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The recourse function in a stochastic program with recourse can be approximated by 
separable functions of the original random variables or linear transformations of them. The 
resulting bound then involves summing simple integrals. These integrals may themselves be 
difficult to compute or may require more information about the random variables than is 
available. In this paper, we show that a special class of functions has an easily computable 
bound that achieves the best upper bound when only first and second moment constraints are 
available. 
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1. Introduction 

The recourse p rob lem in stochastic p rog ramming  is to f ind the expected value 
of min imiz ing  the cost of meet ing some set of cons t ra in ts  that  may depend  on a 

r andom variable,  ~. In  this analysis, we suppose that the resul t ing funct ion  is 
convex. In  general,  we seek to b o u n d  the integral  of this or any  convex funct ion  
which is too expensive for numerica l  in tegra t ion  or, for which, only l imited 
d is t r ibut ional  in fo rmat ion  is known.  Thus,  m a n y  prob lems  in  applied mathe-  
matics, such as calculat ing the average load on a structure,  the present  value of a 

stock option,  or the expected per formance  of a compute r  system, fit this frame- 
work. 

The general p rob lem is to find: 

E / ( x )  = E { f ( x ( w ) ) }  = (1.1) 
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where x is a random vector mapping the probability space, ($2, sO, P), onto (R N, 
~N, F),  F is the distribution function of x, and x ~ X c  R N. The expectation 
functional, El(x) can also be written as a Lebesgue-Stieltjes integral with respect 
to F: 

El(x) = ~ ^ f ( x )  d F ( x ) .  (1.2) 

Difficulties arise in evaluating E/(x) when either the function f is difficult to 
evaluate or the distribution function F is not known exactly. In stochastic 
programming, the function f is the optimal value of a recourse action which 
depends on x(~) .  This function is convex for the following recourse problem in 
which the random vector appears as a linear term in the constraints. In this case, 

f (x (w))  = inf {q(y(~o)) [ g(y(o~))~< x(~o) a.s.}, (1.3) 
),(o~) ~ R "  

where q: g~" ~ R and g: R '~ ~ R N are convex. In general, each evaluation of f 
requires the solution of a mathematical program. Although many approximation 
formulas for integrals (1.2) have been given (see Davis and Rabinowitz [8]), the 
expense in these computations and the possible high values of N make them 
inefficient. 

In this paper, we concentrate on approximations that first bound f with a 
separable function and then compute integrals in each variable separately. We 
suppose that only first, second moment and some range information is available 
and show that a tight bound on the expectation of a large class of convex 
functions with known first and second moments can be obtained in a single 
linesearch. This result extends results for linear subproblems (1.3) and contrasts 
with previous methods that either require generalized programming [3,6,14] or 
obtain a looser bound through linear approximation [5]. 

Section 2 provides background on previous approaches to bounding expecta- 
tions. The generalized moment problem interpretation is given in section 3. 
Section 4 presents the separable approximation used for the bound. Section 5 
presents basic results for bounds on each separable component and some exam- 
ples of the general class of functions allowed in this analysis. 

2. Background and previous approximations 

Many of the approximation schemes for stochastic programs with recourse are 
described in Birge and Wets [3] and Kall [24]. For general functions f ,  the basic 
procedures to approximate Ei(x ) use some form of a discrete approximation for 
the distribution of x. Numerical integration procedures are often based on the 
midpoint and the trapezoidal approximations. On an interval, [a, b], the ap- 
proximations are improved by dividing [a, b] into subintervals, appropriately 
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weighting the subintervals and applying the midpoint and trapezoidal approxima- 
tions on each subinterval. 

A more sophisticated procedure is Gaussian quadrature to find an integral 
formula that fits all polynomials up to some degree. As noted by Miller and Rice 
[33], this can be used to find a discretization with K values that matches the first 
K + 1 moments of the distribution of x. To match the first three moments of the 
uniform distribution on [a, b], for example, Gaussian quadrature selects two 
points, (a + b)/2 +_ (~/-3/6)(b - a), with equal probability, 1/2.  

A difficulty with using the Gaussian quadrature formulas is that they do not 
generally provide bounds on the expectation. Restrictions on higher-order deriva- 
tives and Peano's theorem [34] provide bounds but they require, at least, differen- 
tiability of f and a density function that may not be available. Generalizations of 
the midpoint and trapezoidal approximations do, however, obtain bounds on the 
expectation of a convex function. For example, Jensen's inequality [23] can be 
interpreted as a generalization of the midpoint approximation that provides a 
lower bound on the expected value of convex f through: 

where Y = fR.~x d F ( x )  is assumed finite. 
Madansky, following Edmundson [13,31], provided a generalization of the 

trapezoidal approximation, called the Edmundson-Madansky inequality, that gives 
an upper bound on the expectation of a convex function. For N--- 1, the basic 
inequality is: 

f.,i(x) d F ( x )  ~< ( ( b -  Yc)f(a)(b_a) + ( ~ - a ) f ( b ) )  , (2.4) 

where X =  [a, b]. The Edmundson-Madansky inequality (2.4) can also be ex- 
tended to multiple dimensions and infinite intervals (see, for example, [1,15,18]). 

Refinements of the Jensen and Edmundson-Madansky inequalities are possi- 
ble by subdividing the interval (or, more generally, the region) into smaller pieces 
on which the bounds can be reapplied as in the traditional midpoint and 
trapezoidal approximations (see [3,17,21,26]). These refinements require ad- 
ditional functional evaluations and conditional expectations on the subregions. 
As has been observed, the Jensen lower bound is generally reasonably accurate 
relative to the Edmundson-Madansky upper bound (e.g., [19]), which requires a 
number of function evaluations that increases exponentially in the number of 
random variables. The primary concern is then in obtaining more accurate upper 
bounds without additional computational effort. 

A bound for linear recourse problems that requires linear work in the number 
of the random variables was introduced in [3] and extended in [4] and [2]. A 
similar bound also appears for network recourse problems in Wallace [40]. 
Related extensions to functions built on simplicial decomposition of the function 
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also appear  in [10] and [16]. An iterative approach for piecewise linear recourse 
appears in [6]. 

This paper  builds on the idea of introducing separability into the recourse 
function. It extends this idea of separability to the nonlinear recourse problem in 
(1.3) and assumes only that first and second moment  information is known about  
each of the random components.  This is especially important  when the random 
components  are transformations of some set of original random variables. 

The results here show that bounds on each component  are easily computable  in 
a single linesearch for a broad class of convex functions, if second moment  
information is available. We note that these results can also be seen as extensions 
of Kall 's result [25] in this volume for bounding the optimal  value of the linear 
recourse problem with only first and second moment  information.  In both 
analyses, a generalized moment  problem formulation leads to the bound.  This 
problem is described in the next section. 

3. Generalized moment problem 

To obtain bounds that hold for all distributions with certain properties,  we can 
find 

Q ~ a set of probabil i ty measures on (X,  ~N) subject to 

f v , ( x ) Q ( d x )  <-N ai, i = 1 . . . . .  s, 
a A. (3.1) 

[v,(x)Q(dx)=,~,, i = s + l  . . . . .  M,  
'IX. 

to maximize f / ( x ) Q ( d x ) ,  

where M is finite and the v i are bounded,  continuous functions. A solution of 
(3.1) obtains an upper  bound on the expectation of f with respect to any 
probabil i ty measure satisfying the conditions above. Problem 3.1 is a generalized 
moment problem [29]. When the v i are powers of x, the constraints restrict the 
moments  of x with respect to Q. In this context, (3.1) determines an upper  bound 
when only limited moment  information on a distribution is available. 

Problem 3.1 can also be interpreted as an abstract linear program since the 
objective and constraints are linear functions of the probabi l i ty  measure.  The 
solution is then an extreme point (see [37] for a discussion of properties) in the 
infinite dimensional space of probabil i ty measures. The following theorem, proven 
in [27, theorem 2.1], gives the explicit solution properties.  

THEOREM 3.1 

Suppose X is compact .  Then the set of feasible measures in (3.1), ~,  is convex 
and compact  (with respect to the weak* topology), and ~ is the closure of the 
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convex hull of the extreme points of ,~. If f is continuous relative to X, then an 
opt imum (maximum or minimum) of f x f ( x ) Q ( d x )  is attained at an extreme 
point of .~. The extremal measures of N are those measures that have finite 
support,  ( x I . . . . .  x L }, with L ~< M + 1, such that the vectors, 

vl(xl) v,(xL) 
o2(x,) o2(xL) 

�9 , . . . . .  ( 3 . 2 )  

1 1 

are linearly independent. 

Kemperman  [28] showed that the supremum is attained under more general 
continuity assumptions and provides conditions for .~ to be nonempty.  Dupagovfi 
(formerly Zfi~kovfi) [11,12,41] pioneered the use of the momen t  p rob lem as a 
bounding procedure for stochastic programs in her work on a minimax approach 
to stochastic programming.  She showed that (3.1) attains the E d m u n d s o n -  
Madansky bound (and the Jensen bound if the objective is minimized) when the 
only constraint in (3.1) is o 1 = x, i.e., the constraints fix the first momen t  of the 
probabil i ty measure. She also provided some properties of the solution with an 
additional second moment  constraint (v2(x) = x z) for a specific objective func- 
tion f .  To solve (3.1) generally, we consider a generalized linear programming 
procedure (see [7, chapter 24]). 

GENERALIZED LINEAR PROGRAMMING PROCEDURE FOR THE GENERALIZED MO- 
MENT PROBLEM (GLP) 

Step O. Initialization. Identify a set of L ~< M + 1 linearly independent  vectors 
as in (3.2) that satisfy the constraints in (3.1). (Note  that a phase-one objective [7] 
may be used if such a starting solution is not immediately available. For  N = 1, 
the Gaussian quadrature  points may be used as ment ioned above.) Let v = L, 
k = 1, go to 1. 

Step 1. Master problem solution. Find Pl >/0 . . . . .  p~ >/0 such that 
p 

~ p t = l ,  
I = 1  

p 

EVl(Xl)pl<~Oti, i = l , . . . , S ,  
/ = 1  

ts 

Y'. 
1 = 1  

v 

z = ~ f ( x , ) p ,  is maximized.  
I = 1  

i = s + 1 , . . . ,  M,  and 

( 3 . 3 )  
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Let {p~ . . . . .  p,k} attain the optimum in (3.3), and let {O k, ~r( . . . . .  7r~} be the 
associated dual multipliers such that 

M 

O k + Y'~ crikv~(x,) = f ( x , ) ,  if p~ > O, l =  1 . . . . .  V, 

*=~ (3.4) 
M 

ok + E ~rikvs(x,) >_.f(x,), if pr = 0, l =  1 . . . . .  v, 
i = 1  

~rsk >~ 0, i = 1  . . . . .  S. 

Step 2. Subproblem solution. Find x "+x that maximizes 
M 

p(x ,  O k , rr k) = f ( x )  - O k -  ~, %kvi(x). (3.5) 
i = 1  

If p(x  ~+1, O k, ~r k )>O,  let v = v + l ,  k = k + l  and go to 1. Otherwise, stop, 
{ p~ . . . . .  p~ } are optimal probabilities associated with { xl . . . . .  x ,  } in a solution 
to (3.1). 

The proof of the convergence of GLP is given in [7, chapter 24]. This result is 
used in [14] to solve a class of problems (3.1). The difficulty in G LP  is in the 
solution of the subproblem (3.5), which generally involves a nonconvex function. 
Birge and Wets [3] describe how to solve (3.5) with constrained first and second 
moments, if convexity properties of 0 can be identified. Cipra [6] describes other 
methods for this problem based on discretizations and random selections of 
candidate points, x i. Dul~ [10] gives results when f is sublinear and has 
simplicial level sets. Kall [25] gives the results for sublinear, polyhedral functions 
with known generators. 

In this paper, we first develop a separable bounding approximation for f as 
defined in (1.3). We then give conditions so that (3.1) can be solved for this 
separable function without requiring the repeated nonconvex optimization in 
(3.5). We show that bounds can be obtained for a general recourse problem by 
bounding several functions in one dimension that each require only L = 2 points 
of support that can be identified in one line search. This result gives bounds on 
the expectation of f with only O(N)  function evaluations. 

4. Separable bounds in the general recourse problem 

The use of the generalized programming formulation is limited in multiple 
dimensions because of the difficulty in solving subproblem (3.5). These computa- 
tional disadvantages for large values of N suggest that a looser but more 
computationally efficient upper bound on the value of (3.1) may be more useful 
than solving (3.1) exactly for large N. 



J.R. Birge, J.H. Duld / Bounding separable recourse functions 283 

If a separable function, ~,(x)= Z~=lvi(x(i)), is available, it offers an obvious 
advantage by only requiring single integrals. In this case, we would like to find 
v(x) = EU=lvi(x(i)) >~f(x) where each v~(x(i)) is a convex function. Methods for 
constructing these functions to bound the optimal value of a linear program with 
random right-hand side are discussed in [2] and [4]. We give below the results for 
the general problem in (1.3). 

LEMMA 4.1 
If f is defined as in (1.3), then f is a convex function of x. 

Proof 
Let Yl solve the optimization problem in (1.3) for x~ and let Y2 solve the 

corresponding problem for x 2. Consider x = Xx 1 + (1 - X)x z. In this case, g(Xy 1 
+ ( 1 - X ) y z ) ~ < X g ( y ~ )  + ( 1 - h ) g ( y 2 )  ~<Xx~ + ( 1 - h x 2 ) .  So, f(Xxl + ( I -  
X)x2) ~< q(Xy I + (1 - X)yz) ~< Xf(x~) + (1 - X)f(x2),  giving the result. [] 

Let 

vi(x(i))-- l f (Nx(i)ei) ,  (4.1) 

which is the optimal value of a parametric mathematical program. The following 
theorem shows that these values supply the separable bound required. Related 
bounds are possible by defining v~ with other right scalar multiples, f)tj(x(i)e~) 
(see [36] for general properties), where F.u=l)ti = 1. The proof below is easily 
extended to these cases and to translations of the constraints and explicit variable 
bounds as in [2] and [40]. 

THEOREM 4.1 
The function v(x) = E y = l l J i ( x ( i ) )  >~f(x), where f is defined as in (1.3). 

Proof 
In this case, let yi(x(i)) solve (1.3), where x(,0) = Nx(i)e i. Then, 

g - N <~ Ei=, '~ [g(y,(x(i)))] <~ E,=I -~ 

Next, let y*  solve (1.3) for x in the right-hand side of the constraints. By 
feasibility of EN=ayi(x(i))/N, 

f ( x ) = q ( y * ) < ~ q  ~i=l N <~i=l  -N q(y , (x( i ) ) )=~,=~ vi(x(i)) 

= D 
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This results demonstrates that a parametric  optimization of (1.3) in i = 1 . . . . .  N 
yields an upper bound on f ( x )  for any x. The bound may be tight as in some 
examples for stochastic linear programs as given in [4]. In these problems, 
f ( x )  = rain,. ~ w" { qXy lAy = x }. Note  that f is then a sublinear function and that 
ui(x( i ) )=f(x( i )e i ) .  The functions u i are found by solving for qi + = 
min,, ~ •,, { qVy I Ay = + e, } and letting 

{q + x ( i )  if x ( i )  >~0, (4.2) 
u,(x( i ) )= - q , . - x ( i )  i f x ( i ) < 0 .  

Generalizations of the stochastic linear program bound as in [4] can also be 
given for the general bound in theorem 4.1. For example, we may apply a linear 
transformation T to x to obtain u = Tx. The constraints become g ( y )  ~< T-~(u). 
A new bound may be found by letting i~(u(i))=(1/N)inf{q-ryIT(g(y))<~ 
N(TZlu(i))}. In linear problems, the convex hull of several of these bounds 
obtains good overall approximations (see [4]). We note that adjusting 1 /N  to 
other multipliers )L may also lead to better bounds. 

To use any bound of the general type in theorem 3.1 to bound fn. , f(x) d F ( x )  
requires a bound on fR~,i(x(i)) d ~ ( x i )  or frlxi(u(i)) dFu,(u(i) ), where F, is the 
marginal distribution on x i and F,,, is the marginal distribution on u(i).  Since 
function evaluations may be expensive (solving (1.3)) and distribution informa- 
tion may be limited (especially in the case of F,,,), we use the generalized moment  
problem to obtain bounds on each integral in N. Generalized linear programming 
may solve this problem but it can be inefficient. In the next section, we show that 
a large class of functions require only two points of support  in the bounding 
distribution. A single linesearch can determine these points and give a bound on f 
over all distributions with bounded first and second moments  for the marginals. 

5. Two-point support functions 

To ease the notation in this section, we develop bounds on fui(x(i)) dF , (x ( i ) )  
by referring to f as a function on R ( N =  1). We then consider the moment  
problem (3.1) with s = 0, and M = 2 and where the constraints correspond to 
known first and second moments.  In other words, we wish to find: 

U =  sup f f ( x ) Q ( d x )  
Q E ~ X  

fxQ(dx) = Y (5 .1 )  

f x2Q(dx ) = x(Z, 

where N is the set of probabil i ty measures on (X, ~ ) ,  the first momen t  of the 
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Fig. 1. The generalized moment problem in N 1. 

true distribution is 2, and the second moment  is x (2). The problem is illustrated 
geometrically in fig. 1. Here, X = [0, 0.6], the vertical lines are ( i /10 ,  ( i /10)  2, t) 
for 0 <~ t <~f(i/lO), i = 0 . . . . .  6, and C is the shaded convex hull of (x,  x 2, f ( x ) )  
for x ~ X. The objective in (5.1) is to find y*  = (~, x (2), z*)  ~ C that maximizes 
z. A generalization of Carath~odory 's  theorem [39] for the convex hull of a 
connected set tells us that y *  can be expressed as a convex combinat ion of at 
most three extreme points of C, giving us a special case of theorem 3.1. Therefore, 
an optimal solution to (5.1) can be written, {x* ,  p * ) ,  where the points of 
support, x*  = {xl*, x* ,  x~" } have probabilities p*  = { p~', p~', p~' }. An optimal 
solution may, however, have two points of support.  A function that has this 
property for a given instance of (5.1) is called a two-point support function. We 
give sufficient conditions below for a function to have this two-point support  
property. This property then allows a simplified solution of (5.1). 

In this characterization, we use a dual problem to (5.1), the semi-infinite 
program [20] that appears, for example, in Chebyshev approximation [35]. For  the 
one-dimensional, two-moment  constraint problem considered here, this dual is to 
find 0, 7r 1, ~r 2 such that 

0 + ~rtx + 7r2x z >~f(x),  Vx  ~ X,  (5.2) 

and 0 + 7fly + ~r2x (2) is minimized. 
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Note that (5.2) involves three variables and an infinite number of constraints in 
contrast to the infinite dimensional, finitely constrained primal problem (5.1). 
Note also that an optimal solution to (5.2) is a quadratic function that dominates 
f and that has minimum expectation with respect to any probability measure in 

The optimality conditions on a feasible solution to (5.1), x*  = { xl*, x~', x~" }, 
with associated probabilities, p * =  {p~', p*,  P3*}, are that there exist dual 
variables, 0" ,  ~h*, ~r2*, such that 

0 * + 7q'x* + ~r,* (x*)2  = f ( x *  ), 

O* + 7h*x + qr~x 2 >~f(x),  

if p* > 0, (5.3) 
V x ~ X ,  

where the first condition is complementary slackness condition and the second 
condition is dualfeasibi#o,. A useful interpretation of these conditions in terms of 
the function P defined in (3.5) is that x*  has a positive probability, p* ,  only if 
O(x*, 0",  ~ r * ) = 0  and x*  maximizes O over X for fixed (0 " ,  ~r*). It is 
convenient to let O(x, 0, ~ r ) = f i x ) -  q(x,  O, ~r), where q(x,  O, rr)= 0 + ~qx + 
~r2x 2. The following lemmae give additional properties for an optimal solution 
{x*,  p*} to (5.1). We assume that f is always convex below. 

LEMMA 5.1 
If x = { x~, x2, x 3 } is feasible in (5.1) with corresponding probabilities, p = 

{ P~, P2, P3}, Pi > O, i = 1, 2, 3, then there exists another feasible solution x '  = 
{xl, x4}, with p ' =  {Pl,  P4}, where x 2 < x a < X  3. 

Proof 
Feasibility of {x~, x 2, x3} and { Pl, P2, P3} > 0 implies that E~=lpi(xi, (xi)  2) 

= (2, x{2)). Consider t ( x )  such that x ] ( 1 -  t ( x ) ) +  t ( x ) x  = ~ and w ( x ) =  xlZ(1 
- t (x) )  + ( t ( x ) ) x  z. Note that t ( x )  = ( 2 -  x l ) / ( x -  xt)  is in (0, 1) for x > Y and 
w(x)  is strictly increasing in x for x > Y ( w ' ( x )  = Y - xl).  Now consider p and q 
such that p(x2  - x~) + q(x  3 - x~) + x~ = Y. Fixing p in this equation, we can 
find a corresponding q ( p )  = [(Y - xl)  - p ( x  2 - x l ) ] / ( x  3 - xl).  The weighted 
square value as a function of p and q ( p ) i s  u ( p ) = p ( x ~ - x ~ ) +  q ( p ) ( x ~ - x ~ )  
+ x~ = p ( x  2 - x l ) (x  2 - x3) + (.~" - xl)(x3 + x 1 ) + xl 2. Since t(x2) > P2 > 0 and x 3 
> x 2 > x 1, w(x2) = u(t(x2))  < u(p2) < u(0) = w(x3). So, for w continuous and 
increasing, there exists x 4 such that w(x4) = u(p2) = x (2) and x2 < x4 < x3. 
Letting p ' =  {1 - t(x4), t(x4)} completes the proof. [] 

The next lemma considers f with a derivative f '  that has local convexity or 
concavity properties. These properties form the basis for the bounding approach 
given in this paper. 
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LEMMA 5.2 
If  0(2, /~, ~)  = 0 for some (t~, ~)  feasible in (5.2), 2 is in the interior of  X, and 

f '  is convex on A = ( 2 - 7 7 ,  2)  for some ~ > 0 ,  then f ' ( t ) > l q ' ( t , t ~ , r ~ )  for 
t ~ A .  Also, if f '  is concave on B = (2, 2 + 77) for some 7/> 0, then f ' ( t )  <~ 
q'( t ,  t~, ~) for t ~ B. 

Proof 
First, we assume f '  is convex on A = (2  - ~, 2)  for some ~ > 0. Let  13(.) = 

O(.;t~, ~) and let q ( - ) = q ( . ,  t~, #).  No te  that  ~ is twice differentiable on 
X ( q ' ( x )  = qh + 2~r2x, q " ( x )  = 2~r2) and that, for f convex, f is differentiable on 
all but  a countable  number  of points  in X. Moreover ,  since f '  is convex on A, f 
is a l s o  cont inuously  differentiable on A. Hence,  13' exists on  A. We  can let 
t3'_(2) = lim,~013'(2 - t). We can also define 13'+(2) = limt~ 013'(2 + t) when f '  is 
concave on B. N o t e  that  13':~(2) = f ;  (2 )  - q ' (2) .  

If  13(2) = 0 for feasible (0, # )  in (5.2), then 2 maximizes 13 over X. Therefore,  
0 ~ co[t3'_(2), 13+(2)]. By convexi ty  of f ,  f+(2 )  >~f ' (2) ,  13+(2) >1 13'_(2), and, 
thus, t3'_(2) ~< 0. Suppose 13'_(2) < 0, then 13(2 - t) + 13'(2 - s ) ( t )  = 13(2) for all 
t ~ (0, ~) and some 0 < s < t. By tY cont inuous  in this interval, there exists ~ such 
that t3'(2 - s) < 0 for all 0 < s < c. For  0 < t < ~, we would  have 13(2 - t) > 13(2), 
contradict ing the maximal i ty  of  2. Hence,  13'_(2) = 0. 

By applying the mean  value theorem to 13 a n d  13', we also have that  13 (2  - t) = 
~( 2)  + ~'( 2 -  s ) ( - t )  = ~(2)  + ( - t ) ( - s ) ( y ( r ) -  gt"(r)), where 0 < r < s < t and 
y ( r )  ~ [ ( f ' ) ' _ ( 2 -  r), ( f ' ) + ( 2 -  r)]. Lett ing r vary  with t as r ( t )  and not ing 
that f i m , ~ o y ( r ( t ) ) = ( f ' ) ' _ ( 2 )  and 1 3 ( 2 - t ) - 1 3 ( 2 ) ~ < 0  for t close to 0, we 
obtain  0 >~ ( f ' ) ' ( 2 )  - ~" (2 ) .  Now,  consider  f)'(2 - t) = f ' ( 2  - t) - ~ ' (2  - t) = 
f ' ( 2 )  - q ' ( 2 )  + ( - t ) ( y ( 2  - s) - q " ( 2  - s)) where y ( 2  - s) ~ [ ( f ' ) ' _ ( 2  - s), 
( f ' ) ' + ( 2 - s ) ] .  By f '  convex on A and  O " ( 2 - s ) = ~ " ( 2 ) = f r  2 for any s, 
y ( 2 -  s ) -  g 1 " ( 2 -  s) <<. ( f ' ) ' _ ( 2 ) -  q " ( 2 )  ~< O. So, f ' ( 2 -  t ) -  77 ' (2 -  t) >~ 0 for 
all t ~ (0, ~). A similar a rgument  holds if f is concave  on B. [] 

The previous l emma considers local convexi ty  propert ies  of  f '  when  it exists. 
The following results refer to funct ions with derivatives that  are convex and then 
concave. 

LEMMA 5.3 
Let g(x )  = h ( x )  - c (x )  be a funct ion such that  h ( x )  is increasing and  upper  

semi-cont inuous on R, h ( x )  is convex on ( - oo, y )  and concave  on  (y ,  oo), and 
c(x)  is an affine funct ion on R. Then  there exists a par t i t ion  of  ( - o o ,  oo) into 
subintervals, I a = ( - o  o, al], I 2 = ( a l ,  a2) , 13 = [a2, a3) , 1 4 =  [a3, -F oo), --oO ~< 
a l~<a  2~<a 3~<00, such that g(x )>lO for all x ~ l  1 w I  3 and  g(x)<~O for all 
x ~ 12 t3/4. (When  any  of  a 1, a 2, a 3 =+__ oo, then we interpret  the interval as 
open at the cor responding  value of  + oo.) 
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Proof 
First note  that g is cont inuous  on ( -  m,  y )  and (y ,  m).  By convexi ty  and for 

h increasing at y, S O = ( x l g ( x )  <~ O, x < y }  = [a,  b] (or ~ )  for some - ~ ~< a 
~< b ~<y (when a = - ~ and when b = y ,  the interval is open  at a or  b respec- 
tively). Similarly, by concavi ty  on (y ,  oo), So + = { x l g ( x  ) >1 0, x >~y} = [c, d]  (or 
~ )  for some o0 >~ d>~ c >~y (where we have an open  interval if d =  oe). N o t e  that 
if b < y ,  then g(x)  >1 0 on [b, 3'], so c = y .  F r o m  this observat ion,  if S O and So + 
are not  empty,  then g is nonnegat ive  on ( - oo, a]  and either [b, d]  or  [c, d]  by  
cont inui ty  at a and b if b < y. If  S O = O,  then So+ 4: ~ ,  and g is nonnegat ive  on 
( - o o ,  d], since g is increasing at y. I f  So + = 0 ,  then g is nonnegat ive  on 
( - o o ,  a ] . T h u s ,  let a l = a  if S O ~ O;  a l = d  if So  = O, a 2 = b  if So  =g ~ and 
b < y ,  a 2 = c if S O :g O and b = y ,  a 2 = m if So- = ~ ,  and a 3 = d if S 0- 4= ~ ,  
SO+ =g O, a 3 = oo if S O = O or  SO+ = ~ .  This yields the regions in the lemma. [] 

The next l emma considers the case where g = p' is cons tant  on  an interval. In  
the following, we use the nota t ion  X =  [a, b] for convenience.  It is assumed that  
this also includes the cases X - -  ( - co, b], X = [a,  + m),  and X = ( - or, + oo) 
unless explicitly stated otherwise. 

LEMMA 5.4 
If f is convex on X = [a, b] with derivative f '  defined as a convex funct ion  on 

[a,  c) and as a concave  funct ion on (c, b] for  a ~< c ~< b and if O(x, tf, ~)  = 0 for 
some (if, ~)  feasible in (5.2) and for all x ~ ( 2 -  c, 2 + c) for  some 2 ~ X and 
c > 0, then there exists an interval D D (x  - c, 2 + e) such that  p (x ,  tg, ~)  = 0 for 
all x ~ D  and p (x ,  0 , ~ q ) < 0 f o r a l l  x f f  the closure o f  D. 

Proof 
Let D = (d,  e) be the largest open  interval including (2  - e, 2 + e) such that 

~3(x) = 0 for all x ~ D. First, we show that  c ~ [d, e]. I f  not,  then suppose  d >  c. 
In  this case, f '  is concave on (c, e]. Fo r  x E D, f3(x) = 0, so f ' ( x )  = ~)'(x) and 
f ' ( x )  = ~"(x) .  F r o m  lemma 5.1, ~ ' ( x )  >~f'(z) on  (c, e), and  f ' ( x )  - O'(x) < 0 
on ( c, d)  by concavity.  Thus,  /3 (2 )  = ~3 ( d )  < ~3 (x )  for any  x ~ ( c, d) ,  which 
contradic ts  the maximal i ty  of  2. Hence,  d ~< c. Symmetr ical ly ,  e >/c. 

By l emma 5.2 and f " s  implied semicont inui ty  at the endpoints ,  /3'>~ 0 on 
[a,  c) and /5'~<0 on (c, dl.  By convexi ty  of  f '  on [a, c), the set { x l f ' ( x ) < ~  
~'(x) ,  a <~ x < c} = [d, c), if d <  a. Hence,  ~3'(x) > 0 on [a,  d) .  Similarly, ~ ' ( x )  
< 0 on (e, bl. Thus,  ~ ( x )  < 0 on [a, d )  and  (e, b]. [] 

The  c o n v e x - c o n c a v e  proper ty  is now used to derive our  main  result  about  
two-point  suppor t  functions.  

THEOREM 5.1 
If  f is convex with derivative f '  def ined as a convex func t ion  on  (a ,  c) and  as 

a concave  funct ion  on (c, b) for X =  [a,  b] and a ~< c ~< b, then there exists an 
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optimal solution to (5.2) with at most two support points, { xl, xz }, with positive 
probabilities, { Pl, P2 }. 

Proof 
Let (t~, ~? } be an optimal solution to (5.2). First, assume that there does not 

exist e > 0 ,  2 ~ ( a ,  b) such that p(x,O, ~?)=0  for all x ~ ( 2 - e ,  2 + c ) .  By 
lemmas 5.1 and 5.3, the only isolated points where ~ could be 0 and maximized 
are a 1 and a 3 if [a, b] D I 2 U 13. If [a, b] 25 12, then a can replace a 1 and if 
[a, b [~  13, then b can replace a3, but, in either case, at most two points meet the 
conditions for optimality. 

If there exists e > 0, 2 ~ (a,  b) such that p(x, /~, ~) = 0 for all x ~ ( 2 -  e, 2 
+ E), then lemma 5.4 implies that any optimal solution (x  1, x 2, x3} must be in 
the closure of D and that t~(x) --- 0 for all x ~ D. By lemma 5.2, we can select x 4 
in (x 2, x 3) such that there exists (p~, P4) so that {xl, x 4, Pa, P4} is feasible in 
(5.1). The optimality conditions still hold for ~3(x4) = 0. Hence, (x~, x4, p~, P4} 
is optimal in (5.1). [] 

A corollary of theorem 5.1 is that any function f that has a convex or concave 
derivative has the two-point support property. The class of functions that meets 
the criteria of theorem 5.1 contains many useful examples. Some of these 
functions are given below: 
(1) Polynomials defined over ranges with at most one third derivative sign 

change. 
(2) Exponential functions of the form, Co e C'x, Co >/0. 
(3) Logarithmic functions of the form, logk(cx), for any k >t 0. 
(4) Certain hyperbolic functions such as sinh(cx), c, x >/0, cosh(cx).  
(5) Certain trigonometric and inverse trigonometric functions such as tan-~(cx) ,  

c,x>~O. 
In fact, theorem 5.1 can be applied to provide an upper  bound on the 

expectation of any convex function with known third derivative when the 
distribution function has a known third moment,  x (3). Suppose a > 0 (if not, then 
this argument can be applied on [a, 0] and [0, b]), then let g(x)= ax 3 +f(x) .  
The function g is still convex on [0, b) for a >1 0. By defining a >/ 
( - 1 / 6 ) m i n ( 0 ,  infxEia.blf '" (x)), g'  is convex on [a, b], and an upper bound, 
UB(g), on Eg(x) has a two-point support. The expectation of f is then bounded 
by 

UB(g) - (5.4) 

The conditions in theorem 5.1 are only sufficient for a two-point support  
function. They are not necessary. The following function, for example, has an 
optimal two-point support  at x*  = (1 /3 ,  1} for any corresponding feasible Pl 
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Fig. 2. A function requiring three support points. 

O.g 

I 

1.0 

and P2 when X = [0, 1]. 

6 / 5  - 4x + 5x 2 

2 x + 1  
f ( x ) =  _ ( 2 / 5 ) x _ 8 x  2 + 1 0 x  3 

- 4 x  + 4x 2 

i f O ~ x < 0 . 2 ,  

i f O . 2 ~ x < 0 . 4 ,  

i f O . 4 ~ x < 0 . 6 ,  

i f O . 6 ~ x ~ l .  

(5.5) 

The function defined in (5.5) does not, however, meet the condit ions of theorem 
5.1. This and other two-point support functions can always be constructed by 
fixing 8, ~r 1, 7r 2 and considering any function fix)<~q(x, 8, 7r) such that 
f ( x l ) = q ( x  1,8, 7r), f (x2)=q(x2,8 ,  7r), Xx l + ( 1 - A ) x  2 = y ,  and Xxl 2 + ( 1 -  
X)x~ -- x (2) for some 0 < X < 1. Any convex f satisfying these condit ions corre- 
sponds to 8, ~r 1, rr 2 optimal in (5.2). N o  other condit ions on the function are 
necessary. 

Note  also that not all functions are two-point support functions (although 
bounds using (5.4) are available). A function requiring three support points, for 

example, is f(x) = (1 /2 )  - ~/(1/4) - (x  - ( 1 / 2 ) )  2 . This function and its optimal 
dominating quadratic function are illustrated in fig. 2. 

Given that a function is a two-point support function, the points { x 1, x 2 } can 
be found using a line search to find a maximum. For example, if some candidate 
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Table 1 
Bounding values 

291 

Function .~, x (2) Jensen Beta 2-M S-L E - M  

e -x 0.500, 0.333 0.607 0.622 0.624 0.651 0.684 
x 3 0.833, 0.714 0.579 0.625 0.629 0.675 0.833 
sin(~r(x + 1)) + 1 0.500, 0.333 0.000 0.363 0.384 0.577 1.000 

x~ < E is given, then a feasible corresponding x 2 is 
x (2) - -  ,E'x] 

x z =  y _ x l  , (5.6) 

where Pl = ( x 2 -  Y ) / ( x z -  xl) and P2 = 1 - P a .  Note that the problem is obvi- 
ously not feasible if (x 1, x2) ~ Y. The solution of (5.1) then reduces to maximiz- 
ing: 

7 (x l )  =pl(x] ) f (xa)  + p2(x l ) f (xz (xa)  ) (5.7) 
subject to xl ~ [a, Y). 

A line search to find the maximum in (4.7) can be performed efficiently using, 
for example, Lemar6chal and Mifflin's procedure in [30] if ~ E C 2 or Mifflin and 
Strodiot's [32] method without derivatives. Table 1 gives the values (under 
"2-M") that were obtained by this procedure for three two-point support  func- 
tions with distributions on [0, 1]. Figures 3-5 illustrate that the optimal points, 
(x~*, x~ }, may be at either endpoint or interior to [0, 1] and how the bounding 

c? [~ " 

03 

d 

.-# 

o 

I I I I I .L 
0.2 0.4 0.6 

Fig. 3. Opt imal  bound ing  funct ion for  e -x .  

0.8 1.0 
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functions vary. The table gives the Jensen lower bound and the expectation for a 
random variable with beta distribution (under "Beta")  with the given first and 
second moments for comparison. The Edmundson-Madansky  upper bound 
( " E - M " )  is also provided. The "S-L" value (for "semi-linear bound")  given in 
table 1 corresponds to bounding f with a semi-linear function that has the form: 

q - ( c - x )  i f x ~ c ,  
f ( x ) =  q + ( x - c )  i f x > c ,  

where q++ q-~> 0. This type of function is useful because a line search is not 
necessary for solving (5.7). The support points can be calculated analytically by 
observing that the conditions of theorem 5.1 are met and by finding the optimal 
xl in (5.7) as a function of c. The results depend on the interval, [a, b]. If 
[a, b] = [0, 1], then consider the nonintersecting intervals, A = (0, x~21/(22)), 
B = [x(Z)/(2Y), (1 - x(Z))/(2(1 - Y))], and C = ((1 - xl2>)/(2(1 - Y)), 1). The 
points of support for a semi-linear, convex function defined on [0, 1] are 

(0, x~2>/2} if c ~ A, 

(x2*, x ~ ' } =  ( c - d , c + d }  i f c ~ B ,  (5.8) 

{ ( Y - x ~ 2 ) ) / ( 1 - . ~ ) , I }  if c ~ C ,  
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Fig. 5. Optimal bounding function for sin(Tr(x + 1))+ 1. 
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where d = r  - 2cY + x (2) . This result can be obviously extended to all finite 
intervals. It results from using (5.6) and differentiating 7 with respect to x 1 in 
(5.7). 

Infinite intervals can also be solved analytically for semi-linear, convex func- 
tions. For X =  [0, oo), the results are as in (5.8) with B = [xa)/(2Y), oo) and 
C = ;~. For the interval ( -  oo, oo), the points of support are those for interval B 
in (5.8). We note that special cases for these supports of semi-linear, convex 
functions were considered in [11,22,38]. 

Semi-linear, convex functions are common in decision problems to represent 
penalties for being above or below a preferred value, c. They can also be used, 
however, to provide bounds for other convex functions when only the first and 
second moments of the distribution function are known. Results from using these 
functions in problems with linear recourse appear in [2,3,40]. 

We conclude with an example for bounding a nonlinear recourse function with 
the form in (1.3). We suppose in this case that 

/ min.,,,.;,(Ya - 1) 2 + ( Y 2 -  2) 1 

f ( x ( 1 ) , x ( 2 ) ) = / s . t . y ~ + y 2  1~<x(1),  

( y , _  1)2 + y 2 _  1 ~< x(2) .  

(5.9) 



294 J.R. Birge, J.H. Dul6 / Bounding separable recourse functions 

This problem may correspond to determining a performance characteristic of a 
part  that is machined by two circular motions centered at (0, 0) and (1, 0) 
respectively. Here, the performance characteristic is proport ional  to the distance 
from the finished part  to another object at (2, 1). The square of the radii of the 
tool motions is x( i )+ 1 where x(i) is a nonnegative random variable associated 
with the machines '  precision. Figure 6 illustrates the solutions for x( i )= 0 and 
x(i) -- 1 for i = 1, 2. 

2 

1.5 

1 I 

2 

Fig. 6. Nearest points to (2, 1). 
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We suppose that it is known that the x(i) are nonnegative, that Y(i) = 1 and 
the x<2)(i) = 1.25. In this case, we would like an upper bound on the expected 
performance E/(x). We construct a bound by first finding ui(x(i)) as in (4.1). In 
this case, we solve (5.9) with right-hand sides mx(i)e~ to obtain 

(2x(1) - 1) 2 (3 + 4x(1) - 4x(1)2) ~ 
4 + 2 - 2  

~1(x(1)) -- �89 if x(1) ~< 0.5, 

1.0 if x(1) > 0.5; 

(3 + 4x(2) - 4x(2)2) ~ ) (2x(2) + 1) 2 + - 2 

_ 1)= 2 

- i f  x ( 2 )  ~< 0.5 - , 

( ~ - 1 )  2 if x(2) > 0 . 5 -  ( - ~ ) .  

These functions are illustrated in fig. 7. Their third derivatives are nonpositive so 
the first derivative of each u~ is concave, meeting the conditions for two-point 

Nul (x (i)) 

0.75 

0.7 

0.65 

0.6 

0.55 

0.10.20.30.40.5 0 ' 6  o'.7 x(1) 

Nu2 (x (2)) 

o 

0.767 

0.766 

0.765 

0.764 

0.763 

0.'02 0.'04 0.'06 0)08 0[1 
Fig. 7. The bounding functions ul and u2. 

x(2) 
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0.i 0.2 0.3 0.4 0.5 
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0.7645 

0.764 

0.7635 

0.'02 0.'04 0.'06 0.'08 0. 

Fig. 8. The I, functions for x(1) and x(2). 

{~ (2) 

support. The functions y for x(1) and x(2) are given in fig. 8. Notice that the 
maximum occurs at 0 in each case. The resulting upper bound on E/(x)  is then 
(1.107 + 1.529)/2 = 1.318. We can compare this to the lower bound of f (Y )  = 
0.822 to bound the expected performance. In comparing to other bounds, the best 
available bound knowing only the mean and the nonnegative range is 1.529, the 
value at (0, 0), since a distribution can meet the range and mean conditions with 
a probability p mass at (0, 0), probabili ty ( 1 - p ) q  at (Y(1), 0 ) / q ( 1 - p ) ,  and 
probability (1 - p ) ( 1  - q) at (0, Y(2))/(1 - p ) ( 1  - q), where 0 < q < 1 and p 
may be become arbitrarily close to 1. 

6. Conclusions 

This paper describes a bound on the general recourse problem and a resulting 
bound on the expectation of convex functions when only limited distributional 
information is available. Given the difficulties in estimating random phenomena,  
limited information in terms of bounds on the mean and second moments  of 
distributions is a general practical situation. The bounds provided in this paper 
allow for efficient computation. We note that these procedures can be extended 
to lower bounds on the expectation of concave functions obviously. Since the 
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Jensen inequal i ty  is the solut ion of the generalized m o m e n t  p rob lem to min imize  
the expectat ion of a convex funct ion  subject  to a first m o m e n t  equal i ty  cons t ra in t  
and an upper  b o u n d  on  the second m o m e n t  const ra int ,  upper  and  lower b o u n d s  
are computab le  on  the expectat ion of general  funct ions  that  can  be expressed as 
l inear combina t ions  of convex and  concave funct ions.  G iven  this extension,  the 
use of separable convex funct ions  and the two-poin t  suppor t  b o u n d s  apply  to a 
wide range of problems.  
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