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A b s t r a c t  

A very staightforward method has been developed to apply space-charge re- 
sistance measurements for determining the high-field drift velocity of electrons 
in GaAs. The breakdown voltages of the single-drift flat-profile IMPATT diodes 
used in these measurements justify the validity of well known ionization rates for 
still higher electric fields. 

1. I n t r o d u c t i o n  

GaAs IMPATT diodes for frequencies around 94 GHz and higher 1 operate in 
the active region with a maximum electric field E above 800 kVcm -1. At these 
fields any systematic experimental values for drift velocities Vdn, Vdp and ionir.ation 
rates c~,~, c~p of electron and holes especially at elevated temperatures have not 
been reported. So far, two methods have been used to determine the drift velocity 
of electrons in GaAs, the time-of-flight method 2-5 giving very precise data only up 
to 234 kVcm -1 and the method using the space-charge resistance 6 R~c. Neither 
the well known equation for the spas resistance 7 nor a more sophisticated 
method s take into account that Vd,~ monotonically decreases for high electric fields 
according to theoretical 9-11 and experimental results 2-6. 

Since a short and well defined avalanche region does not exist for single-drift 
W-band IMPART diodes as already discussed 12, the avalanche region considerably 
influences R~c. Therefore a very straightforward method has been developed to 
calculate R,c from the basic continuity and Poisson's equations using different 
velocity vs. field profiles. 
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2. S t a t i c  a p p r o x i m a t i o n  fo r  t h e  s p a c e - c h a r g e  r e s i s t a n c e  

In order to include the effect of the avalanche region it is assumed that  R,c 
measured at f above the thermal  cut-off frequency can be derived from the static 
I /V-character is t ic  excluding thermal  effects, 

n.o = ~ (1) 
I:IB 

where I B is the bias current. 

If diffusion effects axe neglected in the space-charge region, the equation for 
the electron current density Jr, as a function of space x from -Wp to w,,, bias 
current IB and active device area AD can be wri t ten as 6 

I_ ~ /'i / ' I  t t tp  p ~ --~p 
(2) 

with ar`(x) = c~.(E(x)) and o~p(z) = ap(E(x)),  

The most recent paper  on ionization rates 13 includes a dead space correction 14 
for an energy below the threshold Wth in the dead space region of length d (q: 
electron charge). 

f 
-w~+d 

an(x) ---- 0 for q E(x)dx < Wth (3) 

Eq. (3) was used for the ionization rates where applicable, otherwise Wtu was set 
to zero. 

The integration of Polsson's equation gives 

f J~ J"(~) J"(~) .] d~ 
E(x) = ~ w~ ND(x) -- NA(x) + (4) 

whereby ~.(~) = ~.(E{~)), ~d,(~) = ~(E(~)), JoA~ ~ I~, N~(~) - N~(~) 
is doping concentration and %e0 the semiconductor permittivity. Intergrating 
eq. (4) and taking the built-in voltage 7 Vb/ into account gives the voltage V at 
the terminals.  

f? V = E(x)dx - Vb~ (5) 
~ p  

Eq. (1) to (5) were solved numerically whereby in eq. (4) three different curves 
for velocity-field dependence were assumed as shown in Fig. 1. At fields below 
234 kVcm -1  all three were based upon the well matching experimental  values 2-5 
in the l i terature,  the values above were generated from a hyperbolic decrease 
comparable to simulations 9't~ For the drift velocity of holes vdp experimental  
values t5 below 100 kVcm -1 and theoretical  values 16 above 100 kVcm -1  were 
applied. Since holes mainly occur in the avalanche region, changes in the velocity 
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Fig. 1: Drift velocities Yd,, Vdp of electrons and holes vs. the electric field E 
- - :  To = 300 K 
(m): measured characteristics 2-s ' l s  (To = 300 K) 
(c): calculated curve (To = 300 K) 
- -: extrapolated curve for T = 500 K. 

vs. field profile of holes only slightly influence the solution of eq. (1) to (5). 

3. M e a s u r e m e n t  set-up 

The expected value range for R~c according to eq. (1) lies between about 0.5 12 
and 10 12. Therefore, a fixture having a low series resistance and series inductance 
was used to determine the low-frequency (LF) impedances _Z/, Z r of the IMPATT 
diode in both the forward and reverse (breakdown) directions. The residual series 
resistance (< 5 m12) and inductance (<< 10 nil) were evaluated by replacing the 
diode with a short and thereafter with a precise resistor and they were factored 
out for the actual measurement by the computer program. 

Fig. 2 shows the schematic circuit diagram of the measurement set-up includ- 
ing the bias circuit for the IMPATT diode (R1, R2, C~, C2 and C3). The reference 
resistor Rs and the IMPATT diode D form a voltage divider, R4 and Rs ensure 
decoupling and impedance matching. The low-noise broadband amplifier VV in 
parallel with the terminals of the diode had an input impedance above 1 k12 and 
was provided to measure the open-circuit noise voltage at the breakdown�9 
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Fig. 2: 
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Schematic diagram of the bias circuit and the impedance evaluation 
circuit. 
D: IMPATT diode 
VV: AD 9611 
RI: 50[1 R 2 : 5 0  ~ R3: 5Of] R 4 : 5 1 0  fl Rs: 56 i] 
C1: > 1 0 p F  C2: 10/~F C3: > 4 7 0 0 # F  Ca: > 10#F  

4. E x p e r i m e n t a l  r e s u l t s  

Several ionization rates reported in the literature lz were extrapolated to higher 
electric fields and the calculated breakdown voltages compared to the experimen- 
tal  ones of single-drift fiat-profile IMPATT diodes with their abrupt  pn-junction. 
As can be seen in Fig. 3 excellent agreement was found for ionization rates given 
by Bulman et al. 13. For this reason these ionization rates and their extrapolations 
were exclusively used in the following theory-experiment comparision. 

Fig. 4 shows the absolute value of the diode impedance Z r as a function of 
frequency f .  For f < 100 Hz I ~ r  I mainly consists of the thermal resistance Rthl  
(due to the heat-flow resistance 17 rw), the space-charge resistance R,c and the 
diode series resistance R,,  but for f > 30 MHz I Zr I reduces to Rsc and the diode 
series resistance Ro closely enough. R, was determined in the forward direction 
for f > 30 MHz where the absolute value of diode impedance Z 1 consists of R~, 
the resistance R,,a of the undepleted region w0 and the small-signal impedance Ra 
of the pn-junction. In GaAs the diffusion capacitance can be neglected at these 
frequencies and the operating bias current I I ,  and, therefore, 

kT, 
R ~  = q-~/ , (6) 

Rud -- ws ~AD ' (7) 

whereby a is the conductivity in the active region of the diode, k the Boltzmann 
constant and Tj the junction temperature. 

It should be noted is that  essentially for f < 100 Hz 

_Zl = P~h2 + R,  + R ~  + Rd (S) 
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Absolute value of the small  signal diode impedance Z r at breakdown 
(IB -- I t )  as a function of the frequency f (riM: diode diameter).  
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has the additional negative thermal  resistance Rth2 due to the heat-flow resistance 
r~ as can be seen in Fig. 5. ~[~h2 can  be roughly evaluated is (with rid: temperature  
coefficient of the forward voltage Vd) to 

P~h2 ~ fldr,~(Vd § 2RdII)  (o) 

Fig. 5: 
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Absolute value of the small signal diode impedance Z I m forward 
direction a t / /  as a function of the frequency f (dM: diode diameter):  

Low-frequency noise measurements  17 as shown in Fig. 6 were used to charac- 
terize the uniformity of the breakdown, and Fig. 7 together with Fig. 6 clearly 
depicts that  uniform breakdown is reached at current densities about 2 kAcm -2,  
which is comparable to values repor ted  before s. For this bias the temperature  
increase is below 10 K for diodes on diamond heat sinks and below 20 K for 
diodes on copper heat  sinks and, therefore, it can be neglected. For higher 
current densities I Z~ 1 increases because the junct ion tempera tures  raises, the 
space-charge region widens 12, and the current  is more displaced off the center to 
the border of the device area. 

Finally Fig. 8 presents R,c as a function of the doping concentration N D - NA 
in the active region for the three velocity vs. field profiles shown in Fig. 1. The 
measured space-charge resistances of single-drift fiat-profile IMPATT diodes with 
six different doping levels in the active region ranging from 6.3 • 1016 cm -3  to 
2.4 • 1017 cm -3  (Q-band to V-band 2~ W-band 1) are in excellent agreement 
with the calculated curve 2 that  goes from 6.3 • 10 ~ cms -1  at 215 kVcm - I  down 
to 3.8 • 106 cms -1  at 800 kVcm -1  for a tempera ture  of 300 K. Furthermore,  
this curve also agrees very well with the recent results of a detailed Monte-Carlo 
simulation 11. The doping concentrat ion in the active region was determined by 
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Fig. 7: Absolute value of the small signal diode impedance ~ r  at breakdown as 
a function of the bias current IB. 
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s tandard CV-profiling and precise electrochemical  profiling ~9 using die Polaron 
PN 4200. 
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Fig. 8: 
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�9 . : m e a s u r e d  values, plot ted as R, clrdM2/4 x 10 - s  cm -2 (dM: diode 

diameter).  

From the curve 2 for To = 300 K in Fig. 8 the drift velocity at T = 500 K has 
been extrapolated and used together w i t h  the extrapolated ionization rates for 
the design of W-band single-drift flat-profile I M P A T T  diodes. As state-of-the-art  
in GaAs these diodes delivered an output  power up to 320 m W  at an efficiency 
of 6.0 9{ for an oscillation frequency about  95 GHz 22. 

5. C o n c l u s i o n  

The excellent agreement  of measured and calculated breakdown voltages for 
the abrupt pn-junction of GaAs single-drift flat-profile IMPATT diodes justify 
the extrapolat ion of well known ionization rates to electric fields up to about 
850 kVcm -1.  A straightforward me thod  to calculate space-charge resistances 
implies field dependent drift velocities of electrons and holes. For the first time, 
this method is capable to give a clue for the velocity vs. field profile of electrons 
up to 800 kVcm -x .  The good agreement between these experimental  results and 
theoretical  curves confirm those results obtained from Monte-Carlo simulations. 
Both results, ionization rates and drift velocities, are a useful starting-point in 
designing I M P A T T  diodes for frequencies above 100 QHz. 
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