t ) 'Yt ! ( t - -  yt)! 

t! 

1 

= fpY'(1 -- p)t-,t dF(p) ,  

0 

with a known number on the left side and a sort of weighted Beta-function 
(with unknown weights) on the right side. Again: will successive approx- 
imations converge to F as the number of pairs (t, Yt) increases? 

12. All this was intended, not to suggest psychological experiments but 
merely to show that operational meaning can be attached to prior prob- 
abilities of statistical parameters. Psychological experiments - observing 
q(t, Yt) in (4) - will most probably yield the result that no mortal is con- 
sistent. Except, of course, the ideal statistician. 

13. In a subsequent discussion, Professor Glenn Graves raised the 
following subtle question. The original consistency postulates have been 
defined for events on which direct bets were possible. The prior and poste- 
rior probabilities of the Bayes' theorem had to be understood accord- 
ingly. On the other hand in stating that the consistent man's responses 
rt, Yt must satisfy certain constraints (as in the paragraphs following 
Equation (3) and Equation (4), respectively), Bayes theorem was applied 
to 'events' (viz., sets of values of the parameter p) on which only indirect 
bets can be taken, in the sense described above. But: do those constraints 
follow from the original postulates, or must the latter be replaced by 
stronger ones? 

A C I R C U L A R  L E T T E R  

I would appreciate it if you would give your opinion on the question 
raised in the enclosed mimeographed note of mine. It was written in 
connection with a talk delivered by Morris DeGroot in which he used the 
Bayesian approach. The note is only loosely related to the special topic 
of that talk (Stopping Rules). It deals with a general difficulty which has 
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bothered me and, in the last paragraph, with a further logical question 
raised by G. Graves. 

I f  you would care to comment, kindly state in the body of  your  letter 
or on the enclosed paper, whether you would permit me to circulate your  
comments to these same people. 

9 M a y  1966 University of  California, 
Los Angeles 

K A R L  B O R C H  

The mathematics of  your intriguing note about  personal probabilities is 
obviously related to what the statisticians used to call 'The Problem of 
Moments '  some 30 years ago. 

Your Equations (3') make it possible to determine the T +  1 first 
moments of  the distribution F (p) - or if you like, the T + 1 first coeffi- 
cients in the power series of  the characteristic function. The other coeffi- 
cients can be chosen arbitrarily. Hence there will be an infinity of  distri- 
butions F(p) compatible with a consistent sequence r l . . .  rr+ 1. 

The convergence should follow from the fact that a distribution is 
uniquely determined by its moments - or if you prefer - by its character- 
istic function. 

These superficial remarks do of  course gloss over a number of  difficul- 
ties. The moments determined by (3') may, for instance, give a distribu- 
tion defined over a greater domain than (0, 1). I am not certain how this 
should be interpreted. 

You should, of  course, feel free to circulate this letter if you think it is 
useful. 

6 June 1966 The Norwegian School of Economics 
and Business Administration, Bergen 
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H E R M A N  C H E R N O F F  

The question you raised in the colloquium comes up also in problems of 
Empirical Bayes or Compound Decision Theory. There is a basic Identi- 
fiability problem underlying it. In the binomial case one can estimate 
F (p) by knowing its moments. Thus in Equation (4'), the sequence 

1 

t) = tp  t dF(p), t = 1, 2 q(t, 
o 

determines F, and a finite subsequence can be used to approximate F. 
In Compound Decision problems it is typical that one is mainly in- 

terested in a particular function of F, e.g., SP dE(p). Suppose as a typical 
problem, that n coins arrive each with a possibly different value for the 
probability of head, p, (presumed to be independently selected from an 
unknown distribution F (p)). Suppose each coin is tossed once. Then the 
proportion of heads observed is an estimate of Sp dF (p). 

If the appropriate decisions depended on ~pZ dF (p), the experimental 
setup described above seems inadequate to get a 'good' estimate of the 
desired quantity. 

Another example of lack of identifiability which is near and dear to me 
stems from a problem in scoring multiple choice questionnaires. Suppose 
a question can be answered True or False. Assume that each student 
answers the question correctly if he knows the answer and guesses at ran- 
dom otherwise. If 50~ of the students answer incorrectly, it is evident that 
almost no one knew the answer and an appropriate procedure would be 
to mark everyone wrong even if they achieved the correct answer. The 
appropriate way of handling the students depends on your estimate of 2, 
the proportion of the students who know the correct answer; and 2 may 
be estimated in terms of the directly observable proportion of students 
who answer correctly. A more sophisticated version gives lack of identi- 
fiability. Suppose that there are three choices A, B, C of which A is cor- 
rect. The model assumes that students are of four types. Those who know 
the answer and answer correctly (proportion 21). Those who know the 
answer is A or B and guess with probability �89 �89 between them (propor- 
tion 22), those who know the answer is A and C and guess with probabili- 
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ty �89 �89 between them (proportion 23). Finally there are those with no 
knowledge and guess with equal probability among A, B, C (propor- 
tion 24= 1 - 2 1 - 2 2 - 2 a ) .  If 21, 22, 2a, 24 were known, a 'good' way to 
grade the individual students would be easily determined. The data only 
supply enough information to estimate two of the three unknown param- 
eters. The multiple choice scorer can resolve his question partially by 
using a minimax approach. However, for the Bayesian to recover the 
entire prior distribution, it is required that a sufficient body of experi- 
mental data be available to be tapped. 

3 June 1966 Stanford University 

M O R R I S  DE G R O O T  

Professor Marschak's comments are very closely related to the important 
work of de Finetti (1937), revised and translated in Kyburg and Smokier 
(1964), and discussed also by Savage (1954), Ch. 3, See. 7. This work, 
which gives strong support to the Bayesian theory of statistics, shows 
that if a person's probabilities on the outcomes of a sequence of coin 
tossings satisfy certain conditions of symmetry, or exchangeability, then 
his probabilities can be represented by the conditional distributions given 
a fictional 'unknown p' of the coin, together with a unique 'prior distribu- 
tion ofp ' .  I agree with Professor Marschak in emphasizing that, in general, 
an infinite sequence of tosses is required to learn this prior distribution. 

28 February 1966 Carnegie Institute of  Technology 
and Stanford University 

R O B E R T  D O R F M A N  

Thank you for sending me your note on personal probabilities of  prob- 
abilities. I found it very ingenious and very convincing, and about as 
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lucid a description of  how to generate subjective probabilities as I have 
yet seen. 

My only slight divergence from you is my conviction that the world 
about  which we make decisions consists of  nothing but  probability dis- 
tributions. I f  I bet indifferently on red and black at roulette, I am dis- 
dosing my belief that the wheel is well-balanced, whereas my neighbor 
who bets a system discloses his belief that the wheel obeys a nonstationary 
stochastic process. I f  I seem to bet on 'rain tomorrow'  I am really ex- 
pressing my belief that today's weather system is suck that probability 
of  rain tomorrow is high. In this sense all we ever reveal is our personal 
probabilities of  probabilities, so that the case you discuss is the funda- 
mental case that people have been discussing (mostly implicitly) all along. 
What  the recorded experiments disclose is actually your r~ rather than Pl. 

No objection to circulation if you think it worthwhile. My personal 
probability of  the probability of  that event is low. 

19 May 1966 Harvard University 

W A R D  E D W A R D S  

I have read with much interest your  comments on DeGroot ' s  paper, and 
have a few comments. Please feel free to make any use of  them that may 
be convenient. 

I am in no serious disagreement with your  conclusion, or with the 
arguments that lead you to it. However, I feel that you are working un- 
necessarily hard by defining an unnecessarily restricted universe to be 
interested in. You have chosen to talk about  questions in which the popu- 
lation characteristic of  interest is not  knowable. Many questions are like 
that, at least in practice. But many others are not at all like that, and the 
situations in which you can conveniently get at the population param- 
eter offer useful conceptual devices for thinking about  those in which you 
cannot. 

The problem arises first in your  second paragraph, where you talk of 
prior distributions as sets of distributions over sets of  events. When I 
think of  a prior, or a posterior, distribution, I think of  it as my opinion 
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about some well-defined issue about which I am uncertain. If, for example, 
I am uncertain about whether this bookbag contains 700 red and 300 blue 
chips, or 700 blue and 300 red, my uncertainty should be describable by 
a number. (It is almost meaningless to call this number a prior or a poste- 
rior distribution or opinion. All opinions are posterior to some informa- 
tion and prior to other information. Prior distributions occupy no special 
status that I know of in Bayesian thinking.) 

My opinions can be modified by means of information that for me 
bears on them. Sometimes that information bears on them so potently 
(in my opinion) that my posterior distribution would approach I (for 
discrete hypotheses) or would have a peak higher than any preassigned 
number (for continuous hypotheses). In the example, such an item of in- 
formation could be obtained by dumping out the bag and counting the 
chips. Other kinds of information, such as might be obtained by sampling 
with replacement, are less convincing. I see no sharp formal lines dif- 
ferentiating overwhelming from non-overwhelming evidence. Of course, 
such lines can easily be constructed, and it makes rather little difference 
what choice of operational definition of 'overwhelming' is used, so long 
as the arbitrariness of that definition is recognized. For illustration, I 
shall arbitrarily define evidence overwhelming for a discrimination 
between two hypotheses as evidence sufficient to change prior odds of 
1 : 1 into posterior odds of at least 1 000 000: 1 as between that pair of 
hypotheses. For me, counting the chips in the bookbag easily meets that 
test - given the truth of the model of the data-generating process that I am 
tentatively working within. 

Opinions characterize me, not the bookbag. My opinions about either 
the proportion of red chips in the bookbag or the probability that the 
next chip to be sampled will be red can be defined, and measured, only by 
observing my behavior. (Discussion of what behavior to observe comes 
later in this letter.) I see absolutely no formal difference between my 
opinions about the population parameter and about the identity of the 
next sample. There is, of course, an important practical point: I have a 
formal model that implies for each possible bookbag composition, what 
the probability is that the next sample will be red. I hold that model as a 
working hypothesis with high probability. Thus some internal consistency 
rules link opinions about samples (data) with opinions about bookbag 
compositions (hypotheses). However, these internal consistency rules 
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work in both directions; specification of P (D I H) by itself specifies 
neither P (H) nor P (D), but to some extent constrains both, given the 
existence of some data. 

Now we come to the question of what observations you might make in 
order to discover my opinions. Such observations are numerous. By far 
the simplest procedure, of course, is simply to ask me. For some reason 
you object to this. You make a distinction which I cannot understand 
between what you call words and what you call actions. Why aren't words 
actions? You seem to feel that if I discover that a subject is indifferent 
between betting on A and betting on A, then I am justified in saying that 
A and X are equally likely, for him. Yet you deny him the privilege 
of making, or at any rate of communicating to you, the same inference. 

I feel that many different actions, some performed with tongue and 
some not, some with immediate consequences and some not, are suitable 
for indicating what my, or anyone else's opinions are. If the person being 
studied is an ideally consistent man, then those opinions will obey all 
appropriate consistency rules, including the ones that permit specification 
of coherence between words and betting behavior. If  he is a real man, he 
will of course be inconsistent. It is an empirical question, not to be an- 
swered from the armchair, whether that subset of his behaviors defined 
by linguistic responses having no immediate consequences will or will not 
be consistent with other subsets of his behavior, such as are studied in 
so-called choice experiments. I know of absolutely no empirical evidence 
indicating that such verbal responses are less consistent with choices than 
choices are with one another; in fact, if anything I think the evidence is in 
the other direction. 

The set of responses you have proposed is, of course, in principle a 
usable set. Of course, it doesn't really meet your objection to the inter- 
pretation in terms of bets without the auxiliary Borel dial. You require, 
as a first step, establishment of indifference between equal arcs. Indiffer- 
ence is not observable in human behavior; it must be inferred from easily 
switchable preferences, as in the Davidson, Suppes, and Siegel experiment. 
But given that kind of procedure and a consistent subject, nothing more is 
required to obtain utility-of-money functions. And given those functions, 
the definition of odds in terms of acceptable bets works fine, using utiles 
instead of dollars in the relevant ratios. In other words, I see no reason 
for constant reference to the Borel dial. Instead, the indifference-defining 
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operation can be used to measure the utility of money, and thereafter 
utilities instead of dollars can be used in a bet-based definition of  prob- 
ability. Or, instead, you could simply ask consistent people to estimae 
numbers .. . .  Of course any of these procedures, applied to real men, will 
produce inconsistencies. Any single procedure will produce internal in- 
consistencies; any pair of procedures will produce inconsistencies between 
the results of the two procedures. From this point of view, I hold no one 
procedure inherently more valid than any other. Your procedure of using 
sample urns, observing prior and posterior distributions, and inferring 
what the 'first' prior distribution must have been, is feasible. But why be so 
round-about? Why deny yourself the freedom to dump out those urns and 
count the balls in them ? Then you can indeed observe what the true event is, 
and so can settle bets. I see no difference between that procedure and the 
sampling procedure you propose, except that the sampling procedure is 
a lot more complex. But, of course, I see no difference of formal or philo- 
sophical status between the events that I have been calling data and those 
that I have been calling hypotheses. And that brings us back to where we 
started. 

I know nothing about Professor Graves's question. 

18 May 1966 University o f  Michigan 

T. S. F E R G U S O N  

Here are the comments you requested on your remarks on Probabilities 
of Distributions. 

(1) Let X~, X2 .. . .  be independent Bernoulli trials with probability 0 of 
success, and let "c (0) be a prior distribution. The mathematical problem 
may be stated: given sufficiently accurate information on the marginal 
distribution of R'l, X2,..., X n, can one determine "c(0) sufficiently accu- 
rately? For fixed n, obviously not: for n =  1, all that can be determined 
accurately is P (X = 1)= S0 d-c (0), namely, the mean of z. However, from 
the marginal distribution of  X~ .. . . .  X~, one can determine the first n 
moments of  z, so that for sufficiently large n and sufficiently accurate in- 
formation on the first n moments, z may be determined as accurately as 
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desired, because it, being a bounded distribution, is determined 
moments. 

(2) A procedure for estimating x is as follows. Let 

by its 

m ~ _ - -  �9 

X. n t  
Then l 

P <. t) = Po (:e. t) d ,  (0) 
i r  
0 

and [ 0  if t<O 
Po(J?.~<t)--*[1/2 if t = 0  

1 if t>O. 
Hence 

�9 (t +) + dof 
P (a~. ~ t) --* ----- "c (t) 

2 

so that if n is chosen so large that [P ()~, <~ t ) -  z (t)l < e/2, and P ()~, ~< t) 
is determined to within e/2, then z(t) is determined to within e, as the 
quantity P (g,~<t). 

(3) This problem is related to the problem of  identifying and estimating 
a mixing distribution. See for example Teicher (Ann. Math. Stat., 1963, 
pp. 1265-1269). The general problem is: given Fo(x), to estimate 1:(0) 
from a sample from the distribution H(x)=SFo(X ) dz(0). This corre- 
sponds to the above problem for n--1. The distribution x can be so 
estimated for many kernels, Fo(x ). See Gaffey (Ann. Math. Stat., 1959, 
pp. 198--205) for the case where Fe(x ) is normal with mean 0 and vari- 
ance 1. A student of mine, Carl Maltz, has found corresponding methods 
for other families of  distributions - to appear in his Ph. D. thesis. 

(4) The distribution with density 

f(x[O)=~�89 for - - l < ~ x ~ < l  
/0 otherwise 

where - 1 ~< 0 ~ 1, like the Bernoulli, does not  lend itself to estimating the 
mixing distribution, even though there are an infinity of  values, h (x)=  
=If  (x l O) dz(0) to be used. This is because h(x)=�89 +xSO dz(0)), so 
again only the mean of z may be determined. This corresponds to n = 1. 

I f  n is allowed to be arbitrary, then again z may be estimated. One 
procedure for accomplishing this is to transform to the Bernoulli case, 
calling X >/0 a success, and X < 0 a failure. Then since the distribution of 
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the probability of  success, 1/2+0/4,  may be approximated, so may the 
distribution of  0. 

This procedure extends to all cases where 0 is identifiable from Fo(x) 
for x in some denumerable set, D (i.e., when 0 can be found knowing the 
numbers Fo (x) for x in/9). For  example, if the sample space is Euclidean, 
and if  0 is identifiable, then z may be approximated. 

15 June 1966 University of California, 
Los Angeles 

K O I C H I  M I Y A S A W A  

I f  I am not misunderstanding Professor Marschak's note, his issue comes 
from the following postulate: in order that the personal probability of  
an event Z has an operational meaning, the event should be a real one. 
Here by a real event I mean one about  which the person can know it 
obtains or not after all. 

I f  we admit non-real events in determining their personal probabilities 
by the choice behavior of  the person among bets on these events, then it 
seems to me that there is no need to raise a question on the operational 
meaning of  personal probabilities of  probabilities. 

I would like to admit the reasonable person Mr Smith can contemplate 
an imaginary or non-real bet which is assumed to give a prize to him if 
the t lue ratio p of  the red balls in the urn lies between, say, 10~o and 30~o 
even though he might never know the true value of p and can show his 
choice between the bet and a bet which is defined by means of  a clock's 
twirled hand. I f  we do not admit such bets on non-real events in opera- 
tional definition of  personal probability, I do not think the personal 
probability, with respect to Mr Smith who is going to board the plane, 
of  a crash of  the plane can have an operational meaning, since Mr Smith 
cannot realize the event Z that the plane will crash obtains or not until 
he safely arrives at the destination by the plane or dies by a crash of  
the plane. 

21 May 1966 University of Tokyo 



142 JACOB M A R S C H A K  AND OTHERS 

P A U L  R A N D O L P H  

... Although I have no answers to the questions posed by Marschak, I do 
have a few comments to make and a few additional questions to pose. In 
his comments Marschak suggests that the prior distribution function be 
denoted by F. I t  has been suggested by many (e.g., see Good,  1965) that 
F b e  a beta form, proportional  to p ~ ( 1  _p)m2 where m 1 > - 1 and m2> 
> - 1. I f  this assumption be made, can the two parameters, rn~ and m2, 
of  F be determined from rt+ ~ using Equation (3') o f  Marschak or f rom 
Equation (4')? I think not. For  example, suppose t =0 .  Then since 

f ml!m2!  pro1(1 _ p)~2 dp = (rnl + m2 + 1)! 

we have the probability that the first ball is red as 

m t + l  
/ ' I  

m~ + m2 + 2 

and, of  course, the probability of  not  red is 

m 2 + l  
h =  

ml + m2 + 2 

Can one specify rl and f~ and from this determine m~ and m27 The 
answer is obviously no, and thus the prior distribution function F is still 
unknown. 

Of course, if a red is observed on the first sample, the probability of  
a red the second time is now 

r2(1 ) = ml + 2 
m 1 + m 2 + 3 

and the probability of  a not  red is 

m 2 +  1 
e~ (1)  = 

ml + m2 q- 3" 

I f  now, the experimenter had been required to state his personal prob- 



P E R S O N A L  P R O B A B I L I T I E S  OF P R O B A B I L I T I E S  143 

abilities of  a red on the first draw and the conditional probability of  a 
red on the second draw, given that a red had already been observed on 
the first draw, then we have rn~ and m 2 and thus F. 

However, I think this is putting quite a strain on the imagination of the 
experimenter. Perhaps there is another way out. 

I f  we examine 

rnl + yt  + l 
r,+ 1 (Y~) = 

r e + t + 2  

m2 + ( t -  yt) + l 
e,+ ~ (y , )  = 

r n + t + 2  

where m = m x  +m2 ,  we see that rn~ and m 2 play a role similar to that of  
Yt and t - Y t ,  respectively. Can we conclude then that m~ and m 2 repre- 
sent the number of  reds and non-reds that the experimenter thinks he 
would have seen from a sample of  size m? Or, since 

m 1 + l  
/ ' 1  ~--" - -  m + 2 '  

if  the experimenter is willing to specify his personal probability, rx, can 
we also let him specify m as his degree of confidence that this is the cor- 
rect r 1 ? I f  so, would m = 0  imply no confidence? For  m = 0 ,  ml and m~ 
can vary from - 1 to + 1. It is a bit awkward to try to interpret a value 
such as rnx =0.5 to be the number of  red bails one can expect in 0 draws. 
Also, what is the interpretation of negative rn ? 

If  this is difficult, suppose tile experimenter is unwilling or unable to 
guess r but  is willing to try to specify a prior distribution for r, say ~( r ) .  
I f  this is done, will this be enough to specify F ?  

Do you suppose the following is fair? Suppose the experimenter has no 
knowledge and no confidence. Thus, he may take r~ = �89 and m = 0. This 
implies that rn 1 = 0  and m 2 = 0  and, therefore, the prior density is the 
uniform, that is {~ pc[0,  l] 

f (P) = otherwise. 

Suppose the first observation was red. Then we would expect 

, 2  ( I )  = 2 /3 .  
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But, suppose that  after seeing the first observation the experimenter says: 
"Oops ,  I think I goofed. I think rl  should be something else, such as 
rx =0.60. Fur thermore  since I have some information f rom one observa- 

t ion I will take m = 1". I f  he is allowed to do this, then we would allow 

him to change ml  and m2 to 

ms = 0.8 m 2 = 0 . 2 .  

This makes 

2.1 0.8 p)0.2 
f (P)  = (0.8)!(0.2)! p (1 -- 

which in turn gives 

2.8 
r2 (1) = - -  = 0.7. 

4 

Continuing, after observing the second observation should we allow him 
to change his mind again regarding r~ ? 

A similarly interesting set of  questions arises when urns do not  contain 
balls but  disks with numbers,  such that  p=(p~, P2, ".,Pk) is the vector 
of  probabilities p j  that  a disk drawn at r andom is equal to j ,  j = 1, 2 . . . . .  k. 
I t  is evident that  p is an element of  the simplex 

S =  p : p j > / 0 ,  p j = l  . 
j= 

Then, suppose n observations are made, x~, x2 . . . . .  x., of  which n i are 
equal to j ;  that  is, n i is the cardinality of  the set {xi:x~= j}.  Then, the 
probabil i ty that  the (n + 1)th disk is j is 

r pnlpn2 nj+J. 
r.+x(j)=Js 1 2 ...Pj ...p~dF(p) 

2... pT. . .  p"; e (p) " 

Suppose as before we let f (p) be proport ional  to 

rill m2 
Px P2 -.- p~,k 

where mj > - 1 for all j .  Then by the Dirichlet integral (Dirichlet, Comp. 
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Rend. Acad. Sci., 1839) we have 

r,+ t (j) mj + nj + l 
k + m + n  

where 

Then, 

k 

/7 ' /= Z Trtj. 
j = l  

j = l ,  2 .....  k 

m~+ 1 
ro (j)  -- k + m 

We could give values to to ( j ) ,  j = l ,  2 ..... k, but as before, this would 
not give F(p) .  If we could specify the personal probabilities to ( j )  and 
also the confidence value m, then of course we know F. 

Suppose our personal feelings are only that ro ( j )  can be approximated 
quite nicely by a normal distribution, that is, 

j+1/2 

r o ( j ) =  f ~ exp ( - -  (x --/~)2). 
trx/2u \ 2a 2 

j -  112 

Indeed, this is suggested by J. Heller (1960) for the scheduling problem. 
If p and 0 "2 a re  not known, can we take n observations, find the sample 
mean x, and variance s, as the maximum likelihood estimates of/t and tr 2, 
respectively, and use these for computing good values of r o (j)  ? Perhaps, 
this is feasible when one wishes to use these prior distributions for tests 
of hypotheses, such as stopping rules. 

On the other hand, would we want to digress one step and require the 
experimenter to specify a prior distribution for/~ and cr ? What kind of an 
operational meaning could we ascribe to these probabilities ? I do not 
know. 

One last remark: I have developed stopping rules for the mnltinomial. 
For the case of complete ignorance ( r j=  1/k, j = 1 .... , k) and no confi- 
dence (m =0) I found that the convergence was exasperatingly slow. I 
certainly cannot show that it is right. I am merely using the age-old engi- 
neering motto 'if it works, it is right'. So far, the results are very en- 
couraging. 

26 September 1966 New Mexico State University 
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L E O N A R D  J. S A V A G E  

Almost all that you inquire about has long been well studied under the 
rubric of exchangeable processes. A now obsolete term is sequences of 
equivalent events. Not the earliest, but one of the most thorough and 
important references, is de Finetti's masterpiece, 'La Pr6vision' (1937), in 
the Institut Henri Poincar6, which was translated and brought up to 
date under de Finetti's supervision in the anthology edited by Kyburg 
and Smokier (1964). Section 3.7 of my book, The Foundations of Statis- 
tics (1954) is devoted to the same topic. Though these references should 
put you in almost complete possession of the facts, and though others 
to whom you circulated your manuscript, 'Do personal probabilities of 
probabilities have an operational meaning', may already have covered 
the ground pretty well, I shall make some of the obvious applications of 
the theory of exchangeable sequences of events to various passages of 
your manuscript. 

(1) With reference to your Item 2, many Bayesian statisticians, espe- 
cially those directly influenced by de Finetti, recognize clearly that refer- 
ences to unknown 0 may, depending on the context, be merely a figur- 
ative way of describing a sequence of dependent random variables, or 
something of the sort. 

If, for example, I say that the x i are normally distributed with unit 
variance around 0 and that 0 is for me normally distributed around # 
with standard deviation a, I may mean only that the x's are distributed 
as they would be were an actual physical constant 0 about which my 
opinion was as described, and with knowledge of which, the x~'s would 
for me have independent normal unit distributions about 0. The actual 
upshot of this is that the x~'s for me are variables with a joint normal dis- 
tribution such that each has mean/t  and variance 1 +~2, and such that 
the covariance between pairs of the x~'s is a z. 

(2) Your Item 3. Some of us Bayesians believe that there is no in- 
tellectual need to, or possibility of, introducing any other kind of prob- 
ability than personal probability. That is not a thesis to be argued here; 
for the moment I want only to point out that the thesis cannot even be 
heard, let alone judged, without an understanding of exchangeable events. 

To illustrate, for us, the situation alluded to in your Item 6 is this. In 
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certain cases, a person will judge a sequence of events to be, for  him, 
both exchangeable and independent with a specified probability. These 
assumptions together with the rules of  logic imply all the probabilities 
associated with his sequence of  events. These probabilities are 'objective' 
in the trivial sense that any person who shares the original person's 
underlying opinions will share with him the implications of  those opin- 
ions - that can be said about  any system of  opinions. 

(3) Your Item 7. Historical questions can be delicate and dangerous. 
I have read Bayes' paper but  discerned no evidence that Bayes regarded 
probability as personal, or subjective. It would be worth some trouble 
to document the point one way or the other. 

(4) Your Item 9. The indirect method initiated here is a little more 
complicated and confusing than need be. It  would be enough to ask the 
person once and for all for his personal probability that all k of  the first 
k balls drawn will be red, for each k from 1 through n -  1. Calling these 
numbers r (k), the numbers f~ are related to the known numbers 
r (k), Pl . . . .  , p ,  by the relations 

(2') r (k) --- ~ f~pk, k = 0 . . . . .  n - 1 
i = l  

where it is to be understood that the heretofore undefined r (0) is 1. If  
none of the p~ are equal to each other, this system of  n linear equations 
and unknowns has a unique solution, according to the theory of the 
van der Monde determinant. Just when it has a nonnegative solution, I do 
not know but could perhaps look up. 

A deeper analysis, more in the spirit of  your  (3') is that the infinite 
sequence of  r (k) constitute the moments of  F, which according to 
Hausdorff  are sufficient to characterize F. 

Such quantities as those in the numerator and in the denominator of  
(3') are obviously inferable f rom moments, and of  course have the mo- 
ments as special cases. Not  just any sequence of  numbers r (k) can be the 
moments of  a distribution; your  (1) corresponds to the monotony of  F, 
which must be respected. It has been known at least since Hausdorff  that 
the necessary and sufficient condition for this is that the quantities that 
appear in(Y)  all be nonnegative. This is commonly expressed in two ways 
as follows: 
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r o§ b, 

But Q (a, b) is the probability of  a reds followed by b blacks. Whence 
Q(a, b)=Q(a+ 1, b)+Q(a, b + l ) .  Therefore, 

a(a+ 1, b ) =  a ( a , b ) - a ( a , b +  1 ) - -Aba(a ,b )  
a (0 ,  b) = r(b)>~O 
Q(1, b)= - Abr(b) >t0 
at2, b) =Air(b) >10 
, . .  

a(a, b) = ( -  1)* A~r(b) >10. 

(5) End of  your Item 9. As has already been implied, the entire se- 
quence of r (k) is sufficient to determine F. Your rj are a random sequence, 
but the first T elements of  it do always exactly determine the first T mo- 
ments r (k). Therefore the entire sequence of  r j, exactly like the r (k), 
do determine the F, and it is actually true that less and less latitude for 
F is available as T increases (see Shohat and Tamarkin, The Problem 
of Moments, p. 77ff., Amer. Math. Society, New York, 1950). Occasion- 
ally, a finite number of r (k), and therefore of  r~, is sufficient to deter- 
mine F exactly. If, for example, r (2)= r (1)2, then necessarily F is entirely 
concentrated at the point r (1), so r (k)= r (1) k for all k. Again, if the 
person feels certain that the balls are either all black or all red, that will 
be promptly revealed by the condition that r (1)= r (2). I think of a few 
other exceptional cases by combining the ones already mentioned. The 
general situation can probably be dug out of  the book by Shohat and 
Tamarkin. 

(6) Your Items 10 and 11. The probability that  a specific number Yt of 
balls will be red in the first t drawings is, except for an uninteresting 
binomial-coefficient factor, the same as the probability that a specific 
subset of  balls with Yt numbers will constitute exactly the red ones. These 
latter numbers, my Q (a, b), are for some purpose easier to deal with, 
because the binomial coefficient is left out. The question raised in your 
Item U is now seen to be the same as the one discussed in my preced- 
ing point. 
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(7) It is important to realize that the question with which your note 
ends is to be answered in the negative. No new postulates are needed. If 
a person associates probabilities with a sequence of events xi, and if the 
events are exchangeable, that is if the probability for the person of any 
finite pattern of successes and failures depends only on the numbers of 
successes and failures involved and not on their order, then (and only 
then) will there be an underlying F. The entire system of inequalities 
needed is only that the Q (a, b) be nonnegative, but Q (a, b) is simply the 
probability for the person of a specific sequence involving a successes 
and b failures. 

15 June 1966 Yale University 

R O B E R T  S C H L A I F E R  

If  we are talking about subjective probabilities as a part of a methodology 
for thinking through to decisions and not as part of a model for pre- 
dicting decisions, then I am afraid that my reaction to your discussion 
of Mr de Groot's talk is that I just cannot see or feel that there is any real 
problem to be discussed. 

First, it seems to me clear that many probabilities for observable 
events cannot be verified by actually observing betting behavior. If  I 
think that promotional campaign A gives a �89 chance of 'success' while 
promotional campaign B gives a �88 chance of success, and if after taking 
costs into account I analyze my decision problem and decide to use strat- 
egy A, you cannot observationally verify the subjective probability �88 that 
I assigned to success with promotional campaign B. But when I am ana- 
lyzing my decision problem I feel that both my probabilities have exactly 
the same kind of meaning to me; and since I am making the decision, I 
don't really care at all whether some observer will or will not be able to 
'verify' one, both, or neither of my probabilities after my decision has 
been made. 

As regards distributions of unknowable parameters of processes such 
as the Bernoulli, I am again unable to feel any real problem for a decision 
maker as opposed to a decision observer. I can imagine betting on the 
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event r successes in n trials just as well when I know that the n trials will 
not  really be made as I can when I know that they will really be made 
- the only thing that counts is the fact that they have not yet been made. 
The meaning to me of  my probability for r heads in n trials does not  
depend at all on whether the trials will actually be made. I 'm not  quite 
so sure that  I know what I mean by a fraction p of  heads in an infinite 
number of  trials, but  I can always think about the fraction p '  in a googol- 
plex of  trials and then argue purely mathematically that I will make no 
error of  practical interest if I assign to the parameter p the same distribu- 
tion that I assessed for p' .  

You  are more than welcome to make any use you like of  these remarks, 
for the triviality of  which I apologize. 

27 June 1966 Harvard University 

R O B E R T  L. W I N K L E R  

Please excuse my delay in responding to your  'Round  Robin'.  I t  seems to 
me that the verbal approach need not  be rejected, although it apparently 
has been rejected in the development of  the personalistic theory (de 
Finetti, 1937; Savage, 1954). The criticism of  the verbal approach, as I 
see it, centers on the claim that we have no way of  knowing if the verbal 
answers are in accordance with the assessor's beliefs and judgements - 
indeed, the assessor does not  necessarily have any incentive to make his 
answers correspond with his beliefs and judgments. 

In light of  recent work by de Finetti regarding scoring rules, or penalty 
functions, it appears that  personal probabilities can be given an opera- 
tional meaning in terms of  verbal answers. I f  a reward (or punishment) is 
determined from the assessor's answers according to some scoring rule 
which is so constructed as to oblige the assessor to make his answers be 
in accordance with his beliefs and judgements, then the element of in- 
centive is present and the criticism removed. 

Unfortunately, with the penalty functions, as with the betting rules, 
knowledge of  an 'actual value' is necessary to implement the methods. 
The 'actual value' is needed to determine the winner of the bet  or to 
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determine the score obtained (and the resulting reward or punishment) 
through the penalty functions. Unless other penalty functions (e.g., 
dependent upon sample results) can be developed, then we are still faced 
with the problems discussed in your note. 

A final note is that the problem of 'actual values' seems to have been 
ignored in the modification presented in your Item 10. If no actual 
drawings are to take place, what incentive does the assessor have to make 
careful assessments? And if this is so, why is this any improvement over 
the verbal approach? Of course, the assessor might take the matter seri- 
ously for a time; but eventually he would find that no drawings were to 
be made, and he might then lose interest. In this case (the modification), 
it seems that the threat of actual drawings is used to provide incentive. 
Otherwise, this case could be extended to the ease where no actual 
drawings are possible. 

These comments have been scattered and not directly related to the 
actual questions posed in the note. Nevertheless, if you think they are of 
any value, feel free to circulate them in the 'Round Robin'. Since I am 
most interested in the questions posed (and left unanswered by me) I 
look forward to reading the comments of other participants. 

10 August 1966 Indiana University, Bloomington 

N O T E S  

1 On the Colloquium, now 14 years in existence, see J. Marschak (1972). 
2 I follow here, in essence, a lecture delivered at  Columbia University in 1950 and 
published in 1954. See Bibliography. 
a This is meant  to apply to 'stochastic'  theories of  choice - see also p. 99 of  Block and 
Marschak (1960); but  it applies also to non-stochastic models. 
4 Only finite sets of  events have been considered here and, for example, in J. Marschak 
(1968), p. 49; (1970), Section 6; (1973); and  J. Marschak and R. Radner  (1972), Chap- 
ter II, Sections 8-11. 
5 The procedure has actually been applied by StaB1 yon Holstein (1970). See also 
Savage (1971). 
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