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ELECTROMAGNETIC FIELDS IN 
BIOLOGICAL STUDIES 
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For biological or cellular experiments using electromagnetic fields, it is essential 
that the parameters defining the field be carefully specified i f  the results are to be 
meaningful and are to be compared with the same experiment conducted in a dif- 
ferent laboratory. The interaction of  living systems with electric and magnetic fields 
can come only through forces exerted on the charges on the system. I f  the charges 
are stationary, the only origin of  the force is the electric field. This electric field may 
be established by charge distributions, as in "capacitive plate" experiments, or by 
time-varying magnetic fields. 

A geometry commonly used to produce time-varying magnetic fields consists o f  
a pair of  coaxial coils, each of  equal radius and separated by a distance often equal 
to the radius. The electric field induced by a varying current in such a pair o f  coils 
varies both in space and in time. The electric field strength is zero on the axis o f  sym- 
metry, and increases to a maximum near the radius of  the coils. The strength is pro- 
portional to the time rate of  change of  the current in the coil, which depends not 
only on the amplitude and shape of  the voltage pulse applied to the coil but also 
on the resistance and inductance of  the coil. 

The purpose of  this article is to describe how these important physical parame- 
ters may be determined for both geometries. 

Keywords - Pulsed electromagnetic fields, Capacitive plate experiments, Osteogen- 
esis, Wound healing. 

INTRODUCTION 

There is now an extensive literature on the application of  both steady and 
time-varying electric and magnetic fields to cellular systems in vivo and in 
vitro. That work in the field will expand is guaranteed by the exciting results 
obtained to date. Two examples will illustrate the point. 
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It has been determined experimentally that appropriate pulsed magnetic 
fields (1) as well as electric fields (2) promote osteogenesis and wound heal- 
ing, and that direct current (DC) electric fields cause cultured epithelial cells 
(3,4) and cultured neural crest cells (5) to elongate perpendicularly to the field 
and migrate along the field. The fact that the exact mechanisms involved in 
these phenomena is not understood has led to a flurry of activity. 

In many of the research publications describing results of the application 
of magnetic and electric fields to biological systems, the descriptions of the 
experimental arrangements do not permit determination of the critical phys- 
ical parameters. As a result, it is not possible to compare quantitatively the 
results of an experiment carried out in one laboratory with those from another 
laboratory. The purpose of this article is to describe how to determine the 
one important parameter, the electric field, associated with the electric and 
magnetic field configurations commonly used. 

The fact that the electric field is the dominant parameter in pulsed elec- 
tromagnetic field (PEMF) experiments follows from the fact the interaction 
comes through forces exerted by the field on the electric charges contained 
in the atoms, molecules and larger components of the system. The force on 
these charges due to the applied or induced electric field E is F = qE, while 
that due to the magnetic field B is F = qv x B = qvB sin0. If the charge is 
stationary, there is no magnetic force. At the very low velocities existing at 
the normal biological temperatures (v = 3kx/3kTTm), the magnetic force may 
be ignored. Thus, the magnetic field itself is not of interest, and a changing 
magnetic field is of interest only in that it induces an electric field. In any 
given experiment, there is a simple way to determine that the magnetic force 
can in fact be ignored. This is described below. 

We look first at the electric fields, static and dynamic, produced by charge 
distributions, then at (induced) electric fields produced by time-varying mag- 
netic fields. 

ELECTRIC FIELDS FROM CHARGE DISTRIBUTIONS 

Static Electric Fields 

Consider the "capacitive plate" arrangement shown in Fig. la, where two 
parallel metal conducting plates in air or vacuum, each of area A, are spaced 
a distance d apart. If charges +q and - q  are placed on the plates, the elec- 
tric f ield between the plates will be essentially uniform (provided d << xfA) 
and equal to E - q/eoA, where e0 is a proportionality constant, the permit- 
tivity of free space, and has the value 8.85 • 10 -12 F/m. The direction 
of E is from the + to the - plate and perpendicular to the plates (Fig. lb). 

The potential difference between the plates is V = I" E.  dl = qd/eoA, and of 

course the usual way to put charge on the plates is to connect them to a power 
supply of voltage V (but they can be charged in other ways). 
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FIGURE 1. The electric field between parallel plates. The field between charged plates of area A 
spaced a distance d apart (a) is uniform as shown in (b). A dielectric inserted between the plates 
(c) reduces the field in the dielectric (d). The field in a conductor inserted between the plates is zero 
(e). 

If a slab of nonconducting dielectric material of thickness de, such as glass 
or polystyrene, is placed between the plates, the electric field in the dielec- 
tric will be reduced to E2 = q/KeoA, where K, the relative dielectric constant, 
is greater than unity and depends on the material (glass -4 .5 ,  polystyrene 
-2 .6 ,  water -80).  The reason the field is reduced in the dielectric medium 
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is that charges are induced on the surface of the electric in such a way as to 
oppose the field (Fig. ld). A constant potential V applied to the plates will 
result in an electric field E1 in the space d~ between the plates and the di- 
electric ( d l =  d - d2) of  E1 = KV/I•d - dz(K - 1 ) ]  and a field in the dielec- 
tric of  E 2 -- V / [ K d -  d2(K - l ) ] ;  the field in the dielectric is less than in d~ 
(vacuum or air) by the factor K as indicated above. 

If now the dielectric is replaced by a conductor,  say a piece of  aluminum 
or a volume of culture medium, the field inside the conductor will be zero. 
The reason is that by definition a conductor contains free charges, charges 
(electrons or positive ions) that are free to move. They will move to the sur- 
face leaving zero field inside as shown in Fig. le. (The field inside must be 
zero or a free charge there would experience a force.) Thus, it is not possi- 
ble in a static arrangement of capacitance plates to have an electric field in 
a conductor.  Culture medium is a good conductor (o = 1 m h o / m  for typi- 
cal culture medium, 12 m h o / m  for 2 N NaCI, 3.5 x 10 7 m h o / m  for A1 and 
of the order of 10-~z m h o / m  for an insulator such as polystyrene). If capaci- 
tive plates are used with a flask of  culture medium fit snugly between them, 
the electric field is confined to the material of  the flask, and the field in the 
medium is zero. 

Stationary Electric Field in a Conduct ing Medium 

A steady or stationary electric field can be produced in a conducting 
medium by passing a steady (DC) current through the medium. A conduc- 
tor of conductivity a, cross-sectional area A and length / will have a resis- 
tance R = l /aA ~2; and if a potential difference is maintained across the ends 
of the conductor,  a current I will exist in it. The electric field will be 
E = V / l  = I R / l  = I / o A .  A charge q in the medium will then experience a force 
F = qE. In such experiments (4) it is important  to restrict the current to low 
values to avoid ohmic ( IZR)  heating of the medium. Small channels are 
usually provided: if A - l0 -2 cm 2, l -  1 cm, and a -- l0 -2 mho /cm,  a field 
of  10 V/cm is obtained for I = 1 m A  with a power input to the channel of 
10 mW (as will be shown in Fig. 3a). 

Pulsed Electric Fields 

If voltage pulses are applied to the capacitive plates of Fig. le, then the 
charges in the culture medium (conductor) must redistribute as the capaci- 
tance is alternately charged and discharged. This will produce a transient 
electric field (pulsed field) in the medium. The redistribution of  charge takes 
time. This is characterized by a "relaxation time." The relaxation time is deter- 
mined by the mobility of  the charge carriers, which is related to the conduc- 
tivity of the material. It can be shown (6) that the charge density (C/m 3) will 
be given by p = poe -~ where po is the free charge density in the medium 
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at time t - 0, the time at which the voltage is changed. The relaxation time 
is the time required for 0 to fall to 1/e of  its final value and is 7. = e/a. If  
e = Keo = 80 x 8.85 x 10 -~2 and a = 1 m h o / m ,  then 7- -- 7 • 10 -~~ s for cul- 
ture medium. For pure water 7. = 4 • 10-8 s. These are short times; an ion 
with thermal velocity would move on the order of  1 #m in 10 -9 S. 

If capacitive plates are used with tissue culture dishes and culture medium, 
the charge which accumulates at the interfaces of  the dielectrics and the con- 
ducting medium must redistribute each time the potential changes. The time 
associated with the redistribution is given above. When the voltage is applied, 
the initial electric fields are given by E1E1 = c2E2, as required by the condi- 
tion of  constant flux density. After the transient has died out and the volt- 
age V is at a constant value, the current densities must be the same, or 
a~E~ = o2E2. To use a specific example, consider the geometry used by 
Korenstein et al. (7). [The electric fields in the cylindrical geometry used by 
Rodan et al. (8) cannot be easily evaluated. The use of the curved copper elec- 
trodes as they describe produces an electric field in the culture medium, which 
is a complicated function of  the geometry.] In the Korenstein arrangement,  
two circular metal electrodes A, each 54 mm in diameter, one in close con- 
tact with the bottom of a petri dish P, the other coated with a very thin insulat- 
ing layer of clear krylon, is in contact with the upper surface of  the culture 
medium M as depicted in Fig, 2a. This arrangement forms a two-layer capac- 
itor represented in Fig. 2b and c, where C~ is the capacitance associated with 
the culture medium of  depth d~ = 2.25 mm and C2 with the polystyrene bot- 
tom of  the petri dish of  thickness d2 = 1.25 mm. Because the conductivity 
a, of the medium is relatively large (a~ - 2 m h o / m ) ,  R~ will have a small 
value (R~ - 0.49 f2). While polystyrene is a very good insulator (a2 -< 10 -1~ 
and R2 can be taken as infinite, for the moment  we consider it finite. The 
usual solution given when t = 0, the instant the switch S is closed, is 

V{ R2 ~ [ 1 - ( 1  C~R~)E-t/T] 
V2= \R~ + R2} 

where 

7"~ 
RIR2(CI + C2) old2 + EzNI 

Rl + Rz - ~r~dz + ozdl 

I f  n o w  w e  t a k e  R2 = co (02 = 0 ) ,  t h e n  

= - -  ~1+E2 
(9-1 
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FIGURE 2. Geometry for a typical capacitive plate experiment, a: The geometry using a petri dish 
with culture medium and circular electrodes of area A. b: The capacitor equivalent, c: An incorrect 
equivalent circuit representation, d: A correct representation when R2 = Qo and the voltage gener- 
ator V has a resistance R3. e: The ratio of the voltage V1 across the medium of conductivity al to 
the applied voltage V as a function of time. The electric field (for parallel plates) is Vlldl. Note par- 
ticularly that the peak amplitude of Vl is very small (I/ /300 for the example shown) and is of very 
short time duration, approximately 30 x 10 - l ~  s. 
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and when S is closed, II1 and 112 jump discontinuously to 

/ C~ 
V1 = V I  

The voltage V~ decreases to zero and V2 increases to V2 = V as e -t /T.  Thus, 
after a time corresponding to a few time constants 7-, the field in the culture 
medium is zero and the potential V appears across C2 (the polystyrene). The 
difficulty here is that this solution requires that the voltage generator deliver 
an infinite current initially to the capacitors. Since we are interested in what 
happens at the immediate times the generator switches polarity, it is impor- 
tant to include the impedance R3, usually resistive, of the generator, as 
shown in Fig. 2d, where now it is assumed that the conductivity of the insulat- 
ing material of (72 is zero, i.e. R2 = oo. The solution for this circuit (see 
Appendix A) is 

Vt = V 1 OLlO/2 ( e_ t /~  __ e_t/~2 ) 
R3C1 (al - o~2) 

Vc = V 1 " - - - - - - 2 "  1 e -t/~l -- 1 e -t/~2 
Ol I Ol 2 

where oq and 0/2 are given by 

2(Oil,Or2) = [RI(C1 + C2) + R 3 C 2 ]  --- 4[RI(C1 + Cz) + R 3 C 2 ]  2 - 4 R I R 3 C I C 2  , 

where for 20/1 take the + sign and for 2a2 take the negative sign. For the 
Korenstein geometry of Fig. 2a, al  = 0.63 x 10-9 s and 0/2 ~" 0.52 • 10 -9 s 
for CI = 1140 pF, C2 = 11 pF, R 3 = 52.3 f] and R 1 = 0.5 ft. The values of 
C1, C2 and R I  a r e  calculated from the dimensions, conductivities and di- 
electric values given above. The value of R3 typically is in the range of 
10 - 100 ft. The potential across the culture medium that is proportional to 
E1 (E l  = VI/d~ ) is plotted in Fig. 2e. Note that the electric field does not rise 
discontinuously; further it persists for a very short time ( - 3  • 10 - 9  S) com- 
pared to the width of the applied pulse (7) (25 #s) and is small (V1 << V). 
It will reverse and be of the same form when the voltage pulse returns to zero. 
The field will persist for a longer time duration if C1 is made smaller and 
C2 larger, i.e. make the cross-sectional area of C1 smaller, the depth of the 
medium greater and the bottom of the petri dish thinner. 

There will be free charges at the interface, the number being determined 
by the applied voltage and the total capacitance, which for long times as com- 
pared to r will be C2. The number of unbound charges at the interface is 
then O' = Q / r  = eoQ/e .  Their effect on the cells plated on the surface should 
be similar to that of any charged substrate used to enhance adhesion in cell 
culture. 
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Clearly, the capacitive plate arrangement is not an effective way to pro- 
duce pulsed electric fields. They can, however, be produced efficiently by using 
the conducting channel. If the voltage source is capacitively coupled to the 
channel, the DC current is guaranteed to be zero (Fig. 3a). The duration of 
the electric field pulse and the amplitudes in the forward and reverse direc- 
tions are controlled by the time constant r = RC, where R is the resistance 
of the channel and C the coupling capacitor. Waveforms for the electric field 
are given in Fig. 3b for two values of tp/r. This assumes the resistance R of 
the channel of length I is much larger than the resistance of the electrodes. 
The expression for the electric field in the channel is 

C V 

Vo In ut- ~ - = R C  >>  tp 

Areos ore 
equol At = A2 

t 
fp ,. ' 

Vo, I A2 

i ...... I A,:A2 

-Vj~ 

FIGURE 3. Geometry for producing pulsed electric fields in a conducting medium, a: A narrow channel 
of length I having resistance R is coupled through agar bridges to the electrodes. The rectangular 
voltage pulse V is coupled to the electrodes through the capacitance C. b: The voltage waveforms 
across the channel for two different time constants 7, where 7 = RC and tp is the time duration 
(width) of the voltage pulse V. There can be no DC current through the channel. The electric field 
is V~//and reverses in direction at t = tp. The net field averaged over time is zero. 
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t /7" E = f f ( e - p  -1)e-~t-tp)/r for t>__tp . 

Note particularly that for any periodic waveform capacitively coupled to the 
channel, the average value of the electric field is zero; i.e. in Fig. 3b the areas 
A~ and A2 are equal. 

Sinusoidal  Electric Fields 

If a sinusoidal voltage V = Vo sin~t is applied to the circuit of Fig. 2d, the 
ratio of the voltage V~ across the culture medium to the applied voltage will 
be 

-V = 4(1 + R3/RI + C1/C2)2+ (wR3CI - I/wRIC2) 2 

For the values of R~, R3, C~ and C2 appropriate to the Korenstein ar- 
rangement, the ratio of V~ to the applied voltage V at f = 60 Hz is 
IV1/VI = 2  X 10 -9, and for f =  104 Hz [V~/V I = 3.5 • 10 -5. Thus, there is 
essentially no electric field in the culture medium. Again this is due mainly 
to the low value of the resistance R~. 

A sinusoidal voltage applied directly to the channel of Fig. 3a, without the 
coupling capacitor, will produce an alternating electric field in the channel 
of E = (V/l)sinoJt .  

MAGNETIC FIELDS AND INDUCED ELECTRIC FIELDS 

General  R e m a r k s  

Magnetic fields, both steady and time varying, are produced by currents 
(the field of a permanent magnet is produced by the electronic currents in 
the atoms). A configuration frequently used in PEMF experiments consists 
of two identical, coaxial coils separated by a distance d about equal to their 
radius a, similar to the well-known Helmholtz configuration illustrated in 
Fig. 4. Other coil shapes can and have been used, and for these the magnetic 
field B at any point is easily determined by measurement. However, it is not 
a simple matter to determine the induced electric field E (see below for fur- 
ther discussion). If a steady DC is sent through the circular coils (connected 
to be aiding), a steady magnetic field B will exist in the region of the coils. 
We will assume there is no ferromagnetic material such as iron in the vicin- 
ity. The magnitude and direction of B will vary from point to point and can 
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FIGURE 4. A current configuration frequently used for producing a magnetic field. Two identical coax- 
ial coils, each of N turns, carrying a current I and having a mean radius a, are separated a distance 
d. I f  d = a the configuration is known as "He lmho l t z  co i ls . "  The magnetic field can be calculated 
(Appendix B) and is easily measured. If the current I varies with time, there will be an induced elec- 
tric field which can also be calculated and easily measured (see text). The electric field is a lways  
zero on the axis, A t  a radius p, the field at every point P is tangent to the circle of radius p and lies 
in the plane of the circle parallel to the plane of the coils as shown. 

be calculated (Appendix B). They can also be easily measured using commer- 
cially available gaussmeters.* There is no induced electric field in the region. 
That is, there is no electric field associated with a constant (unvarying in time) 
magnetic field; thus, there is no force acting on the charges in the biological 
system provided they are at rest. 

If now the current in the coils is varied with time, either sinusoidally or 
pulsed, there will be both an induced electric field E which will vary with time 
and a magnetic field B which also will vary with time. The field B is propor- 
tional to the current i, while the field E is proportional to the time rate of 
change of the current, i.e. to di/dt. There are two points that have caused 
the difficulty in interpretation of data when either sinusoidal or pulsed vol- 
tages are used. First, there is no simple quantitative connection between the 
voltage V applied to the coils and fields B and E. It is necessary to know the 
current and the rate of change of current in the coils produced by V, and 
this depends on the inductance L and resistance R of the coils as well as the 
time variation in V. This is illustrated below. Second, while a loop of wire 
anywhere in the field will have induced across the open ends (Fig. 5a) a volt- 
age ~ = - A ( d B / d t ) ,  where A is the area of the loop perpendicular to the 
field B, this gives no quantitative information about the force on the charges, 
i.e. about the electric field at a given point. (The symbol ~ is used for induced 
voltage to distinguish it from the voltage V that is applied to the coils to cause 
the current.) If the loop is closed, the wire (or any conductor) will have a 
current induced in it due to E (not 5). The voltage (potential difference) mea- 
sured between any two points a and b in Fig. 5b is not well defined. The reason 
is that the induced electric field is a nonconservative field, and therefore the 
potential difference depends on the path taken in moving from a to b. Thus, 

*Such as the model 750AR gaussmeter,  RFL Industries, Boonton,  NY. 
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FIGURE 5. Induced EMF. a: An open-loop conductor in a time-varying magnetic field will have an 
EMF 8 induced across the open ends, The magnetic field is represented by the x's and is taken as 
perpendicular into the paper, b: For a closed conducting loop in a time-varying magnetic field there 
wil l  be a current induced in the wire but the potential difference between any two points such as 
a and b is not well defined. 

the induced electric field E at any point must in general be calculated. How- 
ever, for coils with circular symmetry such as the Helmholtz configuration, 
the field can be determined from a measurement of the induced voltage in 
a circular loop of wire, but only if the loop is concentric with the axis of the 
field coils. If the loop is nonconcentric, a measurement of induced voltage 

gives .fE.d! around the loop, but this does not permit the electric field 

E to be determined at a given point because E is not the same at each point 
of the loop (as will be shown Fig. 7). Graphs for the calculation of E are given 
in Appendix B for circular coils. 

It is important in the interpretation of experimental results to distinguish 
the variation of E in space, which depends on the geometry of the coil, and 
the variation of E with time, which depends on the shape of the applied volt- 
age pulse V, the resistance R and the inductance L. The value of E at any 
point in space can in principle be calculated for coils of arbitrary shape [such 
as the EBI coil conf igurat ion-see  e.g. Dierickx et al. (9)], but it is not easy. 
The problem is simplified if a pair of coaxial circular coils is used (Fig. 4). 
Even so the calculation is not elementary (see Appendix B), but once carried 
out results can be obtained for different-sized coils with relative ease using 
simple computer programs. Graphs of E/(di/dt) and of (Bz/i) as a func- 
tion of distance p from the axis are given in Fig. 6a and b for three planes 
parallel to the coils: on the midplane G = 0.50 corresponding to d2 -- 0.5 d; 
G -- 0.7, d2 = 0.7d; and G = 0.9, d2 = 0.9d2 (Fig. 4). Note particularly that 
E is zero on the axis and increases as p increases to approximately the value 
a and then decreases. This is the first and most important fact. Thus, if it 
is indeed the induced electric field E that is producing an effect on the cell 
activity, then the results will depend critically on the location of the cell in 
the coil geometry. Thus, in the limit of very small cells, there should be no 
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FIGURE 6. The fields of  the current loops o f  Fig. 4. (a) The electric field as a funct ion of  radius p 
for three values of d2 measured in units of the radius a (G = d2/d) ,  The curve for the value G = 0 . 5 0  

is in the plane midway between the coils. (b) The magnetic fields, calculated as a funct ion of radius 
p for  the same three values of  G. 
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effect for cells exactly on the axis of the coils. The direction of the E field 
at any point P in Fig. 4 is in the plane parallel to the coils containing P and 
tangent to the circle of radius o. If each coil contains N turns, then the value 
of E will be N times that for a single loop. Thus, looking down on the plane 
containing P, the field E is perpendicular to the radius p at every point and 
at a fixed radius constant in magnitude (Fig. 7a). However, as shown in Fig. 
7b, the field induced at each point on a circle with its center off axis is not 
tangent to the circle nor is it constant in magnitude. Thus, it is crucial to the 
interpretation of the results of any experiment using EMF that the position 
of a cell be accurately known with respect to the axis of symmetry of the coils. 

Sinusoidal Voltages 

A sinusoidal voltage V applied to the coils of Fig. 4 will result in a cur- 
rent i, which aside from a constant phase factor will also be sinusoidal and 
equal to i = [V/4R 2 + (wL)2]sincot, where w = 27rf is the angular frequency 
of the voltage source and R and L are the resistance and inductance of the 
two coils in series, respectively. The resistance and inductance are easily mea- 
sured for the pair of coils using an impedance bridge.* The induced electric 
field, which is proportional to (di/dt) = [wV/4R2+ (wL)2]coswt, will be 
also sinusoidal. At a given point P (Fig. 4), the value of E and therefore the 
force on a charge at P will vary sinusoidally in time and will reverse in direc- 
tion each half-cycle. The value can be obtained from the graph of Fig. 6a 
by using the above expression for (di/dt). Alternatively it can be measured 
very simply by using a circular pick-up coil of n turns and radius r accurately 
located with its axis coincident with the axis of the current coils. If the peak 
or maximum value of the voltage ~; induced in the coil is ~m (measured with 
an oscilloscope or high-impedance voltmeter), then the maximum value of 
the electric of field E,,, at the radius O = r/a is E m =  ~m/27rrn V/m, where 
r is the radius of the pick-up coil in meters. We find it convenient to wind 
several pick-up coils of different radii in shallow circular grooves in a Lucite 
plate that can be easily but accurately inserted in the field parallel to the cur- 
rent coils. This way it is a simple matter to measure the electric field at several 
radial points. A word of caution: The leads from the pick-up coils must be 
tightly twisted and brought well outside the field coils to avoid unwanted pick- 
up in the leads. 

Pulsed Voltages 

Consider now a pulsed voltage applied to the coils. The induced electric 
field E will depend not only on the time distribution of the voltage pulse, 
but also on R and L. It will not in general have the same waveform as V. 
As an example, if a step voltage pulse of amplitude V is applied at t = 0 and 

*Such as the model 1650A impedance bridge, General Radio Company, Concord, MA. 
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FIGURE 7. Electric field for the current loops of Fig. 4. (a) The field looking down the axis onto the 
plane containing the point P. The field strength is proportional to the length of the vectors (arrows) 
and is symmetrical about the axis of symmetry. (b) The electric field vectors around a circular loop 
centered off the axis of symmetry. Each vector has a length approximately proportional to the dis- 
tance p from the origin 0 for p < a (see Fig. 6a) and is perpendicular to p. Note particularly the elec- 
tric field is zero on the axis O. 

remains at V thereafter ,  the current  i will rise exponentially f rom zero to the 
final value V / R  with a t ime constant  r = L / R ,  or i = ( V / R )  (1 - e - t / r ) ,  as 
shown in Fig. 8a. If, however, a rectangular pulse of amplitude V and of  dura- 
t ion tp is applied to the same pair of coils, the resulting current is again given 
by i =  ( V / R )  (1 - e -t/*) for _ <  tp but  by i = io e-(t-tp)/* for t>_ tp, where 
io = ( V / R ) ( 1  - e - t # ~ ) .  A graph of  i is given in Fig. 8b for three different 
values of  the t ime constant  T. Because B is propor t ional  to i, these graphs 
also give the t ime dependence of  B. 

The value of  E is propor t ional  to d i / d t ,  which for a step pulse is 

= ~  ( 1 - e  -t/T ) = e -t/r . 
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FIGURE 8�9 The current in a coil due to an applied vol tage V. (a) The current due to a step vol tage 
V of  infinite duration applied to a coil having resistance R and inductance L (z = L/R) increases expo- 
nentially f rom zero to a final value i = V/R with the time constant r. (b) The current waveforms result- 
ing f rom a rectangular voltage pulse o f  ampli tude V and duration tp applied to coils having three 
di f ferent  t ime constants. Note that the ordinate, the current i, has the asymptot ic  value V/R and 
at t = 0 has the slope (di/dt) = V/L�9 The maximum values of  i = V/R wil l  o f  course be di f ferent  for  
the three values of  T i f  R differs�9 The curve for  r = tp wil l  have reached at t = tp 63% of  the final 
value for  the step vol tage of  (a). It then decreases (decays) to zero wi th the t ime constant  ,. Note 
that for  r = tp/lO the current essentially reaches its maximum value i = V/R, while for  r = 10tp the 
current reaches only 9 .6% of  its maximum value. The current wavefo rm can be measured on an 
osci l loscope by observing the voltage across a small resistance R8 <<R inserted in series with the 
coils, The ef fect  i f  any of  R~ on the waveform can be determined f rom the measured waveforms 
o f  the induced electric field with and wi thout  R, in the circuit (see text). 

For a rectangular pulse of  durat ion tp, it is 

and 

di V 
d-t = L e-'/" for t < t p  

di V 
= ~(1 - e - ' / O e - ( ' - ' ~  )/~ for t > tp . 

Plots o f  d i / d t  are given in Fig. 9, which therefore give the time variation o f  
E at any point in space. Note particularly that E reverses direction at t = tp 
no matter  what the value of  r. 

The value of  the induced field E at any radius r is again easily measured 
using the same pick-up coils described above and a good oscilloscope. The 
time variation of  E is the same as the induced voltage ~; observed on the scope, 
and the magnitude is again given by Em = g m / ( 2 r c r n ) .  
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FIGURE 9. The time-rate of change of  the current (di/dt) of  Fig. 8b. The maximum value of the 
ordinate di /dt  is V/L and wil l  di f fer if L differs. The three curves as plotted are normalized to the 
same height to show their relative shapes. If each of the three t ime constants has the same value 
of R as shown in Fig. 8b the three values of L will be in the ratio ~ : 1 : 1 0  and the values of (di/dt) = 
V/L at t = 0 will be in the ratio of  10:1 :~ .  Note particularly that (di/dt) reverses direction at t = tp. 
The net area under each curve is zero as is i l lustrated in Fig, 3b. The induced electric f ield is propor- 
t ional to (d i /dt ) ;  thus, it too must average to zero. The waveform can be observed on an oscillo- 
scope using the pick-up coil o f  Fig. 5a. Because 8 = - n ( d ~ l d t ) ,  a larger voltage wil l  be observed 
if the pick-up coil contains several closely wound turns n. Since (d4~/dt) is proport ional  to (d i /dt ) ,  
the waveform of the induced vol tage is the same as (d i /dt ) .  

Forces, Impulses and Currents Due to E 

The force on an ion due to the induced electric field is F = q • E where q 
is the net charge on the ion. For sinusoidal voltages and currents, the force 
reverses direction each half-cycle. For pulsed voltages the force, which is pro- 
portional to (di/dt) ,  reverses direction at t = t o (Fig. 9). Further, the forces 
averaged over time in each direction are equal and the net force is zero. Say- 
ing it another way, the area under the (di/dt) curve above the axis is just 
equal to the area under the (di/dt)  curve below the axis when taken over a 
complete cycle of the waveform. Note also that the area at any instant is 

f t l ;di  i, which is the value of i in 8. ( d i / d t ) d t  = = just plotted Fig. 
L,  U 

Thus, the impulse, the time integral of the force, at any instant, is propor- 
tional to i, and when i returns to zero the impulse will have averaged to zero. 
Thus, the current waveform gives a good view of the time integral of the force 
as a function of time. 

The induced electric field may cause currents in any conducting material 
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such as culture medium or tissue placed in the field. The induced currents 
are the result of  the electric field exerting a force on the charge carriers, and 
they will in turn produce magnetic fields, cause ohmic heating of  the mate- 
rial and, in the case of  free ions as in the culture medium, result in transport  
of  the ions. 

The currents induced in a conducting medium, eddy currents, can in prin- 
ciple be calculated (see Chapter 10 of  reference 13). The current density j in 
amperes per square meter is given by j = aE, where a is the conductivity in 
mho per meter and E the electric field in volts per meter induced by the chang- 
ing magnetic field. In the case of  a good conductor such as metal, the con- 
ductivity is large (for copper a = 5.8 • 107 mho /m)  and the induced currents 
near the surface are large. These in turn produce magnetic fields that oppose 
the applied magnetic field, and as a result the induced currents do not pene- 
trate far into the conductor. The measure of  the penetration, the skin depth, 
is given by x/2/(~0~a) for a sinusoidal field of  angular  frequency ~0, 

= 4~r x 10 -7 being the permeability for nonmagnetic materials. At a fre- 
quency of  1 MHz, the skin depth for copper is 0.066 mm. Thus, at a depth 
of  only 0.066 mm below the surface, the induced current is 1/e of  its value 
on the surface. For culture medium and biological material, a = 1 m h o / m  
and the corresponding skin depth is about 0.5 m. (This is the reason that 
microwave ovens work.) It is also because of  the relatively small value of  
for biological material that the induced currents are small. For example, con- 
sider a petri dish plated with cells and covered with culture medium to a depth 
of  1 mm. The current density is 1 A / m  2 for E = 1 V/m.  Thus, for a ring of  
culture medium of any radius and radial width 1 mm and depth 1 ram, the 
current for E = 1 V /m is only 1 ~A. The ohmic heating is therefore negligi- 
ble, and the alteration in the induced electric field due to these currents will 
be completely negligible. The correctness of  this conclusion can be easily 
tested. If, while observing the EMF E induced in a pick-up coil of  several 
turns placed in the center of  the Helmholtz coils in an empty petri dish, cul- 
ture medium is added to the dish, no measurable change in ~3 is observed. 
It should be noted, however, that for high-field experiments, such as mag- 
netically induced hyperthermia, heating will occur and electric field modifi- 
cation is possible. 

For varying fields, either pulsed or sinusoidal, the transport  for free ions 
must be oscillatory with no net displacement when averaged over a complete 
cycle. However, the induced electric field does have the potential for caus- 
ing nonlinear effects for those ions not free to move equally in all directions, 
as e.g. in the vicinity of  a cell membrane.  

In any given experiment, it is relatively simple to determine whether a mea- 
sured effect in an experiment employing a changing magnetic field is due to 
the induced electric field or to the magnetic field itself by comparing the mea- 
sured effect for cells at a radius p with those on the axis at p = 0. Since at 
p = 0 the electric field is zero, any measured effect can be attributed to the 
magnetic field itself. 
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If in fact pulsed or sinusoidal EMFs have an effect on cellular function, 
then, in view of the above, the effect must come about owing to a nonlinear 
response of the cell. The exact mechanism for a nonlinear response is, of 
course, not known and is the subject of intensive ongoing research. The non- 
linear response could exhibit itself in a variety of ways. One obvious mecha- 
nism is if the ion transport through the membrane is unilateral; i.e. an 
electrical force in one direction urges the transport through the membrane, 
but the reverse force has no effect. In this case, a sinusoidal induced electric 
field should produce the effect as well as a pulsed field. A second mecha- 
nism might result from the relative magnitudes of the forces; i.e. the force 
in one direction is large but acts for a short time compared with the much 
smaller reverse force acting for a much longer time (r >> tp) as shown in 
Fig. 9 for r = lOtp. Thus, the membrane may react to an impulsive force. 
(An impulsive force is one that is applied for a time short compared with the 
response time of the object on which it acts. The classic example is the base- 
ball bat meeting the baseball. The contact time is extremely short compared 
with the resulting flight time of the ball.) This could result in the redistribu- 
tion of membrane proteins, which is known to have an effect on the growth 
and motility of certain cell types (10). In Fig. 9 for r = L / R  >> tp, if L is 
small (thus R must be small), the value of d i / d t  = ( V / L ) e  -t/* will be large, 
giving a large E on the rise of the pulse. This is the case for the "clinical" 
coils and waveforms of the EBI system of PEMF (11). 

CONCLUSIONS 

In experiments on cellular systems using EMFs, the electric field is the 
important parameter. If experiments are to be quantified and, most impor- 
tant, to be duplicated in other laboratories, it is essential not only that the 
geometry be specified but also the parameters that determine the electric field 
at the position of the cells. Owing to the relatively high conductivity of the 
culture medium, it is difficult to produce a significant electric field in capacitive 
plate experiments. The amplitude of the field is extremely small compared 
to the field in the insulating material, and it is of very short time duration. 
When time-varying magnetic fields are used to induce time-varying electric 
fields, it is essential that the position of the cells with respect to the geome- 
try of the coils be carefully specified because the electric field E is a func- 
tion of position and is zero on the axis of symmetry. The resistance and 
inductance as well as the voltage signal must be specified. It is also impor- 
tant that the experiment be shielded from stray or background EMFs. 

Clearly some exciting experiments suggest themselves. If in fact the mem- 
brane transport is unilateral, or at least nonlinear, then measuring the uptake 
of growth factors as a function of pulse duration and amplitude and as a func- 
tion of the amplitude and frequency of sinusoidal voltages should shed light 
on the mechanism. 
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APPENDIX A: CALCULATION OF E FOR A PARALLEL 
CAPACITIVE PLATE GEOMETRY 

The value of the electric field as a function of time for the geometry of 
Fig. 2b, represented schematically in Fig. A-l,  can be determined if the poten- 
tial V~ as a function of time is determined. Applying Kirchhoff's laws it fol- 
lows from summing voltages around the loop containing C~ that 

V=iR3+~--~2 f id t+i~Rl  

and from the loop containing only C 1 and R~ that 

The current equation is 

(A-l) 

/" 
7 / 1 3 d t  = ilR1 �9 (A-2) 
t - l d  

i = il + i 3  �9 (A-3) 

Assume a solution to the equations,of the form 

1 
il = ~ [a + ble-'/~ + b2e-'/~2] , (A-4) 

where the coefficients a, b~, b2, al  and oL2 must be determined. Let Rl C~ = 
r~. Substituting the assumed value of is in Eq. A-2, it follows that 

dil bl rl -t/,~ b2 rl e_,/~2 
= - -  e i3 7"1 dt RI al RI R1 

R 3 
~ v ~  --~i ], - c2 
c,+, 

t3 /q/ 

FIGURE A-1. The schematic diagram for the geometry of Fig. 2b including a voltage source V with 
internal resistance R3, 
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i = i l + i 3 = R T + - R 7  1-r~oq]e-'/'~l + ~ 1-- ~ e 

Substituting i, ix and i3 in Eq. A- l ,  collecting coefficients and recognizing 
that the equation must hold for all times permits the coefficients to be deter- 
mined. They are 

a = 0 (there can be no DC current) 

bl = V RI 1 oqoe2 - -b2 
R3 rl (cq - ~2) 

[R,(C, + C2) + R3C2] + 4[R,(C~ + C2) + R3C2] 2 -4RIR3CIC2  
OL 1) OL 2 = 

where the plus sign is taken for oq and the minus sign for c~2. The solutions 
for the currents are 

it - V 1 0s 2 [e_,/~,  _ e_t/~2 ] 
R3 71 (~1 - o~2) 

i 3 -  "-- ---2" e - - -  e -'/~2 
Ot 2 

i = i l  q - i 3 -  
V 1 a l a  2 

R3 zl (al - 0/2) 
[(1 (1 <)e q 

The electric field in the culture medium is 

V1 _ ilRl V 1 0~10/2 (e_t/~l _ e_,/~2 ) . 
El - dl dl - dl R3C1 (oq - o~2) 

This solution is quite different f rom that of  Korenstein et al. (7). 

A P P E N D I X  B: C A L C U L A T I O N  OF B A N D  E 

The problem is to compute the magnetic induction B and the induced elec- 
tric field E for a circular loop of  varying current. The calculations are extended 
to a pair of  coils each having many turns. 

We begin with circular loop of  current of  radius a and ask for E and B 
at points P a distance 0 f rom the axis on a plane containing the x and z axes 
and at a distance Z above (or below) the plane of  the loop. The geometry 
is shown in Fig. B-1. 
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FIGURE B-1. The coordinate systems for calculating the electric and magnetic fields. 

The magnetic field B and the induced electric field E can be expressed in 
terms of the vector potential A as 

B = curl A 

O.4 
at 

The vector potential at the point P for the circular loop of current can be 
calculated, but it can not be evaluated in terms of the elementary functions. 
The result given by Jackson (12) for spherical coordinates is 

I~o__[I a [ ( 2 -  kZ)K(k) - 2E(k) ] 
Ao(r,O) = 

~r 4a z + r 2 + 2arsinO [ J k  2 ' 

where 

k2= 4ar sin O 
a 2 + r z + 2arsinO 

and K ( k )  and E ( k )  are the complete elliptic integrals of argument k. Tables 
of K and E are found in nearly all mathematical handbooks, but more con- 
veniently they will be found in computer libraries and can be easily called 
into a program. Thus, A6, which depends only on geometry, can be evalu- 
ated. Since A~ is directly proportional to the current 1, and the electric field 
is given by E~ = - O A J O t ,  then the electric field is proportional to ( - d I / d t )  
and is therefore easily evaluated. It has the same spatial distribution as Ar 
and depends only on the rate of change of I. A graph of E j ( d I / d t )  is given 
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in Fig. B-2 in terms of two generic parameters, F and G. The height Z of 
the plane containing P above the circular current loop (Fig. B-l) is expressed 
in units of the radius a of the loop, G = Z / a .  The distance of P from the 
axis of symmetry is p = rsinO, and is also expressed in units of a, namely 
F = p/a .  Thus, the graph of Fig. B-2 can be used to find the spatial depen- 
dence of E for a current loop of  any radius. The direction of E lies in the 
horizontal plane containing P and is tangent the circle of radius p. 

A second loop of current of the same radius a, coaxial with the first, a 
distance d above it and carrying the same current I (Fig. 4) will produce a 
vector potential which adds algebraically to that of the first. This follows since 
A m has the same value whether P is above or below the plane of the current 
loop. Thus, the two current loops carrying the same current in series aiding 
produce A+ = A,~ + A~, 2. Since G 1 = Z 1 / a  and G 2 = Z2/a, the vector poten- 
tial A s and therefore E can be readily evaluated from the graphs. 
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FIGURE B-2. Graph of the induced electric field E+l(dl /dt )  for a single loop of current of radius a 
as a function of distance p (in units of a) from the axis in planes a distance Z = G . a  above (or below) 
the plane of the current loop. 
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In general, rather than single current loops, coils of  several turns N in each 
coil are used. The electric field E is then just N times that of the single loop. 
When several turns are used, the wire will fill an area, perhaps of rectangu- 
lar shape as illustrated in cross section in Fig. B-3. It can be shown that if 
the values of p and Z are taken at the centers of the area, the calculated vec- 
tor potential will be very close (within 1 ~ to the value calculated from the 
actual current distribution. 

The magnetic field B can also be evaluated from B = curl A. The compo- 
nents in the r, O and 4~ directions are 

1 O 
Br = rsin0 O0 (sin0 AO) 

Bo = rl Or (rAr 

B,~ = 0  . 

Rather than carrying out the indicated partial differentiation in spherical coor- 
dinates, it is more useful for the geometry of the coil pair to convert to cylin- 
drical coordinates, using the coordinates P and z (Fig. B-l). The results for 
Bp and Bz for a single loop of current are given by Smythe (13) as 

.ot Z l [_X(k) + a2 + p2 + z2 ] 
B~ 2---~-p ( ' ~ + p ) 2 + z  2 -~-p-f2+z:E(k)  

Bz #ol 1 (k) + P E(k) 
2r x/(-a + p)2 + z 2 (a - 0) 2 + z 2 ' 

where 

k = 4ap 
4z 2 + (a + p)2 �9 

Again these can be evaluated with a relatively simple computer program. 
The total field B for a single loop of current is found by combining Bp and 

FIGURE B-3. A coil of rectangular cross section. The field due to an extended cross section con- 
taining N turns will be within 1% of the value calculated if all the turns are considered to be at the 
center of the area. 
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B z in quadrature, the direction of B with respect to the plane of  the coils 
being given by the angle tan -1 (BJBo).  The field for the two coils in series 
aiding is obtained by combining the components algebraically: B,, = B~I + 
BeE, Bz = Bzl + Bz2. Because the value of B is of  itself of  little interest and 
is so easily measured, it is not particularly useful to perform this calculation. 
A graph of  the calculated value of Bz of  a coil pair for three values of  G 
is given in Fig. 6b. 
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