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ABSTRACT

A class of discrete event (or point) processes are introduced that arise from
an underlying diffusion-threshold process. This approach permits the natural
incorporation of control through the evolution of a controlled diffusion. The gen-
eral formulation is indicated, and a specific class is described where particular
control theoretic results have been obtained. This general viewpoint is consistent
with many applications where the rate at which discrete events occur is influ-

enced by an underlying dynamic process.
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1. Introduction

In this paper, 2 new approach to the formulation of controlled stochastic
discrete event processes is proposed. Included in this class of processes are con-
trolled queues and controlled renewal processes. Since such stochastic processes
“have wide applicability as models in manufacturing, operations research and com-
puter science (inventory, scheduling, production lines, reliability, waiting lines,
etc.) an attempt to incorporate explicit control mechanisms into such processes is

of substantial intellectual and practical interest.

Our intention is not only to introduce control mechanisms such that discrete
control parameters can be adjusted, but it is also to allow éhe incorporation of
system adaptivity based on information feedback. Such control capability goes
beyond the selection of stopping times, routing strategies, or other discrete con-
trol actions; in particular a mechanism is proposed which allows the introduction
of a general class of feedback control actions which influences the rate of evolu-

tion of the discrete event process.

The basic idea proposed in the paper is that discrete events arise as a result
of some causal mechanism which can, in many cases, be modeled by a continuous
time controlled (stochastic) dynamical system. It is a natural view that discrete
events occur at times when the solution of the underlying dynamical system satis-
fies a specified condition. Control mechanisms can be introduced into the under-

lying continuous time dynamical system so that the control directly affects the
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evolution of the underlying dynamics and indirectly affects the evolution rate of
the discrete event process. In addition, the control action in the underlying
dynamical system may depend on feedback information consisting of the history
of the discrete event process and/or the history of the underlying dynamical sys-
tem. That is, feedback control may result in closed loop coupling between the

discrete event process and the underlying controlled dynamics.

2. The DifTusion-Threshold Process

Let z, denote the solution to the controlled stochastic differential equation
dz, = b(z;, u;)dt + oz, , v, )dw, (1)

corresponding to zy = z,. Define the stopping time T'; > 0 by
Tl=inf{t >0 g(z,)=0} (2)

where b: R?2 — R! is the drift function, o: R2 — R! is the diffusion function,
and ¢: R! — R! is the stopping function; here w, is a standard Brownian

motion. At time T',, the diffusion process is reinitialized to zp = X, and gz,
1

continues to evolve according to equation (1) until the stopping condition is again
satisfied, defining T9 > T,. Continuing in this way, the processes z,, ¢ > 0,
and {T;, +=0,1,2, - - - } are successively defined, with Ty = 0. Thus, z,, ¢ > 0,
is a controlled diffusion [5,6], satisfying equation (1) except at T;, i=0,1,2, - - -,
where it may be discontinuous; and {T;, ¥=0,1,2, - - - } are defined recursively

by

2 Discrete Events
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1= ingft> Ty glz,) = 0 4

" Assume the reinitialization sequence {X;, +=0,1,2, - - - } is a set of independent

random variables.

We refer to the random process z,, ¢ > 0, as a diffusion-threshold process,
to {T;, 1=0,1,2, : - - } as the event times and to u,, ¢ > 0, as the control pro-
cess. We also define a counting process N;, for ¢ 2> 0, such that N, is piecewise
constant with unit jumps at the event times T;, +=0,1,2, - - -, initialized by
Ny =0. Note that sample paths of z,,¢ > 0, are piecewise continuous (left

continuous) with jumps at the event times defined by the reinitialization

sequence; an example sample path is shown in Figure 1.

If suitable assumptions are made about the control then {T;, 1=1,2, - - - }
are controlled stopping times for the diffusion and they define a renewal process
that specifies the times at which jumps in the counting process occur. Although
the interevent times {T; - T;_;, =1,2, - - - } may be independent their distribu-
tion is not exponential; hence the interevent times are not memoryless.

Extensions to the case where the counting process is vector valued, with

each scalar process evolving according to an underlying continuous time dynami-

cal system can be made. The details are complicated but should be conceptually

" clear.

Control action enters the diffusion-threshold model through the drift and

diffusion coefficients, so that the control affects the intensity of the discrete event
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process. The control may be deterministic (open loop) or stochastic (closed loop).
In the latter case, the control may be a stochastic process that is conditionally

dependent on the event history and the history of the counting process [8].

We also mention an additional important feature of the above diffusion-
threshold model for controlled discrete event processes. Since there is an underly-
ing diffusion-threshold process explicit in the model, the control may depend on
the history of that process. This allows incorporation of feedback from the
diffusion-threshold process that characterizes the underlying dynamics that give
rise to discrete event changes; this feature of the model has been found to be

extremely important in certain applications [3,4].

Tﬁe use of a diffusion-threshold model to capture the underlying dynamics
of -a discrete event process provides a view different than that which is usually
found in the literature. In particular, the usual viewpoint of discrete event
(point) processes have been classified as moment oriented or intensity oriented
[1). Although the diffusion-threshold approach is compatible with these other
views, it also offers a different viewpoint, since the model allows for the existence
and utilization of information structures not normally considered in the moment
or intensity formulations. Of course, this additional information exacts a cost in
terms of added complexity and computational difficulty. The diffusion-threshold
model also provides a closer contact with the physics of event generation than is

conveyed by either the moment or intensity points of view.

4 Discrete Events
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3. A Specific Class Of Diffusion-Threshold Processes

A class of controlled discrete event processes, defined from a diffusion-
threshold process, has been studied in [3,4] where some specific control theoretic
results have been obtained. This specific class is characterized by the assumption
that the drift function b and the diffusion function o are independent of the
diffusion-threshold process z, but may depend on the control process u,; the
reinitialization sequence is X; = 0, 1=0,1,2, - - - ; and the stopping condition is
defined by a threshold crossing, i.e. g(z) = 2-A. Assume the control v, is con-
stant  during the time between events and assume  that
A >0, b(u) > 0, o(u) > 0 where the control dependence is explicitly indicated.
An analytic expression for the probability density of the time between events
7, = T; - T;_, can be obtained as an explicit function of the control. In partic-
ular, the density for 7; has been derived in [3,4] as

q; (t;u) = A exp{w } , t > 0

V2ro(u)t3/? 20(u)?t
0, t<o.

whereu, = u, T; | < t < T;.

This probability density is referred to as inverse gaussian and has been pre-
viously studied in [2,9]. Under the stated assumptions, a threshold crossing
occurs almost surely, i.e. P[r; < oo] =1, =1,2, - - - . The central moments are

easily computed; we give only the mean and variance as

Blri) = Ab(w ®)
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Var[r;] = Ao(u)*b(u)3 (6)

Thus the mean time between events is equal to the ‘‘distance” A divided by the

positive drift rate b.

Note that this distribution is explicitly parameterized by the value of the
control action through the drift and diffusion coefficients. It is this explicit
parameterization that provides a clear means for dealing with controlled discrete

event processes, for this class.

The above expression for the interevent density also holds if the control is
constant between events, but with random values that are conditionally depen-
dent on the event history and the history of the counting process. However, the

interevent times may no longer be a renewal process.

4. Comparison with the Intensity Characterization

Our formulation of controlled discrete event processes is in contrast with the
developments in [1,8] where control mechanisms are abstractly formulated as
influencing the intensity of the counting process. Here the control mechanism is

explicitly formulated through the underlying diffusion-threshold process.

For the specific case described in Section 3 it is i)ossible to characterize the
discrete event process in terms of an intensity that can be explicitly computed
using the inverse-gaussian density. Thus it is possible to compare the diffusion-

threshold characterization and the intensity characterization.
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" For our purposes, the history will be the event time record, denoted by
{F,, t < 0}; this is the usual history considered. Then, heuristically, the inten-

sity A\, of the discrete event process is defined by

\ dt = P[dN, = 1|F,] (7)

where dN, = 1 denotes a unit change in the counting process.

The intensity X\, is necessarily a stochastic process. However, it is easily
characterized in terms of the inverse gaussian density. The intensity

My i <t < Tpgiven Ty jand oy, =9, T;, < E< Tyis
(8= Ty o
X¢=q'( 1 l) ,T.-_1<t<T‘~.

[0 ]
[ g (n; u;_y)dn
t—Tn-l

(8)

The key feature of the intensity is that it is a stochastic process with sample
paths that are piecewise continuous with discontinuities at the event times; its
functional dependence on the control is indicated in equation (8). It can also be
viewed as a regenerative process. An example sample path for the intensity is

shown in Figure 2.

6. Applications of Diffusion-Threshold Processes

It is important to make the case that diffusion-threshold models for con-
trolled discrete event processes do represent, in a natural way, many physical
situations. Our formulation has the advantage that it imposes a proper perspec-

tive in terms of model development; one simply examines the physical causal
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mechanisms that give rise to discrete events as a part of the modeling effort.

This approach has been effectively used in [3,4] to model failures in drilling
operations, where drill failure is assumed to be caused by drill wear reaching a
fixed threshold. In this case, the tool wear is the diffusion-threshold process, the
cutting speed is the control variable with is assumed to influence the tool wear
according to a simple diffusion with drift as indicated in Section 3. The tool
wear is reinitialized to zero when a failure event occurs, éorresponding to replace-
ment of a new tool. The model in Section 3 was used to formulate and solve a
stochastic optimal (feedback) control problem corresponding to economic selec-
tion of the cutting speed. The results in [3,4] also incorporate several additional
features, includigg the notion of discrete parts and tool replacement before

failure; details are given in [3,4].

In [3] diffusion-threshold models have been developed for failure control of
multi-tooled machines by selection of cutting speed, for failure control of serial
transfer lines by selection of operating speeds of individual machines, and for pro-

ductivity control through supervision.

A diffusion-threshold process has also been used to model the service times
in a M/IG/1 queue, so that the service time distribution is inverse gaussian and
depends on a control ‘“‘work rate”’. Our formulation in Section 3 is the basis for
formulation and solution of the (open loop) optimal control problem of minimiz-
ing the weighted sum of sojourn time and control effort. Preliminary results are

given in [7].
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These efforts represent initial attempts to exploit the proposed framework
for controlled discrete event processes: It is expected that this proposed frame-
work can provide a basis for examination of many additional problems in

manufacturing, operations research, and computer science.
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