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The aim of this paper is to provide the first steps toward a formal theory of model 
integration. This is supported at least by three arguments: (a) increasing the productivity 
of the modeling work; (b) decreasing errors; (c) saving time and money. Of course, any 
formal theory has to be based on a given framework; in our case, we consider only 
models which satisfy the core concepts of Structured Modeling. The outline of the paper 
is as follows. After the motivations are pointed out, some preliminary results are given 
in section 2. Section 3 defines the levels of integration, while in sections 4 and 5 some 
examples are presented. Remarks and future extensions conclude the paper. 

Keywords: Model integration, Structured Modeling. 

1. Motivations for a formal theory 

The defini t ion of  a specif ic  model  is conce ived  as a work  which has to be  done 

f rom scratch. Ideally, the model  builder would like to construct his model  by assembling,  

when it is poss ible ,  models  previous ly  defined,  or by using models  def ined and tested 

by other  people .  There  are two cases to consider:  

• all the models  to be assembled  are expressed in the same definitional f ramework ;  

• the models  to be  assembled  derive f rom different  f rameworks .  

These  two cases bring to different types of  integration: "deep" in tegrat ion and 

"'functional" integration.  This  dist inction is due to Geoffr ion.  

Muhanna  and Pick have  cal led it structural and composition in tegrat ion [13], 

while Dolk and Kot temann have called it definitional and procedural integration. They 
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have also proposed a "'model interconnection language" (Dolk and Kottemann [12]), 
and a "model description language" (Muhanna and Pick [13]), to treat the functional 
integration. 

Deep integration has been treated by Geoffrion in [10]. Here, we will deal with 
deep integration and try to show that models can be defined by assembling pieces 
of correlated sub-models. This process, to be effective, has to minimize the errors 
in specifying the model and has to include as much as possible automated procedures. 
It has to be carried on within a formal framework. We have chosen the Structured 
Modeling framework as defined by Geoffrion [7, 9]. The main features, with respect 
to the assembling process, derived by Structured Modeling is modularity: this greatly 
influences the productivity of the work. 

In this paper, we give some formal results and a few examples of integration 
among models. Our effort is to define automated procedures, which can be used to 
replace genera, modify definitional dependencies, set new dependencies among sub- 
models, etc. 

These procedures check in an automated way if some of the Structured Modeling 
principles are violated at the end of the integration process. 

We want to point out that we try to formalize this integration theory outside 
any model definition language. Nevertheless, our examples are given using an object- 
oriented language, but the obtained results hold in general. 

2. Preliminary results 

In the remainder of this paper, we assume that the reader is familiar with the 
formal theory of Structured Modeling. 

Given a Structured Model Mi, let Gi = {gj , j  ~ 1 ..... ki} be the set of all the 
genera; this can be partitioned into three disjoint sets, PCi, Ai and FT/, such that 

PCi = {& EGi: g~ is a primitive or a compound entity genus}, 

A i = {gj u_ Gi: gj is an attribute genus}, 

FT i = {gjEGi:  gj is a function or a test genus}. 

LEMMA 1 

Any genus gj ~ PCi does not have references to any other genera gk E (A i v FTi). 

Proof  

Primitive entity elements, by definition, have no calling sequence, therefore they 
do not have references to any other elements; compound entity elements, by definition, 
are constructed only on primitive entity and other compound entity elements. [] 
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LEMMA 2 

Any genus gj ~ Ai has only references to other genera gk ~ PCi. 

Proof  

Attribute elements, by definition, characterize only primitive and compound 
elements. [] 

Our formal theory to integrate models is developed at the level of generic 
structure. The following proposition proves that if the integrated graph of genera G 
satisfies the Structured Modeling principles, so does the elemental structure E. 

PROPOSITION 1 

Let E be a non-empty and finite set of elements, and let G be a set of partitions 
constructed on E, one for each of the five types. E is an Elemental Structure if: 

(1) G satisfies generic similarity; 

(2) G is a closed set; 

(3) G is an acyclic set. 

Proof  

(a) 

(b) 

(c) 

E is not empty and finite by hypothesis. 

Closure (by contradiction). Suppose ei ~ E has a reference in its calling sequence 
to ej ~ E. Let ej be an element of the genus gj, and e i be an element of the genus 
gi. By the generic similarity property, gi has in its calling sequence a reference 
to a genus gj; but by construction gj ~ G; this violates (2). 

Acyclicity (by contradiction). Let S = { el .... .  e i } be a cyclic sequence of elements 
belonging to E. If each e i belongs to a different genus gi, then the generic 
similari ty property implies that G is cyclic. If  there are two elements  
ek, e h, k, h :  I . . . . .  i, k ~ h, ek, eh E gi, then let us consider the sub-sequence 
Sj C S, Sj = { ek,...,  ek }. By the generic similarity property, there exists a sequence 
of genera gi . . . . .  gi, which is cyclic. This violates (3). [] 

Within the Structured Modeling framework, genera are grouped into modules. 
In the following sections, we often use particular Structured Modeling modules,  
which allow to identify sub-models. 

DEFINITION I: Connected module 

A Structured Modeling module is connected if its genera and their calling 
sequences form a connected sub-graph. 
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DEFINITION 2: Sub-mode l  

A sub-model is a connected module with at least one primitive entity genus. 

The next definition individualizes sets of  operations, which will not modify the 
output values of the model. These sets of  operations do not modify the input data. 

DEFINITION 3: Neutral set of operation 

Given a model Mi E SM, where SM is a set of Structured Models, we define 
the set T of operations to be neutral if the resulting model T(Mi) returns the same 
output values when instanced with the same data of Mi. 

DEFINITION 4: Neutral set of operation with respect to gi 

Given a sub-model SubM i E SM, where SM is the set of Structured Models, 
and a genus gi ~ SubMi, we define the set T of operations to be neutral with respect 
to gi if the resulting model T(SubMi) returns the same output values given by gi when 
it is instanced with the same data of SubM i for the genera called directly or indirectly 

by gi. 

DEFINITION 5: Normal  model  

A model is called normal if the following conditions are satisfied: 

(a) there is a 1:1 correspondence between attribute and compound genera; 

(b) given a pair of matching genera, there is a 1:1 correspondence between their 
elements. 

The reason to define a normal model is that the attribute genus index can be 
known through the compound genus index. This point will be much clearer when 
some of  the integration procedures are illustrated. The graph of the elements of  a 
normal model is shown in figure 1; dotted rectangles identify genera. 

PROPOSITION 2 

Given a Structured model Mi, it is always possible to construct a normal model 
N(Mi) using the neutral set of operations N. 

Proof  

Consider any attribute genus gj E A i C M i. It is always possible to define a new 
compound entity genus, Ck ~ PCi, with the same calling sequence as gj. Lemmas 1 
and 2 ensure that genera which are called by an attribute genus can be called by a 
compound entity genus too. An isomorphic relation can be set among the elements 
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Figure 1. Graph of elements of a normal model. 
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of  gj and ck: the first elements of gj calls the first element of ck, etc. This process 
is repeated for every attribute genus of Mi. The attribute genera so constructed have 
exactly the same number of elements and the same structure as before the structural 
changes; therefore, they can be instanced using the same data as previously. 

Formally, if N(Mi) indicates the modified model, the set B = {Ck, gj} C N(Mi) 
¢=~ gj ~_ M i for every genus gk EFT/ C N(Mi).  [] 

Based on proposition 2, the procedure Normal is constructed. Here, CSi indicates 
the calling sequence of the ith genus, i.e. the finite list of the calling sequence 
segments. 

procedure Normal (input: Mi; output N(Mi)); 

begin 
Create a LIST of gj E A i C Mi; 

while not end of LIST do 
Select gj E LIST; 
if (CSj has more than a segment) or  (gJ does not isomorphically call a 
compound entity genus) 
then 

Create a genus dummyi ~ PCi; 
CSi = CSj; 
CS; = (dummyi:iso);* 
/* the calling sequence of gj is set to call the dummyi genus in an 
isomorphic way , /  

LIST := LIST - gj; 
end while 

end. 

* This notation is taken from BLOOMS grammar and has the meaning of "set an isomorphic relation 
among the elements of gj and the compound entity" [2,3]. 
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Proposition 2 and procedure Normal ensure that for each Structured Model  
there is a neutral set of operations N which can construct a model that returns the 
same values when instanced with the same data. Moreover, this set of  operations can 
be automated. 

DEFINITION 6: Index basis 

An index basis of a normal model N(Mi) is a couple of genera Bj = {aj, cj}, 
where aj E A i C M i is an attribute genus, and cj is the compound entity genus called 
by aj. The genus aj is called the value component of Bj, while the genus cj is called 
the index component. 

DEFINITION 7: Index basis set 

The sets B S  i = {Bj, j : 1 ..... h} containing all the index basis of  N(M i) is called 
the index basis set. 

DEFINITION 8: Index function 

Suppose L to be a language for the definition of Structured Models. An index 
function i(gj) is a rule which associates to every genus gj E N(Mi), expressed using 
the language L, the cardinality of its generic index t-uple.* 

As an example, given a genus gi indexed by (j ,  k, l), its index function i(gi) 
returns as value 3. 

Definitions 6, 7 and 8 are related to the indices' management; they are not 
language dependent. 

3. Integration levels 

As we pointed out, our integration theory will be developed working at the 
level of  the graph of  genera. In this section, we define three levels of  integration and 
characterize some simple operations on the genera graph, which are called elementary 
operations. They form the basis to construct more complex procedures used to integrate 
models. 

Level 1 All the procedures are automated. This means that the user selects the 
input models and the genera to be integrated, and the output integrated 
model is automatically produced. 

*This concept is taken from Geoffrion's SML language. Nevertheless, it is a general concept which can 
be easily extended to every modeling language [6]. 
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Level 2 The user selects the input models and the order of integration among the 
genera, and the output integrated model is automatically produced. 

Level 3 The user selects the input models, the genera to be integrated and formulates 
the steps necessary to integrate. The output integrated model is not 
automatically produced. At this level, the user needs to create the integration 
procedures, which cannot have any generality since the integration steps 
can vary according to the situation. 

The goal is to try to understand how many integration procedures can be on 
the first two levels, and to create for the third level an interface language which 
allows users to define ad hoc integration procedures. 

This strategy, on the one hand, tries to take into account the need of  automated 
procedures, which can be used in some context to increase the productivity of the 
model builders, and to decrease the number of possible errors; on the other hand, it 
gives a flexible tool to successfully deal with the variety of situations which occur 
in model integration. 

3.1. ELEMENTARY OPERATIONS 

Let us consider the set G. This set contains the graphs of genera Gi = ('~/, Ei) 
of  all Structured Models. V / i s  the set of  typed nodes, "~l = (1 ..... ni), and E i is the 
set of arcs (i,j), i : 1 . . . . .  hi, j : 1 . . . . .  n i, i ~ j ,  which represent the definitional dependencies 
between genera (nodes). Elementary operations can be defined both on arcs and 
nodes. 

3.1.1. Operations on arcs 

These operations influence the definitional dependencies among genera, both 
in the case where they are executed on a single graph and in the case where they are 
executed on two or more graphs. There are only two elementary operations on arcs: 

(1) add; 

(2) delete. 

These operations are formalized in the following procedures. As before, CSi 

indicates the calling sequence of the genus gi. 

procedure Add_Arc (Input: gi, gj; Output: (gi, gj)); 
/* Create a new direct arc from gj to gj. */ 
/* The symbol \ \ means "append an element to the list" */ 
begin 

CSj :=CS j  \ \  g~; 
end. 
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procedure Delete_Arc (Input: gi, gj; Output: null); 
/ ,  Delete an existing arc from gi to gj.*/ 
begin 

C S j : =  CSj - gi; 
end. 

Add_Arc is an operat ion not always allowed. In fact, lemmas 1 and 2 establish 

the constraint for this procedure. Table 1 shows the allowed operations. (P, C, A, F and 

T indicate the types nodes o f  Structured Model ing.)  
There  are no l imitations when a Delete_Arc operat ion is called. It is clear  that 

these e lementary  operat ions are not closed on G. 

Table 1 

Add arc. 

~ g ~gg~ P C A F T 

P 
C × × 
A × × 
F x x x x x 

T x x x x x 

A variety of  procedures can be constructed combining these elementary operations 
Add_Arc and Delete_Arc. Le t  us show some of  them. 

Given three genera gi, gj and gk, where gi, gk E Ml and gj E (MI V M2), two 

situations can arise: 

(a) there is an arc (gk, gi) in Mi ;  

(b) there is an arc (gi, gk) in M1. 

Figures  2(a) and 2(b) illustrate these situations. 

Figure 2(a). The added arc is (gj, gi). while 
the deleted arc is (gk, gl). This implies 
that the calling sequence segment of gi 
having a references to gk is modified to gj. 

Figure 2(b). The added arc is (gi, gj), while 
the deleted arc is (gi, gk). This implies that 
the calling sequence segment, which calls gi, 
of the genus gj is deleted, and the calling 
sequence of gk is set to have a reference to gi. 
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The following procedures formalize the replacement operations. 

procedure Replace_In_Arc (Input: gi, gk, gj; output: (gj, gi)); 
begin 

Add_Arc (gj, g~; (gj, gi)); 
Delete_Arc (gk, gi; nul l) ;  

end. 

procedure Replace_Out_Arc (Input: g~, gk, gj; Output: (gb g j ) ) ;  

begin 
Add_Arc (g,, gj, (g,, gj)); 
Delete_Arc (gi, gk; null);  

end. 

Tables 2 and 3 show the feasible node replacement using the above procedures. 
Rows and columns indicate the types of gk and gj genera; a X at the interesection 
means that the replacement of the nodes is always possible, while capital letters 
indicate that the operation is possible only for specific types of the gi nodes. 

Table 2 

Replace in-arc. 

ggy~ P C A F T gg/~ 

P x x X x x P 
C x x x x x C 
A x x x x x A 
F F,T F,T x x x F 
T F,T F,T x X X T 

Table 3 

Replace out-arc. 

P C A F T 

x x x x 

x x x x 

P,C P,C x x 
P,C P,C x x 

The procedures described above are not closed on G. 

3.1.2. Operations on nodes 

These operations allow to create new genera or delete existing ones. We 
analyze two elementary operations on nodes: 

(a) add a node; 

(b) delete a node. 

The Add procedure is difficult to formalize, since genera contain the semantic 
information of the Structured Model and the operation of adding a genus (i.e. a node) 
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has to be performed using a definition language. To add a genus gi implies the 
definition of the arcs (gk, gi), where gk E Mi, k : 1 .. . . .  ni, k ;~ i, are the genera called 
by gi. Therefore, the procedure which formalizes the (a) elementary operation on 
nodes uses the Add_Arc procedure. 

When a genus gi E M i is deleted, the arcs (gj, gi) and (gi, gk), where gj, gk E Mi, 
j :  1 .. . . .  ni, k :  1 . . . . .  n i , j ,  k ;~ i, have to be deleted. Therefore, the procedure which 
formalizes the (b) elementary operation on nodes uses the Delete_.Arc procedure. 

procedure Add_Node (input: gt); 
begin 

{define a new genus with a definitional language} 
/ ,  This step is not formalized, since this has to be done using a definition 
language */ 
Create a LIST of gk; 
/* genera gk are called by gi */ 
while not end of LIST do 

Select gk from LIST; 

Add_Arc (gk, gi; (gk, gi)); 
LIST := LIST - gk; 

end while 
end. 

procedure Delete_Node (input: gi); 
begin 

Create a LIST_OUT of arcs (gi, gk); 
while not end of LIST_OUT do 

Select (gi, gk) from LIST_OUT; 
Delete_Arc (gi, gk; null); 
LIST_OUT := LIST_OUT - (g~, gk); 

end while; 
Create a LIST_IN of arcs (gj, ge); 
while not end of LIST_IN do 

Select (gj ,  gi) from LIST_IN; 
Delete_Arc (gi, gi; null); 
LIST_IN := LIST_IN - (gj ,  gi) ;  

end while; 
Delete the genus g~; 

end. 

The elementary operations on nodes can always be executed. They are not 
closed on G. 
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The elementary operations described above are not exhaustive. Nevertheless, 
we have defined generic operations which are easy to assemble to create a large 
variety of procedures. 

Let us prove that under defined conditions, a set of an arbitrary number of 
Structured Models can be integrated using elementary operations or combinations of 
them. 

3.2. CLOSED SETS OF OPERATIONS 

We give the definition of a closed set of  operations, which is used in the 
following proposition. 

DEFINITION 9: Closed set of operations 

A set of elementary operations E is closed if E(M1 .. . . .  M , )  = M* E S M  for 
every M i E SM, i : 1 . . . . .  n, n > 1. 

As an example, we rewrite the Normal procedure such that it is formed by 
elementary operations which are a closed set. 

procedure Normal (input: Mi; output N(Mi)); 
begin 

Create a LIST of gj E Aj C M~; 
while not (end of LIST) do 

Selec t  gJ fro LIST; 
if (CSj has more than a segment) or (gj does not isomorphically call a 
compound entity genus) 
then 

Add_Node (dummyi); 
Create a LIST_ARC of arcs (gk, gj); 
while not (end of LIST_ARC) do 

Select (gk, gj) from LIST_ARC; 
Replace_OuLArc (gk, gj, dummyi; (gk, dummyi); 
LIST_ARC := LIST_ARC - (gk, gj); 

end while; 
Add_Arc (dummyi, gl, (dummyt, gt)); 
LIST := LIST - gj; 

end while 
end. 

The following proposition ensures that the elements Ml ..... M ,  E SM, with 
n > 2, can be integrated using closed sets of operations. 
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PROPOSITION 3 

Given Ml ..... M, E SM, with n > 2, it is possible to create an integrated Structured 
Model Mk using a set {El ..... Ek} of closed sets of operations. 

Proof 

Trivial by recursive application of definition 9. [] 

In the following, we always use integration procedures which form a closed 
set of operations. 

4. Level 1 integration: some results 

In this section, we look at procedures defined to be on the first level of 
integration. 

To show an example of the first level of integration, we need to introduce the 
definition of a function sub-model, which is a particular Structured Model. The goal 
is to select a function genus which can automatically replace an attribute genus. 

DEFINITION 10: Function sub-model 

A Structured Model SubMi(f) is called a function sub-model if it satisfies the 
following conditions: 

(a) SubMi(f)  is a normal model. 

(b) SubMi(f)  has at least one function genus f E F T i  which is a singleton.* 

The following procedure, Create_Function_Submodel, needs as input a model 
M i and a singleton g e n u s f E  FTi C Mi, and produces as output a function sub-model. 
This procedure is closed. 

procedure Create_Function_Submodel (input: Mi, f; output: SubMi (f)); 
/* Modify Mi into a function sub-model SubMi (f) */ 
begin 

/* step I. "Normalize the model" */ 
Normal (Mi; N(Mi)); 
/ ,  step II. "Merge functions" */ 
Create a LIST of arcs (gi, f); 
while not end of LIST do 

Select (gi, f) from LIST; 
Select gi from (gi, f); 

*This has the meaning "composed of a single element" [6]. 
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if (gi E FTi) 
then 

/* a * /Create a LIST_A of arcs (gj, gl); 
while not end of LIST_A do 

Select (gj, gl) from LIST_A; 
Replace_Out_Arc (gl, gi, f; (gj, f)); 
LIST_A := LIST_A - (gJ, gi); 
if (gj (E FTi) and (gj ~ LIST) then 

LIST := LIST \ \  gj; 
end while; 

/* b * /Replace into the rule of f the vatue field of gi with its rule; 
/ ,  This does not involve the graph structure */ 

/* c */ Delete_Node (gi); 
LIST := LIST - g~; 

end while; 
/ ,  step III. "Delete genera having no influence on f" */ 

Create a LIST of gj E M~; 
while not end of LIST do 

Select gi from LIST; 

if (gi E FTi and gj #= f) then 
Delete_Node (gj); 

if (gi E Ai U PCi and gj is not called directly or indirectly by f) then 
Delete_Node (gj); 

LIST := L I S T -  gj; 
end while 

end. 

The next proposition ensures that the Create_Function_Submodel procedure 
creates a function sub-model. 

PROPOSITION 4 

Given a Structured Model M i and an arbitrary singleton function genus 
f E  FT. C Mi, there exists a transformation T, which is a neutral set of  operations with 
respect to f, such that 

T(Mi) = SubMi(f). 

Proof 
By applying the Create_Function_Submodel procedure which defines the 

procedure T. [] 
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Let us show how a function genus f can be reused as an input parameter for 
other models. The genus f replaces the attribute genus gi, if all its dependencies can 
be addressed to f. The automation is possible since genus f is a singleton. In fact, 
any function depending on the replaced attribute genus gi does not need to be modified 
since the index function o f f  is set equal to the index function of the replaced genus 
gi by the integration process. 

Suppose we have two models M1 and M2, and we want to replace the genus 
gi E A 1 C M1 with the computed value given by the genus f • FT2 C M2. This goal 
is achieved by applying the following procedure (the symbol [M1, SubM2] means the 
integrated output model): 

procedure Reuse (input: M1, M2. gi, f; output: [N(M0, SubM2(f)]); 
/ ,  Integrate M1 and M2. gi is replaced by f , /  

begin 
/ ,  Step I. "Changes in M2" */ 
Create_Function_Submodel (M2, f; SubM2(f)); 
Normal (M1; N(M1)); 

Select {Dummy, gi} c N(M1); 
/* To select the index basis ,/ 

Create a LIST of genera gi ~A2 U PC2 (Z SubM2(f); 
while not (end of LIST) do 

Select gj from LIST; 
if (gj, f) then Add_Arc (Dummy, gj; (Dummy, gj)); 
/* Add to the calling sequence of gj the calling sequence of g~ ,/  
LIST := LIST - gj; 

end while; 
/* Step II. "Changes in MI" */ 

Create a LIST of genera ft E FT1 c N(M0; 
while not (end of LIST) do 

Select fi from LIST; 
if (gi, fi) then 

Replace_In_Arc (fi, gi, f; (f, fi)); 
/ .  Substitute gi with f in the calling sequence of fi; */ 

LIST := LIST - f~; 
end while; 
/ ,  Step III. "Delete attribute genus" */ 
Delete_Node (gi) 

end. 
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PROPOSITION 5 

Given two Structured Models M1 and M2, it is always possible to replace the 
attribute genus gi EAI C MI with a singleton function genus f E FT2 C M 2. The 
result is a Structured Model. 

Proof 
By applying the procedure Reuse, we obtain as a result the model [N(MI), SubM2]. 

Its graph of genera must be finite, closed and acyclic (the non-emptiness is obvious). 

(a) Finiteness. Step III guarantees that the number of genera of [N(MI), SubM2] 
is equal to the number of genera of (N(M)I U SubM2(f)) minus the deleted genus gi. 

(b) Closure. By steps I and II, there is at least one genus of N(M1) calling a 
genus of SubM2(f) and at least one genus of SubM2(f) calling a genus of N(MI). 
From the closure of N(MI) and SubM2(f), the closure of [N(MI),SubM2] follows. 

(c) Acyclity (by contradiction). Let us consider a cyclic sequence of genera 
G* ___ [N(MI),SubM2]. By construction, it is as follows: 

{ .... gj EA 2 U PC 2 C SubM2(f) , f , . . .  }. 

The genus gh following f i n  the sequence is necessarily gh E F T  l, while the genus gl 
preceding gj is necessarily gl ~-PC2. Lemma 1 states that there are no direct or 
indirect references from compound and primitive entity genera to function and test 
genera. Therefore, G* cannot be cyclic. [] 

Figure 3 shows how an arbitrary model M 1 is integrated with an arbitrary sub- 
model SubM 2. The values supplied by the user in the attribute genus gi are replaced 
by the computed value with the rule defined in the function genus f. 

k 

N(Mt) SubM2 (f) 
Figure 3. A hypothetical example of the Reuse procedure. 
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Classical Transporta t ion Model 

Genus PLANT primit ive 
/* there are some plants , /  
feature 

Label: string; 
show Label 

Genus SUP attr ibute 
/ ,  each plant has a given supply , /  
call (PLANT : iso); 
feature 

sup : real+; 
show sup 

Genus LINK compound 
/ ,  There are links between plant and 
customer */ 
call (CUST : one; 
PLANT : one); 
feature 

label : string; 
connect  (PLANT, CUST) 
require (PLANT; CUST) 

covered; 
/* every plant has at least an outgoing 
link; every cust has at least an ingoing 
link */ 

show label 

Genus T : DEM test 
/* are the demand constraints satisfied? */ 
call (FLOW : iso 
(CUST.INDEX); DEM : iso); 

feature 
dem_test : boolean is 
result := SUM 
[SUP.INDEX] flow = dem; 

show dem test 

Genus $ funct ion 
/* there is a computed total cost */ 
call (COST : all; FLOW : all); 
feature 

totcost : real is 

Genus CUST primit ive 
/* there are some customers , /  
feature 

Label: string; 
show Label 

Genus DEM attr ibute 
/* each customer has a given demand , /  
call (CUST : iso); 
feature 

dem : real+ 
show dem 

Genus FLOW variable 
attr ibute 
/* each link has a flow , /  
call (LINK : iso); 
feature 

flow : real+; 
show flow 

Genus COST attr ibute 
/* each link has a given cost , /  
call (LINK: iso); 
feature 

cost : real+; 
show cost 

Genus T : SUP test 
/* are the supply constraints satisfied? , /  
call (FLOW : iso (PLANT.INDEX); 
SUP : iso); 
feature 

sup_test : bollean is 
result := SUM 
[DEM.INDEX] flow < sup; 

show sup_test 

result  := SUM [LINK.INDEX] cost * flow; 
show totcost 
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Exponential Smoothing Model 

Genus TIME pr imi t ive 
/* there are some times */ 
feature 

Label:  str ing; 
show Label 

Genus ALPHA at t r ibute 
/ ,  there is a smoothing constant for all 
primitive entities , /  
call (P1 :all); 
feature 

alpha : real+; 
invar iant  0 _< alpha _< 1 ; 

show alpha 

Genus EXPONENTIAL funct ion 
call (ALPHA: all; 
DEMAND: all (TIME.INDEX)); 
feature 

exp: real is resul t  := 
(IF TIME.INDEX > 1 
THEN 

alpha * dem + 
(1-alpha) * 
exp.TIME.INDEX-1. 

ELSE dem); 
show exp 

Genus P1 pr imi t ive 
/* there are some primitive entities , /  
feature 

Label: str ing; 
show Label 

Genus DEMAND at t r ibute 
/ ,  there is a given demand for all primitive 
entities at each time , /  
call (P1 : all; TIME : iso); 
feature 

dem : real+; 
show dem 

Genus SMOOTHED funct ion 
call (ALPHA : all; 
EXPONENTIAL : all (TIME.INDEX)); 
feature 

smoothed : real is resul t  := 
(IF TIME.INDEX > 2 
THEN 

alpha * 
(exp.TIME.INDEX - 
exp.T IME. INDEX-  1) + 
(1-alpha) • 
smoothed.TIME.INDEX- 1. 

ELSE 
(IF TIME.INDEX = 2 
THEN exp.2 - exp.1 
ELSE 0)); 

show smoothed 

Genus FORECAST funct ion 
call (ALPHA : all; EXPONENTIAL : last; SMOOTHED : last); 
feature 

for : real is resul t  : = exp + smoothed / alpha; 
show for 
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Figure 4. The two models before integration. 

(SD 

G G © 
Figure 5. The integrated model. 

,3 

We wish to point out that the result is not dependent on a particular model 
definition language for Structured Modeling. Effective integration procedures need 
to be defined as parts of a Model Management System, and to be consistent with the 
language used in the system. 

We now give an example of model integration using the Reuse procedure. The 
example is quoted from [ 10]. A computer-forecasted value by an Exponential Smoothing 
Model replaces a given demand value in a Classical Transportation Model. The 
models expressed using the Object-Oriented language BLOOMS [4,6] are given in 
the preceding pages. 

We replace the given values of the attribute genus DEM belonging to the 
Classical Transportation Model with the computed value of the singleton function 
genus Forecast belonging to the Exponential Smoothing Model. The Reuse procedure 
is called with the following parameters: 
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Reuse (Classical Transportation Model, Exponential Smoothing Model, 
Dem, Forecast; Integrated Model); 

Figure 4 shows the graphs of genera of the models before the integration. In 
figure 5 the integrated model is given. DI ..... D6 are the dummy compound entity 
genera created by the Normal procedure executed in step 1 of Reuse. 

The modified genera are presented below. 

Genera modified in classical Transportation Model 

Genus D1 Compound 
Call (PLANT : iso); 
Feature 

Label: String; 
Show label 

Genus D2 Compound 
Call (CUST : iso); 
Feature 

Label: String; 
Show label 

Genus SUP attr ibute 
/ ,  each plant has a given supply */ 
call (D1 : iso) 
feature 

sup : real+; 
show sup 

Genus DEM attr ibute 
/* each customer has a given demand , /  
call (D2 : iso); 
feature 

dem : real+; 
show dem 

Genus T : DEM Test 
/* are the demand constraints satisfied? , /  
call (FLOW : iso (CUST.INDEX); 
FORECAST : iso); 
feature 

dem_test : boolean is result  := 
sum [SUP.INDEX] 

flow = for; 
show dem_test 

Genera modified in Exponential Smoothing Model 

Genus D3 Compound 
call (PI : all; TIME : iso); 
Feature 

Label: String; 
Show label 

Genus D4 Compound 
Call (TIME : iso); 
Feature 

Label: String; 
Show label 

Genus ALPHA attribute 
/ ,  there is a smoothing constant for all 
primitive entities ,/  

call (D4 : all; D2 : iso); 
/, Because DEM genus in Transportation 
model has an isomorphic call to D2 */ 
feature 

alpha : real+; 
invariant 0 _< alpha _< 1 ; 

show alpha 

Genus DEMAND attribute 
/* there is a given demand for all 
primitive entities at each time , /  
call (D3 : iso; D2 : iso); 
feature 

dem : real+; 
show dem 
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Now we extend the previous results in order to allow an automatic replacement 
of an attribute genus gi E Mi with a non-singleton function genus3') ~ Mj. The following 
propositions state the conditions for this action. 

PROPOSITION 6 

Given two normal models N(Mi) and N(Mj), the integrated model [N(Mi), N(M/)] 
obtained by replacing the input parameter gi EAi Q N(Mi) with the output parameter 
fj E FTj C N(Mj) is a Structured Model if i(gi) = i(j~). 

Proof 
The proof follows the same lines as in proposition 5. The necessary condition 

given by the equality of the index function leads to an analogy with the singleton 
case. [] 

PROPOSITION 7 

Given a normal model N(Mi), it is possible to replace the input parameter 
gi EAi with the output parameter j~ E FTj if 

i(gi) = i(~);  (4.1) 

j] does not have direct or indirect definitional dependencies on any 
genus having direct or indirect definitional dependencies on gi. (4.2) 

Proof 
The graph of genera after the replacement has to be (a) finite, (b) non-empty, 

(c) closed, and (d) acyclic. (a), (b) and (c) hold by construction. (d) is proved by 
contradiction. If a cyclic sequence is created by the replacement of the genera, it has 
to be as 

{gl ..... J~, gk .....  gl }, 

where gk had a definitional dependence on the replaced genus gi. 
Before,3] had a definitional dependence on gl, but gt had an indirect definitional 

dependence on gi. This violates (4.2). [] 

Based on the results of propositions 6 and 7, the following procedures can be 
constructed. The input parameters are an index basis B i E N(Mi) and a function genus 
fj ~ N(Mj), where N(Mi) can coincide with N(Mj); the output is a Structured Model  
[N(Mi), N(Mj)]. The procedure halts if conditions (4.1) and (4.2) do not hold. 
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procedure Use (Input: N(Mi), N(MI), Bi, fj; Output: [N(Mi), N(MI)]); 
begin 

/ ,  Step I: Examine if condition (4.1) is satisfied , /  
Select gj (5 B~; 
Compute i(gi); 
Compute i(fi); 
if i(gi)¢ i(fj) then exit; 
/* Step I1: Examine if condition (4.2) is satisfied . /  
Create a LIST of genera gh having direct or indirect definitional dependencies on 
g~; 
while not end of LIST do 

Select gh from LIST; 
if fj has direct or indirect dependence on gh then exit; 
LIST := LIST - gh; 

and while; 
/* Step Iii: Replace gi with fj */ 

Create a LIST of genera gh E FT~; 
while not end of LIST do 

Select gh from LIST; 

if (gi, gh) then 
Replace_In_Arc (gh, gi, fj; (fj, gh)); 
/* Substitute the reference to g~ with a references to fj */; 

LIST := LIST - gh; 
end while; 

end. 

5. Level 2 integration: some results 

In this section, we look at procedures defined to be on the second level of  
integration. This means that, given a couple of genera {gi E Mi, gk E Mk}, the order 
of integration has to be set by the user, i.e. the user decides if gi replaces gh or vice 
versa. 

Here, we present two integration procedures, which need to be applied to 
normal models. The first allows the user to replace any definitional dependence to 
an attribute genus, with definitional dependence to another attribute genus; the second 
procedure does the same replacement on the index components of two index bases. 
The input and the output parameter of  the procedures are the same; they need the 
index bases B i ~ N(Mi) and Bj ~ N(Mj) (N(Mi) can coincide with N(Mj)), and return 
a Structured Model [N(Mi), N(Mj)]. 
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procedure Replace_Attribute (input: N(Mi), N(Mj), Bi, BI; Output: [N(Mi), N(Mj)]); 
begin 

Select a~ ~ Bi; 
Select c~ ~ B~; 
Create a LIST of genera gh ~ FT~; 
while not end of LIST do 

Select gh from LIST; 
/* Substitute a i E B i with aj E Bj in the calling sequence of gh */; 

Replace_ln..Arc (gh, ai, aj; (aj, gh)); 
LIST := LIST - gh; 

end while; 
Delete_Node (ai); 
Delete_Node (ci); 

end. 

procedure Replace_Index_Component (Input: N(Mi), N(Mj), Bi, Bj; Output: [N(Mi), N(Mj)]); 
begin 

Select c~, a~ e B~, Cj EE Bj; 
/* Substitute c~ with cj in the calling sequence of a~ */; 
Replace_In_Arc (ai, ci, cj; (cj, ai)); 
Delete_Node (ci); 

end. 

The following propositions ensure that both Replace_Attribute and Replace_ 
Index_Component are closed procedures. 

PROPOSITION 8 

The Replace_Attribute procedure is closed under SM. 

Proof 

Given the input parameters of the procedure, two situations can arise: 

(1) N(Mi) and N(Mj) are two separate models; 

(2) N(Mi) and N(Mj) coincide. 

(1) The graph of genera of the integrated model [N(Mi), N(Mj)] has to be (a) 
non-empty, (b) finite, (c) closed, and (d) acyclic. (a), (b) and (c) hold be construction. 
(d) holds by lemmas 1 and 2. Therefore, Replace_Attribute returns a Structured 
Model and, since the procedure is composed of elementary operations, it is a closed 
procedure. 

(2) In this case, the Replace_Attribute procedure returns a modified Structured 
Model [N(Mi), N(Mj)]. The proof follows as in (1). [] 
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PROPOSITION 9 

The Replace_Index_Component procedure is closed under SM. 

Proof 

The proof follows the same lines as in proposition 8. [] 

We give an example of integration partially quoted from [10]. We show that 
the integration can be carried out using first and second level integration procedures. 

There are four Structured Models: 

Financial (FIN). This model computes the net income N, given the price P, the sales 
volume V, and the manufacturing expenses E of a product PROD. 

Marketing (MKT). This model computes the sales volume V, given the price P of 
a product PROD. 

Mark-up (MAR). This model computes the mark-up M, given the price P, the sales 
volume V, and the manufacturing expenses E of a product PROD. 

Manufacturing (MFG). This model computes the manufacturing expense E, given 
the cost per unit U and the sales volume V of a product PROD. 

fin mkt mar mfg 

Figure 6. The four models to be integrated. 

The goal is to create an integrated model which has the values supplied by the 
user replaced by the computed ones. This action has to satisfy all the theoretical 
requirements. Figure 6 shows the graph of genera of the "starting" models. 

The definitions of the models expressed in BLOOMS are given below. 
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MARKET MODEL 

Genus PROD_mkt primitive 
/* There are some Products */ 
feature 

Product_Label: string; 
show Product_Label 

Genus P_mkt attr ibute 
/,  Each Product has a given price P */ 
call (PROD_mkt : iso); 
feature 

ProducLPrice : real+; 
show Product_Price 

Genus V_mkt function 
/* Each product has a computed sales 
volume */ 
call (P_mkt : iso); 
feature 

Sales_Volume : real is resul t  := 
800000 - 4400 * ProducLPrice; 

show Sales Volume 

Genus E_mar attr ibute 
/ ,  each product has a given manu- 
facturing expense , /  
call (PROD_mar : iso); 
feature 

Manufacturing_Expense : real+; 
show Manufacturing_Expense 

Genus M_mar function 
/* there is a computed mark-up for 
every product */ 
call (P_mar : iso; V_mar : iso; 
E_mar : iso); 
feature 

Markup : real is result  := 
ProducLPrice * Sales_Volume / 
Manufacturing_Expense; 

show Markup 

MARK-UP MODEL 

Genus PROD_mar primitive 
/ ,  There are some Products */ 
feature 

Product_Label : string; 
show Product_Label 

Genus P_mar attr ibute 
/* Each Product has a given price P */ 
call (PROD_mar : iso); 
feature 

Product_Price : real+; 
show Product_Price 

Genus V_mar attr ibute 
/* Each product has a given sales 
volume */ 
call (P_mar : iso); 
feature 

Sales_Volume : real+; 
show Sales_Volume 

MANUFACTURING MODEL 

Genus PROD_mfg primit ive 
/* There are some Products */ 
feature 

Product_Label: string; 
show ProducLLabel 

Genus U_mfg attr ibute 
/, each product has a given unit cost ,/  
call (PROD_mfg : iso); 
feature 

UniLCost : real+; 
show Unit_Cost 

Genus V_mfg attr ibute 
/* each product has a given sales 
volume ,/  
call (PROD_mfg : iso); 
feature 

Sales_Volume : real+; 
show Sales_Volume 
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Genus E_mfg function 
/* there is a computed manufacturing 
expense for every product , /  
call (U_rnfg : iso; V_rnfg : iso); 
feature 

Manufacturing_Expense : real is 
result := 1000000 + Unit_Cost * 
Sales_Volume; 

show Manufacturing_Expense 

FINANCIAL MODEL 

Genus PROD_fin primitive 
/* There are some Products */ 
feature 

Product_Label: string; 
show Product_Label 

Genus P_fin attribute 
/ ,  Each Product has a given price P */ 
call (PRODJin : iso); 
feature 

Product_Price : real+; 
show Product_Price =.>. 

Genus V_fin attribute 
/ ,  every product has a given sales 
volume */ 
call (PROD_fin : iso); 
feature 

Sales_Volume : real+; 
show Sales_Volume 

Genus E_fin attribute 
/ ,  every product has a given manu- 
facturing expense , /  
call (PROD_fin : iso); 
feature 

Manufacturing_Expense : real+; 
show Manufacturing_Expense 

Genus N_fin function 
/ ,  there is a computed net income for 
every product */ 
call (P_fin : iso; V_fin : iso; E_fin : iso); 
feature 

Net_Income : real is result := 
ProducLPrice * Sales_Volume - 
Manufacturing_Expense; 

show NeLIncome 

Step I: Model normalization 

The four models are normalized using the Normal procedure as indicated 
below: 

Normal (Fin; N(Fin)); 
Normal (Mkt; N(Mkt)); 
Normal (Mar; N(Mar)); 
Normal (Mfg; N(Mfg)); 

This step is necessary because some first-level, and all second-level, procedures 
require as input normal models (see figure 7). 

Step II: Choose any two models and integrate them using first- and second-level 
procedures 

Let us consider the models N(Mkt) and N(Mar). Both show the attribute genera 
Ps (which are the prices of the products). The attributes Ps correspond to P_mar and 
P_mkt, as indicated in the BLOOMS formulation of the models. We kept this convention 
also for the other genera. To replace P_mkt with P_mar, we call the Replace_Attribute 
procedure as indicated below: 
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N(Fin) N(Mkt) N(Mar) N(Mfg) 
Figure 7. The normalized models. 

B 

N(Fin) N(Mkt) Mar&Mkt N(Mfg) 

Figure 8. The models after the Replace_Attribute procedure execution. 

Replace_Attribute (N(mkt), N(Mar), [D1,P_mkt], [D2,P_mar]; [N(Mkt), 
N(Mar)]); 

This action produces the integrated Structured Model depicted in figure 8. 
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For brevity of notation, we write Mar&Mkt instead of [N(Mkt), N(Mar)]. Now 
the function genus V_mkt has to replace the attribute genus V_mar. This can be done 
if proposition 7 holds. In this case, this task is accomplished by the Use procedure: 

Use (Mar&Mkt, Mar&Mkt, [D3,V_mar], V_mkt; Mar&Mkt); 

Note that Use works on a single model. The result is a normal model. At the 
end of step II, N(Mkt) has only the primitive entiry Prod_mkt, and since the model 
has no meaning, it can be deleted (see figure 9). 

B 

Mar&Mkt 

Figure 9. The situation after step II. 

N(Fin) N(Mfg) 

Step III: Starting with the result obtained at step II, choose two models and integrate 
them using first- and second-level procedures. 

Let us consider the models Mar&Mkt and N(Mfg). The goal is to replace the 
given values of the attribute genus V_mlg with the computed values of the function 
genus V_mkt and the given values of the attribute genus E_mar with the computed 
values of the function genus E_mfg. To proceed, we need the index functions of the 
attribute genera and of the function genera which replace them to be equal: 

i(V_mfg) = i(V_mkt), (5.1) 

/(E_mar) = i(E_mfg). (5.2) 
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This can be accomplished by setting the P_mar and the U_mfg attribute genera 
to call the same index component. Therefore, we use the Replace_Index_Component 
procedure as below: 

Replace_Index_Component (N(Mfg), Mar&Mkt, [D6, U_mfg], [D2,P_mar]; 
[N(Mfg), Mar&Mkt]) 

This action produces the integrated model in figure 10. For short, we write Mar&Mkt&Mfg 
instead of [N(Mfg), Mar&Mkt]. 

Mar&Mkl:&Mfg 
Figure 10. The integrated model after the 

Roplaco_lndex_Componont procedure. 

Now the V_mkt function genus can replace the V_mfg attribute genus, since 
proposition 7 holds. This can be accomplished by calling the Use procedure: 

Use (Mar&Mkt&Mfg, Mar&Mkt&Mfg, [D5, V_mkt], V_mfg; Mar&Mkt&Mfg) 

The result is the Structured Model shown in figure 11. Now, again, the E_mfg 
function genus can replace the E_mar attribute genus since proposition 7 holds. This 
is accomplished by calling the Use procedure as below: 

Use (Mar&Mkt&Mfg, Mar&Mkt&Mfg, [D4, E_mar], E_mfg; Mar&Mkt&Mfg) 

The result is a Structured Model indicated as the goal of this step (see figure 12). 
As in step II, at the end of step III the Prod_mfg primitive entity genus has no 
meaning and it can be deleted. 
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Mar&Mkt&Mfg 

Figure 11. The situation after the replacement 
of the V_mfg attribute genus. 

/ 

N(Fin) Mar&Mkt&Mfg 

Figure 12. The situation after step III. 
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Step IV: Starting with the result obtained at step III, choose two model and integrate 
them using first- and second-level procedures 

We consider the models N(Fin) and the Mar&Mkt&Mfg. Both show the attribute 
genera P_fin and P_mar, which are the prices of the products. To replace P_fin with 
P_mar, we call the Replace.Attribute procedure as below. The result is the integrated 
model shown in figure 13. 

Replace_Attribute (N(Fin), Mar&Mkt&Mfg, [D7, P_fin], [D2, P_mar]; 
[N(Fin), Mar&Mkt&Mfg]) 

For short, we write Mar&Mkt&Mfg&Fin instead of [N(Fin), Mar&Mkt&Mfg]. 

(53 

Mar&Mkt&Mfg&Fin 
Figure 13. The model after the replacement of the P_fin genus. 

Now the function genus V_mkt can replace the attribute genus V_fin and the 
function genus E_mfg can replace the attribute genus E_fin. In both cases, proposition 7 
holds. This can be accomplished by calling the Use procedure twice, as below: 

Use (Mar&Mkt&Mfg&Fin, Mar&Mkt&Mfg&Fin, [D8, E_fin], E_mfg; 
Mar&Mkt&Mfg&Fin); 
Use (Mar&Mkt&Mfg&Fin, Mar&Mkt&Mfg&Fin, [D9, V_fin], V_mkt; 
Mar&Mkt&Mfg&Fin); 
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As in steps II and III, the vestigal primitive entity Prod_fin can be deleted, 
since it has no meaning. 

The resulting integrated model corresponds to the one of the example in [10]. 
Let us point out that, since the used procedures are all closed, the order of the 
sequence of steps I I - I V  is arbitrary. In fact, we could choose any two models to be 
integrated, and formulate the correct sequence of integration procedures according 
to the rules we have defined. 

(53 

Mar&Mkt&Mfg&Fin 
Figure 14. The final integrated model. 

6. Future  extensions 

In the previous sections some procedures, classified to be on first or second 
level, were presented. They are the first steps toward the definition of a formal theory. 

Of course, the elementary operations described are not exhaustive. For example, 
two other simple operations on nodes are: split and merge. 

These operations are not easy to formalize, especially when applied to function 
and/or test genera. In this case, it is possible to construct different procedures which 
depend on the rules of the genera and the will of  the model integrator. 

The procedures described can cover many situations, but there are cases where 
they fail. Here is a simple example [10]: 

To define a Two-Echelon Transshipment Model integrating two Classical Transporta- 
tion Models* such that the output of the first becomes the input of the second. 

*The formulation is given in section 4. 
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CTM in CTM out 

Figure 15. The two Classical Transportation Problems (CTM) to be integrated. 

For notation, we suffix the genera of the Classical Transportation Problem 
used as input in the integrated model with _in, with _out the other. 

The following are the steps necessary to integrate. 

Step I: Delete the genera not required by the integrated model 

The DEM_in and the T: DEM_in genera are deleted because the input section of 
the integrated model does not need to deal with the demand of the customers. For 
a similar reason, the Sup_out and T:Sup_out genera are deleted. To accomplish this 
task, the Delete_Node procedure is called four time, as shown below: 

Delete_Node (Dem_in); 
Delete_Node (T_Dem_in); 
Delete_Node (Sup_out); 
Delete_Node (T_Sup_out); 

The resulting models, which in this particular case are also Structured Models, 
are shown in figure 16. 

Step II: Identify the genera 

The CusLin and the Plant_out genera need to be merged because the final 
integrated model identifies the arrival nodes of CTM_in with the starting nodes of 
CTM_out. The merged genus is renamed. Its formulation is as follows: 
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© 

G 
CTM_in CTM out  

Figure 16. The CTMs after the Delete_Node procedures. 

G G 
TETM 

Figure 17. The integrated model after the merging. 

Genus DC primitive 
feature 
label: string; 
show label 

The merge operation reroutes the definitional dependencies to this new genus. 
At the moment, this step cannot be executed using first and/or second level procedures. 
The result in shown in figure 17. For short, we write TETM (Two-Echelon Transshipment 
Model) instead of [CTM_in, CTM_out]. 
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Step III: Create a new test for  inflows and outflows 

A completely new test genus has to be defined. It checks if the incoming flow 
equals the outgoing flow for each transshipment node. It is necessary to use the 
definition language to create the genus. 

Genus T_DC test 
cal l  (FLOW_in : iso (DC.INDEX);  FLOW_out : iso (DC.INDEX)) ;  
feature 

DC_test : boolean is result := (SUM [PLANT.INDEX] 
flow_in = SUM [CUST.INDEX] flow_out); 

show DC_test 

This action cannot be accomplished using first and/or second level procedures. 
The resulting Structured Model is shown in figure 18. 

TETM 

Figure 18. The situation after step III. 

Step IV: Create a new function genus which sums the S_in and the S_out values 

Again, a completely new function genus has to be defined, which sums the 
cost for the input section and the cost for the output section. It is necessary to use 
the definition language to create the genus. 

Genus TOT test 
cal l  ($_in : iso S_out : iso);  
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feature 
Sum_cost : real is result  := totcosLin + totcost_out; 

show Sum_cost 

At this time, this action cannot be accomplished using first and/or second level 
procedures, but it looks more promising for the future when the merge procedure will 
be defined on the rules of function genera. The resulting Structured Model is shown 
in figure 19. This model corresponds to the resulting integrated model as in [10]. At 

TETM 

Figure 19. The final integrated model. 

this time, steps II, III and IV procedures lie on the third level of  integration. In fact, 
the user is required to define ad hoc genera and to set the definitional dependencies. 
It is desirable that the integration work is done using, as much as possible, automated 
procedures. 

Our research line takes two directions: 

• the first tries to develop new procedures, so that much of the work to integrate 
models can be done at levels 1 and 2; 

° the second defines within a Model Management System a language and graphics 
tools to create procedures not available at levels 1 and 2. So doing, errors are 
minimized and productivity is increased. 
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