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This paper imposes consistency conditions on the path of a particle and shows 
that they imply Hamilton's principle in classical contexts and Schr~dinger's 
equation in quantum mechanical contexts. Thus this paper provides a common, 
intuitive foundation for classical and quantum mechanics. It also provides a very 
new perspective on quantum mechanics. 

I N T R O D U C T I O N  

It is na tu ra l  to expect  that  a par t ic le ' s  choice of  t ra jec tory  under  
var ious  condi t ions  is consistent .  This  pape r  will formula te  the consis tency 
(or  ra t ional i ty)  cond i t ion  in such a way that  I can app ly  recent  results  in 
ma themat i ca l  measuremen t  theory to prove that  a par t ic le  will choose  that  
t ra jec tory  maximiz ing  the expected value of  some funct ion.  2 

When  I choose  that  funct ion to be the po ten t ia l  energy minus  the 
kinet ic  energy and add  a single p robab i l i s t i c  cons t ra in t  on the par t ic le ' s  
mot ion ,  I can der ive the SchrOdinger equat ion.  By neglect ing this cons t ra in t  
(which co r re sponds  to saying that  P lanck ' s  cons tan t  is negligible),  I can 

I Present address: General Motors Research Laboratories, Warren, Michigan 48090. 
2Thus we end up with a variational principle. Variational principles are plentiful in the 
literature. For an attempt to use variational principles as a foundation for physical theory, see 
Schwinger (1951,1953, 1953, 1953, 1954, 1954). One consequence of this paper is that there is 
now an axiomatic basis for variational principles. 
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derive Hamilton's principle. Thus the principle of maximizing the expected 
value of the potential energy minus the kinetic energy subject to a certain 
probabilistic constraint leads to classical and quantum mechanics. 

Economic theory is similarly based on the idea that an individual's 
behavior is rational and hence that he acts as if he maximized the expected 
value of some function (called his utility function). Thus the results of this 
paper show that there is a common foundation unifying physics and 
economics. This is hardly surprising inasmuch as both are rational attempts 
to understand behavior--in the case of physics, the behavior of nature; in 
the case of economics, the behavior of individuals. 

The measurement theory axioms I use concern the behavior of an 
individual (entity or person) acting under uncertainty. In the special case of 
certainty, we get a simpler set of axioms. Appendix 3 shows that we can use 
this simpler set of axioms to derive Hamilton's principle (although not the 
SchrOdinger equation). 

The first section of the paper formulates the behavior of the particle in 
terms of trajectories and applies the conditions of consistent behavior under 
uncertainty. These conditions, presented in Appendix 1, are adapted from 
Savage's Foundation of Statistics. I then state the result that the particle will 
follow that trajectory or that probability density function over trajectories 
maximizing the expected value of some function. That is Proposition 1. 

In the second section, I state a time-separability condition which says 
that specifying the position and momentum at a time ~ completely specifies 
the state of the particle. This simplifies the form of the expected utility 
which the particle maximizes. 

I now specify the constraints on that expected utility function. The 
utility function is defined to be the negative of the Lagrangean. We also 
constrain the trajectories the particle selects by a condition akin to Heisen- 
berg's uncertainty principle. With these conditions, the calculus of varia- 
tions allows us to deduce the SchrOdinger equation. 

When we neglect the uncertainty condition, the maximization of ex- 
pected utility becomes a maximization of utility which is identical to 
Hamilton's principle. Thus the derivation is consistent with standard corre- 
spondence conditions. 

The fact that this derivation consists mainly of rationality axioms is 
intuitively very satisfying. Since scientific research often implicitly assumes 
some rationality in natural behavior, making these assumptions explicit and 
then deducing all the implications of those previously implicit rationality 
assumptions is theoretically parsimonious. We then add a few physical 
assumptions to get our final theory. 

The first section begins with a Gedanken experiment. 
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2. THE RATIONALITY CONDITIONS 

2.1. Trajectories. Let ~ = (a I, a 2 . . . .  ) be the set of all logically possible 
trajectories which the particle could follow where a trajectory, a i, is a 
complete specification of the position, q,(t), and the momentum, p,(t) ,  of 
the particle at each time t in the interval [T 0, T~]. More formally, a i = ((pi( t) ,  
qi(t))lt ~ [T 0, Ti]). 

2.2. Acts of Nature. We define an act of nature ~ to be a specification 
of the probability that the particle will take any one of the possible 
trajectories in T. Thus an act of nature might consist of (1) moving at a 
speed of 1 m/sec  to the right with probability 0.50, (2) moving at a speed of 
1 m/sec  to the left with probability 0.50. In game theory, these have also 
been called randomized strategies. Let F = (f~, f2 . . . .  ) be the possible acts of 
nature. 

Let Pf(a,) be the probability that act of nature, f ,  leads to trajectory a,. 
Then it is clear that specifying an act of nature, f ,  is equivalent to specifying 
a probability density function over all trajectories (P/(a,) for all a, ~ el') or 
specifying a probability density function over all possible positions, q(t), 
and momenta, p( t ) ,  for all times t in the interval [T o, Tj] (designated by 
P/(q, p, t) for all t in [T 0, Ti] ). 

2.3. The Gedanken Experiment. Consider the following thought ex- 
periment: 

We have a set of acts of nature, F. We ask which act of nature will 
occur given the circumstances of the situation. Call it f~. Now suppose we 
add an ideal constraint to the problem which rules out act of nature f~ 
without affecting the viability of any other act of nature. Then what act of 
nature will occur? Call it f2- We similarly rule out act of nature f2 with an 
ideal constraint. What now shall be the act of nature? Call it f3- We define 
an ordering, >,  and say that fl  > f2, f,_ > f3, and ft > f3. More generally we 
define~ > ~ if, in this thought experiment, we will never p ick~ to be the act 
of nature which will occur as long as act of nature f, has not been ruled out 
by an ideal constraint. We then define the ordering, >/, by saying that ~ >t f~ 
if it is false that ././. > ~. 

We could metaphorically interpret f, > ~  as meaning that "nature  
prefers act of nature f, to act of nature fj." And we could interpret f, >/././as 
saying that "nature  considers act of nature f, at least as preferable as act of 
nature fj." However, the precise meaning of " >/" is given by the Gedanken 
Experiment. 

Let (F, >1 ) denote the elements of F, every pair of which has been 
ordered by "> / . "  We now impose certain consistency conditions which 
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Savage postulated for a rational individual's preference among alternative 
actions. These conditions will describe a rational nature's "preference" 
among alternative actions. 

The arguments are presented in Appendix 1. They require seven 
consistency assumptions: (AI), (A2) . . . .  (A7). Using them, we get the follow- 
ing result: 

Proposition 1. The particle will be governed by that probability distri- 
bution, Pf(a) maximizing: f~,u(a)P/(a)da for some function u(a). 

The next section presents a time-separability assumption enabling us to 
rewrite Proposition 1 in terms of a time integral. We then make certain 
assumptions about u(a) and P/(a) which will give us Hamilton's principle 
and the Schrrdinger equation. 

3. HAMILTON'S PRINCIPLE 

3.1. The Time-Separability Property. Section 2 showed that if (F, >/) 
satisfies consistency conditions, then the probability density function, Pf(a), 
describing the particle's motion maximizes: 

faP/(a)u(a) da 

Now the trajectory, a, is ((q(t),p(t))lt  ~ [T o, Ti] ), a specification of the 
position and momentum of the particle at every time in the time interval 
[T 0, 7"1]. We are now about to define a new property which describes how >/ 
relates to time. First we need some definitions. 

Definition. Let 

a(t) = ((q(t) ,  p(t))l t  c [To,T,]) 

a t ( t  ) = ( (q , ( t ) ,  p,(t))l t  ~ [To, T,]) 

az( t  ) = ((q2(t) ,  Pz(t))[ t ~ [T O , Ti]) 

be three trajectories, let A be a subinterval of [T 0, Ti], and let A" be the 
complement of A in [T 0, Tt]. We say that a = (at(t) ,  t ~ A; a2(t), t ~ A c) iff 

(1) q( t )=q l ( t  ) and p ( t ) = p , ( t )  f o r t ~ A A [ T o , T i ]  

(2) q( t )=q2( t  ) and p ( t ) = p z ( t  ) for t~ACN[To,T,]  
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Definition. (F, >t ) has time separability iff for any interval A and for 
any trajectories al(t  ), a2(t ), a3(t), we have that whenever 

( a , ( t ) ,  t ~ A; a2(t  ), t ~ A c) >~ ( a s ( t )  , t ~ A; a2(t  ), t ~ A") 

then for any other trajectory a4(t ) 

(a . ( t ) , tEA;a4( t ) , tEA' )>1 ( a s ( t )  , t E A ; a a ( t  ) , t ~ A ' )  

3.2. Example of Time Separability. Consider the following four trajec- 
tories: 

(2) ~ : 

(3) 

(4) 

We assume that at point z, all particles have the same position and 
momentum. Then if (F, >/) has time separability and trajectory 1 
>/trajectory 2 then trajectory 3 >/trajectory 4. In other words, given that all 
particles have the same position and momentum at point z, the past 
trajectory they followed becomes irrelevant in determining the future trajec- 
tory after point z. 

We now state our next assumption: 

(A8) (F, >/) has time separability. 

This leads us to the following proposition: 

Proposition 2. Suppose that (F, >/) satisfies (A8). Then there exist 
functions Pf(a(t), t), u(a(t), t) such that 

f~Pf(a)u(a)da= frr~-~P/(a(t),t)u(a(t),t)da(t)dt 

For a sketch of a proof, see Koopmans (1960) and Debreu (1960). 
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We recall that a(t) is just (p(t), q(t)), the momentum and position at 
time t. Hence we have the following: 

Proposition 3. Suppose that (F, >1 ) satisfies (A8). Then the particle's 
probability density at time t, P/(q, p, t) maximizes: 

fr~' fpfqP/( q, p, t )u( q, p, t )dqdp dt 

subject to any constraints. 

We now make the last assumption needed to get Hamilton's principle: 

(A9) u(q, p, t), which could be metaphorically called the particle's utility 
function, equals the potential energy, V(q, p, t), minus the kinetic 
energy, T(q, p, t), i.e. u(q, p, t ) =  V(q, p, t ) -  T(q, p, t). 

This leads us to the following: 

Proposition 4. Suppose that (F, >1 ) satisfies (A8) and (A9). Then the 
particle's probability density function, P/(q, p, t), maximizes: 

fr' f fPi(q,p,t)(V(q, p , t ) - T ( q ,  p , t ) )dqdpdt  

subject to any constraints. 
There are two types of constraints: constraints' on the form of the 

probability density function and all other constraints. An example of a 
constraint on the form of the probability density function would be the 
constraint: "" the variance of x must exceed Planck's constant." If we assume 
all such constraints on the form of the probability density function can be 
neglected, then the solution to the problem of Proposition 4 is a 6 function 
with all mass concentrated on that trajectory ((q(t) ,  p(t))]t ~ [T 0, Ti] ) which 
maximizes: 

p, t ) -  r(q,  p, t)] dt 

subject to any constraints. More formally: 

Proposition 5. If there are no constraints on the form of the probability 
density function and if (F, >/) satisfies (A8) and (A9), then the particle's 
trajectory (q(t) ,  p(t)It ~ [T o, Tt] ) is deterministic and maximizes: 

fTo T '[V( q, p , t ) - T (  q, p, t)]  dt 

subject to any constraints. 
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And Proposition 5 is obviously Hamilton's principle which, as Gold- 
stein (1950) has emphasized, can be viewed as an alternate formulation of 
the laws of classical mechanics more fundamental than Newton's. 

In the following section, we will add a constraint on the form of the 
probability density function which will give us Schr0dinger's equation. 

4. THE SCHRODINGER EQUATION 

4.1. Derivation. Define a function ep(q, p, t) so that P/(q, p, t) = 
ep2(q, p, t). This function ep(q, p, t) will be discussed in detail further. 

The first constraint on the form of the probability function which I 
want to add is the following: 

(A10) pep(q, p, t)  = - ih[Oep(q, p, t)/cgq]. 

Hence the optimization problem is as follows: 

Proposition 6. The particle will have that ep(q, p, t) maximizing: 

subject to 

fr' f f epZ(q, p,t)[V(q,p,t)-T(q,p,t)] dqdpdt 
T~ p q 

(4a) f p f q e p 2 ( q , p , t ) = l  for T0 ~< t ~< T , 

Oep( q, p,  t ) 
(4b) pep(q, p,  t)  = - ih Oq 

We can now derive the Schr0dinger equation. 

Assumption. T( q, p, t) = p ' - /2m and V( q, p, t) = V( q, t), i.e., the kinetic 
energy is purely velocity dependent and the potential energy is velocity 
independent. 

Then 

T(q ,  p,  t)ep2(q, p, t) = -~m [Pep(q' p '  t)]2 

1 aep(~,t)  2 
- ~m[-ih --- ] 

- 2ml h2[Oep(q'p't)] 
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Since V(q, p, t) is independent of p, we have gotten rid of constraint (4b) by 
substitution. Thus we now have the following: 

Proposition 7. The particle will have that q,(q, p, t) maximizing: 

2[aq~(q,p,t)] 2 JpJq~m Oq +V(q'p't)q~2(q'p't)dpdqdt 

subject to 

fpfqq~2(q,p,t)=l forTo<~t<~Ti 

Letting )~(t) be the Lagrangian multiplier for the constraint (for each 
t ~ [T 0, TI]), we now use the calculus of variations: 
Define 

{ h2 [OeP(q'p't)]2+V(q,p,t)4~2(q,p,t)-X(t)q~2(q,p,t)} G(q,p,t)= ~ aq 

We know that the optimal ~(q, p, t) satisfies 

OG(q,p,t)oq~ ~q3 0G(q,p,t)]=OOq~q 

where 

This gives us the equation 

h z 02ep(q,p,t) 
(*) 2m Oq2 

Oq~( q, p, t ) 
3q 

+ V(q, t)qS(q, p, t) =)~(t)qS(q, p, t) 

Now suppose that we consider q~(q, p, t) to be time independent. Then the 
normalization constraint will hold for all t ~ [T 0, Ti] if it holds for any 
t ~ [T 0, Tj]. In this case, )~(t) is a constant for all t ~ [T 0, Ti]. If we call it E, 
then (*) becomes exactly the time-independent Schrrdinger wave equation. 

Suppose that q~(q, p, t) is not time independent. We then make the 
following further assumption on the form of ~(q, p, t): 

(AI 1) (a) q~(q, p, t) = Y(q, p)Z(t). 
Part (a) of the assumption says that ,~(q, p, t) is time separable. Then 

Oeo(q,p,t) OZ(t)_y(q,p)Z(t)[ 1 0 Z ( t ) ]  
Ot = Y( q' p ) Ot Z-(t) Ot 
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so that 

ih Oq~(q'p't)ot e p ( q , p , t ) [ + i h - -  - -  
I 0z(t) l 

z(t)  at 

The second part of the assumption is then 
(b) 

X(t) = + ih - -  l OZ(t)  
z(t) at 

Together (AIla)  and (AI lb) tell us that 

(**) X(t)ep(q,p,t)=ih Oep(q'p't) 
at 

(**) when substituted into (*) gives us the time-dependent Schr6dinger 
wave equation. We note that (A10) and (**) are analogous to standard 
operator-notation expressions in quantum mechanics. 

4.2. Implications of (AI0) and (All).  The equation pq~(q,p,t)= 
-ih[aep(q, p, t)/aq] means that th(q, p, t) = X(p, t)e ipq/h Then the 
customary wave function, q, (q, t) is just 

~_(q,t)= fpq~(q,p,t) 

= fpX( p, t)e ipu/h 

As Merzbacher (1970, p. 19) noted, this is just the standard expression of 
the wave function as a wave packet. 

We also have the customary momenta wave function, cp( p, t) as just 

,~( p, t) = fq,l,(q, p, t) 

= fqX( p, t)e ipq/h 

We note that both q~(p, t) and tp(q, t) are real functions. 
Now my analysis has not made use of complex conjugation. Hence 

p~( q, p, t) = A:( p, t )e 2'~''/'~ 
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is, in general, a complex number although 

and 

P,( q, t) = fpA2( p, t )e 2ipq/h 

Pz(P, t) = fqAZ(p, t)e 2ipq/h 

are real probability density functions. I will discuss the implications of this 
later. 

Similarly assuming q~(q, p, t) = Y(q, p)Z( t )  leads [as Merzbacher 
(1970), p. 43 and 44) demonstrates] to 

q~(q, p, t) = e-iE~t)/hY(q, p) 

= e l ( p q - - E ( t ) ) / h A ( p )  

Note that E(t) = Et when ~( t )  is a constant. Thus we can write Proposition 
6 as follows: 

Proposition 8. Choose A(p )  to maximize: 

fT' f f A2( p )e2i'pq-E'"'/~( V( q, p, t ) -  T( q, p, t )) dqdpdt 
To p q 

subject to 

fpfqA2( p )e2'tpq- Ett))/hdp dq = l for To <~ t ~ T I 

We cannot be completely comfortable with this proposition, as stated, 
because of the complex numbers. However, we use the fact that V(q, p, t) = 
V(q, t) and T(q, p, t) = T( p, t) to write 

TI A 2 E(t)}/h( , f~,, fpf,, (p )e  2i{pq- V ( q , t ) - T ( p  t ))dqdpdt  

as equal to 

f ~  fqV( q' t ) fp A2( p )e2''pq- E{t}'/~dq dp 

- fr, r' fpT( p , t )  fqA2( p)e2"pq-E't"/hdqdp dt 
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Using the definitions of Pl(q,t) and P2(p,t), we then can rewrite the 
proposition as follows: 

Proposition 9. Choose A(p )  to maximize: 

ff'fV(q't)et(q't)dqdt- q 

subject to 

fqP~(q, t)  = 1 for T O ~< t ~< T~ 

[which also implies fpP2(pt) = 1]. 

And this is a well-defined problem. 

This paper has viewed the particle as selecting that position and 
momentum which minimizes the expected value of the Lagrangean. How- 
ever, we also added the assumption that it is impossible for the particle to 
select some particular combination of position and momentum as its 
solution (i.e., the probability distribution for any combination of position 
and momentum is a complex number). Given these constraints, we find that 
the probability the particle follows a given path is described by the 
Schr~dinger equation. 

5. CONCLUSIONS 

The guiding idea in this paper is that physics and economics can be 
viewed as having a common theoretical foundation. This theoretical founda- 
tion can be formalized in certain consistency conditions (see Appendix 1) 
which lead to the maximization of expected utility. 

At this point, one must specify the utility function being considered 
and the range of alternatives which the entity in question can use to 
maximize that expected utility. In physics, we add a time-separability 
condition (A8) which allows us to write our integral over expected utility as 
the time integral of an integral over position and momentum. We add a 
condition specifying that the utility function is the negative of the 
Lagrangean. Finally we allow a particle to choose any position and 
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momentum combination to maximize expected utility subject to a certain 
uncertainty principle--the particle cannot specify any deterministic solu- 
tion, it must specify a probability distribution with a certain minimal 
variance. 

Given these specifications, we can derive the basic principles of classi- 
cal and quantum mechanics. 

The situation in economics is similar. In economics, we are concerned 
with an individual choosing decisions d to maximize his expected utility. 
The utility function expresses his empirical preferences. He is only allowed 
to make those decisions which are physically possible for him. 

This parallelism indicates the possibility of much fruitful cross-fertiliza- 
tion between economics and physics. 

APPENDIX 1: THE CONSISTENCY CONDITIONS 

We have defined the ordering, >~, over the acts of nature, f ~ F. Before 
applying the Savage axioms, we first define the notion of a state. After 
deducing Savage's result which is expressed in terms of states, we then 
convert the result into statements about acts of nature and probability 
density functions, P f ( a ) .  

States. For illustrative purposes, consider both ~ and F to be finite. 
Let Card(CO) and Card(F)  denote the number of elements in ~ and F, 
respectively. (The results apply to the infinite A and F case.) We define the 
state s(il, i 2 . . . . .  iC~dr F)) to be the following vector: 

s ( i � 9 1  2 . . . . .  iCa~d,F)) = (a , , ,a i  2 . . . . .  aic,,~,r,) 

We say that state s(it, i 2 . . . . .  iC~rd(F~) obtains if and only if 
(1) Act ft ,  if it were the true act of nature, would have led to 

trajectory a,, 
(2) Act f2, if it were the true act of nature, would have led to 

trajectory aa, 
(3) Act f3, if it were the true act of nature, would have led to 

trajectory ai3 

(Card(F))  Act fCard(F) , if it were the true act of nature, would have led to 

trajectory a ic~,dc r) 

Thus a state is an element of the Card( F )-fold Cartesian product of e~. 
We use the notation, s, to denote a state. Let S be the set of all such states. 



Reformulating Classical and Quantum Mechanics 815 

(S has Card(~)  card(n elements.) The probability of a state, s, is the 
probability of all Card(F)  acts leading to the trajectories specified for them 
by the state. Thus the probability of s(i I, i 2 . . . . .  /Card(F)) is 

P(s( i , , i  2 . . . . .  /Ca,d< r ) ) ) =  

Card(F) 

PA(a,~) 
k : l  

Let S + be the set of all states with positive probability. (See Appendix 2 for 
further discussion of this notion of state.) 

With this formulation, we can view the acts of nature, f, as functions 
mapping each state, s, into a trajectory, a. More formally, we could write 
f ( s )=a .  

We can now begin stating the Savage axioms. 

The Savage Axioms: 

(AI) (F, >/) is a simple order. In other words, for any fl, f2 and f3 in F: 
(a) either ft >/f2 orf2 >/fl but not both; (b) i f f l  >/f2 andf2 > f3 then 
fJ >~ -/'3. This is just a matter of logic. In the thought experiment, we 
will either choose f ,  to be true before we choose f2 or vice versa. This 
is (a). If we will choosef, to be true before we choosef2 and if we will 
choose f2 to be true before we choose I"3, then we will choose fi to be 
true before we choose f3. This is (b). 

We now make a definition: 

Definition. We say that for f ,  g ~ F, f >/g given B if and only if f '  > g' 
for every f ' ,  g' such that 

and 

(a) f ' ( s ) = f ( s )  f o r s ~ B  

(b) g ' ( s ) = g ( s )  fors ~ B 

(c) f ' ( s ) = g ' ( s )  f o r s ~ B  

And then our second postulate is as follows: 

(A2) For everyf ,  g ~ F a n d  every B c S ,  e i t h e r f > g  given B or g > / f  
given B. 

Now this postulate, often called Savage's sure thing principle, says that 
if we are trying to decide whether f >/g or not, and if f and g lead to the 
same trajectories for states not in B, then to decide whether f > g or not, we 
can ignore what trajectories f and g led to for states not in B. 

We now make another definition. 
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Definition. Suppose that we have acts of nature, f and g, such that 
f ( s )  = a/and g(s) = ag for every s ~ S +. Then a/>1 ag i f f f  >/g and a / >  ag 

iff f > g. 

This definition extends the /> ordering of acts of nature to an ordering 
of trajectories. We now state our third postulate: 

(A3) I f f ( s ) = a / a n d f ' ( s ) = a g  f o r s ~ B  and if B c S + * : O  t h e n f > ~ f '  
given B iff a/>1 as. 

In other words, suppose one trajectory is preferred to another (in 
the sense of >/). Then if one act is the same as another act except 
for states in B and if that one act leads to the more preferred 
trajectory while the other leads to the less preferred trajectory for 
states in B, then the first act is preferred to the second. 

This postulate again is fairly reasonable. We now make another defini- 
tion: 

Definition. A >1 B iff fA >1 fs  whenever g >1 g', fA(s) = g for s q~ A and 
fA(s )=g '  for s ~ A, and fB( s )=g  for s E B and fB(s )=g '  for s ~ B. 

In other words, A is more probable than B if that act which gives the 
more preferred trajectory in A (and the less preferred in A C) is preferred to 
that act which gives the more preferred trajectory in B (and the less 
preferred in Be). 

Savage's next postulate is then as follows: 

(A4) For every A, B (subsets of S), either A >/B or B >/A. 
The probability P(s(i l, i 2 . . . . .  ic~d~ F) )) which I defined earlier will 
satisfy the definition and axiom (A4). 

The next postulate makes the rather innocuous assertion that there is at 
least one act which is better than some other act. 

(A5) It is false that for every f ,  f ' ,  we have f >i f ' .  
This is clearly true in our case since even without the Gedanken 
Experiment, the particle does follow one trajectory over all others. 
Hence there is at least one act of nature which is better than others. 

The next postulate states the following: 

(A6) Suppose that g > h. Then for every al, there is a finite partition of S 
such that if g'  gives the same trajectories as g and if h' gives the same 
trajectories as h except on an arbitrary element of the partition (each 
element of the partition having equal probability) at which both g' 
and h' lead to a/, then g'  > h and g > h'. 
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This postulate says that no matter how preferred or not preferred 
trajectory a i is, if it is assigned a small enough probability and 
made one possible consequence of g (thus turning g into g') and 
made one possible consequence of h (thus turning h into h'), then g 
will only be negligibly different from g' and h will only be 
negligibly different from h'. We could view this axiom as saying 
that there is no infinitely preferable trajectory and that we can 
partition S as finely as desired. (Partitioning S can be thought of 
as taking subsets of S, possibly flipping coins to subdivide into 
even smaller sets.) 

The final axiom is as follows: 

(A7) Iff>~ g given s for each s ~ B, t h e n f  >~ g given B. 

These are Savage's seven axioms of rational behavior. Given the basic 
formulation of an ordering of acts of nature, >~, they are fairly plausible. 
Using them, we can deduce Savage's theorem: 

Theorem 1. If (F, >/) satisfies (A1) through (A7), then there exist 
functions p(s) and u(f/s) such that 

f ~ > g i f f  Y~ p(s)u(f/s)ds>~ ~ p(s)u(g/s)ds 
s E S  s E S ~  

where p(s) might be viewed as the probability of state s obtaining 
and u(f/s) is called the utility of act f i n  state s (see Savage, 1975, 
for proof). 

But the utility of act f i n  state s is the utility o f f ( s ) ,  the trajectory a c t f  
leads to in state s. Suppose that fl(s)=al,f2(s)=a2 ..... fC~rd(F)(S) = 
aCid(F)" Then by the definition of state s, p (s) is the probability that act fl  
leads to trajectory a t and act f2 leads to a 2 and act f3 leads to a 3 and -- .  
and ac t  fCard(F) leads to acard (F). 

Then we can change the variable of summation and write 

E p(s )u ( f / s )=  ~_, P/(a)u(a) 
s ~ S  a ~ A  

where P/(a) is the probability that act f leads to trajectory a and u(a) is the 
utility of trajectory a. 

I can now state my second Theorem: 

Theorem 2. If (F, >/) satisfies (A1) through (A7), then there exist 
functions P/(a) and u(a) such that 

f>~g iff ~ Pf(a)u(a)>~ ~ Pg(a)u(a) 
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And from that, we get the following corollary: 

Corollary 1. If (F, >/) satisfies (A1) through (A7), then the particle 
will follow that act of nature, f ,  maximizing: 

~. Pl(a)u(a) 
a ~  

We note that choosing f is equivalent to choosing the probability 
distribution, P/(a) over all trajectories a in ~. We also note that we can let 

become an uncountable set so that the summation is replaced by an 
integral. With these constraints, we have the following corollary: 

Corollary 2. If (F, >/) satisfies (A1) through (A7), then the particle 
will be governed by that probability distribution, P/(a), maximiz- 
ing: 

~ef(a)u(a)da 

subject to any constraints on the particle. 

Corollary 2 is Proposition 1 in the text. 

APPENDIX 2 

Suppose there are two possible trajectories: (1) standing still and (2) 
moving to the right at the speed of light. Suppose there are only three 
allowable probabilities: 0, 0.5, and 1.0. Then there are three possible acts of 
nature: act 1: standing still with probability 0; act 2: standing still with 
probability 0.5; act 3: standing still with probability 1.0. 

There are 2 s or eight possible states: 
(1) The state in which act 1 leads to the particle standing still 

act 2 leads to the particle standing still 
act 3 leads to the particle standing still 

(2) The state in which act 1 leads to the particle standing still 
act 2 leads to the'particle standing still 
act 3 leads to the particle moving to the right 

(8) The state in which act 1 leads to the particle moving to the right 
act 2 leads to the particle moving to the fight 
act 3 leads to the particle moving to the fight 
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Most of these states have probability zero. In fact, there are only two which 
have nonzero probability: 
(1) The state in which act 1 leads to the 

act 2 leads to the 
act 3 leads to the 

and 
(2) The state in which act 1 leads to the 

act 2 leads to the 
act 3 leads to the 

Each of these two states has probabili ty 

particle moving to the right 
particle standing still 
particle standing still 

particle moving to the right 
particle moving to the right 
particle standing still. 
0.5. 

APPENDIX 3: D E T E R M I N I S T I C  DERIVATION 

This Appendix shows that it is possible to derive Hamilton's  principle 
using only (A8), the time-separability assumption and (A9) which defines 
utility to be the negative Lagrangian and two other assumptions. We 
proceed as follows. 

First suppose we are considering trajectories the particle could follow. 
We call the trajectory the particle will, in fact, follows a~. Now suppose we 
rule out a z with an ideal constraint. Then we call the trajectory which it will 
follow instead a 2. And so we continue. We define the ordering, > ,  and say 
that a t > aj if we would never choose aj to be the trajectory as long as 
trajectory a i has not been ruled out by an ideal constraint. We define >1 by 
a, >i aj if it is false that aj > a~. 

Thus we have constructed a deterministic >/ ordering over trajectories 
similar to the one we constructed in the first section. We now assume the 
following: 

(B.1) (T, >/) is a simple order. 

This is analogous to axiom A.1 of Appendix 1. 
We now define the following set of trajectories: 

Definition. A trajectory belongs in set C if it is possible to describe the 
trajectory by a polynomial with rational coefficients and exponents with, at 
most, countably many terms. 

We now make another definition: 

Definition. A set B is said to be a countable order dense set of T if 
whenever a i > aj for ai, aj ~ T, there exists a b ~ B such that ag >1 b >1 aj. 
Furthermore B is countable. 
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We now make  our  second assumpt ion :  

(B.2) Fo r  any two t ra jector ies  a;, aj ~ 7", we can always find a t ra jectory,  c 
in C such that  if a, > a j ,  then a; >/c >/a j .  In o ther  words,  in some sense, we 
can app rox ima te  any t ra jec tory  in T a rb i t ra r i ly  well by  a t ra jec tory  in C. 

Since C is countable ,  (B.2) says that  T has a coun tab le  o rder  dense  set. 
We  now cite the theorem from Kran t z  et al. (1971): 

Theorem. Suppose  that  (T, >/)  is a s imple  o rde r  and  (T, >/)  has a 
coun tab le  o rder  dense set, then there exists a funct ion u( ) such that  
(1) if a, > /a j ,  then u(a;)>1 u (a j ) ,  (2) the par t ic le  will follow that  
t ra jec tory  maximiz ing  u(a*)  and conversely.  

Thus axioms (B.1) and  (B.2) imply  the exis tence of  a ut i l i ty funct ion for 
the part icle .  The t ime-separab i l i ty  a s sumpt ion  al lows us to write that  ut i l i ty 
funct ion as 

u ( a )  = fr'u(a(t), t )  dt 
, l  a r,, 

Def in ing  uti l i ty to equal  po ten t ia l  energy minus  kinet ic  energy then gives us 
Ha m i l t on ' s  pr inciple .  Thus  H a m i l t o n ' s  p r inc ip le  can be der ived  from some 
very s imple and very intui t ive condi t ions .  
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