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viii

In
Theory

X

je]

7

Symbol Used

In
Computer Program

TAU



I. HISTORICAL REVIEW

The first studies of water hammer date back to the beginning
of the present century, when the contributions of Michaud(56), Joukowsky(36)
and Allievi(l) pioneered the analytical treatment of this hydraulic problem.
Joukowsky was the first to establish the rate of propagation of the wave,
and prove that the head rise for instantaneous valve closure was equal to
aV'/g , where a 1is the wave celerity, V' is the velocity in the pipe
and g 1is the acceleration of gravity. Allievi developed the mathematical
analysis of water hammer for uniform closures and presented charts for
maximum pressure rise in simple conduits. Later authors extended Allievi's
theory to consider changes of pipe diameter and pipe thickness, branch
pipes, effects of air vessels and other complications. The solution to
these different problems was obtained arithmetically by careful bookkeeping
of the travel of the wave in the pipe system and the consequent changes in
the head and the velocity of the water.

This step by step procedure of determining the pressure in a
pipe system was slow and laborious and was readily given up in favor of a
graphical procedure. The graphical solution of water-hammer problems was

(12)

first suggested by Professor L. Bergeron

(4,6,7,8,72)

and since then many authors
have extended this method to many complicated problems ranging
from pipelines with surge tanks and air vessels to transient conditions
following shutoff of a pump feeding a long pipeline. These graphical
procedures, however, were derived from equations which neglected friction

effects and kinetic energy terms.

-1-



Whenever friction in a pipeline became an important factor, the
graphical methods were modified to take this into account by concentrating
the loss of the entire pipe length at one or more points in the pipeline.
This approximation generally gave satisfactory results. Lately, however,
interest in the solution of water-hammer problems has been revived because
of the development of the method of characteristics(26’53) for solving
hyperbolic partial differential equations and the availability of high
speed electronic computers to carry out the numerous calculations associated
with the solution. These developments enable one to take into account those
terms of the water-hammer equations which were hitherto neglected. The
terms that were formerly deleted from the equations were the non-linear
terms, including those resulting from the friction in the pipe or from
the minor losses occurring at one or more points in the pipe. Thus, a more
complete and accurate picture of the wave profile is made available by this
procedure. The versatility and flexibility of this method also enables one
to provide solutions to more complicated problems than could be handled

previously.



IT. INTRODUCTION

This thesis is concerned with the study of pressure-wave reflec-
tions produced when a water-hammer pressure wave encounters a device which
produces an energy loss in the steady state. The device causing the energy
loss may be a pipe bend, a tee Jjoint, a valve that is open or partially
closed or a restricting orifice. It is the intention of the author to deter-
mine the transmission and reflection coefficients of the water-hammer
pressure wave and their relationship with the energy loss of the device.

The theoretical relationships are first determined by a simpli-
fied theory neglecting friction effects, i.e., by using the solution to the
classical wave equations. They are then confirmed by the use of a more
complete and accurate theory. In this theory, the partial differential
equations for water-hammer, including friction effects, are solved by the
method of characteristics and a high speed digital computer, the IBM 7090,
is utilized for their numerical integration. From the output of the computer
program, it is possible to calculate the values of the approaching, reflected
and transmitted pressure waves, and knowing the magnitude of the minor loss,
to verify their inter-relationships.

It is to be recognized at this point that this problem could be
solved by the graphical methods of Schnyder-Bergeron.(12’13) However, as
with most graphical procedures, even though one can obtain the final solu-
tion one does not necessarily come to have a better understanding of the
mechanics of the problem.

Finally, the results of an experimental verification of the

theoretical relationships are set forth. The experiment consists of

-3~



producing a water-hammer pressure wave in a pipeline with an orifice in
the middle and recording the pressure-time history at two points of the
pipeline. This pressure-time diagram is superimposed on the theoretical
diagram, obtained from the computer program, for the sake of comparison.
Thus, the validity of the assumptions made in the derivation of the theory

is affirmed.



III. ELEMENTARY SOLUTION

The theoretical study of water hammer reduces to the solution
of two partial differential equations. As these equations have been
derived in many texts(59:67,81) they will be used in this thesis directly.
The first equation is derived from Newton's second law and is referred to

as the condition of dynamic equilibrium.

OH' = ;]; ov' (l)
ox' g ot'
where H' is the piezometric head in feet of water, t' is time in

seconds and x' is distance in feet measured from the reservoir. The

second equation is derived from considerations of continuity, in a hori-

zontal pipe.

JH' _ -a? V!
ST C g ox' (2)

In Equation (2), a represents the wave velocity in the pipe

and is obtained from the following formula.

2 K/p

& =1+ 0 K/E

in which C; is a constant(29:59) depending on the way in which the
ends of the pipe are restricted and on the Poisson ratio of the pipe
wall material, and the other symbols are as defined on page (vii).

- The simultaneous solution of these two equations is given by

! t
H' - HO = F(t' + 2=) + £(t' - &) (3)
! !
where F and f are arbitrary functions of (t' + E—) and (t' - g—)

respectively, and
vi -vo =B {rt 4 :——') - £(t' - :—')} (%)

-5-
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Thus the changes in head and velocity could be obtained if
the functions F and f are known or these functions could be evaluated
if the changes in head and velocity are known. Using these formulae, it
1s possible to calculate the reflections for certain boundary conditions,
as shown below.

At a reservoir, H' - HO is zero at all times. Hence

Xl

1
£(t' - &) = -F(t' + &) from Equation (3), and so V' - VO = - 28 F(t' + Xy,
a a a a

At a Dead-End.

V' and VO are both zero at all times.

b

Hence, f(t'- 22) =F(t' + gl) from Equation (4).

°l

Thus, H' - HO =2 F(t' + g—)
Similarly, when a water-hammer pressure wave encounters a change
in pipe area and/or wave speed, the reflected wave is equal to
(Ay/ay - Ax/an)/(Ay/ay + Ap/ay) times the approaching wave and the trans-
mitted wave is equal to (EAl/al)/(é% + é%) times the approaching wave.
The magnitudes of the reflected and the transmitted waves will

now be derived when a water-hammer pressure wave encounters a minor loss.

Derivation
In Figure 1, let points A and B be on either side of the
loss-producing device, in this case an orifice. Let Fp Dbe a water-hammer
pressure wave approaching point A. Let f; be its reflection and Fp
its transmission. Let the head and velocity before F; reaches the ori-
fice be Hpg, Hggp and Vpp, Vo - Let the head and velocity after re-

flection and transmission be Hpy, Hpt, and Vpg, Vpg -
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ENERGY GRADE LINE
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Figure 1(a). Conditions Before a Water-Hammer Pressure Wave
Encounters a Minor Loss.
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Figure 1(b).

Conditions After a Water-Hammer Pressure Wave
Encounters a Minor Loss.



8-

From Equations (3) and (4),

HAt - HA” =F + 1

%)

<
]

]

<
oy}
(&}

i

]

100
o

From the condition of continuity,

Vag = Vgt and  Vpo = Vpg
Hence, from (7), (8), and (9)

I%FQ::%(Fl-fl)
i.e, Fp =F1 - 1
Since a minor loss occurs at the orifice,
Hpg - Hpp = MLOSS, and Hpy - Hpy = MLOSS;
From (5), (6}, and (11},
Fo - Fp - f7 = MLOSSy - MLGSSn = A{MLOSS)

From (10), and (12}, we have

-2f) = A(MLOSS)

(10)

(11)




Therefore,
fi = 5 )

and from (10),

B, = B + A(MLOSS) (1%)

Thus, it can be seen that the reflection is dependent only upon
the change in the minor loss before and after the passage of the wave.
The transmitted wave is equal to the approaching wave plus half the change
in the minor loss.

The change in the minor loss is easily evaluated when the velocity
behind the approaching wave Fl is zero or very nearly zero. This is so
when instantaneous closure of the valve occurs, and the pipeline is con-

sidered frictionless. For this case,

A(MLOSS) = - K —gig)— (15)
Hence,
1. VAo
== K —=— 1
f1 =5K 28 (16)
and V2
1
F2=Fl-§K—é-g— (17)

However, when the velocity behind the wave F; is not zero,
Equations (16) and (17) do not apply and f; becomes a more complicated
function of Fy. This relationship is found in the following manner.
Let
Vit

V&o V8o \%

Therefore,

S
3
o
Q,

A(MLOSS) =



Then AVp

or

Therefore

But

Therefore

Therefore

and

-10-

From Equation (7),

Vat - Va0 =72 {F, - £} = = {r +‘éiM£§§§l}
- + £ B - Bo)
Let ANA = VAt - VAO
=g

]

K
e F1 - 55 (Vat - Vao) (Vat + Vao)
=8w - I.E._ AV, (AV) + 2Vy4)

a

2
=:£Fl _KfAez _KVQQAVA

a L, 2a,

K (av 2 + AV 1+ K_ \) + %EL =0
g ¢ A) A ( = a0) + =
2a KVa0 Kvp, 2 K gFl
ANA - K -(l + 2a ) b (l + 2a, ) ha g

AVA=-

o |0a
Py
o
1
H
}._l
S~

2 2 lLgF
S (B up) £[ER 4 vpe)? -

- £ -
2 (Fp - 1) =

2 lgF
f1 =F1 - g (%E + Vao) * ngvééi + Vpo)® - L

a ,2a —a 2a, 2 hgFp
=g (& + Vao) + é:\JQE_ +Vao) -

N
I
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It is easy to prove that in Equation (18), the positive sign
before the radical is the correct one. 1In the limiting case, when
Vat = O, Equation (18) should reduce down to Equation (16).

When Vpt =0, Fp = 2 a0

g
From (18)

2 2
£, avpo _ 2a% _ aVao + g-wvégi £ Uh0) - kg avao
g gk g g K K g

_ 2a2 + Eﬂ\/hae V4 Lavpao _ 4avpo
gk —g V' k2 AO K K

2
Expanding (&ig + Vio)l/2 by the Binomial Theorem,

282 4 a joha2 /2 1 b2y 1/2 2 1 (ha?y2 b
fq, = -8 +8 + = (2 - = VE o+
1 ek ¢ : 5@ 20 " 37 52 Vo
2 2 2
__ 202,282 [ 1, Va0 — K'VAO  VAO +
gk — gk — 2 “2g t 128 2g —
1., ve
=1 =K —%Q » heglecting terms of smaller magnitude. Thus,
g

the positive sign is correct in Equation (18) and hence the negative sign

is the correct one in Equation (19).

2
(ha

1
The series expansion of X2 + Vﬁo) /2 by the Binomial Theorem

is convergent whenever §g§9 < Egég . This condition is always fulfilled
as the minor loss in a pipeline is generally much smaller than the water-
hammer pressure wave height.

The procedure is the same when analyzing the situation in which

an fl wave approaches a minor loss, as in the case of flow establish-

ment in a pipe. It can be shown that the reflected wave F; = - 4 MLgSS)

and that the transmitted wave is equal to (f1 + 2 MEOSS )
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More complicated situations could also be handled in the same
manner. For example, consider the situation in which an Fy wave ap-
proaches a minor loss from the right-hand side and an fo wave approaches
it from the left-hand side and both the waves encounter the minor loss
at the same time. It can be shown that the reflected wave on the right-

hand side, £y =f, - 2MO5) ang that the reflected wave on the left-
2

hand side is equal to F; + A MSOSS .



IV. SOLUTION BY THE METHOD OF CHARACTERISTICS

The basic partial differential equations for water hammer in
a pipe, taking into account friction effects, have been derived in
Reference 78, and will be used directly in this thesis.
The assumptions made in the derivation are listed below.
1. Uniform velocity and pressure distribution over area
of pipe.
2. Pipe wall material and liquid in pipe are perfectly
elastic and homogeneous.
3. The pipe remains full of liquid at all points and at
all times.
4. The static pressure in pipe is above the vapor pres-
sure of liquid at all times.
5. The elastic hysteresis of liquid is assumed negligible.
The equations will be non-dimensionalized and their character-
istic equations derived. The purpose of non-dimensionalizing is so that
the same notation may be used here as is used in the conjugate equations
of the graphical procedure. It will be seen later that these conjugate
equations are a particular case of the characteristic equations derived
here. These characteristic equations are then transformed into their
finite-difference form and used for the solution of the head and velocity
in the computer program. Next, the equations at the following boundary
conditions are derived; at the reservoir end, at the valve end, both for
time less than valve-closure time and for time after valve closure.
Finally, the boundary conditions at a minor loss are derived in finite-

difference form.

-13-
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Derivation of Characteristic Equations

The following two partial differential equations are the ones

whose simultaneous solution gives the head and velocity (the dependent

variables) in terms of the distance and time (the independent variables).

These equations are quasi-linear and of the hyperbolic type.

They in-

clude a term which takes into account the friction loss in the pipe,

and those terms which were neglected in the classical water-hammer theory

have been retained.

The condition of equilibrium,

2
OH' . £ (V') _ _ V! ' av
ox' * D 2g g (Bt' VS

The condition of continuity, for horizontal pipes,

In

Also let Sx

ot ox' g ox'

OH' , yr OH' _ _ a2 ov'

order to non-dimensionalize these equations, let

H’ V' X’ t'
—_— = — =V, =— = x and =1
HO “vo 'L 2 L/a
OH ov ov
= HX/’ a_t = H-t, & = VX and 5? = V-t

This transforms Equations (20) and (21) into

and

HO 4 £VO2 2 _ 1{avovt+vo2vvx}
L 2gD g 2L L

a2
aHO y, , VOHO y y 82 VO

oL, T ,gf—

(20)

(21)

(22)

(23)
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To determine the characteristic equations, let

g =B 4+ LV 2 L VO fa v, 4 vo v v} =0
L 2gD gL 2

and

2
Jp = 959 Hy + VO HO V Hy + 2— VO Vy =0

Multiplying J7 by 2gL/aVO and Jo by 2/aHO and putting B = aVO/2gHO;

we have,

T =B/ + V2w vy + 20V iy, =0

gy =H, + 29V, + bgvy =0

Combining Ji and Jé linearly with an undetermined multiplier A,

. 1 FIVO 2 2 Vo
R T D S 1 Vv, + YO0y v,

+ A {H, + 2avo VH + BV} =0

Rearranging the terms, we have

{% + A g_yg_y} Hx + X Ht + {

2 VO
a

V+ )b} vy

fLVO
+ V¢ + 3D v =0 (2k)
Now, since V and H are both functions of x and t,

dH = Hy dx + Ht 4t
and

av

Vx dx + V¢ dt
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or

dH dx
- = H = + H
at  Xg ¢t
and
av dx
=V =V, ==+ V
at *a ¢

With the last two equations in mind, Equation (24) could be

reduced to the following simple form,

CdH 4V FLVO o _
Attt e V=0 (25)

if at the same time we make,

ax -1{l,270W0 (26)
at A -B a
and
ax 2 VOV
X _f= 12 L4k 2
& { - B} (27)
From Equations (26) and (27),
1,1 2VO0V, 2VOV
={=4 2 = AL
A {B * a 1 a * P
Therefore,
A
up2
or,
1
K—i-g-é' (28)
Substituting back in Equation (27),
dx _2VOV, , (29)

it a -
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Since the term g—gg—z is small compared with the other term,

we can approximate Equation (29) by

92(-=+2 (30)
at -

and the characteristic equations for V and H become,

dt J=av+ L ag + £L VO y2 g1 =0 (31)
2B aD
and
at J=av - Zag + LEVO 2 454 - o (32)
2B aD

Summing up, the simultaneous solution of the partial differen-
tial Equations (22) and (23) has been reduced to the solution of two
total differential Equations (31) and (32), in the two directions given
by Equations (30). The solution is thus seen to involve two planes, the
(x,t) plane and the (V,H) plane. The lines in the (x,t) plane are
straight lines as shown by Equations (30), whilst those in the (V,H)
plane are curved because of the V2 term in Equations (31) and (32).
These lines are called characteristics and will be referred to as the
C+ and C. characteristics. See Figure 2.

Thus, along the C, characteristic,

dx - 2 dt =0 (33)
and

av+ ag+ LLVOv24¢ -0 (34)
2B D
And, along the C_ characteristic,

dx + 2 dt =0 (35)
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and

av - ag + £L VO w2 3¢ - 0o (36)
2B aD

From Equations (34) and (36), it can be seen that, when the

friction term is neglected, the characteristic equations become

L
2p

av = + dH

The above equations are precisely the conjugate equations used
in the graphical analysis of water hammer and can be seen to be a parti-

cular case of the more general solution provided here.

Finite-Difference Equations

Since the general solution to hyperbolic, partial differential
equations is yet unknown, particular solutions for individual cases under
study are usually sought.

A close examination of Equations (33) to (36) reveals that all
the terms, except the friction terms, are exact differentials and hence
can be integrated easily and without any error. Integration of the fric-
tion terms along their respective characteristics between two points O

and 1 yields
1
LVO f (rv2) at .
aD o

This integral can be approximated in finite-difference form
in several ways., The first-order approximation assumes the function to

have a constant value during the interval dt.

Hence,

1
LYO [ (£ ®)at = LYO (£ v3)  (t;-t,) (37)
aD aD
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The second order approximation makes use of the trapezoidal
rule to estimate the value of the integral.

Hence,

1
J (£ v@)at = LVOL {(rv2)_ + (£ v®) } (t1-t,) (38)

_55_ aD 2
The error involved in Equation (38) is smaller than that in
Equation (37). However, certain extrapolation procedures(53) are known
whereby Equation (37) could be used and the error kept to the same
order of magnitude as that of Equation (38). It will be shown later
why Equation (37) was used in preference to Equation (38).
Equations (33) to (36) will now be integrated along their

respective characteristics from a point O at which V and H are known

to another point 1 at which V and H are unknown. Thus, along Ci,

(x-x.) = 2(t1-t,) =0 (39)
and

(V1-Vo) + (H1-Ho)/28 + 32 (£ V2)o(t1-to) = (40)
Along C. ,

(x1-x5) + 2(t1-t5) =0 (k1)
and

(V1-V,) - (Hy-Ho)/2p + X0 (£ v@)o(t1-to) = O (42)

The Equations (39) to (42) will now be used to obtain solu-
tions to the head and velocity at specified points along a uniform pipe

and at regular intervals of time. This procedure is known as the
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Specified Time Interval Method. As illustrated in Figure 3 on page 21,
the pipe is divided into N number of sections. The time interval
used is then gﬂ . From the initial, steady-state conditions in the
pipe, the values of V and H at each point of the pipe will be
known. From these values, it will be possible to calculate V and H
for t = At at the points marked with a black dot in Figure 3. From
the known end conditions, it will be possible to determine V and H
at the points marked with a cross for t = A t. This procedure is then

repeated for t =2 At and so on, for any time length.

Finite-Difference Equations for a Uniform Pipe

Let the head and velocity at time t = tj-l be known for all
intervals of x. See Figure 4. Suppose the solution at P(xi,tj) is
to be sought. Let the two characteristics through P, with Equations (39)
and (41), cut the line t = tj.3 at R and S. By means of interpola-
tion, the head and velocity at R and S could be determined from the

values at A, B and C. Then from Equations (40) and (42) we have,

(Vp-Vg) + (Hp-Hg)/2p + 222 (£ V) (tp-tg) = O (43)
and
(Vp-Vs) - (Ep-Hg)/2p + =2 (£ V)5 (tp-tg) =0 (1)

Making (tp-tg) = (tp-tg) =A t , and solving the above two equations

for Vp and Hp, we have,

Vp = SRS _ (Hg-mgp)/hp - LVOLE Lre v2)p 4 (£ VR)g} (45)
2 2 aD
Hp = HR;’HS - B(VS-VR)+BL—%4‘—E {(£ v®)g - (£ V®)g} (46)
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Whenever At 1is chosen to be exactly Ax/2, then the points
R and S coincide with A and B respectively. This value of At
then makes the interpolation procedure unnecessary and leads to a speedier
solution.
At this stage, it can be seen why Equation (37) is easier to
use than Equation (38). If Equation (38) was used, the solution for

Vp and Hp for a uniform pipe would be as follows.

Vp = ‘iBizfl’ﬁ - (Hg-HR)/4p - Tﬁl’%é.i {(£ v®)g + (£ V¥)g + 2(f V3)p}

ip = B8 - (vg-vg)p + BLTCLL {(r )5 - (£ )}

It is clear that the first equation cannot be solved explicitly
for Vp, as the friction factor f is a function of Vp. Thus, the
solution would have to be carried out by an iterative procedure by assum-
ing an initial value of Vp. Because of this and also since A t was

very small, it was decided that Equation (37) provided sufficient accuracy.

Boundary Conditions:
a. A Reservoir at the Left-Hand End.
Consider Figure 5 on page 22. Let a constant head reservoir

exist at x,. Hence, at all times,

Hp = 1.0 (47)

Let the C characteristic through P cut t = tj-l in S, then from

Equation (L42)

(vp-vg) - (1.0-Hg)/2p + LIO (£ v¥)g At =0
or

V.

p=V

g + (1.0-Hg)/2p - Iia-g—o (f VP)gat (47)
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b. A Valve at the Right Hand End.
(1) For Time t ILess Than Valve-Closure Time t..

Whenever t < t the head and velocity at the valve have to

c?
be determined from two conditions. The first is the water-hammer
equation, AH = -28 AV and the second is the orifice equation Q = Cg.
Avalve VEgHG , Where H& is the head loss across the valve. The

orifice equation is usually rewritten in the following form.

V=r Jﬁ;
where
o= (Ca Avalvel)t - ¢

B (Cd Avalve)t =0

The values of T are determined experimentally as a function
of time t. Using the appropriate value of T, solution of the two
equations gives V and H at the valve.

However, in this thesis, the conditions at a valve are treated
differently. In the experimental set-up, the solenoid valve does not
discharge into the atmosphere. Instead, the pipeline continues after the
valve and hence the pressure downstream from the valve has also to be
found. For this reason, the valve was treated as a device causing a
sharp energy loss at a point in the pipeline. The equations for this
condition are derived a little later in the thesis.

The T values obtained experimentally are transformed into

values of loss coefficients in the following manner.

or

&
o>
1%
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Therefore

2g
K = 55
SV 2

These values of loss coefficients are used in the equations

derived later.

(ii) For Time t Greater Than Valve-Closure Time t,.

Refer to Figure 6 on page 26 . When the valve is closed,

the velocity at x =1 1is always zero. Let the C, characteristic

through P cut t = tj-l in R.

Then
(vp-Vg) + (Hp-HR)/2p + LT;Q (f V2)gAt =0
But
Vp =0 (48)
Hence,
Hp = Hp + 2B VR-2BL;-;§—O-(J‘.‘V2)RA1: (49)

c. At a Minor Loss In the Pipe Line.
KV2
Refer to Figure 7 on page 26. Let a minor loss of Eé— take
place at x; and let P; and P, Dbe points just upstream and just
downstream of x; respectively. Let the C, characteristic through

P. cut the line t = tj-l in R and the C. characteristic through

1
P, cut t = tj—l in S. The four unknowns to be determined are Vpyp,
Vpo, Hpy and Hpp . The four available equations to determine them

are the two characteristic equations, the continuity equation and equa-

tion of motion at t = t; .
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From Equation (40),

(Vpy-Vg) + (Hpy-Hg)/28 + Lago (£ V¥)pAat =0 (50)
From Equation (42),
(Vpp-Vg) - (Hpp-Hg)/2B + La‘,{o (fV)gat =0 (51)

If the pipe diameter remains unchanged, continuity makes
VpL = Vpp (52)

The fourth equation is the equation of motion between the
points P; and P, at time t =t; . The unsteady equation of motion

for an incompressible, inviscid fluid in dimensional form is

3 X
(V'p1)” : , PL3(v'p) 4.
5 T &Hp) * &2p +of 5 =
' 2 ' '
- Ure) + gH!, + gZ%, + }f%2 oV dx' (53)

P2

2 P2 o) ot!'

Now, Vp; = Vpo and if the pipe is horizontal, Zﬁl = Zps

and Equation (53) reduces to
Xl
P2 o
+ [ ov' ax' (5k4)
tot!

ng = Hl
g P2 "
Pl

Pl
Since the two points P; and P, can be chosen arbitrarily
close, the last term can be made as small as to make it negligible.
Also, since a minor loss takes place between P] and Pp, Equation (54)

can be modified to take this into account.
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Thus,
2
- '
gH'p) = gH'p, + K(V'Pl) /2
Or,
HY o= Hb, o+ K(Vh )2/2g
Non-dimensionalizing the above equation, we have
K VO° 2
H = H + Vv
P1 P2 2& HO ( Pl) (55)
Solving Equations (50), (51), (52) and (55) simultaneously,
we get
LVOAt
Hpy = (HgtHg)/2 - B(Vg=Vg) + B =———— {(f V)5 - (£ V*)g}
PLEVE 2 (56)
2 2g HO Pl
LVOAt
Hpp = (Hp+Hg)/2 - B(Vg-VR) + B T—=—{(f V¥)g - (£ V?)g}
_LEVR 2
5 25 10 P (57)
LVOAt
Vpy = Vpy = (Vg#Vg)/2 + (Hg-Hg)/b4p - —2—;;—{(1‘ VE)R
P(eR) g} - L. LEVO 2 (58)
28 2 2g HO p1

Equation (58) is a quadratic and hence can be solved explicitly
for Vp) . This value of Vp; can then be used in Equations (56) and
(57) to obtain the head before and after the minor loss. It should be
recognized that these equations have been derived for positive velocities
and hence when the velocities are negative, the friction and minor loss
terms change sign. This is taken into account by replacing each V2

term by VIVI , which automatically changes the sign.
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A comparison between the equation for Hp; and the equation
for head in a uniform pipe [Equation (46)] shows that the difference
between them is half the minor loss. This conclusion was also arrived
at from the classical wave theory [Equation (13)].

In the use of Equations (56), (57) and (58), it should be de-
termined, whether the loss coefficient should have the steady-state value
K or whether an unsteady loss-coefficient K, should be used. Experi-
ments(l8’l9) have shown that for accelerated flow, K, 1s less than X
and that K, decreases with increasing acceleration. The value of K,
is shown to be a function of the acceleration parameter ACL/(V')2 .
Thus,

Ky = K - Cp Ae L/(v')? (59)

where Cl is a constant of proportionality dependent upon the ratio of
orifice area to pipe area.

This thesis, however, made use only of the steady state loss
coefficient K Dbecause of the following reasons. First, experimental
values of C; were not available for the low ratio of orifice to pipe
area used in the experiment. Second, formula (59) would not be valid
for the very high accelerations the fluid encounters upon passage of a
water-hammer wave. For the case of instantaneous or rapid gate closure,
the acceleration of the fluid approaches infinity each time a water-
hammer wave passes by. This would imply from Equation (59) that Ky
would become zero or even negative. For these reasons, it was decided

that the steady-state loss coefficient should be used.
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d. At a Valve Discharging Into the Atmosphere.

This condition is a particular case of the conditions at a

minor loss described in the last section. The pressure at P2 (refer

Figure 8)

is always atmospheric, i.e., HPQ = 0 . Hence, there are

only three unknowns to be determined. They are Hpy, Vpp and Vpp .

The following are the three equations to be used for their solution.

From the C,_ characteristic [Equation (40)]
(Vp1-Vg) + (Hpr-ER)/(28) + L vO(f ¥2)R (tp-tg)/(a D) =0  (60)

From the condition of continuity,

Vp = Vps (61)
The minor loss equation gives
A 2
Hpy = Hpp + K VO v%l/ (2g HO)
= X V0% v%l/(eg HO) (62)

Solving Equations (60), (61) and (62) simultaneously, we obtain

K V02 (Vpl)e +28Vpy -Hg -2 Vg - 28 LVOAL (£ v2). =0 (63)
2g HO aD

Equation (65) is a quadratic in Vp; and hence its value could

be easily obtained. Substituting its value in Equation (62) gives Hpj

directly.



-31-

t
C+
t RAR
-]

t A //1; C2
i-1 7R

fj_g

AX
s
o X

Figure 8. The {x,t) Plane for a Valve as a Right-
Hand Boundary Condition.



V. EXPERIMENTAL SET-UP

The experimental set-up was organized in such a way that the
reflection from a minor loss could be seen and compared with the minor
loss. In order to make the reflection large, the minor loss also had
to be made as large as possible. This was achieved by selecting a
device with a véry large loss coefficient. This device was placed
in the middle of the pipeline and the pressure in the pipeline at two
different points was recorded and compared with the theoretical results.

A schematic diagram of the experimental set-up is shown in
Figure 9. At one end of the pipeline is a compression chamber, half
filled with water and with compressed air in the space above the water
level. The pressure of the air in the compression chamber is main-
tained at a constant level by means of a pressure regulator placed
between the chamber and the compressor. In this way, the air pressure
stayed constant even when the level of the water in the chamber dropped
during the course of the experiment.

Twenty feet from the pressure chamber, three closely-spaced
orifices were placed in the pipeline to produce a large energy loss
(Figure 10, page 34 ). Steady state experiments were conducted to
determine the loss coefficient of this device as a function of the
Reynolds number. The results of the steady state experiments are
shown in Figure 11.

The pipeline used was a hard copper tube, 1/2 inch inside

diameter and with a wall thickness of 1/20 inch. Fittings could be

-32a
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connected to it by means of soft-solder. The theoretical wave speed
for water in this pipe was 4480 feet per second. Experiments were
conducted to determine the Darcy-Weisbach friction factor of the pipe
for different Reynolds numbers. - From the plot of f versus R, it
was seen that, in the turbulent range, the pipe behaved like a smooth

e

pipe and followed Blasius' law, f = O.3l6/Rl . As only Reynolds
numbers less than lO5 were expected in the experiment, it was felt
that this equation would suffice. For laminar flow, the points
closely followed the law f = 64/R.

Forty feet from the pressure chamber a solenoid valve was
connected to the pipeline. This valve was of the normally closed type.
It opened under the action of the solenoid and closed under the action
of a coil spring. It was necessary to determine the characteristics
of the valve, such as the rate and time of closure and the variation
of the hydraulic resistance of the valve as it closed.

The hydraulic resistance of the valve was determined by
measuring the pressure drop across the valve as the sliding gate of
the solehoid valve was depressed in small steps by means of a screw
arrangement attached to the top of the valve. Thus, the variation of
T with displacement of the valve was obtained. The other character-
istic of the valve to be determined was the rate and time of closure
of the valve. This was done by means of a metallic cantilever beam.
The free end of the cantilever was attached to the solenoid bit.

Close to the fixed end of the cantilever, two strain gages were glued
on, one to the upper side and the other to the lower side of the beam.

These two strain gages formed two arms of a Wheatstone bridge. The
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output of this bridge was amplified and recorded by a polaroid camera
from the screen of an oscilloscope. Calibration of the bridge was
performed by depressing the solenoid by known displacements. Recordings
were then made as the valve was closed with water in the pipeline. It
was seen that the valve opened under solenoid action in about 8.0 milli
secs. When closing, it took about 10.0 milli secs. for the solenoid

to de-energize and another 12.0 milli secs. for the spring to close

the valve.

Combining these two characteristics of the valve, it is
possible to determine the T-versus-time curve for the valve. Comparing
the time of closure of the valve (12 milli secs.) with the return-travel
time of the valve (2L/A = 18.0 milli secs.), it can be seen that we have
a case of rapid closure of the valve. The Tt-versus-time curve is pre-
sented in Figure 12.

Twenty feet downstream from the solenoid valve, the pipeline
ends in a gate valve. This valve is operated in such a way as to
elevate the static pressure in the pipeline and keep the velocity of
the water low. This additional twenty feet of pipe was felt necessary
to prevent any reflections from downstream travelling past the solenoid
valve whilst it was closing. 1In this way, the pressure wave in the main
pipeline was kept free of any extraneous disturbances.

The discharge from the pipeline was measured gravimetrically.
The water was allowed to accumulate in a tank resting on a weighing
scale. The time required for a fixed weight of water to be discharged

into the tank was determined with the help of a stop watch.



-38-

el

*2INSOT) FUTINE SATBA PTOUSTOS JO S0UBSTSSY

"SO3SITUW NI 3WIL

ol 8 9 v

2T 9IndTd

-

o=

S(bvp:))

JONVLSIS3Y

olivy

1

P

v



-39-

The pressure sensing device used was a Dynisco pressure
transducer. The transducer was attached to the pipeline in such a
way as to make the sensitive face of the transducer tangential to
the inside circumference of the pipe. The transducer was connected
to an Ellis bridge amplifier, which provided the input for the
Wheatstone bridge in the transducer and which amplified the output.
The bridge amplifier had an outlet for connection to an oscilloscope.
The oscilloscope used was a Tektronix model. An attachment on it
made it possible to mount a Du Mont camera in front of the screen
and photograph traces on polaroid film. Brief specifications of the
three pieces of equipment mentioned above are given beow.

Dynisco Pressure Transducer.
Model No. PT25-1.5C
Pressure Range. 0-150 psi. Safe Overload. 2x Full Scale

Natural Frequency. 12500 cps.

Configuration. L Active Arm Wheatstone Bridge.
Bridge Resistance. 350 ohms + 10%.
Ellis Associates Bridge Amplifier and Meter. Model BAM-1

The unit consists of a DC powered bridge circuit, DC transistor
amplifier and static and dynamic output connections. By connection to a
DC cathode ray oscilloscope, it measures dynamic signals over a frequency
range of 0-20000 cps. Resistance transducers, 50-2000 ohms, with 2 or 4
external bridge arms could be used.
Tektronix Dual-Beam Oscilloscope. Type 502

Frequency Response at 5 mV/cm -- 200 ke.



Triggering signal sources -- Upper beam, lower beam, external or line.
Internal triggering -- a signal producing 2 mm vertical deflection on
either lower or upper beam.

External triggering -- 0.2 to 10 volts on either polarity.

The oscilloscope was capable of being triggered in several
ways. It was necessary for this experiment to trigger the trace in
two different ways. First, use was made of a microswitch, depressing
which a single trace would travel across the screen. This method was
used for registering the constant pressures before and after closure
of the solenoid valve. The other arrangement triggered a trace by
the use of the same switch which operated the solenoid wvalve. This
method was used to trigger the water-hammer pressure wave.

The sweep rate of the oscilloscope could be adjusted in
steps from 5 secs/cm to 200 psecs/cm. Two sweep rates were most
satisfactory for these experiments. First, when registering only
one cycle of the wave on the screen, a sweep rate of 5 milli-secs/cm,
was used. However, when four cycles of the wave were required, 2
photographs were made, each registering 2 consecutive cycles using
a sweep rate of 10 milli-secs/cmu The accuracy of these sweep rates
was checked by means of an audio oscillator. It was found that there
was an error of about 6% in the sweep rates and so the actual time
scales on the photographs were 1 cm. = 4.7 milli secs. and 1 cm. =
9.4 milli secs.

The camera mounted on the oscilloscope was a Du Mont
Oscilloscope Camera Type 450. A few adjustments had to be made before

good, clear photographs could be taken with it. First of all, the back
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of the polaroid camera was opened up and a ground-glass plate taped
exactly where the film would be held. A steady trace was produced on
the screen by means of an audio oscillator. This trace was brought
into focus on the ground-glass plate by means of the focussing knob.
This position of the knob was marked, so that it could be brought
back to this position at a later time. In this position, it was seen
that the graticule was not in focus since the graticule and the screen
are not in the same plane. Hence, after illuminating the graticule,
it was brought into focus on the ground glass plate and this position
of the focussing knob was also marked. For clear, well-focussed pictures,
these two different positions had to be used when photographing the
graticule and traces on the screen.

Photographs of the experimental set-up and the instruments

are presented in Plates I to IV, on pages 42 and L43.
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Plate I. Compression Chamber and Air Pressure
Regulator.

Plate ITI. Solenoid Valve and Pressure Transducer.
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Plate III. Closely-Spaced Orifices Used to Produce Energy Loss.

Plate IV. Recording and Calibrating Instrumentation.



VI. EXPERIMENTAL PROCEDURE

The following different experiments were conducted.

1) Pipeline with a Minor Loss in the Middle.

a) Turbulent Flow. Pressure transducer at x' = 40 ft.
b) Turbulent Flow. Pressure transducer at x' = 30 ft.
c¢) Laminar Flow. Pressure transducer at x' = 40 ft.
d) Leminar Flow. Pressure transducer at x! = 30 ft.
2) Straight Pipeline.
a) Turbulent Flow. Pressure transducer at x' = 40 ft.
b) Turbulent Flow. Pressure transducer at x' = 30 ft.
c) Laminar Flow. Pressure transducer at x' = 30 ft.

Each of these experiments followed the same procedure, which
will be described below, First of all, the electronic instruments were
switched on and allowed to warm up for an hour or more, so that there
is no drift in the trace. ©Next, the pressure chamber was filled with
water and the air pressure regulator set to a constant pressure at
about 80 psi. With the solenoid valve open, the gate valve is regulated
so that the required velocity in the pipe is obtained. This is accomp-
lished by trail and error. The required velocity in the pipe was chosen
so that the pressure in the pipe did not at any time of the experiment
fall below atmospheric pressure. This was to reduce all chances of
water column separation.

With the electronic instruments warmed up, the pressure

transducer was connected to a dead-weight gage tester. Dead weights

Lo
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equivalent to a pressure of 90 psi were applied and the vertical
deflection of the beam on the oscilloscope adjusted to be exactly
3 em. In this way, a pressure scale of 1 cm. = 30 psi was obtained.
The transducer was then connected to the appropriate place in the
pipeline. Every effort was made to remove all the free air that may have
been trapped in the pipeline. This was accomplished by letting the water
flow in the pipeline with a high velocity for a sufficiently long time.
The time scale on the oscilloscope was adjusted so that one
or two cycles of the pressure wave were accommodated on the screen.
The intensity of the beam was adjusted so that it was not too bright
and yet all the fine details of the wave registered on the photograph.
The camera was now attached to the oscilloscope. The screen was
brought into focus and the lens opening increased to its maximum value.
The shutter-timing mechanism was set to the 'bulb' position. With the
shutter lever depressed, a trace was triggered across the screen by
pressing the micro-switch. This straight line represented the static
pressure at that point under steady-state conditions. Then, the
switch operating the solenoid valve was closed and another trace
was thereby triggered across the screen. This was the water-hammer
pressure versus time curve. The third trace to be triggered across
the screen was the constant pressure HO causing the flow. The last
thing to be done was to illuminate the graticule, bring it into focus,
reduce the lens opening to f = 11, adjust the shutter time to be 1/25
second and depress the shutter release. This provided a background of

horizontal and vertical lines spaced one cm. apart in both directions.
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These lines were helpful when transferring the trace on the photograph
to another graph. The polaroid film was then developed in the 10 secs.
coated with the permanentizing solution and was ready for comparing

with the theoretical curve.



VII. THE COMPUTER PROGRAM

The computer program was written for an IBM 7090 computer
installed at the University of Michigan Computing Center. The language
in which the program has been written is known as the Michigan Algorithm
Decoder,(9) or in short, the MAD Language. A flow diagram, illustrated
in Figure 13, indicates the procedure used in the program. It also
helps to break up the long program into short and simple parts which
make it easier to understand.

The main steps in the program are as follows; reading-in
the data, setting up of function subroutines, calculation of certain
constants, setting up the initial values in the pipe and calculation
of pressure and velocity for as long a time as may be desired. The
last part is the real core of the program. It is broken up into two
parts. The first part involves the calculation of V and H for
time t less than t, and the other part of time +t greater than tc,
When the time t exceeds a specified limit, the program is terminated.
Three function statements are defined at the beginning of the program.
The first determines the friction factor f for a given velocity.

The second determines the loss coefficient of the orifice for a given
velocity. The last function determines the head and velocity at a
boundary condition, involving a minor loss. This last function is
called upon in the main part of the program by means of an "Execute
Function" Statement.

The program and a part of the program output is given in
Appendices I and II. The head and velocity in the pipeline at 5-foot
intervals are printed out, even though calculations were made at in-

tervals of one foot.

-47-
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Figure 13.

Flow Diagram for Computer Program.



VIII. DISCUSSION OF RESULTS

The results of the experiments are shown in their original
photographic form in Plates (V) to (XIII), on pages 5C through 58.
Comparisons of the experimental and theoretical wave forms can be
made in Figures 14 to 22, For all cases, four cycles of the pressure
wave have been reproduced. In addition to this, pressure-time diagrams
of one cycle have also been presented for the case of the pipeline with
a minor loss in the middle. In this way it is possible to see the
magnitude of the reflection in the one-cycle diagram and also observe
its influence on the decay of the pressure wave in the four-cycle
diagram.

It was the intention of the author to obtain a wave form
with as few disturbances as possible so that the reflection of the
wave could be noticed easily. It was for this reason that a pump was
not used at the upstream end and instead a compression chamber with
compressed air was thought necessary. However, there were some dis-
turbances that could not be eliminated. The way in which the solenoid
valve closed, produced one such disturbance that appears in every
cycle of the wave and was taken into account in the theoretical program.

It can be seen that in every case, the experiment and theory
agree in the first half of the first cycle. There is agreement both
in magnitude and form of the wave. In Figures 14 and 16 the reflection
from the minor loss can be seen and compared with the steady-state minor
loss. Thus, the validity of Equations (56), (57), (58) and hence of
Equations (13) and (15) is upheld. It is only in this part of the

-49-
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PIPE WITH MLOSS

Plate V. Water-Hammer Pressure-Time Diagram.

Case 1(a), 1 cycle VO = 1.20'/sec
Temp., = T78°F Pressure Scale 1 cm = 30 psi
HO = 194! Time Scale 1l ecm= 5 m.secs.
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PIPE WITH MLOSS

Plate VII. Water-Hammer Pressure-Time Diagram.

Case 1 (b) 1 cycle Vo = 1l.2'/sec.
Temp. = T15°F Pressure Scale 1 cm =
HO = 193! Time Scale lcm =

30 psi
5 m.secs.



-53-

‘wex8eT] SWTIL-2JNSSaJJ JOUIIEH-JI37%8M

SSOTW HLIM ddId

*S99Ss*W QT = WO T 9Teos W 10°L6T = OH
1sd 0¢ = wo T oTBOg aanssaxgd d,6L = -dws]
09s/,2°'T = oOA seToko 4 (Q)T esed

“ITIA ®3®1ld

SSOTW HLIM HdId



-5k~

*S09S W QT = Wo T STBOS awWT] 199 = OH
1sd @ = wd T S[BOS aanssaxg d,)) = cdusf

MOTd HVNIWVI

095/,00¢€°0 = OA

*uBJIBBT(J SWLL-SINSSaXJ JISUWRH-ISYBM

SSOTW HLIM HdId

(°)T °s®D

‘XTI °3B1d

MOTA HYNIWV'I

SSOTA HIIM ddId



-55-

*so9s uw QT
1sd g

MOTH HYNIWVT

wo T 9T®BOS SWTY 10" 64
WO T oSTed8 aanssagd A, 9L

o9s/,0¢¢" = oA

Ll

‘WwesIeT(] SWIJ-9JINSSaJIJ JISUWEH-IS7BM

n

OH
= cdus]

(P)T es®d

"X 91%e1d

SSO'TN HLIM #dId MOTd HVNIWV'I

SSOTN HLIM #dId



-56-

*S09S W OT = wo T 9TBOg SWI],
isd 0 = wo T oTedg aunssaag
"99s/,2T2°T = OA

10" HET = OH
d,6L = ‘dws
(B)e °s®)

‘WeIFRT[ SWIL-9INSSaIJ JOUMEBH-JIS3BM *TX 91BTd

dd1d IHDIVYILS

ddId IHDIVYLS



-57..

*S09S8°W QT = WO T aT®BOS SuTY, 0 HET = OH
1sd ¢ = wo T oTBOg aJInssaxg .Gl = ‘dwsy
29s/,02°T = OA (a)g 98B

‘welSeT( SWIJL-SJNSSaId JSUuMIey-JI93%8M

ddId IHDIVYLS

*IIX 93®1ld

ddId LHDIVHLS



-58-

*soas w QT
1sd g

MOTd YVNINVI

=uwo T STEBOS SWTL 0Ly = OH
= WO T STBOG aanssaad d, L. = “dwsg

09s/,662°0 = OA (2)2 °s®p
‘WeJdeT SWIL-oJnsSsatd JouweH-JIoe'M IIIX 91BTd

dd1d IHDIVHLS

MOTA HVNINWVI

HdId IHDIVYMLS



-59-

"doQL = tdway f°09s/,02°T = OA ¢,0°#6T = OH °MOTJ JuUSTNQIN], “STPPTW UT SSOT
JIOUTW U3TM 3did 4 \.H ¢ = X 97 “weadel( SW[J-9JNSSoI] JSUIBH-JI978M A aan3Ttd

(D)1 3SVvd
"SO3S°W NI JNIL

ov Se (0} 1°74 01 Sl ol S

QV3H JllviS
OH MOTd4 9NISNYD aQV3H
IWOILFYOIHL "~~~
i TTVAN3NRI3dX3

0
O
)
ool
wn
CcC
)
m
ol
m
00z 5
Z
m
~
Q
oon_,m
00b



-60 -

‘oL = *dusy €°09s/,02°T = QA {,0°46T = OH °MOTJd JUSTNQINT “STPPTW UT
80T JOUTIW Y3Is 3dTd 4 \Am = X Y -wsIdeI( SWTL-SJINSSaId JISUMBH-I99BM °¢T oInITJd

(p)lI 3SVD

"SO3IS W NI 3JNWIL

Qv3H DJILVLS
OH MO1d 9NISNVD AV3H
IvIIL3Y¥O3HL

AVLN3WIN3Id X3

(o]o]}

002

oo¢

{100¢%

34NSS3ydd

av3iH

O°H 40 'L4 NI



*d,6L = ~dwel f°08s/,02°T = OA f,0°¢6T = OH "MOTd 3usTnqInL “STPPTA
Ul sSOT JOUTW UaTM adfd 1 = X 3y ‘weIZBT( SWIL-2INSS3IJ JSUMBH-I23BM ‘9T 2an3td

(a)1 3SvO

‘SO3S "W NI JNWIL

11 4 ov Ge o¢ G2 0¢ Sl (o]] S 0
T T T T T T T T 0

- 00l

- - -

-61-
e r T [

| 5
,
._ 002
1
]
]
]
]
1
)
- " ! Ho0¢
! \
QV3H JUVIS— ~—~———— Ve T !
OH MOT4 ONISNVD gVIH— — — — —
WOILIYOIHL "~~~ -~
- TVLNININ3dX3 J oot

Y31VM 40 "Ld NI v3H 3¥NSSI¥d



-62-

"Eo6L = "dwsL €°09s/,2°T = OA ¢,0°L6T = OH "MOTI qUSTNQINT ‘STPPEW UT
SSOT JOUTW Y3TM adfd T = X 3V ‘wBIBRT( SW]L-9INSSoI] JOUMIRH-JIS]BM ‘LT 2an31yg

(9)1 3Svd

"SO3S W NI 3JNIL

09l ov! ocl 00! 08 09 ov 02

SSOT W

A L Y NSy

m—mm e ———————

\\\\\

dv3iH OJIvwLs -~ — - — -— - -

OH MOTd ONISAVD QVIH @ — — — — —
AVIIL3YO3HL ~ """ T mmmmoo -
TVLN3NWIY3dX3

1 1 1 1

100I

4002

100¢

100¢

Av3H 3YNSS3dd

O°H 40 14 NI



-£3-

‘doll = -dwey, .Towm\.oom.o = OA {,9°9f = OH 'MOTJ JBUTWeT ‘STPPTW UT
§80T JOUTW U3TA dId ‘4 \_Hn = X 9y ‘WweaFBT( SW[JL-SINSSaIJ JIOWIBH-IS]BM *QT sandtd

()1 3swo
'SO3AS 'K NI JNIL

1 | L | | | 1 1

o9l ovl ozl ool (o]} 09 ov 02 0
T T T T T T T T 0
- \/l.....
A SN ! g _
N m
- “ " | -4 02
) \ “
) _ _
" ! "
) _ i
| | _
- | " m “ ~or
- — - - _———— ——— e e .
A~ [ -1
llm«@Jl =~ — — I.T.__I..I__III..M,_||IJ\H
]
! "_ " “ "
! i ! |
- i " ! ! 409
] ' _
] ]
\ /] “ | | ]
| ! i ! | ! _
] [
“_ ! ! | “ m “
! A ) ) e
-y ey v_ \\ll_ .“ “
QV3H JIYLS — -~ —~— [ \f-:
OH MOT4d ONISNWO QV3H — — — ——
AVOIL3YO3HL T T T T
B IVLINININIDX3 400l

Y31VM 40°1d4 NI QVaH 34NSS3¥d



"do9L = "dwsy f:088/,0¢¢°0 = OA {,0°6h = OH 'MOTd JBUTWET °STPPIN
Up SsOT JIOUTW Y3Ta adld 1 = X Y ‘weIIB[( SW[L-3INSSaIJ JSUMBH-I998M ‘6T oInITd

(P)1 3svo
"SO3S'K NI 3NIL
091 ovl ozl ool 08 09 ov 02 o
T T T T T T T T 0
- ]
' "
i “ . Joz
] |
| ]
' 1
| I
] ]
m "
i ! ' 4ot
[] [} ]
= In. 1
Ne) - -—- - -— - - =
B i i nai il il
“ ! ] |
: ! " | | "
“ “ I I | b ow
— ] ! “ “
| ! | \
! ] | 1 i
“ _ | _ "
] " ] " ]
_ _ ! i !
i ! | _ i 08
—I\I) raao===! “ !
~o/ ]
Qv3aH Jlvis™ -~ T T ! |
OH MO1d ONISNYD QVIH— — — —— LA p-E-- |
i vOI113¥03IHL Joor
IVANININIAX3
| | | 1 1 1 1

Y31VM 4014 NI QV3H 3¥NSS3dd



-65-

"do6L = dwsl f°09s/,2T2°T = OA ‘06T = OH °MOTJ JUSTNAIN]
faurTadld 7UITBIAS .:\J ¢ = X 9y -weIdeT(] SWIL-9INSSSIJ JSUWEH-IS9BM ‘02 SInITd

(D)2 3svd
"SO3S° W NI JWIL
091 ovl oz ool 08 09 oY 02

—— e = - —

AVOILI™O3IHL T T T T

IAVINIWIYMIEX3

-1 00l

-100¢

—400%¢

431VM 40 "14d NI AQv3H 3dNSS3¥d



*d,6L = -dwsl, {°988/,02°T = OA €,0°H6T = OH “MOTd 3JuULTNAINT
faurTedrd AuyBTBIlE T = X Y ‘WBIBBI(Q SWIL-SINSSaJIJ JSUWBH-JI99BM ‘T2 SIn3TJ

(@)2 3svH
"SO3S N NI 3NIL
091 ovl ozl (o] 08 09 ov 02 o
| I L | I B I 1

\
|
|
!
1
1
|

f——— ———— =

-66-

|
B S Mgy G
|
l -
sl Sl
|
|
|
B — ____.__—.I__——— —x—
|
|
|

-

OH MOTd4 ONISNVYD QVIH—  ~— ~— ~—

AVOIL3MO3HL ™~ "~~~
TVAN3NIY3dX3

- ———

0ot

002

oo¢

oov

Y31VM 40°14 NI AV3H 3¥NSS3Yd



-67-

*MOTd Jeutwey fautTadId
Uu8TeIIS 4 \,Hn = X Y “weiBeI( SWUT]-2JNSS3Id JSWWEH-I398BM ‘22 2an3Td

(9)2 3SV)
"S03S W NI 3WIL
09l ovl oei 00l 08 09 ov 02 oo
102

g |

10+

109

———— . ———— = T,

o8

OH
‘MOT4 ONISNVD QVIH — — — e

IVOILIYOIHL oot
IVANINIYIdX3

A A 1 L N L N

%“ ool

TN | (g N ) o~

NP

Qv3H 3¥NSS3yd

O0%H 40 ‘L4 NI



~68-

diagram that the theoretical program exactly depicts the experimental
conditions. |

When the pressure in the pipeline falls below the static head
HO for the first time, air that was dissolved in the water at the
static head HO, 1is liberated and begins to cushion the wave front.
This effect can be séen in all of the remaining cycles, by the dis-~
crepancy which developes between the experimental and theoretical
traces., This situation is more pronounced in the case of the pipeline
with a minor loss than in the straight pipeline. This is so because
the constriction at the orifices produces a far lower pressure than
in the case of the straight pipeline and consequently, more dissolved
air islset free.

There are several reasons to make one believé that the
difference between the theoretical and experimental curves was due
to gas liberation alone. First, the water used in the experiment
was drawn from the sump in the laboratory. This water is far from
pure as many addit;ves are added for various purposes, such as rust-
preventives and algée inhibitors. These compounds, like Chlorox and
dilute Hydrochloric acid, when dissolved in water introduce gases
like Chlorine, making the water more susceptable to gas liberation
when subject to low pressures. Second, at the end of each experiment,
bleeding of the pipeline at the orifice and at the valve would
indicate the presence of small bubbles. Third, the discrepancy occurs
only after the first drop in pressure below static pressure. The
discrepancy cannot be attributed to an incorrect value of the steady-

state loss coefficient or to the fact that the unsteady loss coefficient
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was not used since the same type of discrepancy exists in the case
of the straight pipeline. Finally, the nature of the discrepancy
itself leads one to recognize it as one of air liberation. In
nearly all the cases, air bubbles act ag a spring cushioning the
pressure change, allowing the maximum pressure to be reached after
some time.

This phenomenon of air liberation could not be handled
analytically because of several reasons. First, the mass of air
set free would have to be determined by trial and error, and its
distribution along the pipe length would also have to be assumed.
Also, even if the above two factors were known, new equations would
have to be developed to depict this phenomenon. The equations used
for large air chambers(3’l6’59) would not be applicable in these
circumstances for the following reason. Since the volume of air is
so small, such large pressure changes are bound to produce heat,
which would be dissipated in the water. This additional form of
energy loss would have to be taken into account in the new equations,
Because of these difficulties, the theoretical program did not take
the effects of the liberated air into account.

Every care was taken to remove all the free air from the
pipeline before the experiment began. However, it was impracticable
to modify the experiment so that there was no air liberated from
solution. Since a closed circuit was not feasible, use of distilled
water would not have made any difference. It was also felt that use
of an o0il would not have helped, since most oils have volatile compon-

ents which would vaporize at low pressures.
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There are some diagrams in which the theoretical and experi-
mental wave speeds differ. This discrepancy is believed due to errors
in the sweep rate of the oscilloscope. It was found that there was a
6% error in the sweep rates of the oscilloscope. Calibration with an
audio oscillator reduced the error to 1%, which error is noticeable in
the traces.

For the case of laminar flow, it can be seen that the calcu-
lated and actual wave speeds do not differ by more than 1%. This is in
contrast to the experimental results reported in Reference 78. The mag-
nitude of the pressure wave also agrees fairly well with theoretical re-
sults, despite the assumption of uniform velocity distribution over the
pipe area. However, it is not possible to see the reflection from the
minor loss, because of the disturbances of the free air. A more elabo-
rate theoretical study of waterhammer in laminar flow is presented by
Rouleau.(7l) However, in the experimental verification of his theory
he used oil flowing in a pipeline, and because of the volatile constitu-
ents of the oil, the experimental and theoretical traces did not match

well.



IX. CONCLUSIONS

Whenever a water-hammer wave encounters a device causing

a sharp energy loss, a reflection wave is sent back from it. The

magnitude of this reflection is equal to - éiM%9§§l . The wave

transmitted on is equal to the value of the approaching wave plus

A(MLOSS )
2

in a pipeline can be obtained graphically, it does not give one a

. Although the solution to the problem of a minor loss

clear idea of the mechanics of the problem.

The method of characteristics is a very simple and
efficient way to provide particular solutions for the water-hammer
equations, including friction effects. When setting up a computer
program for water hammer in a pipeline with a minor loss in it,
conditions at the minor loss must be treated as a boundary condition.
The equations at the boundary condition verify the conclusions about
the magnitude of the reflection wave, reached earlier. It is
sufficiently accurate to use the steady-state loss coefficients of
the device, at least for the case of instantaneous and rapid gate
closures, even though water hammer is a markedly unsteady phenomenon.

An experiment conducted to verify the theoretical equations
provided fairly good agreement between the experimental pressure

diagram and the theoretical curve, thus validating the theory.
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APPENDIX I

COMPUTER PROGRAM AND PRINT OUT FOR WATER HAMMER IN
A PIPELINE WITH A MINOR LOSS IN THE MIDDLE
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APPENDIX ITI

COMPUTER PROGRAM AND PRINT OUT OF WATER HAMMER
IN A STRAIGHT PIPELINE
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