
Foundations of Physics, Vol. 30, No. 5, 2000

Gravitational Perturbations of a Radiating Spacetime
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This paper discusses the problem of gravitational perturbations of radiating
spacetimes. We lay out the theoretical framework for describing the interaction of
external gravitational fields with a radiating spacetime. This is done by deriving
the field perturbation equations for a radiating metric. The equations are then
specialized to a Vaidya spacetime. For the Hiscock ansatz of a linear mass model
of a radiating blackhole the equations are found separable. Further, the resulting
ordinary differential equations are found to admit analytic solutions. We obtain
the solutions and discuss their characteristics.

1. INTRODUCTION

The study of gravitational perturbations can be traced back to the famous
Einstein�Infeld�Hoffman paper of 1938(1) which pioneered the treatment of
the two body problem in general relativity. In 1957 Regge and Wheeler(2)

addressed the problem of the stability of a Schwarzschild black hole. Later,
in his study of perturbations of a rotating black hole (Ref. 3 and later
papers), Teukolsky was able to put the discipline on a stronger footing.
However, little progress has been made at extending this success to cover
the radiating cases. The problem of perturbing a radiating spacetime with
integral spin fields has not received the attention it deserves. This, despite
the fact that most astrophysical objects radiate. From regular stars to
supernovae, from quasars to primordial black holes one finds that the
inhabitants of our universe are generally non-static.

In the present paper, we develop a framework for discussing the
problem of how external gravitational fields may interact with radiating
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spacetimes. This is done by deriving the field perturbation equations. It is
found that two such equations are sufficient to describe all the non-trivial
features of the perturbing gravitational field. We find that one of these
equations decouples completely and is homogeneous in one of the field
components. The equation for the other field component contains, in its
source terms, several perturbed and therefore undetermined quantities.
Using a systematic approach we are able to determine all these quantities
completely, in terms of the former field component. The result is that all
the perturbations are described by only two field components which satisfy
two partial differential equations. The equations are then specialized to a
Vaidya spacetime. For a particular model of a radiating black hole the
equations are found separable. Interestingly, the resulting ordinary differen-
tial equations are found to admit analytic solutions. We obtain these solu-
tions and discuss their characteristics.

The mathematical framework used in this paper is the null tetrad for-
malism of Newman and Penrose (hereafter NP formalism).(6) In Sec. 2 we
give a brief description of the background geometry, the radiating space-
time of Vaidya. In Sec. 3 we derive the perturbation field equations for a
general non-vacuum type D spacetime and adapt these equations to the
Vaidya spacetime. In Sec. 4 we calculate the perturbed quantities in the
source terms to arrive at the final working field equations. It is demon-
strated in Sec. 5 that these equations are separable for the Hiscock linear
model(12) of a radiating black hole. In Sec. 6 we obtain and discuss some
of the solutions and we conclude the discussion in Sec. 7.

2. THE VAIDYA SPACETIME

2.1. The Metric

In this analysis we perturb the Vaidya spacetime(9) with incoming
external gravitational fields. The Vaidya geometry, the simplest of the
radiating spacetimes, is non-rotating and spherically symmetric. The
energy-momentum tensor

T+&=\k+k&

describes a null fluid, (k+k+=0), of density \ with radial flow, k2=k3=0.
Using this energy-momentum tensor to solve the Einstein field equations
one obtains(10) a line element, in retarded coordinates, given by

ds2=_1&
2m(u)

r & du2+2 du dr&r2 d02 (1)
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Here, u is the retarded time coordinate and m(u), the mass, is a
monotonically decreasing function of u.

It is convenient to introduce a null tetrad basis zm+=(l+ , n+ , m+ , m� +)
at every point this spacetime. The metric tensor g+& then becomes

g+&=zm+zn& 'mn=l+n&+n+ l&&m+ m� &&m� +m& (2)

where 'mn is the flat spacetime metric. Following Carmeli and Kaye (8) we
choose the covariant form of the null tetrad basis as

l+ =$0
+

n+=
1
2 _1&

2m(u)
r & $0

++$1
+

(3)

m+=&
r

- 2
[$2

++i sin %$3
+]

m� +=&
r

- 2
[$2

+&i sin %$3
+]

The contravariant vectors, zm , considered as tangent vectors, define the
directional derivatives as

z� m=z+
m{+ (4)

In the Vaidya spacetime these directional derivatives are given (from
Eq. (3)) by

D=l +{+=
�
�r

2=n+{+=
�

�u
&

1
2 _1&

2m(u)
r & �

�r
(5)

$=m+{+=- 2 r _ �
�%

+i csc %
�

�.&
$� =m� +{+=- 2 r _ �

�%
&i csc %

�
�.&
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One finds that the only surviving spin (Ricci rotation) coefficients(8) of
the Vaidya spacetime are

\=&\1
r+ , :=&

1

2 - 2 r
cot %, ;=&:

(6)

+=&
1
2r _1&

2m(u)
r & , and #=

m(u)
2r2

The only surviving tetrad component of Ricci tensor(8) is

822=
&m* (u)

r2 (7)

where m* =dm�du. With this component, it is easily shown that

T+&=2822 l+ l&=&_2
m* (u)

r2 & l+ l& (8)

Further, the only non-vanishing tetrad component of the of the Weyl
tensor is

92=
&m(u)

r3 (9)

The Vaidya spacetime is then(6) said to be Petrov type D with
repeated principal null vectors l + and n+. The three optical scalars are
found, to be _=|=0, %=&1�r. The metric contains two shear-free,
twistless and diverging geodetic null congruencies.

3. THE PERTURBED FIELD EQUATIONS

3.1. The Type D Spacetime

In this section we develop the gravitational field perturbation equa-
tions for a general Petrov type D spacetime. We start with the Newman�
Penrose (NP) equations. The full set of the NP equations can be found in
several publications.(8) We only mention here that the set is made up of
first order differential equations which, in the NP formalism, replace the
Einstein field equations. The equations link together the null tetrad basis,
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the spin (Ricci rotation) coefficients, the Weyl tensor, the Ricci tensor and
the scalar curvature. In using this formalism to do perturbation analysis
one first specifies the perturbations of the geometry. Here we shall write the
tetrad of the perturbed spacetime as

l=l b+l p, n=nb+n p, m=mb+m p, m� =m� b+m� p (10)

where the superscripts b and p refer to the background and the perturbing
quantities, respectively. Since all the other field quantities are expressible
in terms of the tetrad(7) their perturbed forms can be written down. For
example: 9a=(0, 1, 2, 3, 4)=9 b

a+9 p
a .

We shall, in general, assume that the perturbations in the basis vectors
are sufficiently small so that only their first order contributions axe signifi-
cant. The field equations are, then, first order in the perturbing fields,
linearized about the background quantities.

In type D spacetimes one can choose the tetrad vectors (see Sec. 2)
l and n so that certain spin coefficients and certain Weyl scar components

}b=_b=&b=*b=0, 9 b
0=9 b

1=9 b
3=9 b

4=0 (11)

We start our analysis from three of the NP(8) field equations. From the
Bianchi identities we consider the two equations,

$� 93&D94+$� 821&2820

=3*92&2(:+2?) 93+(4=&\) 94&2&810+2*811

+(2#&2#� ++� ) 820+2({� &:) 821&_� 822 (12)

and

293&$94+$� 822&2821

=3&92&2(#+2+) 93+(4;&{) 9&2&811&&� 820+2*12

+2(#++� ) 8+({� &2;� &2:) 822 (13)

from the spin coefficient system of equations we take

2*&$� &=&(+++� ) *&(3#&#� ) *+(3:+;� +?&{) &&84 (14)

We have complete knowledge of the geometry of the background space-
time, so we write down the equations only in those terms that make first
order contributions to the perturbed field quantities. Making use of
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Eqs. (11) on Eqs. (12), (13) and (14), respectively, it is seen that for a
perturbed Petrov type D spacetime

&3* p92+($� +2:+4?) 9 p
3 &(D+4=&\) 9 p

4

=(2+2#&2#� ++) 8 p
20&(2:&2{� +$� ) 8 p

21&_� p822 (15)

&3& p92+(2+2#+4+) 9 p
3 &(4;&{+$) 9 p

4

=(2#+2+� +2) 8 p
21+(&$� +{� &2;� &2:) p 822

+(&$� +{� &2;� &2:) 8 p
22 (16)

and

(2+3#&#� ++++� ) * p=($� +3:+;� +?&{� ) & p+9 p
4 =0 (17)

We note that the perturbed equations are coupled both in the Weyl
tensor components and the Ricci tensor components. They also contain
unknown spin coefficients and directional derivatives. In attempting to
decouple the equations above we use an approach akin to Teukolsky.(3)

After some algebra we find, on eliminating 93 between Eqs. (15) and (16),
we are left with

[(2+3#&#� +4+++� )(D+4=&\)] 9 p
4

&[($� +3:+;� +4?&{� )(4;&{+$)&392] 9 p
4 =Q4 (18)

Now, under the interchange l $ n, m $ m� , the full set of the NP equa-
tions is invariant.(11) This symmetry is not destroyed by the choice of l and
n which gave Eqs. (11). One finds under this interchange that(7)

90 $ 9 4*, 93 $ 91* , 92 $ 92*

} $ &&� , \ $ &+� , _ $ &*� , : $ &;� , = $ &#� and ? $ &{�
(19)

Applying this to Eq. (18) we obtain the following equation for 9 p
0

(D&3=&=� &4\&\� )($&3;&:� &4{+?� )($� &4:+?) 9 p
0

&(D&3=&=� &4\&\� )[(2&4#++)&392] 9 p
0 =Q0 (20)
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Here, the source term Q0 is given by

Q0 =($&3;&:� &4{+?� )(D&2\� &2=) 8 p
02

&($&3;&:� &4{+?� )($+?� &2:� &2;) 8 p
00

+($&3;&:� &4{+?� )($+?� &2:� &2;) p 800

+(D&3=+=� &4\&\� )($&2;+2?� ) 8 p
02&(D&2=+2=� &\) 8 p

22

+(D&3=+=� &4\&\� ) _ p(2&+) 800 (21)

Equations (18) and (20) describe the gravitational field perturbation
equations for a general type D spacetime with sources.

3.2. The Perturbed Vaidya Spacetime

We shall now adapt the equations above to the problem of perturbing
a Vaidya spacetime with gravitational fields. The important features to deal
with here are the perturbations in the source terms Q0 and Q4 of Eqs. (18)
and (20).

The energy-momentum tensor associated with the radiation in the
Vaidya spacetime is usually interpreted via geometrical optics. Carmeli and
Kaye(8) have, in fact, shown that the associated radiation field which has
a monopole structure can not be identified as a source-free electromagnetic
field. Therefore in addressing the problem of perturbing this radiation, one
can only discuss direct perturbations on the energy-momentum tensor.
Now, this energy-momentum tensor is quadratic in the metric.(17) It follows
from these considerations, then, that the lowest order perturbations in the
scalar components 8mn will be quadratic in the metric perturbations.
However, we assumed from the beginning that the perturbations in the
basis vectors are sufficiently small so that only their first order contribu-
tions are significant. In our linear theory we shall, therefore, disregard these
perturbations in the scalar components 8mn contributions. Nevertheless, we
still have various perturbed spin coefficients and directional derivatives to
deal with in the source terms.

It is recalled (see Sec. 2) that the only quantities which survive in the
Vaidya space-time background are: the spin coefficients :, ;, #, \, +, the
Weyl tensor component 92 and the Ricci tensor component 822 . Moreover,
all these spin coefficients are real and :=&;. On applying the observations
made above to the field perturbation Eqs. (18) and (20) we find that

[(2+2#+5+)(D&\)&($� &2;)($+4;)&392] 9 p
4 =Q$4 (22)

[(D&5\)(2&4#++)&($&2;)($� +4;)&392] 9 p
0 =0 (23)
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where the source terms are now given by

Q$4=[(2+2#+5+) _� p&($� &2;)($� p&{� p+2;� p+2: p)+* p(D+\)] 822

(24)

and clearly

Q$0=0 (25)

Note that in Eq. (24) the derivative operators 2 and D must act on 822 .
We now have two Eqs. (22) and (23) which describe the two Weyl ten-

sor components 9 p
0 and 9 p

4 . It can be shown that these two components
are sufficient to describe all the non-trivial features of the perturbing fields.
The proof of this sufficiency is achieved by showing(3) that only 9 p

0 and 9 p
4

are invariant under gauge transformations and infinitesimal tetrad rota-
tions. This invariance, in turn, makes them completely measurable physical
quantities.

The source terms Q$4 in Eq. (22) still contain (see Eq. (24)) perturba-
tions in as many as seven different quantities. In the next section we shall
derive equations that describe these unknowns. In doing so, we shall dis-
cover that those perturbed quantities that do not vanish are all completely
describable in terms of the one of the two field components.

4. THE PERTURBED QUANTITIES IN THE SOURCE TERMS

The aim of this section is to calculate (in terms of the known back-
ground quantities and the fields 9 p

0 and 9 p
4 ), the perturbed quantities,

8� p
12 , : p, ; p, { p, _ p, * p and $ p which appear in the source terms Q$4 of

Eq. (22), (see also Eq. (24)). It is worthwhile to point out that the system
of equations we have constructed in the previous section must be consistent
with the freedom we have in the choice of both the tetrad frame and the
coordinates. In particular, (7) from the 6-parameter group of homogeneous
Lorentz transformations, we have six degrees of freedom to make infinitesi-
mal rotations of the local tetrad-frame. Further, we have four degrees of
freedom to make infinitesimal coordinate transformations. Thus, altogether
we have a total of ten degrees of gauge freedom. We are free to exercise
these available degrees of freedom as convenience and occasion may dictate.

As has been shown, (3) in a linear perturbation theory, 9 p
0 and 9 p

4 are
gauge invariant while 9 p

1 , 9 p
2 and 9 p

3 are not. This means that we can
subject the tetrad null-basis to an infinitesimal rotation in which 9 p

1 and
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9 p
3 vanish without affecting 9 p

0 and 9 p
4 . In making this choice of gauge,

we have used up only four, out of ten, degrees of freedom. It can be shown
(see, for example, Ref. 7 Chapter 1, Eqs. (342) and (346)) that in linearized
type 1 rotations both 9 p

1 and 8� p
12 vanish while in type 2 rotations both do

not. It follows, then, that a gauge in which both 9 p
1 , 9 p

3 and 8� p
12 vanish

can be chosen. Further, in this gauge, 9 p
2 clearly vanishes. Under these

circumstances, the NP equations(7) show that the linearized Bianchi iden-
tities take on a simpler form. For our purposes, the equations we need to
consider from this set are:

29 p
0 =(4#&+) 9 p

0 +3_ p92 (26)

&3$ p92=&9{ p92&2} p822 (27)

&D9 p
4 =3* p92&\9 p

4 &_� p822 (28)

0=&} p822 (29)

4.1. Calculation of _� p and * p

From Eq. (26) and the fact that all the background quantities here are
real we find that

_� p=\2&4#++
392 + 9� p

0 (30)

Further, using Eq. (30) on Eq. (28) gives

*p=\\&D
392 + 9 p

4 &822 \2&4#++
9(92)2 + 9� p

0 (31)

We note that the perturbed spin coefficients * p and _� p display a
definite dependence on 9 p

4 and�or 9� p
0 . In the rest of this section we shall

derive expressions for the remaining perturbed quantities.

4.2. The Perturbation Matrix for the Basis Vectors

In order to determine the perturbed quantities { p, : p, ; p and $ p and
their relations, it is necessary to study the effects of the perturbations on
the basis vectors (l +, n+, m+, m� +). For compactness, it is convenient to
introduce the following index notation:

l 1=l +, l 2=n+, l 3=m+, l 4=m� + (32)
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We can write(7) the perturbations l ( p) i (i=1, 2, 3, 4) in the vectors, as
linear combinations of the unperturbed basis vectors l i. Thus

l ( p) i=P i
j l

j (33)

where the Pi
j are elements of a matrix P that describes, completely, the per-

turbations in the basis vectors. Explicitly,

P=_
P1

1

P2
1

P3
1

P4
1

P1
2

P2
2

P3
2

P4
2

P1
3

P2
3

P3
3

P4
3

P1
4

P2
4

P3
4

P4
4
& (34)

The l 1 and l 2 are real while the l 3 and l 4 are complex conjugates. It
follows, then, that the matrix elements P1

1 , P1
2 , P2

1 and P2
2 are real while the

remaining elements of P are complex. Moreover, the elements in which the
indices 3 and 4 replace one another, are complex conjugates. For example,
P2

3=(P2
4).

4.3. Perturbations in the Angular Functions, $ p, { p, : p, and ; p

The perturbations in the directional derivative $� p, are given from
Eqs. (5) and (33), by

$� p=(l 4{4) p (35)

But from Eqs. (33) and (34) we see that

l p(4)=P4
j l j=P4

1 l 1+P4
2 l 2+P4

3 l 3+P4
4 l 4 (36)

Using Eq. (36) on Eq. (35) shows that

$� p=(l 4{4) p=P4
1D+P4

2 2+P4
3$+P4

4 $� (37)

Thus, if we operate with $� p on the background 92 we get

$� p92=P4
1D92+P4

2292+P4
3$92+P4

4$� 92 (38)

Now, in the background

92=
&m(u)

r3
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Substituting for 92 in Eq. (38) and using definitions of the operators in
Eqs. (5) we find that

$� p92=P4
1

[3m(u)]
r4 +P4

2 \&m*

r3 +&P4
2 \1&

2m(u)
r + 3m(u)

r4 (39)

Recall that in the Vaidya spacetime background, the component
822=&m* (u)�r2 is non-vanishing. Using this on Eq. (29) shows that } p

must vanish. It follows, then that Eq. (27) becomes,

$� p92=3{� p92 (40)

We see immediately, that the results expressed in Eq. (39) will be
inconsistent with the eigenvalue Eq. (40) unless the P4

2 vanish, so that

$� p92=P4
1

[3m(u)]
r4 =&3P4

1 \1
r+ 92 (41)

Equations (40) and (41), then, show that

{� p=&P4
1 \1

r+ (42)

Moreover, Eq. (37) along with the condition that the P4
2 vanish means that

whenever $� p acts on a function with no angular dependence its only con-
tribution is

$� p=P4
1

�
�r

=&{� pr
�
�r

(43)

We now have, in Eq. (43), a general relationship between $� p and {� p.
Next, we need to deal with : p and ;� p. It is known(6) that if the null

vectors l+ are tangent to the geodesics and equal to a gradient field, then

\=\� and {=:� +; (44)

These conditions are fulfilled in all Type D space-times. In particular, the
unperturbed Vaidya space-time satisfies

:� +;={=0

Consequently, in our linear perturbation analysis we should have

(:+;� ) p={� p (45)
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Consider, now, the second of the source terms in Eq. (24) which reads as

($� &2;)($� p&{� p+2;� p+2: p) 822

Our results in Eqs. (43) and (45) when applied to the above expression
show that

($� &2;)($� p&{� p+2;� p+2: p) 822=3($� &2;) {� p822 (46)

This achieves the purpose of expressing the effects of the four perturbed
quantities { p, : p, ; p and $ p in terms of one of these quantities { p. The next
task is to express this perturbed quantity in terms of the fields. To this end
we utilize one of the equations from the spin coefficient set.(8) Consider the
equation

${&2_=(+_+*� \)+({+;&:� ) {&(3#&#� ) _&}&� +802 (47)

Specializing Eq. (47) to the Vaidya spacetime and applying our linear per-
turbations approach we obtain, on rearranging terms, an equation whose
complex conjugate is

($� &2;) {� p=(2++&2#) _� p+\* p (48)

Equation (48) when substituted into Eq. (46) gives (recall $� does not
operate on 822)

($� &2;)($� p&{� p+2;� p+2: p) 822=3[(2++&2#) _� p+\* p] 822 (49)

4.4. The Final Field Perturbation Equations

We are now in position to apply the results of our discussions in this
section to the source terms of Eq. (22) as given by Eq. (24). Using Eq. (49)
on Eq. (24) and rewriting the sources Q$4 as Q$ we obtain,

Q$=[(2+2#+5+) _� p&3(2++&2#) _� p&3\* p+* p(D+\)] 822 (50)

We see that in the above equation the terms in * p cancel yielding the
simpler result,

Q$=&2(2&4#&+) _� p822 (51)

Substituting for _� p from Eq. (30) we find that

Q$=&2(2&4#&+) _822 \2&4#++
392 + 9� p

0 & (52)
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Equation (52) forms the result of our analysis in this section. All the
perturbations in the sources have now been expressed in terms of the per-
turbed field 9� p

0 only. The working field equations (see (22) and (23)) have
become

[(2+2#+5+)(D&\)&($� &2;)($+4;)&392] 9 p
4 =Q$ (53)

and

[(D&5\)(2&4#++)&($&2;)($� +4;)&392] 9 p
0 =0 (54)

where, now, Q$ is given by Eq. (52).
Equations (53), (54), along with (52) form the main result of our per-

turbation analysis. These equations give the essential features of a gravita-
tionally perturbed Vaidya space time. All the non-trivial perturbations are
sufficiently described by two tetrad scalar components of the Weyl tensor,
9 p

0 and 9 p
4 , which components represent the extreme helicity states of the

gravitational field.
We now can rewrite the equations in a form that reveals the depen-

dence of the fields on the physical variables of spacetime. Thus, using
Eqs. (5), (6), (7) and (9) on (54), (53), and (52) respectively, we find that

_ �2

�r �u
+

5
r

�
�u

&
1
2 \1&

2m(u)
r + �2

�r2&
3
r \1&

m(u)
r + �

�r
&

2
r2& 9 p

0

+
1

2r2 _ �2

�%2+cot %
�

�%
&2(csc2 %+cot2 %)

+csc2 %
�

�.2+4i csc % cot %
�

�.& 9 p
0 =0 (55)

and

_ �2

�u �r
+

1
r

�
�u

&
1
2 \1&

2m(u)
r + �2

�r2&
1
r \3&

7m(u)
r + �

�r

&
2
r2 \1&

4m(u)
r +& 9 p

4 &
1

2r2 _ �2

�%2&cot %
�

�%
&2(csc2 %+cot2 %)

+csc2 %
�2

�.2&4i csc % cot %
�

�.& 9 p
4 =Q$ (56)
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where now

Q$= &2 _ �
�u

&
1
2 \1&

2m(u)
r + �

�r
&

3m(u)
r2 +

1
2r&

C {\ m* (u)
3m(u)

r+_ �
�u

&
1
2 \1&

m(u)
r + �

�r
&

m(u)
r

&
1
2r& 9� p

0 = (57)

and the star C, here, indicates the terms before it operate on the terms after
it.

5. SEPARATION OF VARIABLES

In this section we seek to separate the equations that were derived in
the previous section. This separation of variable is effected in two phases.
In Phase I we deal with the angular variables while in Phase II we deal
with the retarded time and radial variables. We shall, for now, concentrate
on the homogeneous parts of the equations. The contribution due to the
source terms can always be constructed later once a solution for 9 p

0 has
been obtained. Incidentally, one notices (see Eq. (57)) that the luminosity-
mass ratio L�3m(u), (L=&m* ) which scales the source term will almost
always be vanishingly small since for most radiating objects the mass being
radiated at any given time is much smaller than the rest of the body mass.

5.1. Phase I: The Spin-Weighted Angular Functions

We suppose that the gravitational fields entering the spherically sym-
metric background spacetime are plane waves so that the problem has
azimuthal symmetry. With this, we then assume that the field equations are
separable in the angular variables admitting solutions of the form

9i=(0, 4)(u, r, %, .)=,i=(0, 4)(u, r, %) eim.

=Rp=(\2)(u, r) Sp=(\2)(%) e (58)

Here the subscript p is used to identify a particular spin-s field component
by the spin weight. For our purposes, the spin weight p only takes on the
extreme values of \s corresponding to the extreme helicity states of the
field. Explicitly, 90 has a spin weight of 2 while 94 has a spin weight of
&2. Note, to avoid confusion in notation, here and henceforth we discard
the superscript p previously used to identify the perturbed quantities.
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Substituting (58) in the field Eqs. (55) and (56) yields the following
general equation in the angular variables:

1
sin %

d
d% \sin %

d
d%+

+\p& p2 cot %&
2mp cos %

sin2 %
&

m2

sin2 %
&K+ Sp(%) eim.=0 (59)

This equation along with boundary conditions of regularity at %=0 and
%=? constitute a Sturm�Liouville eigenvalue problem for the separation
constant K= pK m

l . For fixed p and m values, the eigenvalues can be
labelled by l. The smallest eigenvalue has l=max( p, |m| ). For each p and
m the eigenfunctions pS m

l (%) are complete and orthogonal on the interval
0�%�?, as required by the Sturm Liouville theory. In our case, where the
background is non-rotating the eigenfunctions are, the well known, (13)

spin-weighted spherical harmonics:

pY m
l (%, .)= pS m

l (%) eim. (60)

and the separation constant K is found to be given by

K=pKl=(l& p)(l+ p+1) (61)

5.2. Phase II: The Radial-Null Equations

The separation of variables effected in the last section leaves us with
two equations for the functions R+2 and R&2 . These functions are coef-
ficients of 2Y m

l (%, .) and &2Y m
l (%, .), respectively, in the spin-2 fields 90

and 92 and are each dependent on u and r only. On substituting Eq. (60)
into Eqs. (55) to (57) one finds that R+2 satisfies

_�2R2(u, r)
�r �u

+
5
r

�R2(u, r)
�u

&
1
2 \1&

2m(u)
r + �2R2

�r &
&_3

r \1&
m(u)

r + �R2(u, r)
�r

&
( 2Kl&4)

2r2 R2(u, r)&=0 (62)

and R&2 satisfies

_�2R&2

�u �r
+

1
r

�R&2

�u
&

1
2 \1&

2m(u)
r + �2R&2

�r2 &\3
r
&

7m(u)
r2 + �R&2

�r2 &
+\ 1

2r2 (&2K&4)+
8m(u)

r3 + R&2(u, r)=0 (63)
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We deal with Eqs. (62) and (63) separately. First, we shall seek to
separate Eq. (62) in R2(u, r). By adopting a change of variables we show
that the equation is separable for a specific choice of mass function. There-
after, we shall apply this approach to Eq. (63).

5.2.1. Change of Variables

Equation (62), as it stands, is not separable. We shall, therefore, find
it convenient to introduce the following change of variables: let us set

{=
1
u

and !=
2m(u)

r
(64)

Then it is seen that

�
�u

=&{2 �
�{

+
m*

m({)
!

�
�!

(65)
�
�r

=&
!2

2m({)
�

�!

and

�2

�r2=
!3

2[m({)]2

�
�!

+
!4

4[m({)]2

�2

�!2

where, now, m is a function of { but m* still means dm�du.

5.3. Equation for R+2

On substituting Eqs. (64) and (65) into (62) and rearranging we find
that

\&5!
�R2

�{
+!2�2

�!
R2

�{ + 4{2m({)&4m* \!3 �2R2

�!2 &4!2 �R2

�! +
+(!5&!4)

�2R2

�!2 &(!4&4!3)
�R2

�!
+=l!3R2({, !)=0 (66)
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where we have set

=l=(l& p)(l+ p+1)&4=(l&2)(l+3)&4 (67)

We would like, as an example, to apply our analysis on an evaporat-
ing blackhole. In general, Eq. (66) is not separable for an arbitrary mass
function m(u). However it can be shown to separate for one particular
model of such a radiating blackhole.

5.3.1. Vaidya Model for a Linearly Radiating Blackhole

In the Vaidya model of a radiating blackhole, (12) the spacetime is,
initially, Minkowski flat for u<0. Then at u=0 an imploding $-function-
like null fluid with a total positive mass M forms a blackhole. Hereafter,
0<u<u0 negative energy null fluid then falls into the blackhole evaporating
the latter in the process. One known consequence(12) is that the spacetime
violates the weak energy condition. Eventually the blackhole vanishes so
that for u�u0 the spacetime becomes Minkowski flat again.

One of the popular models of radiating black holes is the so-called
self-similar model originally developed by Hiscock.(12) Popular, because
from it one can construct the quantum energy stress tensor for the entire
spacetime. The model has been extensively used lately, (see, for example,
Refs. 14 and 15). In this model the mass is a linear function of the retarded
time coordinate u.

We shall show, presently, that for the Hiscock linear mass function
ansatz the above equation is separable.

Suppose

m(u)={
0, u<0

(68)
M0(1&*u),

1
*

>u>0

0, u>
1
*

so that

m* =&*M0 (69)

where m0 is the initial mass at u=0 and * is some positive parameter
0<*<1�u that scales the radiation rate.

We shall find it convenient to institute a change of variable u=v0+v
where v0 is some fixed value of u.
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m(v)={
m0(1+*v), &v0<v<0

(70)

m0 , v=0

m0[1&*v],
1
*

>v>0

0, v>
1
*

This seemingly trivial change is important for the following reasons. In our
problem we would like to discuss the behavior of the gravitational fields in
a radiating blackhole background. However as we noted above just before
u=0 there is no black hole and yet we need the ingoing fields to have been
moving in a non-minkowski background. This change, therefore, makes
it physically possible for us to introduce the external gravitational fields
into a spacetime that already contains the black hole. Mathematically the
change makes it possible, as we find out soon, to construct complete solu-
tions that include a description of ingoing fields.

Substituting Eq. (68) into (66) and making use of Eq. (64) we find that

\&5!
�R2

�{
+!2 �2

�!
R2

�{ + 4{2m({)+(!5&!4+4*m0 !3)
�2R2

�!2

_\&5!
�R2

�{
+!2 �2

�!
R2

�{ + 4{2m({)+(!5&!4+4*m0!3)
�2R2

�!2

&(!4&4!3+16*m0!2)
�R2

�!
+=l!2R2({, !)=0 (71)

5.3.2. Separability

We now ask whether Eq. (71) is separable (in the variables { and !)
admitting a solution of the form

R2({, !)=X2(!) Y2({) (72)

where X2 and Y2 are each functions of one variable, only. Substituting for
R2 in Eq. (71) yields two ordinary differential equations: a first order dif-
ferential equation for Y2({),

m{2 \ 1
Y({)

dY2

d{ +=&: (73)
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and a second order ordinary differential equation for X2(!),

!2(!2&!+4*m0)
d 2X2

d!2 &![!2&4!+4:+16*m0]
dX2

d!

+(=l!+20:) X2(!)=0 (74)

Here, : is an arbitrary separation constant. Its characteristics are discussed
in the next section.

5.4. The Function R&2

Following the same approach as above we find that the equation for
the function R&2 separates into two ordinary differential equations:

m({) {2 1
Y&2

dY&2

d{
=&# (75)

and

!2(!2&!+4m0 *)
d 2X&2

d!2 &![5!2&4!+4#]
dX&2

d!

+(!2+2=l!+4#) X&2=0 (76)

The general characteristics of the separation constant # are not different
from those of : and discussed in the next section.

6. SOLUTIONS

We have achieved the separation of the original Eqs. (62) and (63)
respectively, into (73), (74), (75) and (76) for the particular case of a linear
mass function. In the following sections we shall seek to solve these result-
ing ordinary differential equations and to discuss the solutions in an
attempt to draw some physical information from them.

6.1. The Functions Y p({)

The first order differential equations for Y2({) and Y&2({) above can
be integrated immediately. Thus from Eq. (73) we find that

Y2(v)=exp \&: |
u

0

dv
m0(1&*v)+=e(:�*m0) ln(1&*v) (77)
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Now 0�*<1 and in fact for most radiating bodies *<<1. This allows us
to expand the logarithmic expression ln(1&*u) in the solution so that

Y2(v)=e&0v ��
n=1 1�(n+1) *nv n+1

(78)

where the separation constant now takes the form 0 in which we absorb
the Schwarzschild mass m0

:=m00 (79)

Consider, now, the case in which the background is not radiating. It is
clear either from the solution above or from the original differential equa-
tion that for such a case the solution reduces to

Y2(vs)=e&0svs (80)

where the subscript s indicates quantities associated with the Schwarzschild
geometry. One notices that in such a static background the quantity Y2(vs)
above constitutes the only time dependent part of the 90 field. It follows
then that to be consistent with the known(3) solutions we should require

0s=i| (81)

where | is the frequency of the gravitational waves. This suggests that in
the case of the radiating background we should expect the parameter 0 to
be a complex function of * and | such that

lim
* � 0

0(*, |)=i| (82)

The integration of the differential equation for Y&2(v) follows the
same trend and we find that

Y&2(v)=e&1ve&1 ��
n=1 1�(n+1) *nv n+1

(83)

where

#=m01 (84)

1 being a complex function of * and | such that

lim
* � 0

1=i| (85)
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As would be expected from the theory of deferential equations the
separation constants 0 and 1 can not have unique values. The individual
solutions we obtain will therefore be representatives of classes of solutions.
The range of these solutions is described in terms of the frequency spectrum
of the gravitational field which, in our classical treatment, takes on con-
tinuous values. It will, later, be shown that by using certain conditions on
the solutions the functional form of these separation constants can be more
rigidly fixed.

6.2. The Functions Xp(!)

Following the integrations of the first order differential equations for
Yp we are now left with the two equations for X2 and X&2 to solve. These
are respectively,

!(!2&!+4*m0)
d 2X2

d!2 &![!2&4!&4m0(4*&0)]
dX2

d!

+(=l !&20m00) X2(!)=0 (86)

and

!2(!2&!+4m0*)
d 2X&2

d!2 &![5!2&4!+4m0 1 ]
dX&2

d!

+(!2+2=l !+4m01) X&2= =0 (87)

It is clear that at !=0 (or r=�) both the equations above have regular
singularities.(16) This encourages us to seek for analytic solutions. Such
solutions at !=0 (r=�) should be useful in discussing the asymptotic fall-
offs of the fields and the question of energy flux.

6.2.1. The Peeling Behavior

Our initial goal is to develop asymptotic solutions for the functions
X2(!) and X&2(!). Consider a zero rest mass spin-s field �p in a helicity
state p. According to the peeling theorem by Roger Penrose, (6) the quan-
tities r(s+ p+1)�p and r(s& p+1)�p have a limit at null-infinity. In the case of
gravitational fields we expect the outgoing components of the solutions to
fall off as

�( p=\2)t
1

r(s+ p+1)=
1

r(2\2+1) (88)
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while the ingoing solutions should fall off as

�( p=\2)t
1

r(s& p+1)=
1

r(2�2+1) (89)

It is necessary, therefore, that the solutions to our differential equations
display the above asymptotic behavior. This, indeed, will be one of the tests
for their validity.

6.2.2. The Indicial Equations

It has been pointed out that at !=0 we have a regular singularity in
both Eqs. (86) and (87). Therefore it seems natural to attempt developing
solutions about this point. Such solutions will be valid at far distances from
the black hole. This class of solutions at such distances is useful if one is
to engage, as we shall later, in a meaningful discussion of the gravitational
energy flux.

Let us assume that Eq. (86) admits, as a solution, a series expansion
about !=0 of the form

X2(!)= :
�

n=0

an!n+k (90)

where k is some value to be determined. Using Eq. (90) in Eq. (86) gives

:
�

n=0

an(n+k)(n+k&2) !n+k+2

& :
�

n=0

an[(n+k)(n+k&5)&=l] !n+k+1

+ :
�

n=0

4an[(n+k)[(n+k&5) *m&m0 0]+5m0 0] !n+k=0 (91)

For n=0, a0{0 we get the indicial equation

k[(k&5) *&0]+50=0 (92)

which has two distinct roots,

k=\5,
0
* + (93)
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Similarly, for X&2(!), we can assume a solution of the form

X&2(!)= :
�

n=0

bn!n+s (94)

where, again s is some value to be determined. Substituting Eq. (94) into
Eq. (87), we find that

:
�

n=2

bn&2[(n+s&2)(n+s&8)+1] !n+s

& :
�

n=1

bn&1[(n+s&1)(n+s&6)+2=l] !n+s

+4m0 :
�

n=0

bn[*(n+s)(n+s&1)&1 (n+s)+1 ] !n+s=0 (95)

From the equation above and the condition that b0{0 we obtain, for
n=0, the indicial equation

s2&\1+
1
* + s+

1
*

=0 (96)

whose roots are

s=\1,
1
* + (97)

Equations (93) and (97) (and the fact that 0 and 1 are complex quantities)
indicate that we can expect two linearly independent solutions for each of
the fields.

Asymptotic Conditions. The solutions to the indicial equations given
in Eqs. (93) and (97) fix for us the leading terms for the functions X2(!)
and X&2(!), respectively. Thus from Eq. (93) we see that

X2(!)t!5 or !0�* (98)

and from Eq. (97)

X&2(!)t! or !1�* (99)
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Both Eqs. (98) and (99) show that the first solutions axe consistent with
the peeling theorem and can, in fact be recognized as outgoing fields (recall
!=2m(v)�r=2m0(1&*v)�r).

On the other hand the second solutions are scaled by the quantities
0 and 1, respectively. These are the same arbitrary separation constants
which, in the last section, we showed to be complex. Since, physically, our
solutions represent gravitational fields these constants must now be chosen
to conform with the known boundary values for such ingoing waves.
Consequently, in order to satisfy the peeling theorem, it is clear that we
must have Re 0t*, so that X2t1�r and Re 1t5*, so that X&2t1�r5.
Moreover, the imaginary parts of these quantities must reduce to the limit-
ing cases, lim* � 0 0=i| and lim* � 0 1=i| as was shown to be the case.
These two conditions dictate that we set

0=*+i| (100)

and

1=5*+i| (101)

The roots to the indicial Eqs. (93) and (97), respectively, now become

k=_5, \1+
i
*

|+& (102)

and

s=_1, \5+
i
*

|+& (103)

So that as ! � 0,

X2(!) � !5 or X2(!) � !!(i�*) | (104)

and

X&2(!) � ! or X&2(!) � !5!(i�*) | (105)

The full functions X2(!) are readily obtained by writing down recurrence
relations using Eqs. (91) and (95). The general solutions are, in each case,
found to be linear combinations of the outgoing component X (out)

p and the
ingoing component X (in)

p .
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Thus

Xp(!)=ApX (out)
p +BpX (in)

p (106)

Here the Ap and Bp are arbitrary constants of integration. These solutions
are also found to converge.

7. THE ASYMPTOTIC SOLUTIONS AND PHYSICAL
INFORMATION

7.1. Significance

The principal aim of our study is to understand how gravitational
waves are scattered by a background radiating spacetime. In particular, we
axe interested in the measurable physical results of this process, such as the
energy flux and the manner in which the waves are reflected and absorbed
by a radiating black hole. To this end we have, in the preceding discus-
sions, developed field equations that describe the effects of these waves on
the back-ground spacetime. The physical quantities that we seek should, in
principle, be calculated from the solutions of these equations. As can easily
be shown, however, the series solutions obtainable are a result, in each
case, of a three term recursion relation and so contain various coefficients
that are not easy to relate. This feature of our solutions would seem to
make inconvenient, their use in calculating a number of other physical
quantities. It turns out, though, that for the features of our interest it is
sufficient to consider the form of the solutions at certain special points. For
example Chandrasekhar(7) shows that a knowledge of the incident and
reflected wave amplitudes can be deduced from the form of the solution at
null-infinity. Moreover, one can also engage in a meaningful discussion
pertaining to energy flux at these points. This means that we need only
consider the leading terms in the solutions.

7.2. The Source Terms

In creating the function 94 we have, so far, only considered solutions
for the homogeneous part of the original differential equation (see Eqs. (56)
and (57)). However, the full equation for 94 is inhomogeneous so that the
complete solution should contain a contribution due to the sources. We
recall that the source term is scaled by the luminosity L=&dm�dv=*m0

which obviously vanishes as the background radiation is switched off,
* � 0. Since, in the first place, *<<1 O m* (v)�3m(v)<<1, we shall presently
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assume that at large r values the source terms do not contribute
significantly to the solution. Consequently we shall consider the asymptotic
solutions from the homogeneous equation to be a sufficient representation
of the general asymptotic solutions. With this we now write down the
asymptotic form of the entire solutions.

7.3. The Solutions

It was shown, in Eq. (78), that for 90 ,

Y2(u)=e&(0�*) ln(1&*v)=e&0ue&��
n=1 1�(n+1) *nvn+1

(107)

For small * values, the expression for the logarithmic expansion can be
written to first order in *. This gives

Y2(u)=e(0�*) ln(1&*v) &e&0v (108)

And using the conditions spelled in Eq. (100) to satisfy the peeling property
for the ingoing field, we find that

Y2(u)&e&*v&i|v (109)

Similarly, going through the same treatment for Y&2(u) and applying
Eq. (101), we find that

Y&2(u)=e&5*v&i|v (110)

The above results along with the angular solutions pY m
l (%, .)= pS m

l (%) eim.

of Eq. (60) can now be joined to the functions of Eqs. (104) and (105)
(recall !=2m(v)�r=2m0(1&*v)�r) to give the following asymptotic solu-
tions for the functions 90 and 94 :

outgoing ingoing

90t2 Y m
l (%, .)

[2m(u)]5

r5 2Y m
l (%, .)

2m(u)
r

e&(L�m0) veipe&2i|v

_e&(L�m0) ve&i|v

94t&2 Y m
l (%, .)

2m(u)
r &2Y m

l (%, .)
[2m(u)]5

r5 e&5(L�m0) veipe&2i|v

_e&5(L�m0) ve&i|v (111)
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Here, p(r)=(|�*) ln(2m0 �r) and where for physical reasons we find it
useful to express the solutions in terms of the luminosity L as given by
L=&dm�dv=*m0 .

8. CONCLUSIONS

We have obtained analytic solutions to the problem of gravitational
fields propagating in a radiating spacetime. These solutions satisfy all the
known conditions for the propagation of spin-s, zero rest mass fields. From
their asymptotic form in Eqs. (111) it is seen that the solutions are com-
pletely consistent with the peeling theorem of Penrose and fall off in the
manner predicted by this theorem. Moreover, one observes, further, that as
the background radiation is switched off (i.e., in the limit * � 0), the theory
recovers the known solutions (see, for example, Ref. 3) for the perturbed
static geometry of Schwarzschild. We consider the passing of these two
tests a validation of our analysis.

One new significant feature this analysis brings to surface is that the
solutions (see Eq. (111)) are scaled by factors of the form e&(s+ p+1)(L�m0) u,
where s=2 and p=\2. But L�m0 is positive definite. Consequently, these
factors indicate that when gravitational fields propagate in a radiating
spacetime they suffer an attenuation, and this attenuation can be quan-
titatively described. The attenuation weight seems in turn to be directly
related to the spin weight of the perturbed fields. It is also scaled by the
luminosity L of the background. Further, as one notices from the solutions,
the attenuation persists independent of whether the fields are ingoing or
outgoing. It is of course fair to ask whether this character of our solutions
is not, in the first place, a reflection of the mass function that we chose.
Recalling that general radiative mass function m(v) is a monotonic decreas-
ing function in v an expansion of the m(v)=m0&Lm0&(dL�2! dv) m0

& } } } about v=0 indicates that the first order term in the luminosity
would seem to make the significant contribution. This seems to suggest
that the attenuations manifested in our solutions are independent of the
manner in which the blackhole radiates and may persist for any mass func-
tion chosen. As far as we know this seems to be a new feature in the
literature of this branch of general relativity; one that may, indeed, have
some interesting astrophysical implications.

A persistent attenuation of this sort would seem to suggest the
possibility that energy is being dumped into the host spacetime. Over large
time scales, this could have significant implications on the evolution of
such a radiating system. This question can, however, only be resolved by
a rigorous calculation of the energy flux. For such a calculation and an
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extension of this discussion see Ref. 18. We intend to follow up this issue
in future discussions.
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