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UPPER SEMICONTINUITY PROPERTIES OF VARIABLE SETS IN OPTIMAL CONTROL*

David E. Cowles

1, INTRODUCTION

In his existence theorems for optimal solutions in control theory, Filippov
[1] used the concept of metric upper semicontinuity of subsets of Euclidean
spaces Er+l as basic requirements for compact equibounded control spaces.
Cesari [2, 3, L], Lasota and Olech [5], Olech [6,7], and other authors
have shown that, when the control space is only closed and not necessarily
bounded, then either Kuratovski's concept of upper semicontinuity (property
(U)), or Cesari's variant of this concept (property (Q)), are more suitable,
In the present paper (E 2) we introduce a scale of intermediate concepts, or
property Q(o) for p any integer, 0 < p < r + 1, We prove then (g 2) that
property Q(p) for p = O reduces to Kuratovski's property (U), and for p =
r + 1 reduces to Cesari's property (Q). In addition, we prove that property
Q(o + 1) implies property Q(p), 0<p<r. In g 3 we prove further statements
concerning property Q(p). We shall show in subsequent papers [8, 9] that the
use of these properties Q(p), O <p<r +1, will allow a considerable reduc-
tion of the hypotheses needed in lower closure and existence theorems for

optimal solutions in optimization problems with distributed and boundary

controls,

*Work done in the frame of US-AFOSR Research Project 69-1662, This is part
of the author's Ph.,D. thesls at The University of Michigan, 1970.



2. PROPERTIES (U), (Q), and Q(p) OF SET VALUED FUNCTIONS

l e o 0
Let C be a measurable subset of t = (t, ,tv) space Ev, v > 1, and for

1l ... s)

every t ¢ C, let A(t) be a non-empty subset of y = (y , Y space Es, s > 1.

Let A be the set of all (t, y) € E’ x E° such that t e C and y € A(t)., For

+1
every point (t, y) € A, let Q(t,y) be a nonempty subset of the z-space o s

o) 1...
z =(z , 2,

,zr), r > 0. For any point (to, yo) € A, and € > 0 we shall
denote by Ne(to’ yo) the set of all (t, y) € A at a distance < e from (to, yo).
Also, given any subset F of a Fuclidean space E, we denote by ¢l F, co F, cl
co F the closure of F, the convex of F, and the closure of the convex hull of
F, respectively,

We state now the definitions of Kuratovski's property (U) and of Cesari's
property (Q). These properties have been studied in Cesari's papers [2, 3, 4].
We say that the sets Q(t, y) have property (Q) at a point (to, yo) € A

provided
Q(to, yo) = ~QO cl co Q(to, Vg €),
where
(g 7 D = (en o) X
We say that the sets Q(t, y) have property (U) at a point (to, yo) € A
provided
Q(to: yo) = €QO cl Q(tO) yo: €).
We say that the sets Q(t, y) have property (U), or (Q), on A provided
they have the same property at every point (to, yo) ¢ A, Sets having property

(U) are closed, arnd sets having property (Q) are closed and convex.

We now give the definition of property Q(p), O < p < r+l, Property Qp)



is so designed that for p = r+l it is equivalent to property (Q) and for p = O
it is equivalent to property (U) as we shall prove below.

For any integer p, O < p < r+l, we say that the sets Q(t,y) have property

- . o) r r+l1
Ap) at (to’ yo) ¢ A provided for every 2 = (zo,...,zo) e B 7,
) r+l i i .o
3 = = = ']
Q(to, MO) N {z ¢ E | =z Z_s i=p, ,r} HUS BQO el o
N rt+l i i .
[Q(to, yo) €)N{zekE ' ’Z - ZO’S B, i=, ;1]

Note that for p = r+l we understand here that both sets in braces coincilde

<+

r+l
with E . Alsc note that, if we denote by P and Q the sets in the first and

second members of the eguality above then certainly P © Q. Thus, for property

+
Qlp) at the point t , y we actually require that P D Q (for every z ¢ o l)

o) 0 o) ¢
We shall use the following notations,
r+l .
For every z € E » P a nonnegative integer, O < p < r+l, and f > 0, let
. . . . r+l .
Nﬁ(zo; p) be the (cylindrical) set of points in E whose final (r+l) - p

coordinates are within B of those of z ; i.e.,
o

l, 'zi

r+ i
N(z 3 p) = {zeE - Zol <B, 1 =pyeee,r},

Also we denote by N(ZO; o) the set

i
~ = E = i = L .
N(ZOJ o) {z e ZO, Py )T}

r+l1
Thus, NB(ZO; 0) = NB(ZO), N(ZO; 0) = (zo}, and NB(ZO, r+l) = N(zo, r+l) = B 7,

r+l
For any subset F or T and number n > O we denote by (F)U the closure of the
set of points which are within n of a point of F. We refer to (F)ﬂ as the

+
closed n-neighborhood of the set F in E O,



r+l
(2.i) For every ¢ > 0 and B > 0 let Q(e, B) be a subset of E ~, Then

QO Q(GJB) = n n Q(’EJB)-

BQO 5 e>0 B>0

f: Let n n . Th e N € for every fixed
Proo et z e O %o Q(e, B) en z 8% Q(e, B) v e
€ >0and z € Q(e, B) for every B > O and each fixed € > 0. Now if a pro-
perty holds for every B > O for each fixed € > O, then the same property
holds for every € > O for each fixed B > 0. Thus z ¢ Q(e, B) for every € > 0
and each fixed P > 0. Hence z ¢ EQO Q(e, B) for each fixed B > 0 and z ¢ BQO

egb Q(e, B). We have proven that GQO 520 Q(e, B) E.B QO Q(e, B). The

n
>0 €
proof of the reverse inequality is similar.

(2.ii) For every (t, y) € A let Q(t, y) be as in the first paragraph of

this section. Let p be any integer, O < p < r+l. Then for every (to, yo)

egb ng cl co (Q(to, Vs e) N Nﬁ(ZO; o))

8do Qo o1 co (Qlt, v, €) NN(z 5 )

Proof: This statement follows immediately from (2.1).

We now study the relationships between property Q(p) and properties (Q)
and (U).
(2.iii) Theorem, For every (t, y) ¢ A let Q(t, y) be as in the first para-
graph of this section. Then the sets Q(t, y) have property Q(r+l) at a point
(to, yo) € A if and only if they have property (Q) at the same point. The sets

G(t, y) have property Qo) at (to, yo) € A if and only if they have property

(U) at the same polnt.



Proof: The first statement is apparent from the definitions of properties
(Q) and Q(r+l). To prove the second statement, let the sets H and I be de-

fined as follows:

r+l

= N (t , 3 e) N {z € E z -z | <B}]

H BQO <50 cl co [Q( o’ JO, ) { ' , O' =
r+l1

= [ [ E - < B

I SQO EQO cl LQ(to, Vo €) N {z € | |z zol < B}
r+l
We need only show that for every z € E

(0]

1

Qt , vy )N (ze ol | z=2 )} 2H
o’ Yo o

if and only 1if

r+l
Q(to, yo) N (ze¢&E z = zO}ZD I.

The last statement holds if H = I, Clearly, I < H. We show that H € I,
Suppose that Zo € H. Then, for every € > O and every B > 0, there exists
a point p ¢ Q(to, Vs €) such that |p - Zo, < B. Hence, for every ¢ > 0

and every B > O

r+1, ,

z € cl[Q(to, Vs €) N {z ¢ E z - zol < B}l.

This statement implies that zO € I and that Hc I,

+1
(2.iv) Theorem. Let Q(t, y) € B~ be as in the first paragraph of this

section, and let p be any integer, O < p < r, Then property Q(p + 1) implies

Q(p).

Proof, We need only show that

r+l1 i i |,
A,y )Nz e B |t =ad, 120 01,00



n I‘+l‘} [Zi

i o o0
- = +
U z | <Byi=p+1,""",r))

1 co (Q y =) N E
¢ o ( (to, o’ c) (z €
implies that

r+l, i i, cee
At v ) Nze® |2

(Q(to, Voo ey N{z eE
Using property Q(p + 1), we have

r+ll i i oo 11 p D}

t ,y )N E = i = = z ¢ E =
= = = r =
Q( o’ {z € z z , 1 =p, ,T) (z € |z z

p + l’oo.,r]]

N
1]
N
-
=
i

N [Q(to; yo) n {z

+1
D (z € E I 2"

1
©
+
-
.
.
-
H
—
—

n {z ’ zi - zi’ <B, 1

P p '
B@o(z' |z -zolgﬁ)n N

N (z] fzi - z(i)l <B,i=p+1,""",r}]

= N

60, 0y (et co falt, v ) n(z] Iz - 2| <8,

i=0+1,"" 01010z 27 - 2] < B))

> N N_cl co [Q(to, Yoo ¢) N (z] !zi -z

! .
B>0 >0 i <By1=p,000,r)]

This completes the proof of Theorem (2.iv).
For every (%, y) ¢ A let Q(t, y) be as in the first paragraph of this
section., We say that for a given (to, yo) € Aand O < p < r+l, the set

Q(to, yo) is p-convex provided



o p-1 o) r
Zl = (Zl)---)zl ) ZO""’ZO) € Q(to; YO):
2 = (22,...,2°7 2° 25) e q(t )
s 7 preeerin g Breees?y o’ yo P)

implies

oz ¥ (1 - @) Z, € Q(to, yo)

for all 0 < ¢ < 1. 1In this definition we understand that (r+l)-convexity is
. .o rtl .
the usual convexity of Q(to, yo) in E ~. In other words, Q(to, yo) is p-convex

o] r r+l
provided, for every z = (zo,...,zo) e E 7, the sets

r+l i .
Q(to, yo) N{z ekE l z =z, 1= PDyeeesl)

are convex.,
By known properties of convex sets, the set Q(to, yo) is p-convex, if and

only if for every p > 1, real numbers Xa > 0, xl+,,,+xu = 1, and points

-1

o ] o] 9]
z = (27)-'-:27 P) ZO:---;ZO) € Q(t ) yo)) Y = lyeeesi,

(e}

we also have

DS t .
7szy e Q( o’ yo)

/

(2.v) If the sets Q(t,y) have property Q(p) at (to, yo) € A for some p,

0 <p<Lrtl, then Q(to, yo) is p-convex.

Indeed, by the definition of property Q(p), the sets

r+l i i
Q(to, yo) N {z ¢ E 2" =z, | 1 =0,...,r)

are closed and convex as intersection of sets which are closed and convex.
We now show that property Q(p + 1) is preserved in the sense given below,

under addition of s continuous function.

7



r+l
(2.vi) Theorem, For every t € C, y € A(t), let Q(t, y) < E be as in the

first paragraph of this section, let p be any integer, 0 < p < r, and w(t),
t € ¢, be a real valued continuous function on C. For every t ¢ C, y < A(t),
r+1

+ +
let Q (t, y) denote the set Qw(t, v) = {z € E

W ' z =p+ (W(t)) O,...,O)

for p e Q(t, y)}. If the sets Q(t, y) have property Q(p + 1) on A, then the

+
sets QW(t’ y) also have property Q(p + 1) on A.
+
Proof. We designate by Qw(to’ Yoo €) the set

+ +
Qw<tol yo) E) = U Q (tJ y)
(t, y) c AN (kv )

: r+l +
We need only show that for every (to, yo) € A and zZg e E

n N(zO; p+l) contains the set

+
690 EQO cl co [Q¢<toy yo: e)n Nﬁ(ZO; o+ 1)].

Let us take an arbitrary point po in the latter set. Let n > O be an arbitrary

positive number and take €, = eo(n) positive so small that

sup |u(t) = W(to)f < n/e.

(t, y) e AN I (to, yo)
O

Now for every pair of positive numbers (e, B) with O <e< eo, there exists

a point p,

+ r+l
p € co [QW(tO, yO, €) n NB(ZO; o+ 1)] CE )

such that |p - pol < n/2. Then p is a convex combination of r+2 points of



the set is brackets, or

+
= ) + t
p - Xipi Xi(W( i), 0, }O))

p., € Q(t , Yoo e) N Nﬁ(zo; o + 1) and Zhi =1, Ki >0, 1 =0,1,...,r+l,

8
i

Since pof < n/2, we have

e}
!

(w{to),o,...,o) € [cl co (Q(to, Y e) N NB(ZO; O+l))]ﬂ (2.1.3)

for every 1> 0, B> 0, and ¢, 0 < € < €. Since Q(to, Y €) is a subset of
Q(to, Y €') for every 0 < e < €', equation (2.1.3) holds for arbitrary ¢ > 0,
P >0, and n > 0. Since n is arbitrary and the set inside the brackets is

closed,

PO = (W (to),O,...,O) € cl co [Q(tO: yO’ €) n NB(Zo; O+l)]

for every € > 0 and B > 0. Hence

po = (W(to))o)---io) € cl co [Q(to; yo, €) n NB(ZO; D+l)].

egb BQO
Since Q(t, y) has property Q(p+l) on C,
py = (Wt ),0,...,0) e q(t_, y ) N Mz 5 e+l).
Finally this statement implies
+
Py @ty v)) NNz 5 o+)

and completes the proof of (2.vi).



We now show that property Q(p) is preserved, in the sense given below,

upon multiplicaticn by a positive, bounded continuous function.

. r+l .
(2.vi) For every t € C, y € A(t), let Q(t, y) C E be as in the first
paragraph of this section, let p be any integer, O < p < r+l, and J(t), t € C,

1

be a real valued continuous function with 0 < K = < J(t) < K for all t ¢ C

and some constant K. For every t € C, y € A(t) let QJ(t, y) denote the set
\
r+l1
QJ(t, v) = {z ¢ E | z = p J(t) for p e Q(t, y)). If the sets Q(t, y)
have the property Q(p) on A, then the sets QJ(t, y) also have property

Q(p) on A.

+
Proof, We only need to show that for every (to, yo) € A and zO € Er l,

BQO EQO cl co (QJ(to’ yo’ e)n NB(ZO; o)) c QJ(to’ yO)
n N(Zo; o).

Take a point pO in the set on the left hand side. Let n > 0 and B > O be

arbitrary numbers. Since
2™ = 2 DT < 16T - D DT+
|27 (ats,) - a(6)) - (a(e)a(e ),

for z:L - zzl < B and t sufficiently close to to, we may make the difference
on the left hand side less than or equal to 2KB. Consequently, we can determine

a number € = eo(n, B) > 0 small enough so that

10



(1) 2o | + )& sup  Jae) - ot )< v/,

(t:Y) e AN Neo(to’ yo)

Lo\ s _ -1 -1,
(ii) if z « NB(ZO, p)  then z(J(t)) ~ € N2KB(ZO(J(tO)) i p)
for all t e ¢ N (t] [t -t ] <e ).
o' = o
Given €', 0 < €' < € there exists a point p such that

lp - | <n/ex, ol <2(lp | +1), and

+1
p € co [QJ(tO’ yo) 6') n NB(ZO; e )] < Er .

Then p 1s the convex combination of r+2 points w.j of the set in brackets, or

+1 +1
p o= Yo T oaw Yo Ta=l, AL >0,
J=0 "3 J=o0 j=

w, eQ(t, Vg 'Y NN

3 I 7o (ZO; ¢} )) J=0,1,0ea,r+l,

p

That is w, = J(t.) with q. € t, .) and
) 3 qJ ( J) qJ Q( 37 YJ)
(tj’ yj) € Ne'(to’ yO) NA, j=0,1,sua,r,r+l,
By choice of €' and the statement (ii)

[ _l,
a, < alt, v, ) Nl (z (36 )75 o).

J KB

Consider the point P

r+l 1 r+l
P o= (2 A Je )T (% ad(t,) a))
joo 4 9 joo 904

11



in the set co[Q(to, Vs ey N N2 (ZO(J(tO))-l; o)1,

KB

r+l

Since Pe(Z (60 - p, |B- p(J(to))-ll < jatt) - Z)\jJ(ti)!

(late)) » Zagate )N el < 2(lp, | + 187

sup [a(t) - J(to)l < n/2.

t n
( JY) € A NGO (toy yO)

Consequently,
Pop (e N < - n(ate )7+ Je(ate N7 - (a8 )7
< n/2 +n/2 = .

We have

)—l

Po(T(E ) € el eo (Qty, v s ') NN, (2 (AE N5 5 )]

where n > 0 and B > O are arbitrary and ¢' > O 1s arbitrary so long as
€' <e(n, B). Since Q(t , y , €") contains Q(t , y , €') for €" > €', the
o o° "o o” Yo
above statement holds for arbitrary positive n, B, and €', Also, because of
the fact that the set inside the brackets is closed and n > O is an arbitrary

positive number,

p (AN € el co alt, v, €') NNy (2 (3(6)) 75 o )]

KB

for arbitrary €' > 0 and B > 0. Since Q(t, y) has property Q(, ) on C,

12



o (ae N7 e alty, v ) NECzAE DTS o)

n .
PO € QJ(to’ yo) N(ZO> p).

3, A SUFFICIENT CONDITION FOR PROPERTY Q(o)
We consider now a situation which occurs often in optimal control theory.
Let Abe aclosed subset of the (t,y)-space E' x Es, and for every (t, y) ¢ A

l L ] m
, " ",1 ). Let M denote

let U(t, y) be a given subset of the y-space Em; u = (u
the set of all (t, y, u) with (t, y) € A, u € U(t, y). Let f(t, y, u) =

(fo""’fr) be a given continuous vector function on M, and for every (t, y)

€ A let Q(t, y) be the set

f(f, y, U(t, y))

r+l I

Q(t) Y)

r+l
z = f(t, y,u)u ¢ Ut, y)] < E .

i

[z € E

(3.1) Let us assume that A is closed, f continuous on M, the set Q(to, yo)
is p-convex for some O < p < r+l, and that the sets U(t, y) are compact,

uniformly bounded for (t, y) in a neighborhood Na(to’ yo) of (to, yo) in A,

and have property (U) at (to, yo). Then the sets Q(t, y) have property Q(o)

at (to, yo).

Proof, Let B denote a cube of the u-space with U(t, y) < B for all (t, y)

€ Ng(to, yo). Let M_ denote the set of all (t, y,u) with (t, y) € Ng(to, yo),

- r+l
u e U(t, y). Since M, CN (to, yo) x B, M_ is bounded, Let z € E be any

o)

point

15



z ﬂ€>o nB>O cl co [Q(to, Vo e) N (z ¢ Er+1Hzi - zil < B,
i=0,0.0.,r}]
Then, for every k =1, 2,..., we can select ek > 0, Bk > 0, zk € Er+l, with
€ 0, Bk > 0, Z, z as k » », and
z, € co [Q(to, Yoo ek) N {z e Er+l 'lzi - zil < 6k, i=0p,0..,r}]

Also, for every k, we can select Ag > 0, zi, Y = 1l,.0uyu, with p = r+2, such
v4 4 4 r+l i i
< = d . -
that 0 < A <1, Z; M =1, and z € [Q(to, Voo ek) N{zek ||z Zo,

r+l

7 ) e E 7, and

_<_ Bk’ i = p,--.,r], Y = l’...,u, With Zk_ = (Z

oy ry
k’...,zk

i i
First we see that [zk7 - Zol < Bk’ I = 0jeeeyry ' = 1ly00eyu, K =1, 2,....

Then we see that for some ko and k > ko we certainly have €\ < B, and hence

Y Y 7
7 = f(tz, yi, uk) for some (t;, yi, uk) €M, namely (ti, y;) e N (to, yo),
’ k
Y Y 7 4 Y
u € U(tk, yk), Y = lyeaasu, k> ko. Here (tk’ yk) - (to, yo) as k > =,

vy =1,...,u. Since Mo is bounded we can select a subsequence, say still [k]

for the sake of simplicity, such that as k » «, we have u; > u7, Y = lyeae,ut.

i i
Then zi + 2z as k > @, with 2! = f(to, Yo u”) with |z 7. Zo’ = Q, or zi7 =

i,
z , 1 = 0yeeesry, r =1,.0.,u. We can select the subsequence in such a way
)

Y Y

that alsokz—>>\ as k> », 0 <A <1, 27>\7=1.

Note that (tiy yi’ ui) > (to; Vor uy) as k > », y =1,...,u, and property
(U) of U(t, y) at (to, yo) yields u? e U(to, yo), Y = lye0e,u. Thus 2! =

¥
f(to) yoi u ) € Q(to) yo)) Yy = l;’oo,u, and also

1k



4 p-1

o) o r
z' = (27,...,2 , zo,...,zo), Y = 1yeeesu.

By o-convexity of the set Q(to, yo) we conclude that z = Q(to, yo). Statement

(3.1) is thereby proved,

L. THE UPPER SET PROPERTY
Let C, A(t), A be as in the first paragraph of g 2, For every point
+1
(t, y) € A, let Q(t, y) be a subset of o , r >0, We say that the sets

Q(t, y) have the upper set property on A provided, for every (t, y) € A and

o 1 -
for every point z = (zo, zo,...,ZZ) e Q(t, y), then any other point z, =
0 1 + -0
(zo, zo,...,zZ) e B with 7 > zg, is also a point of Q(t, y).

The proofs of the following statements are not difficult and will be

omitted,

+1
(b.i) If 8 is a collection of subsets of o each of which has the upper
set property, then the union of the sets in S has the upper set property.
The closure and the convex hull of a set with the upper set property each have

the upper set property.

(4,ii) Let Q(t, y) have the upper set property on A, Let J(t), t e C, be

1

a measurable function on C which satisfies the inequality 0 < K < J(t) <K

for some constant K and all points t ¢ C. Then the sets QJ(t, y) defined by

aft, y) = (e " | z=q . 3(t) forqeat, y)),

15



have the upper set property on A,

(%.,iii) TLet Q(t, y) have the upper set property on A. Suppose that ¥(t) is
+

a real valued function defined for t ¢ C. Then the sets QW(t’ y) defined by

"

Q6 7) = (2 e BT ] 5= (W(1),0,004,0) +q for g € Qt, )]

have the upper set property on A.

(L.iv) If the sets Q(t, y) have the upper set property and property (U), then

they also have property Q(1).

r+l
Proof, Let (to, yo) be any point in A and 2, any point in E ~. Let

I and D be the sets

I = EQO BQO cl co (Q(toi yo) €) nNB(ZO; r))
D o= 0 gl el (Qlty, vy, @) NNz : 7))

Property (U) holds provided

Dc b, v,) Nu(z; 1)

g

and property Q(1l) holds provided

I CQ(tO: yo) n N(ZOS r).

Therefore, we need only show that I <D, Let z be any point not in D with

- (—o 2‘l r) Tt
z = (z d eesZ ) 1en
J O)‘ 2 o

16



7 ¢ cl Q(to, Yor eo) n NB(ZO; r)
for some € and Bo both positive., We denote by ﬂo the operation of projection

r+l1 o} r+l1
of E onto the z -axis of E . We have then

-0
7 ¢ no[cl(Q(to, Vo eo) n NB (zO; r))].

o}

Since Q(to, Yo eo) n NBO(ZO; r) has the upper set property,

5 (25 1))

o}

z £ cl co (Q(to, Y eo) nN
We have z ¢ T and may conclude that I <D,

5. EXAMPLES
Examples of variable sets in Er+l with a property Q(p) for some 0 <p<
r+l, but which do not have property (Q), or Q(r+l) arise naturally in control

theory.

Example 1, Let us consider the problem of the minimum of the cost functional

2 2 2 2 2
I[x, ul, ug; v] = ffG(C +n +tx + ul + ug)dCdﬂ

with differential equations
a.e, in G,
and boundary condition

s-a.e, on I' = G,

]I
<

A
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where G = [(¢, n)}gg + n2 < 1], I = &G is the boundary of G, s is the arc length

on I', yx the boundary values of x, and the control functions Uy Uy v have

2

2
their values (jl, ag) eU=E, veV=({-1} U {1}, Actually, we want to

minimize I in theclass O of all systems (x, Uy Uy v) with x any element of
1
the Sobolev space WE(G) satisfying all relations and constraints above and

for which I is finite., As we shall see in [8] the following sets are relevant:

a 0 1 2y o_,2 2 2 2
t, my, x) =z, 2, 29| 2 >t +n +tx 4 a v, 2= g,
2 2 3
Z =U.2, (ul’ u2) e E]cCE.
R ° | O 2
R = [(z7, z)jz >0, z=v, v=1t1CE,

For the sets a we have r = 2, and they have property (Q), or Q(3), in
A=1cl Gx El' For the sets E we have r = 1, and they have property Q(1) in
B = I', have property (U), but they are not convex, and do not have property
(Q). We shall see in [9] that the problem above has an absolute minimum in

Qo
Example 2, Let us consider the problem of the minimum of the cost
functional

Ifx, w,u,v] = [f (x2 + x2 + x2 + uQ
o ¢

2 2

« [ (e -1)%as,

with differential equations

18



X, = cos v, x = sin v, s-a.e, on I' = oG,

g

where G and T are as in example 1, where yx denotes the boundary values of x,

and the control functions ul, u2, v have their values (ul, ug) e U= Eg,

v eV = El' We want to minimize I in a class Q of systems (x, Uy u?, v)

2
with x any element of the Sobolev space Wg (G) satisfying all relations and

constraints above, for which I is finite, and satisfying an inequality

> 2 2
12 [

I

+ HX < M,

et tn

Here M is a constant chosen large enough so that @ is not empty. As we shall

see in [8] and [9] the following sets are relevant:

ay) =25, 27, 22)l 2° > yi +y

z = U_l, z = UE) (ul) ug) € Eg] < EB,
= 0 o 1 2 o] o 2 .
R(y) = [(z, z7, z )[ z > (y-1), z” =cos v, z = sin v,
E]l]cE
Vo€ l] 5)

where y = (yl, N yB) in Q(y), and ¥ in R(y) are arbitrary., For both sets

2
we have r = 2, The sets a have property Q(E), but they are not convex and do
not have property (Q), or Q(3). The sets R have property Q(1), but they are
not convex and do not have property (Q), or Q(3). They all have property

Q(0), or (U). We shall see in [9] that this problem has an absolute minimum

in Q,
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