
Modelling and Decision Support

Annals of Operations Research 58(1995)405-440 405

Toward a formal theory of model integration

Marco Gagl iardi

Department of Quantitative Methods, University of Siena,
Piazza S. Francesco 17, 1-53100 Siena, Italy

C o s i m o Spera*

Department of Industrial and Operations Engineering, University of Michigan,
1205 Beal Avenue, Ann Arbor, MI 48105, USA

E-mail: spera @sivax.unisi.it.

The aim of this paper is to provide the first steps toward a formal theory of model
integration. This is supported at least by three arguments: (a) increasing the productivity
of the modeling work; (b) decreasing errors; (c) saving time and money. Of course, any
formal theory has to be based on a given framework; in our case, we consider only
models which satisfy the core concepts of Structured Modeling. The outline of the paper
is as follows. After the motivations are pointed out, some preliminary results are given
in section 2. Section 3 defines the levels of integration, while in sections 4 and 5 some
examples are presented. Remarks and future extensions conclude the paper.

Keywords: Model integration, Structured Modeling.

1. Motivations for a formal theory

The defini t ion of a specif ic model is conce ived as a work which has to be done

f rom scratch. Ideally, the model builder would like to construct his model by assembling,

when it is poss ible , models previous ly defined, or by using models def ined and tested

by other people . There are two cases to consider:

• all the models to be assembled are expressed in the same definitional f ramework ;

• the models to be assembled derive f rom different f rameworks .

These two cases bring to different types of integration: "deep" in tegrat ion and

"'functional" integration. This dist inction is due to Geoffr ion.

Muhanna and Pick have cal led it structural and composition in tegrat ion [13],

while Dolk and Kot temann have called it definitional and procedural integration. They

*On leave from the University of Siena on a fellowship from CNR, Italy. Permanent address: Department
of Quantitative Methods, Piazza S. Francesco 17, 1-53100 Siena, Italy (contact author).

© J.C. Baltzer AG, Science Publishers

406 M. Gagliardi, C. Spera, Formal theory of model integration

have also proposed a "'model interconnection language" (Dolk and Kottemann [12]),
and a "model description language" (Muhanna and Pick [13]), to treat the functional
integration.

Deep integration has been treated by Geoffrion in [10]. Here, we will deal with
deep integration and try to show that models can be defined by assembling pieces
of correlated sub-models. This process, to be effective, has to minimize the errors
in specifying the model and has to include as much as possible automated procedures.
It has to be carried on within a formal framework. We have chosen the Structured
Modeling framework as defined by Geoffrion [7, 9]. The main features, with respect
to the assembling process, derived by Structured Modeling is modularity: this greatly
influences the productivity of the work.

In this paper, we give some formal results and a few examples of integration
among models. Our effort is to define automated procedures, which can be used to
replace genera, modify definitional dependencies, set new dependencies among sub-
models, etc.

These procedures check in an automated way if some of the Structured Modeling
principles are violated at the end of the integration process.

We want to point out that we try to formalize this integration theory outside
any model definition language. Nevertheless, our examples are given using an object-
oriented language, but the obtained results hold in general.

2. Preliminary results

In the remainder of this paper, we assume that the reader is familiar with the
formal theory of Structured Modeling.

Given a Structured Model Mi, let Gi = {gj , j ~ 1 ki} be the set of all the
genera; this can be partitioned into three disjoint sets, PCi, Ai and FT/, such that

PCi = {& EGi: g~ is a primitive or a compound entity genus},

A i = {gj u_ Gi: gj is an attribute genus},

FT i = {gjEGi: gj is a function or a test genus}.

LEMMA 1

Any genus gj ~ PCi does not have references to any other genera gk E (A i v FTi).

Proof

Primitive entity elements, by definition, have no calling sequence, therefore they
do not have references to any other elements; compound entity elements, by definition,
are constructed only on primitive entity and other compound entity elements. []

M. Gagliardi, C. Spera, Formal theory of model integration 407

LEMMA 2

Any genus gj ~ Ai has only references to other genera gk ~ PCi.

Proof

Attribute elements, by definition, characterize only primitive and compound
elements. []

Our formal theory to integrate models is developed at the level of generic
structure. The following proposition proves that if the integrated graph of genera G
satisfies the Structured Modeling principles, so does the elemental structure E.

PROPOSITION 1

Let E be a non-empty and finite set of elements, and let G be a set of partitions
constructed on E, one for each of the five types. E is an Elemental Structure if:

(1) G satisfies generic similarity;

(2) G is a closed set;

(3) G is an acyclic set.

Proof

(a)

(b)

(c)

E is not empty and finite by hypothesis.

Closure (by contradiction). Suppose ei ~ E has a reference in its calling sequence
to ej ~ E. Let ej be an element of the genus gj, and e i be an element of the genus
gi. By the generic similarity property, gi has in its calling sequence a reference
to a genus gj; but by construction gj ~ G; this violates (2).

Acyclicity (by contradiction). Let S = { el e i } be a cyclic sequence of elements
belonging to E. If each e i belongs to a different genus gi, then the generic
similari ty property implies that G is cyclic. If there are two elements
ek, e h, k, h : I i, k ~ h, ek, eh E gi, then let us consider the sub-sequence
Sj C S, Sj = { ek,..., ek }. By the generic similarity property, there exists a sequence
of genera gi gi, which is cyclic. This violates (3). []

Within the Structured Modeling framework, genera are grouped into modules.
In the following sections, we often use particular Structured Modeling modules,
which allow to identify sub-models.

DEFINITION I: Connected module

A Structured Modeling module is connected if its genera and their calling
sequences form a connected sub-graph.

408 M. Gagliardi, C. Spera, Formal theory of model integration

DEFINITION 2: Sub-mode l

A sub-model is a connected module with at least one primitive entity genus.

The next definition individualizes sets of operations, which will not modify the
output values of the model. These sets of operations do not modify the input data.

DEFINITION 3: Neutral set of operation

Given a model Mi E SM, where SM is a set of Structured Models, we define
the set T of operations to be neutral if the resulting model T(Mi) returns the same
output values when instanced with the same data of Mi.

DEFINITION 4: Neutral set of operation with respect to gi

Given a sub-model SubM i E SM, where SM is the set of Structured Models,
and a genus gi ~ SubMi, we define the set T of operations to be neutral with respect
to gi if the resulting model T(SubMi) returns the same output values given by gi when
it is instanced with the same data of SubM i for the genera called directly or indirectly

by gi.

DEFINITION 5: Normal model

A model is called normal if the following conditions are satisfied:

(a) there is a 1:1 correspondence between attribute and compound genera;

(b) given a pair of matching genera, there is a 1:1 correspondence between their
elements.

The reason to define a normal model is that the attribute genus index can be
known through the compound genus index. This point will be much clearer when
some of the integration procedures are illustrated. The graph of the elements of a
normal model is shown in figure 1; dotted rectangles identify genera.

PROPOSITION 2

Given a Structured model Mi, it is always possible to construct a normal model
N(Mi) using the neutral set of operations N.

Proof

Consider any attribute genus gj E A i C M i. It is always possible to define a new
compound entity genus, Ck ~ PCi, with the same calling sequence as gj. Lemmas 1
and 2 ensure that genera which are called by an attribute genus can be called by a
compound entity genus too. An isomorphic relation can be set among the elements

M. Gagliardi, (7. Spera, Formal theory of model integration 409

EZh E:3 U:3 E:3 i C 3 EZ3 U:3 EZ3

IS3 US] D CS] [::] IS3 U2 [--q E3

O O C) C) I C) C) C) O C) i

0 0 0 0 0 0 0

Figure 1. Graph of elements of a normal model.

C:) Function, F

Test, T

[:~ Attribute, A

C ~ Compound Entity, C

0 Primitive Entity, P

of gj and ck: the first elements of gj calls the first element of ck, etc. This process
is repeated for every attribute genus of Mi. The attribute genera so constructed have
exactly the same number of elements and the same structure as before the structural
changes; therefore, they can be instanced using the same data as previously.

Formally, if N(Mi) indicates the modified model, the set B = {Ck, gj} C N(Mi)
¢=~ gj ~_ M i for every genus gk EFT/ C N(Mi). []

Based on proposition 2, the procedure Normal is constructed. Here, CSi indicates
the calling sequence of the ith genus, i.e. the finite list of the calling sequence
segments.

procedure Normal (input: Mi; output N(Mi));

begin
Create a LIST of gj E A i C Mi;

while not end of LIST do
Select gj E LIST;
if (CSj has more than a segment) or (gJ does not isomorphically call a
compound entity genus)
then

Create a genus dummyi ~ PCi;
CSi = CSj;
CS; = (dummyi:iso);*
/* the calling sequence of gj is set to call the dummyi genus in an
isomorphic way , /

LIST := LIST - gj;
end while

end.

* This notation is taken from BLOOMS grammar and has the meaning of "set an isomorphic relation
among the elements of gj and the compound entity" [2,3].

410 M. Gagliardi, C. Spera, Formal theory of model integration

Proposition 2 and procedure Normal ensure that for each Structured Model
there is a neutral set of operations N which can construct a model that returns the
same values when instanced with the same data. Moreover, this set of operations can
be automated.

DEFINITION 6: Index basis

An index basis of a normal model N(Mi) is a couple of genera Bj = {aj, cj},
where aj E A i C M i is an attribute genus, and cj is the compound entity genus called
by aj. The genus aj is called the value component of Bj, while the genus cj is called
the index component.

DEFINITION 7: Index basis set

The sets B S i = {Bj, j : 1 h} containing all the index basis of N(M i) is called
the index basis set.

DEFINITION 8: Index function

Suppose L to be a language for the definition of Structured Models. An index
function i(gj) is a rule which associates to every genus gj E N(Mi), expressed using
the language L, the cardinality of its generic index t-uple.*

As an example, given a genus gi indexed by (j , k, l), its index function i(gi)
returns as value 3.

Definitions 6, 7 and 8 are related to the indices' management; they are not
language dependent.

3. Integration levels

As we pointed out, our integration theory will be developed working at the
level of the graph of genera. In this section, we define three levels of integration and
characterize some simple operations on the genera graph, which are called elementary
operations. They form the basis to construct more complex procedures used to integrate
models.

Level 1 All the procedures are automated. This means that the user selects the
input models and the genera to be integrated, and the output integrated
model is automatically produced.

*This concept is taken from Geoffrion's SML language. Nevertheless, it is a general concept which can
be easily extended to every modeling language [6].

M. Gagliardi, C. Spera, Formal theory of model integration 411

Level 2 The user selects the input models and the order of integration among the
genera, and the output integrated model is automatically produced.

Level 3 The user selects the input models, the genera to be integrated and formulates
the steps necessary to integrate. The output integrated model is not
automatically produced. At this level, the user needs to create the integration
procedures, which cannot have any generality since the integration steps
can vary according to the situation.

The goal is to try to understand how many integration procedures can be on
the first two levels, and to create for the third level an interface language which
allows users to define ad hoc integration procedures.

This strategy, on the one hand, tries to take into account the need of automated
procedures, which can be used in some context to increase the productivity of the
model builders, and to decrease the number of possible errors; on the other hand, it
gives a flexible tool to successfully deal with the variety of situations which occur
in model integration.

3.1. ELEMENTARY OPERATIONS

Let us consider the set G. This set contains the graphs of genera Gi = ('~/, Ei)
of all Structured Models. V / i s the set of typed nodes, "~l = (1 ni), and E i is the
set of arcs (i,j), i : 1 hi, j : 1 n i, i ~ j , which represent the definitional dependencies
between genera (nodes). Elementary operations can be defined both on arcs and
nodes.

3.1.1. Operations on arcs

These operations influence the definitional dependencies among genera, both
in the case where they are executed on a single graph and in the case where they are
executed on two or more graphs. There are only two elementary operations on arcs:

(1) add;

(2) delete.

These operations are formalized in the following procedures. As before, CSi

indicates the calling sequence of the genus gi.

procedure Add_Arc (Input: gi, gj; Output: (gi, gj));
/* Create a new direct arc from gj to gj. */
/* The symbol \ \ means "append an element to the list" */
begin

CSj :=CS j \ \ g~;
end.

412 M. Gagliardi, C. Spera, Formal theory of model integration

procedure Delete_Arc (Input: gi, gj; Output: null);
/ , Delete an existing arc from gi to gj.*/
begin

C S j : = CSj - gi;
end.

Add_Arc is an operat ion not always allowed. In fact, lemmas 1 and 2 establish

the constraint for this procedure. Table 1 shows the allowed operations. (P, C, A, F and

T indicate the types nodes o f Structured Model ing.)
There are no l imitations when a Delete_Arc operat ion is called. It is clear that

these e lementary operat ions are not closed on G.

Table 1

Add arc.

~ g ~gg~ P C A F T

P
C × ×
A × ×
F x x x x x

T x x x x x

A variety of procedures can be constructed combining these elementary operations
Add_Arc and Delete_Arc. Le t us show some of them.

Given three genera gi, gj and gk, where gi, gk E Ml and gj E (MI V M2), two

situations can arise:

(a) there is an arc (gk, gi) in Mi ;

(b) there is an arc (gi, gk) in M1.

Figures 2(a) and 2(b) illustrate these situations.

Figure 2(a). The added arc is (gj, gi). while
the deleted arc is (gk, gl). This implies
that the calling sequence segment of gi
having a references to gk is modified to gj.

Figure 2(b). The added arc is (gi, gj), while
the deleted arc is (gi, gk). This implies that
the calling sequence segment, which calls gi,
of the genus gj is deleted, and the calling
sequence of gk is set to have a reference to gi.

M. Gagliardi, C. Spera, Formal theory of model integration 413

The following procedures formalize the replacement operations.

procedure Replace_In_Arc (Input: gi, gk, gj; output: (gj, gi));
begin

Add_Arc (gj, g~; (gj, gi));
Delete_Arc (gk, gi; nul l) ;

end.

procedure Replace_Out_Arc (Input: g~, gk, gj; Output: (gb g j)) ;

begin
Add_Arc (g,, gj, (g,, gj));
Delete_Arc (gi, gk; null);

end.

Tables 2 and 3 show the feasible node replacement using the above procedures.
Rows and columns indicate the types of gk and gj genera; a X at the interesection
means that the replacement of the nodes is always possible, while capital letters
indicate that the operation is possible only for specific types of the gi nodes.

Table 2

Replace in-arc.

ggy~ P C A F T gg/~

P x x X x x P
C x x x x x C
A x x x x x A
F F,T F,T x x x F
T F,T F,T x X X T

Table 3

Replace out-arc.

P C A F T

x x x x

x x x x

P,C P,C x x
P,C P,C x x

The procedures described above are not closed on G.

3.1.2. Operations on nodes

These operations allow to create new genera or delete existing ones. We
analyze two elementary operations on nodes:

(a) add a node;

(b) delete a node.

The Add procedure is difficult to formalize, since genera contain the semantic
information of the Structured Model and the operation of adding a genus (i.e. a node)

414 M. Gagliardi, C. Spera, Formal theory of model integration

has to be performed using a definition language. To add a genus gi implies the
definition of the arcs (gk, gi), where gk E Mi, k : 1 ni, k ;~ i, are the genera called
by gi. Therefore, the procedure which formalizes the (a) elementary operation on
nodes uses the Add_Arc procedure.

When a genus gi E M i is deleted, the arcs (gj, gi) and (gi, gk), where gj, gk E Mi,
j : 1 ni, k : 1 n i , j , k ;~ i, have to be deleted. Therefore, the procedure which
formalizes the (b) elementary operation on nodes uses the Delete_.Arc procedure.

procedure Add_Node (input: gt);
begin

{define a new genus with a definitional language}
/ , This step is not formalized, since this has to be done using a definition
language */
Create a LIST of gk;
/* genera gk are called by gi */
while not end of LIST do

Select gk from LIST;

Add_Arc (gk, gi; (gk, gi));
LIST := LIST - gk;

end while
end.

procedure Delete_Node (input: gi);
begin

Create a LIST_OUT of arcs (gi, gk);
while not end of LIST_OUT do

Select (gi, gk) from LIST_OUT;
Delete_Arc (gi, gk; null);
LIST_OUT := LIST_OUT - (g~, gk);

end while;
Create a LIST_IN of arcs (gj, ge);
while not end of LIST_IN do

Select (gj , gi) from LIST_IN;
Delete_Arc (gi, gi; null);
LIST_IN := LIST_IN - (gj , gi) ;

end while;
Delete the genus g~;

end.

The elementary operations on nodes can always be executed. They are not
closed on G.

M. Gagliardi, C. Spera, Formal theory of model integration 415

The elementary operations described above are not exhaustive. Nevertheless,
we have defined generic operations which are easy to assemble to create a large
variety of procedures.

Let us prove that under defined conditions, a set of an arbitrary number of
Structured Models can be integrated using elementary operations or combinations of
them.

3.2. CLOSED SETS OF OPERATIONS

We give the definition of a closed set of operations, which is used in the
following proposition.

DEFINITION 9: Closed set of operations

A set of elementary operations E is closed if E(M1 M ,) = M* E S M for
every M i E SM, i : 1 n, n > 1.

As an example, we rewrite the Normal procedure such that it is formed by
elementary operations which are a closed set.

procedure Normal (input: Mi; output N(Mi));
begin

Create a LIST of gj E Aj C M~;
while not (end of LIST) do

Selec t gJ fro LIST;
if (CSj has more than a segment) or (gj does not isomorphically call a
compound entity genus)
then

Add_Node (dummyi);
Create a LIST_ARC of arcs (gk, gj);
while not (end of LIST_ARC) do

Select (gk, gj) from LIST_ARC;
Replace_OuLArc (gk, gj, dummyi; (gk, dummyi);
LIST_ARC := LIST_ARC - (gk, gj);

end while;
Add_Arc (dummyi, gl, (dummyt, gt));
LIST := LIST - gj;

end while
end.

The following proposition ensures that the elements Ml M , E SM, with
n > 2, can be integrated using closed sets of operations.

416 M. Gagliardi, C. Spera, Formal theory of model integration

PROPOSITION 3

Given Ml M, E SM, with n > 2, it is possible to create an integrated Structured
Model Mk using a set {El Ek} of closed sets of operations.

Proof

Trivial by recursive application of definition 9. []

In the following, we always use integration procedures which form a closed
set of operations.

4. Level 1 integration: some results

In this section, we look at procedures defined to be on the first level of
integration.

To show an example of the first level of integration, we need to introduce the
definition of a function sub-model, which is a particular Structured Model. The goal
is to select a function genus which can automatically replace an attribute genus.

DEFINITION 10: Function sub-model

A Structured Model SubMi(f) is called a function sub-model if it satisfies the
following conditions:

(a) SubMi(f) is a normal model.

(b) SubMi(f) has at least one function genus f E F T i which is a singleton.*

The following procedure, Create_Function_Submodel, needs as input a model
M i and a singleton g e n u s f E FTi C Mi, and produces as output a function sub-model.
This procedure is closed.

procedure Create_Function_Submodel (input: Mi, f; output: SubMi (f));
/* Modify Mi into a function sub-model SubMi (f) */
begin

/* step I. "Normalize the model" */
Normal (Mi; N(Mi));
/ , step II. "Merge functions" */
Create a LIST of arcs (gi, f);
while not end of LIST do

Select (gi, f) from LIST;
Select gi from (gi, f);

*This has the meaning "composed of a single element" [6].

M. GagliardL C. Spera, Formal theory of model integration 417

if (gi E FTi)
then

/* a * /Create a LIST_A of arcs (gj, gl);
while not end of LIST_A do

Select (gj, gl) from LIST_A;
Replace_Out_Arc (gl, gi, f; (gj, f));
LIST_A := LIST_A - (gJ, gi);
if (gj (E FTi) and (gj ~ LIST) then

LIST := LIST \ \ gj;
end while;

/* b * /Replace into the rule of f the vatue field of gi with its rule;
/ , This does not involve the graph structure */

/* c */ Delete_Node (gi);
LIST := LIST - g~;

end while;
/ , step III. "Delete genera having no influence on f" */

Create a LIST of gj E M~;
while not end of LIST do

Select gi from LIST;

if (gi E FTi and gj #= f) then
Delete_Node (gj);

if (gi E Ai U PCi and gj is not called directly or indirectly by f) then
Delete_Node (gj);

LIST := L I S T - gj;
end while

end.

The next proposition ensures that the Create_Function_Submodel procedure
creates a function sub-model.

PROPOSITION 4

Given a Structured Model M i and an arbitrary singleton function genus
f E FT. C Mi, there exists a transformation T, which is a neutral set of operations with
respect to f, such that

T(Mi) = SubMi(f).

Proof
By applying the Create_Function_Submodel procedure which defines the

procedure T. []

418 M. Gagliardi, C. Spera, Formal theory of model integration

Let us show how a function genus f can be reused as an input parameter for
other models. The genus f replaces the attribute genus gi, if all its dependencies can
be addressed to f. The automation is possible since genus f is a singleton. In fact,
any function depending on the replaced attribute genus gi does not need to be modified
since the index function o f f is set equal to the index function of the replaced genus
gi by the integration process.

Suppose we have two models M1 and M2, and we want to replace the genus
gi E A 1 C M1 with the computed value given by the genus f • FT2 C M2. This goal
is achieved by applying the following procedure (the symbol [M1, SubM2] means the
integrated output model):

procedure Reuse (input: M1, M2. gi, f; output: [N(M0, SubM2(f)]);
/ , Integrate M1 and M2. gi is replaced by f , /

begin
/ , Step I. "Changes in M2" */
Create_Function_Submodel (M2, f; SubM2(f));
Normal (M1; N(M1));

Select {Dummy, gi} c N(M1);
/* To select the index basis ,/

Create a LIST of genera gi ~A2 U PC2 (Z SubM2(f);
while not (end of LIST) do

Select gj from LIST;
if (gj, f) then Add_Arc (Dummy, gj; (Dummy, gj));
/* Add to the calling sequence of gj the calling sequence of g~ ,/
LIST := LIST - gj;

end while;
/* Step II. "Changes in MI" */

Create a LIST of genera ft E FT1 c N(M0;
while not (end of LIST) do

Select fi from LIST;
if (gi, fi) then

Replace_In_Arc (fi, gi, f; (f, fi));
/ . Substitute gi with f in the calling sequence of fi; */

LIST := LIST - f~;
end while;
/ , Step III. "Delete attribute genus" */
Delete_Node (gi)

end.

M. Gagliardi, C. Spera, Formal theory of model integration 419

PROPOSITION 5

Given two Structured Models M1 and M2, it is always possible to replace the
attribute genus gi EAI C MI with a singleton function genus f E FT2 C M 2. The
result is a Structured Model.

Proof
By applying the procedure Reuse, we obtain as a result the model [N(MI), SubM2].

Its graph of genera must be finite, closed and acyclic (the non-emptiness is obvious).

(a) Finiteness. Step III guarantees that the number of genera of [N(MI), SubM2]
is equal to the number of genera of (N(M)I U SubM2(f)) minus the deleted genus gi.

(b) Closure. By steps I and II, there is at least one genus of N(M1) calling a
genus of SubM2(f) and at least one genus of SubM2(f) calling a genus of N(MI).
From the closure of N(MI) and SubM2(f), the closure of [N(MI),SubM2] follows.

(c) Acyclity (by contradiction). Let us consider a cyclic sequence of genera
G* ___ [N(MI),SubM2]. By construction, it is as follows:

{ gj EA 2 U PC 2 C SubM2(f) , f , . . . }.

The genus gh following f i n the sequence is necessarily gh E F T l, while the genus gl
preceding gj is necessarily gl ~-PC2. Lemma 1 states that there are no direct or
indirect references from compound and primitive entity genera to function and test
genera. Therefore, G* cannot be cyclic. []

Figure 3 shows how an arbitrary model M 1 is integrated with an arbitrary sub-
model SubM 2. The values supplied by the user in the attribute genus gi are replaced
by the computed value with the rule defined in the function genus f.

k

N(Mt) SubM2 (f)
Figure 3. A hypothetical example of the Reuse procedure.

420 M. Gagliardi, C. Spera, Formal theory of model integration

Classical Transporta t ion Model

Genus PLANT primit ive
/* there are some plants , /
feature

Label: string;
show Label

Genus SUP attr ibute
/ , each plant has a given supply , /
call (PLANT : iso);
feature

sup : real+;
show sup

Genus LINK compound
/ , There are links between plant and
customer */
call (CUST : one;
PLANT : one);
feature

label : string;
connect (PLANT, CUST)
require (PLANT; CUST)

covered;
/* every plant has at least an outgoing
link; every cust has at least an ingoing
link */

show label

Genus T : DEM test
/* are the demand constraints satisfied? */
call (FLOW : iso
(CUST.INDEX); DEM : iso);

feature
dem_test : boolean is
result := SUM
[SUP.INDEX] flow = dem;

show dem test

Genus $ funct ion
/* there is a computed total cost */
call (COST : all; FLOW : all);
feature

totcost : real is

Genus CUST primit ive
/* there are some customers , /
feature

Label: string;
show Label

Genus DEM attr ibute
/* each customer has a given demand , /
call (CUST : iso);
feature

dem : real+
show dem

Genus FLOW variable
attr ibute
/* each link has a flow , /
call (LINK : iso);
feature

flow : real+;
show flow

Genus COST attr ibute
/* each link has a given cost , /
call (LINK: iso);
feature

cost : real+;
show cost

Genus T : SUP test
/* are the supply constraints satisfied? , /
call (FLOW : iso (PLANT.INDEX);
SUP : iso);
feature

sup_test : bollean is
result := SUM
[DEM.INDEX] flow < sup;

show sup_test

result := SUM [LINK.INDEX] cost * flow;
show totcost

M. Gagliardi, C. Spera, Formal theory of model integration 421

Exponential Smoothing Model

Genus TIME pr imi t ive
/* there are some times */
feature

Label: str ing;
show Label

Genus ALPHA at t r ibute
/ , there is a smoothing constant for all
primitive entities , /
call (P1 :all);
feature

alpha : real+;
invar iant 0 _< alpha _< 1 ;

show alpha

Genus EXPONENTIAL funct ion
call (ALPHA: all;
DEMAND: all (TIME.INDEX));
feature

exp: real is resul t :=
(IF TIME.INDEX > 1
THEN

alpha * dem +
(1-alpha) *
exp.TIME.INDEX-1.

ELSE dem);
show exp

Genus P1 pr imi t ive
/* there are some primitive entities , /
feature

Label: str ing;
show Label

Genus DEMAND at t r ibute
/ , there is a given demand for all primitive
entities at each time , /
call (P1 : all; TIME : iso);
feature

dem : real+;
show dem

Genus SMOOTHED funct ion
call (ALPHA : all;
EXPONENTIAL : all (TIME.INDEX));
feature

smoothed : real is resul t :=
(IF TIME.INDEX > 2
THEN

alpha *
(exp.TIME.INDEX -
exp.T IME. INDEX- 1) +
(1-alpha) •
smoothed.TIME.INDEX- 1.

ELSE
(IF TIME.INDEX = 2
THEN exp.2 - exp.1
ELSE 0));

show smoothed

Genus FORECAST funct ion
call (ALPHA : all; EXPONENTIAL : last; SMOOTHED : last);
feature

for : real is resul t : = exp + smoothed / alpha;
show for

422 M. Gagliardi, C. Spera, Formal theory of model integration

Figure 4. The two models before integration.

(SD

G G ©
Figure 5. The integrated model.

,3

We wish to point out that the result is not dependent on a particular model
definition language for Structured Modeling. Effective integration procedures need
to be defined as parts of a Model Management System, and to be consistent with the
language used in the system.

We now give an example of model integration using the Reuse procedure. The
example is quoted from [10]. A computer-forecasted value by an Exponential Smoothing
Model replaces a given demand value in a Classical Transportation Model. The
models expressed using the Object-Oriented language BLOOMS [4,6] are given in
the preceding pages.

We replace the given values of the attribute genus DEM belonging to the
Classical Transportation Model with the computed value of the singleton function
genus Forecast belonging to the Exponential Smoothing Model. The Reuse procedure
is called with the following parameters:

M. Gagliardi, C. Spera, Formal theory of model integration 423

Reuse (Classical Transportation Model, Exponential Smoothing Model,
Dem, Forecast; Integrated Model);

Figure 4 shows the graphs of genera of the models before the integration. In
figure 5 the integrated model is given. DI D6 are the dummy compound entity
genera created by the Normal procedure executed in step 1 of Reuse.

The modified genera are presented below.

Genera modified in classical Transportation Model

Genus D1 Compound
Call (PLANT : iso);
Feature

Label: String;
Show label

Genus D2 Compound
Call (CUST : iso);
Feature

Label: String;
Show label

Genus SUP attr ibute
/ , each plant has a given supply */
call (D1 : iso)
feature

sup : real+;
show sup

Genus DEM attr ibute
/* each customer has a given demand , /
call (D2 : iso);
feature

dem : real+;
show dem

Genus T : DEM Test
/* are the demand constraints satisfied? , /
call (FLOW : iso (CUST.INDEX);
FORECAST : iso);
feature

dem_test : boolean is result :=
sum [SUP.INDEX]

flow = for;
show dem_test

Genera modified in Exponential Smoothing Model

Genus D3 Compound
call (PI : all; TIME : iso);
Feature

Label: String;
Show label

Genus D4 Compound
Call (TIME : iso);
Feature

Label: String;
Show label

Genus ALPHA attribute
/ , there is a smoothing constant for all
primitive entities ,/

call (D4 : all; D2 : iso);
/, Because DEM genus in Transportation
model has an isomorphic call to D2 */
feature

alpha : real+;
invariant 0 _< alpha _< 1 ;

show alpha

Genus DEMAND attribute
/* there is a given demand for all
primitive entities at each time , /
call (D3 : iso; D2 : iso);
feature

dem : real+;
show dem

424 M. Gagliardi, C. Spera, Formal theory of model integration

Now we extend the previous results in order to allow an automatic replacement
of an attribute genus gi E Mi with a non-singleton function genus3') ~ Mj. The following
propositions state the conditions for this action.

PROPOSITION 6

Given two normal models N(Mi) and N(Mj), the integrated model [N(Mi), N(M/)]
obtained by replacing the input parameter gi EAi Q N(Mi) with the output parameter
fj E FTj C N(Mj) is a Structured Model if i(gi) = i(j~).

Proof
The proof follows the same lines as in proposition 5. The necessary condition

given by the equality of the index function leads to an analogy with the singleton
case. []

PROPOSITION 7

Given a normal model N(Mi), it is possible to replace the input parameter
gi EAi with the output parameter j~ E FTj if

i(gi) = i(~); (4.1)

j] does not have direct or indirect definitional dependencies on any
genus having direct or indirect definitional dependencies on gi. (4.2)

Proof
The graph of genera after the replacement has to be (a) finite, (b) non-empty,

(c) closed, and (d) acyclic. (a), (b) and (c) hold by construction. (d) is proved by
contradiction. If a cyclic sequence is created by the replacement of the genera, it has
to be as

{gl J~, gk gl },

where gk had a definitional dependence on the replaced genus gi.
Before,3] had a definitional dependence on gl, but gt had an indirect definitional

dependence on gi. This violates (4.2). []

Based on the results of propositions 6 and 7, the following procedures can be
constructed. The input parameters are an index basis B i E N(Mi) and a function genus
fj ~ N(Mj), where N(Mi) can coincide with N(Mj); the output is a Structured Model
[N(Mi), N(Mj)]. The procedure halts if conditions (4.1) and (4.2) do not hold.

M. Gagliardi, C. Spera, Formal theory of model integration 425

procedure Use (Input: N(Mi), N(MI), Bi, fj; Output: [N(Mi), N(MI)]);
begin

/ , Step I: Examine if condition (4.1) is satisfied , /
Select gj (5 B~;
Compute i(gi);
Compute i(fi);
if i(gi)¢ i(fj) then exit;
/* Step I1: Examine if condition (4.2) is satisfied . /
Create a LIST of genera gh having direct or indirect definitional dependencies on
g~;
while not end of LIST do

Select gh from LIST;
if fj has direct or indirect dependence on gh then exit;
LIST := LIST - gh;

and while;
/* Step Iii: Replace gi with fj */

Create a LIST of genera gh E FT~;
while not end of LIST do

Select gh from LIST;

if (gi, gh) then
Replace_In_Arc (gh, gi, fj; (fj, gh));
/* Substitute the reference to g~ with a references to fj */;

LIST := LIST - gh;
end while;

end.

5. Level 2 integration: some results

In this section, we look at procedures defined to be on the second level of
integration. This means that, given a couple of genera {gi E Mi, gk E Mk}, the order
of integration has to be set by the user, i.e. the user decides if gi replaces gh or vice
versa.

Here, we present two integration procedures, which need to be applied to
normal models. The first allows the user to replace any definitional dependence to
an attribute genus, with definitional dependence to another attribute genus; the second
procedure does the same replacement on the index components of two index bases.
The input and the output parameter of the procedures are the same; they need the
index bases B i ~ N(Mi) and Bj ~ N(Mj) (N(Mi) can coincide with N(Mj)), and return
a Structured Model [N(Mi), N(Mj)].

426 M. Gagliardi, C. Spera, Formal theory of model integration

procedure Replace_Attribute (input: N(Mi), N(Mj), Bi, BI; Output: [N(Mi), N(Mj)]);
begin

Select a~ ~ Bi;
Select c~ ~ B~;
Create a LIST of genera gh ~ FT~;
while not end of LIST do

Select gh from LIST;
/* Substitute a i E B i with aj E Bj in the calling sequence of gh */;

Replace_ln..Arc (gh, ai, aj; (aj, gh));
LIST := LIST - gh;

end while;
Delete_Node (ai);
Delete_Node (ci);

end.

procedure Replace_Index_Component (Input: N(Mi), N(Mj), Bi, Bj; Output: [N(Mi), N(Mj)]);
begin

Select c~, a~ e B~, Cj EE Bj;
/* Substitute c~ with cj in the calling sequence of a~ */;
Replace_In_Arc (ai, ci, cj; (cj, ai));
Delete_Node (ci);

end.

The following propositions ensure that both Replace_Attribute and Replace_
Index_Component are closed procedures.

PROPOSITION 8

The Replace_Attribute procedure is closed under SM.

Proof

Given the input parameters of the procedure, two situations can arise:

(1) N(Mi) and N(Mj) are two separate models;

(2) N(Mi) and N(Mj) coincide.

(1) The graph of genera of the integrated model [N(Mi), N(Mj)] has to be (a)
non-empty, (b) finite, (c) closed, and (d) acyclic. (a), (b) and (c) hold be construction.
(d) holds by lemmas 1 and 2. Therefore, Replace_Attribute returns a Structured
Model and, since the procedure is composed of elementary operations, it is a closed
procedure.

(2) In this case, the Replace_Attribute procedure returns a modified Structured
Model [N(Mi), N(Mj)]. The proof follows as in (1). []

M. Gagliardi, C. Spera, Formal theory of model integration 427

PROPOSITION 9

The Replace_Index_Component procedure is closed under SM.

Proof

The proof follows the same lines as in proposition 8. []

We give an example of integration partially quoted from [10]. We show that
the integration can be carried out using first and second level integration procedures.

There are four Structured Models:

Financial (FIN). This model computes the net income N, given the price P, the sales
volume V, and the manufacturing expenses E of a product PROD.

Marketing (MKT). This model computes the sales volume V, given the price P of
a product PROD.

Mark-up (MAR). This model computes the mark-up M, given the price P, the sales
volume V, and the manufacturing expenses E of a product PROD.

Manufacturing (MFG). This model computes the manufacturing expense E, given
the cost per unit U and the sales volume V of a product PROD.

fin mkt mar mfg

Figure 6. The four models to be integrated.

The goal is to create an integrated model which has the values supplied by the
user replaced by the computed ones. This action has to satisfy all the theoretical
requirements. Figure 6 shows the graph of genera of the "starting" models.

The definitions of the models expressed in BLOOMS are given below.

428 M. Gagliardi, C. Spera, Formal theory of model integration

MARKET MODEL

Genus PROD_mkt primitive
/* There are some Products */
feature

Product_Label: string;
show Product_Label

Genus P_mkt attr ibute
/, Each Product has a given price P */
call (PROD_mkt : iso);
feature

ProducLPrice : real+;
show Product_Price

Genus V_mkt function
/* Each product has a computed sales
volume */
call (P_mkt : iso);
feature

Sales_Volume : real is resul t :=
800000 - 4400 * ProducLPrice;

show Sales Volume

Genus E_mar attr ibute
/ , each product has a given manu-
facturing expense , /
call (PROD_mar : iso);
feature

Manufacturing_Expense : real+;
show Manufacturing_Expense

Genus M_mar function
/* there is a computed mark-up for
every product */
call (P_mar : iso; V_mar : iso;
E_mar : iso);
feature

Markup : real is result :=
ProducLPrice * Sales_Volume /
Manufacturing_Expense;

show Markup

MARK-UP MODEL

Genus PROD_mar primitive
/ , There are some Products */
feature

Product_Label : string;
show Product_Label

Genus P_mar attr ibute
/* Each Product has a given price P */
call (PROD_mar : iso);
feature

Product_Price : real+;
show Product_Price

Genus V_mar attr ibute
/* Each product has a given sales
volume */
call (P_mar : iso);
feature

Sales_Volume : real+;
show Sales_Volume

MANUFACTURING MODEL

Genus PROD_mfg primit ive
/* There are some Products */
feature

Product_Label: string;
show ProducLLabel

Genus U_mfg attr ibute
/, each product has a given unit cost ,/
call (PROD_mfg : iso);
feature

UniLCost : real+;
show Unit_Cost

Genus V_mfg attr ibute
/* each product has a given sales
volume ,/
call (PROD_mfg : iso);
feature

Sales_Volume : real+;
show Sales_Volume

M. Gagliardi, C. Spera, Formal theory of model integration 429

Genus E_mfg function
/* there is a computed manufacturing
expense for every product , /
call (U_rnfg : iso; V_rnfg : iso);
feature

Manufacturing_Expense : real is
result := 1000000 + Unit_Cost *
Sales_Volume;

show Manufacturing_Expense

FINANCIAL MODEL

Genus PROD_fin primitive
/* There are some Products */
feature

Product_Label: string;
show Product_Label

Genus P_fin attribute
/ , Each Product has a given price P */
call (PRODJin : iso);
feature

Product_Price : real+;
show Product_Price =.>.

Genus V_fin attribute
/ , every product has a given sales
volume */
call (PROD_fin : iso);
feature

Sales_Volume : real+;
show Sales_Volume

Genus E_fin attribute
/ , every product has a given manu-
facturing expense , /
call (PROD_fin : iso);
feature

Manufacturing_Expense : real+;
show Manufacturing_Expense

Genus N_fin function
/ , there is a computed net income for
every product */
call (P_fin : iso; V_fin : iso; E_fin : iso);
feature

Net_Income : real is result :=
ProducLPrice * Sales_Volume -
Manufacturing_Expense;

show NeLIncome

Step I: Model normalization

The four models are normalized using the Normal procedure as indicated
below:

Normal (Fin; N(Fin));
Normal (Mkt; N(Mkt));
Normal (Mar; N(Mar));
Normal (Mfg; N(Mfg));

This step is necessary because some first-level, and all second-level, procedures
require as input normal models (see figure 7).

Step II: Choose any two models and integrate them using first- and second-level
procedures

Let us consider the models N(Mkt) and N(Mar). Both show the attribute genera
Ps (which are the prices of the products). The attributes Ps correspond to P_mar and
P_mkt, as indicated in the BLOOMS formulation of the models. We kept this convention
also for the other genera. To replace P_mkt with P_mar, we call the Replace_Attribute
procedure as indicated below:

430 M. Gagliardi, C. Spera, Formal theory of model integration

@

T

G @D

T T

N(Fin) N(Mkt) N(Mar) N(Mfg)
Figure 7. The normalized models.

B

N(Fin) N(Mkt) Mar&Mkt N(Mfg)

Figure 8. The models after the Replace_Attribute procedure execution.

Replace_Attribute (N(mkt), N(Mar), [D1,P_mkt], [D2,P_mar]; [N(Mkt),
N(Mar)]);

This action produces the integrated Structured Model depicted in figure 8.

M. Gagliardi, C. Spera, Formal theory of model integration 431

For brevity of notation, we write Mar&Mkt instead of [N(Mkt), N(Mar)]. Now
the function genus V_mkt has to replace the attribute genus V_mar. This can be done
if proposition 7 holds. In this case, this task is accomplished by the Use procedure:

Use (Mar&Mkt, Mar&Mkt, [D3,V_mar], V_mkt; Mar&Mkt);

Note that Use works on a single model. The result is a normal model. At the
end of step II, N(Mkt) has only the primitive entiry Prod_mkt, and since the model
has no meaning, it can be deleted (see figure 9).

B

Mar&Mkt

Figure 9. The situation after step II.

N(Fin) N(Mfg)

Step III: Starting with the result obtained at step II, choose two models and integrate
them using first- and second-level procedures.

Let us consider the models Mar&Mkt and N(Mfg). The goal is to replace the
given values of the attribute genus V_mlg with the computed values of the function
genus V_mkt and the given values of the attribute genus E_mar with the computed
values of the function genus E_mfg. To proceed, we need the index functions of the
attribute genera and of the function genera which replace them to be equal:

i(V_mfg) = i(V_mkt), (5.1)

/(E_mar) = i(E_mfg). (5.2)

432 M. Gagliardi, C. Spera, Formal theory of model integration

This can be accomplished by setting the P_mar and the U_mfg attribute genera
to call the same index component. Therefore, we use the Replace_Index_Component
procedure as below:

Replace_Index_Component (N(Mfg), Mar&Mkt, [D6, U_mfg], [D2,P_mar];
[N(Mfg), Mar&Mkt])

This action produces the integrated model in figure 10. For short, we write Mar&Mkt&Mfg
instead of [N(Mfg), Mar&Mkt].

Mar&Mkl:&Mfg
Figure 10. The integrated model after the

Roplaco_lndex_Componont procedure.

Now the V_mkt function genus can replace the V_mfg attribute genus, since
proposition 7 holds. This can be accomplished by calling the Use procedure:

Use (Mar&Mkt&Mfg, Mar&Mkt&Mfg, [D5, V_mkt], V_mfg; Mar&Mkt&Mfg)

The result is the Structured Model shown in figure 11. Now, again, the E_mfg
function genus can replace the E_mar attribute genus since proposition 7 holds. This
is accomplished by calling the Use procedure as below:

Use (Mar&Mkt&Mfg, Mar&Mkt&Mfg, [D4, E_mar], E_mfg; Mar&Mkt&Mfg)

The result is a Structured Model indicated as the goal of this step (see figure 12).
As in step II, at the end of step III the Prod_mfg primitive entity genus has no
meaning and it can be deleted.

M. Gagliardi, C. Spera, Formal theory of model integration 433

Mar&Mkt&Mfg

Figure 11. The situation after the replacement
of the V_mfg attribute genus.

/

N(Fin) Mar&Mkt&Mfg

Figure 12. The situation after step III.

434 M. Gagliardi, C. Spera, Formal theory of model integration

Step IV: Starting with the result obtained at step III, choose two model and integrate
them using first- and second-level procedures

We consider the models N(Fin) and the Mar&Mkt&Mfg. Both show the attribute
genera P_fin and P_mar, which are the prices of the products. To replace P_fin with
P_mar, we call the Replace.Attribute procedure as below. The result is the integrated
model shown in figure 13.

Replace_Attribute (N(Fin), Mar&Mkt&Mfg, [D7, P_fin], [D2, P_mar];
[N(Fin), Mar&Mkt&Mfg])

For short, we write Mar&Mkt&Mfg&Fin instead of [N(Fin), Mar&Mkt&Mfg].

(53

Mar&Mkt&Mfg&Fin
Figure 13. The model after the replacement of the P_fin genus.

Now the function genus V_mkt can replace the attribute genus V_fin and the
function genus E_mfg can replace the attribute genus E_fin. In both cases, proposition 7
holds. This can be accomplished by calling the Use procedure twice, as below:

Use (Mar&Mkt&Mfg&Fin, Mar&Mkt&Mfg&Fin, [D8, E_fin], E_mfg;
Mar&Mkt&Mfg&Fin);
Use (Mar&Mkt&Mfg&Fin, Mar&Mkt&Mfg&Fin, [D9, V_fin], V_mkt;
Mar&Mkt&Mfg&Fin);

M. Gagliardi, C. Spera, Formal theory of model integration 435

As in steps II and III, the vestigal primitive entity Prod_fin can be deleted,
since it has no meaning.

The resulting integrated model corresponds to the one of the example in [10].
Let us point out that, since the used procedures are all closed, the order of the
sequence of steps I I - I V is arbitrary. In fact, we could choose any two models to be
integrated, and formulate the correct sequence of integration procedures according
to the rules we have defined.

(53

Mar&Mkt&Mfg&Fin
Figure 14. The final integrated model.

6. Future extensions

In the previous sections some procedures, classified to be on first or second
level, were presented. They are the first steps toward the definition of a formal theory.

Of course, the elementary operations described are not exhaustive. For example,
two other simple operations on nodes are: split and merge.

These operations are not easy to formalize, especially when applied to function
and/or test genera. In this case, it is possible to construct different procedures which
depend on the rules of the genera and the will of the model integrator.

The procedures described can cover many situations, but there are cases where
they fail. Here is a simple example [10]:

To define a Two-Echelon Transshipment Model integrating two Classical Transporta-
tion Models* such that the output of the first becomes the input of the second.

*The formulation is given in section 4.

436 M. Gagliardi, C. Spera, Formal theory of model integration

/
@ © @ @

CTM in CTM out

Figure 15. The two Classical Transportation Problems (CTM) to be integrated.

For notation, we suffix the genera of the Classical Transportation Problem
used as input in the integrated model with _in, with _out the other.

The following are the steps necessary to integrate.

Step I: Delete the genera not required by the integrated model

The DEM_in and the T: DEM_in genera are deleted because the input section of
the integrated model does not need to deal with the demand of the customers. For
a similar reason, the Sup_out and T:Sup_out genera are deleted. To accomplish this
task, the Delete_Node procedure is called four time, as shown below:

Delete_Node (Dem_in);
Delete_Node (T_Dem_in);
Delete_Node (Sup_out);
Delete_Node (T_Sup_out);

The resulting models, which in this particular case are also Structured Models,
are shown in figure 16.

Step II: Identify the genera

The CusLin and the Plant_out genera need to be merged because the final
integrated model identifies the arrival nodes of CTM_in with the starting nodes of
CTM_out. The merged genus is renamed. Its formulation is as follows:

M. Gagliardi, C. Spera, Formal theory of model integration 437

©

G
CTM_in CTM out

Figure 16. The CTMs after the Delete_Node procedures.

G G
TETM

Figure 17. The integrated model after the merging.

Genus DC primitive
feature
label: string;
show label

The merge operation reroutes the definitional dependencies to this new genus.
At the moment, this step cannot be executed using first and/or second level procedures.
The result in shown in figure 17. For short, we write TETM (Two-Echelon Transshipment
Model) instead of [CTM_in, CTM_out].

438 M. Gagliardi, C Spera, Formal theory of model integration

Step III: Create a new test for inflows and outflows

A completely new test genus has to be defined. It checks if the incoming flow
equals the outgoing flow for each transshipment node. It is necessary to use the
definition language to create the genus.

Genus T_DC test
cal l (FLOW_in : iso (DC.INDEX); FLOW_out : iso (DC.INDEX)) ;
feature

DC_test : boolean is result := (SUM [PLANT.INDEX]
flow_in = SUM [CUST.INDEX] flow_out);

show DC_test

This action cannot be accomplished using first and/or second level procedures.
The resulting Structured Model is shown in figure 18.

TETM

Figure 18. The situation after step III.

Step IV: Create a new function genus which sums the S_in and the S_out values

Again, a completely new function genus has to be defined, which sums the
cost for the input section and the cost for the output section. It is necessary to use
the definition language to create the genus.

Genus TOT test
cal l ($_in : iso S_out : iso);

M. Gagliardi, C. Spera, Formal theory of model integration 439

feature
Sum_cost : real is result := totcosLin + totcost_out;

show Sum_cost

At this time, this action cannot be accomplished using first and/or second level
procedures, but it looks more promising for the future when the merge procedure will
be defined on the rules of function genera. The resulting Structured Model is shown
in figure 19. This model corresponds to the resulting integrated model as in [10]. At

TETM

Figure 19. The final integrated model.

this time, steps II, III and IV procedures lie on the third level of integration. In fact,
the user is required to define ad hoc genera and to set the definitional dependencies.
It is desirable that the integration work is done using, as much as possible, automated
procedures.

Our research line takes two directions:

• the first tries to develop new procedures, so that much of the work to integrate
models can be done at levels 1 and 2;

° the second defines within a Model Management System a language and graphics
tools to create procedures not available at levels 1 and 2. So doing, errors are
minimized and productivity is increased.

440 M. Gagliardi, C. Spera, Formal theory of model integration

Acknowledgements

The authors wish to thank Professor Ar thur M. Geoff r ion for helpful c o m m e n t s

on a very ear ly draf t o f this paper. All eventual errors which may be present must ,

however , be cons idered only the responsibi l i ty of the authors.

References

[1] A. Andronico, L. Cossa, M. Gagliardi and C. Spera, An object oriented approach to a model
management system: Characteristics and examples, Proc. 36th Annual ANIPLA Conf., ed. Bottaro
and Zoppoli (Pirella, Genoa I992).

[2] G.H. Bradley and R.D. Clemence, Jr., Model integration with a types executable modeling
language, Proc. 21st Annual Hawaii Int. Conf. on System Sciences, Vol. 3 (IEEE Computer
Society Press, Washington, 1988) pp. 403-410.

[3] D.R Dolk and J.E. Kotteman, Model integration and a theory of models, Dec. Support Syst.
9(1993)51 - 63.

[4] M. Gagliardi and C. Spera, BLOOMS: Basic Language Object Oriented for Modeling Systems,
Working Paper No. 11, Department of Quantitative Methods, University of Siena, Italy (1994).

[5] M. Gagliardi and C. Spera, The syntax of BLOOMS, Part I: Introduction, Working Paper No. 10,
Department of Quantitative Methods, University of Siena (1994).

[6] M. Gagliardi and C. Spera, The syntax of BLOOMS, Part II: Grammar, Draft Technical Report,
Department of Quantitative Methods, University of Siena (1994).

[7] A.M. Geoffrion, An introduction to structured modeling, Manag. Sci. 33(1987)547-589.
[8] A.M Geoffriom, Integrated modeling systems, Comp. Sci. Econ. Manag. 2(1989)3-15.
[9] A.M. Geoffrion, The formal aspects of structured modeling, Oper. Res. 37(1989)30-51.
[10] A.M. Geoffrion, Reusing structured models via model integration, in: Current Research in

Decision Support Technology, ed. R. Blanning and D. King (IEEE Computer Society Press,
1990).

[11] AM. Geoffrion, The SML language for structured modeling, Oper. Res. 40(1992)38-75.
[12] J.E. Kottemann and D.R. Dolk, Model integration and modeling languages: A process prospective,

lnf. Syst. Res. 3(1992)1-16.
[13] W. Muhanna and R. Pick, Composite models in SYMMS, Proc. 21st Annual Hawaii Int. Conf.

on System Sciences, Vol. 3 (IEEE Computer Society Press, Washington, 1988) pp. 418-427.
{14] Y. Tasi, An operational approach to model integration using a structured modeling framework,

Proc. 1993 Pan Pacific Conf. on Information Systems, Kaohsiung, Taiwan (1987). Full version:
Research Paper, Anderson Graduate school of Management, UCLA.

