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Summary. Objective: Rapamycin (R) inhibits p70 S6 Ki-
nase (p705%K) activity and hypertrophy of cultured neona-
tal rat cardiac myocytes. The purpose of the present study
was to determine whether rapamycin inhibits left ventric-
ular (LV) hypertrophy in intact rats and whether it alters
cardiac gene expression.

Methods: 300 g rats were subjected to aortic constric-
tion (AC) or sham-operation (SH) and studied 2 and 3 days
after surgery. Beginning 1 day prior to surgery, rats were
injected with rapamycin (1.5 mg/kg, i.p.) or carboxymethyl-
cellulose vehicle (V), yielding 4 groups (SH-V, SH-R, AC-V,
AC-R). Total RNA was extracted for determination of mRNA
levels by Northern blotting.

Results: LV dry weight/body weight ratios were
0.434+0.04 (mean+SE) for SH-V, 0.46 +0.02 for SH-R,
0.56 + 0.02 for AC-V, and 0.53 £ 0.03 for AC-R. R inhibited
cardiac hypertrophy induced by pressure overload (ANOVA;
p < 0.05). Rapamycin had no effect on the expression of
atrial natriuretic factor mRNA, but increased the levels of
B-myosin heavy chain mRNA 6-fold in hearts of SH-R and
AC-R compared to SH-V. Rapamycin also increased the ex-
pression of a-myosin heavy chain mRNA in SH-R by 3-fold
compared with SH-V, but had no effect on the AC-R group.

Conclusion: The data suggest that an intact mTOR sig-
naling pathway is required for rapid hypertrophic growth of
the heart in vivo. Moreover, the data suggest a novel link
between the mTOR/p705%K signal transduction pathway and
pretranslational control of myosin gene expression in the
heart.
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Introduction

Cardiac myocyte hypertrophy requires increased syn-
thesis of cellular protein involving both transeriptional
and translational mechanisms [1-4]. Control of these
processes is exerted by a web of intracellular signaling
pathways consisting of kinases and other molecules
that act to upregulate or downregulate transcription
of specific genes and to modulate translation of various

classes of mRNA. The mTOR/p705%K signal transduc-
tion pathway is an important and ubiquitous regulator
of cell size [5]. In drosophila, loss of dS6K function
(the homologue of mammalian p705°%) results in flies
with smaller cells, but no decrease in cell number [6].
In rodent skeletal muscle, mTOR/p705%K signaling
plays a critical role in load-induced growth [7,8]. The
mTOR/p705K pathway regulates translational aspects
of protein synthesis and is required for hypertrophy of
cultured neonatal rat cardiac myocytes [9,10]. In vivo,
p7056K is activated by pulmonary artery constriction
in the feline right ventricle and correlates with the
hypertrophic growth of that ventricle [11]. When
the current studies were begun, the precise role
of the mTOR/p705°K signaling pathway in pressure
overload-induced cardiac hypertrophy % vivo had not
been established.

Evidence suggests that phosphorylation of the ribo-
somal S6 protein regulates the translation of mRNAs
into proteins. The ribosomal S6 protein is uniquely posi-
tioned to regulate the protein synthetic machinery from
its location at the tRNA-mRNA-binding site of the 40S
ribosome [12]. It appears to play a role in the activation
of protein synthesis and to regulate the overall rate
of translation [13]. The ribosomal S6 protein is phos-
phorylated on a number of residues by p705¥ [13,14].
Phosphorylation of these residues results in an increase
in the rate of serum-stimulated protein synthesis and
a selective increase in the translation of mRNAs con-
taining a polypyrimidine tract at the 5 terminus [13].
This class of mRNAs includes those encoding riboso-
mal proteins and proteins involved in the initiation of
translation [15]. Thus, selective accumulation of these
proteins that constitute the translational machinery is
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thought tolead to a general increase in the rate of trans-
lation.

Rapamyecin is an immunosuppressive macrolide that
inhibits p7056K activity in fibroblast cells and limits the
rate at which fibroblast cells and T-lymphocytes enter
S phase [14,16]. The effects of rapamycin are mediated
through its binding to FK506 binding protein (FKBP),
an intracellular immunophilin known to bind FK506
[17-19]. Inhibition of p70S¢K activity by rapamyein in
fibroblasts is accompanied by inhibition of protein syn-
thesis and selective repression of the translation of
“polypyrimidine tract” mRNAs that encode elongation
factors and ribosomal proteins [13,20,21]. Selective reg-
ulation of this class of mRNAs may be particularly rel-
evant in cardiac myocytes, because an important early
event in the hypertrophic growth of the heart is an ac-
cumulation of ribosomal subunits [22,23].

The goals of this study were to determine whether
signaling via the mTOR/p705°% pathway is required
for cardiac hypertrophy in the intact rat and whether
signaling via this pathway influences expression of
hypertrophy-associated genes. To address this issue,
growth of the heart stimulated by aortic constriction
in rats that were treated with either rapamycin or
vehicle was compared. The results indicate that ra-
pamyecin inhibits activation of p705¢K and attenuates
hypertrophic growth of the rat heart after aortic con-
striction. The data also suggest a novel link between
the mTOR/p705¢K signal transduction pathway and pre-
translational control of myosin gene expression in the
heart.

Methods

Materials. Rapamycin was a generous gift of Wyeth-
Ayerst (Princeton, NJ). The carboxymethylcellulose
vehicle was obtained from Sigma (St. Louis, MO).
Hemoclips were from Weck (Research Triangle Park,
NC). Antibodies directed at p705% were from Santa
Cruz Biotechnology (Santa Cruz, CA). Secondary an-
tibodies, enhanced chemiluminescent (ECL) detec-
tion reagents, and radioactively labeled nucleotides
were purchased from Amersham (Arlington Heights,
IL). Reagents and consumables were purchased from
Fisher Scientific (Hampton, NH) unless otherwise
stated.

Animals. Six-week old male Sprague-Dawley rats
weighing 225-250 g were obtained from Charles River
Laboratories (Wilmington, MA) and maintained on a
12h:12h light:dark cycle with rat chow and water ad libi-
tum. All animal protocols were approved by the Univer-
sity Committee on Use and Care of Animals at the Uni-
versity of Michigan. The investigation conforms with
the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NTH
Publication No. 85-23, revised in 1996). Rats were ini-
tially assigned to either sham-operation (SH) or aortic
constriction (AC) groups.

Aortic constriction. AC was performed as described
previously when rats weighed 300 + 10 g and were ap-
proximately 2 mo old [24]. Briefly, a left thoracotomy
was performed under ketamine (87 mg/kg) and pento-
barbital (30 mg/kg) anesthesia and the ascending aorta
was exposed. A Weck hemoclip was placed around the
aorta 4-6 mm superior to the aortic valve with the
gap of the Weck hemoclip applicator adjusted to 1.02
mm by a thumbscrew. Preliminary experiments estab-
lished that a left ventricle/distal aorta pressure gradi-
ent of 46 + 12 mmHg resulted from constriction of the
severity imposed by the 1.02 mm setting. A catheter
linked to a pressure transducer was inserted into the
carotid artery. With the catheter in place, the aortic
band was applied, and the acute increase in pressure
was recorded. In “dose-response” experiments, the gap
of the hemoclip applicator was adjusted to increase or
decrease the severity of constriction. When the clip was
in place, pleural pressure was reinstated and the wound
closed with a silk suture. At designated times after AC,
the left ventricles were quickly dissected free, weighed
and rapidly frozen by clamping with tongs cooled to the
temperature of liquid nitrogen. Tissues were stored at
—70°C for subsequent analysis.

Rapamycin treatment. Rapamycin was given at a
dose of 1.5 mg/kg body weight by injection into the in-
traperitoneal cavity. Preliminary experiments had de-
termined that inhibition of aortic-constriction-induced
cardiac hypertrophy was maximized with a dose of ei-
ther 0.75 mg/kg or 1.5 mg/kg. Carboxymethylcellulose
(0.2%) was used as the vehicle.

Immunoblotting and estimation of p?0 activity.
Frozen heart tissue was homogenized in buffer (62.5
mmol/L, Tris, pH 6.8, 1 mmol/L. sodium orthovana-
date, 10 nmol/L okadaic acid, 10 wg/mL leupeptin, and
10 pg/mL aprotinin). Homogenates were diluted with
buffer to achieve the desired protein concentration and
then mixed 1:1 with 2X sample buffer (125 mmol/L Tris,
pH 6.8, 4% SDS, 20% Glycerol, 10% 2-mercaptoethanol,
0.001% bromphenol blue). 10-40 pg of protein were
loaded into each lane of a 7.5% SDS-polyacrylamide gel
and size fractionated by electrophoresis at a constant
current of 20 mA for 16-20 hours. Proteins were then
electrophoretically transferred to polyvinylidene diflu-
oride (PVDF) membranes at 5V/em for 16-20 hours at
4°C. After incubation in blocking solution (PBS-T, 1%
bovine serum albumin) for 2 hours, membranes were
washed three times in Western buffer (50 mmol/L NaCl,
10 mmol/L Tris, pH 7.0, 1 mmol/LL EDTA, 0.1% Tween-
20) before incubation with the primary antibody (rab-
bit anti-p7056K, C-18) for 16-20 hours, followed by three
more washes and incubation for one hour with a 1:10,000
dilution of the secondary antibody (goat anti-rabbit
IgG conjugated with horseradish peroxidase). Anti-
body binding was detected using the enhanced chemi-
luminescence (ECL) method according to the manufac-
turer’s instructions.

Invitrop?03°% assay. For a subset of hearts, a small
portion of the LV was homogenized as above and used



for an in vitro assay of immunoprecipitated p705K ac-
tivity exactly as described previously [10].

RNA isolation and determination of RNA yield.
RNA was isolated from a pre-weighed portion of the
left ventricle as described previously [25]. The result-
ing RNA pellet was dissolved in nuclease-free water.
The concentration of the final RNA solution was de-
termined at a wavelength of 260 nm with a Spectronic
Instruments Genesys 5 spectrophotometer (Rochester,
NY).

RNA blotting RNA blotting was performed as de-
scribed previously with modifications [25]. Ten ug of
total RNA was size fractionated by electrophoresis
through 1% agarose gels, transferred electrophoreti-
cally at 5 V/em to a nylon (Nytran-SPC) membrane
and hybridized with 32P-radiolabelled probes overnight
at 68°C for cDNA probes and 42°C for oligonucleotide
probes using PerfectHyb Plus (Sigma). Hybridization
intensity was quantified with a Personal Phosphoim-
ager FX (Bio-Rad, Hercules, CA). Signals visualized
on computer screen were identified by position relative
to 18S and 28S rRN A migration, delineated by rectan-
gles, and quantified after background subtraction. Each
blot was subsequently stripped, verified to be free of ra-
dioactivity, and reprobed. The relative amount of each
message was calculated by first normalizing the signal
to that of an oligonucleotide probe specific for the 18S
ribosomal RNA and then multiplying by the yield of
total RNA per gram of tissue. Assuming that greater
than 97% of the total RN A is ribosomal, this calculation
gives an estimate of the mRNA abundance per gram
heart tissue and is independent of other messages that
may or may not be affected by the experimental treat-
ments. In preliminary experiments, the signal from
each sample was also normalized to the signal obtained
with an oligonucleotide specific for the 3’ untranslated
region of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and one for B-actin. Based on those obser-
vations, normalization to levels of GAPDH mRNA pro-
duced the smallest error relative to the tissue adjusted
values reported in Figures 4 and 5, while normalization
to B-actin mRNA yielded extremely large errors, pri-
marily because the levels of g-actin mRNA per gram
tissue were markedly increased by aortic constriction
(datanot shown). All the mRNA values reported in this
paper are expressed in relative amounts per gram tis-
sue, using the 18S normalized value and adjusting for
RNA yield. Interpretations are not altered if mRNA
values are expressed relative to GAPDH.

Probes. Complementary DNA probes were synthe-
sized from a template by the random prime method as
described previously [25]. The templates for the atrial
natriuretic factor (ANF) probe, the skeletal «-actin,
the cardiac a-actin probes, were described previously
[25]. The probes for ¢-myosin heavy chain («-MHC),
B-myosin heavy chain (8-MHC), and the 18S riboso-
mal RNA were end-labeled synthetic oligonucleotides
described previously [25]. The probe for c-fos was an
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~500 base pair riboprobe described previously [26].
The probe for HSP70 was a cDN A described previously
[27]. The probe for B-actin was a 40 base pair synthetic
oligonucleotide complementary to a portion of the 3’-
untranslated region with the sequence: 5 CGC AAG
TTA GGT TTT GTC AAA GAA AGG GTG TAA AAC
GCA G-3'. The probe for GAPDH was a 40 base pair
synthetic oligonucleotide complementary to a portion
of the 3’-untranslated region with the sequence: 5-CTC
TTG CTC TCA GTA TCC TTG CTG GGC TGG GTG
GTC CAG G-3.

Cell culture and transfection. Neonatal cardiac my-
ocytes were isolated and cultured as described pre-
viously [10] except that pre-plating for 30 min was
used instead of a Percoll gradient to purify myocytes.
Myocyte purity was at least 90% as determined by
immunostaining of sarcomeric actin. Myocytes were
transfected with a —3542/+85 B-MHC-luciferase re-
porter construct (a generous gift from John Kd-
wards) using a modified calecium phosphate method de-
scribed previously [28]. Cells were co-transfected with
a cytomegalovirus promoter-renilla reporter construct
(Promega) to control for transfection efficiency. Cells
were harvested and processed for a dual-luciferase as-
say (Promega).

Statistics. Values are expressed as mean =+ standard
error of the mean (SE). Data were evaluated with a 3-
factor ANOVA procedure for all variables that were
measured at 2 time points. A 2-factor ANOVA proce-
dure was used for variables that were evaluated at a
single time point. A one-tailed test was used to evalu-
ate the Pearson correlation coefficient of the relation-
ship between severity of constriction and phosphoryla-
tion of p7056K, Differences were considered significant
when p < 0.05.

Results

Characterization of the hypertrophy model. To exam-
ine the effects of rapamycin on heart growth in vivo,
aortic constriction, a commonly used model of rapid car-
diac growth, was used. Aortic constriction of 300 g rats
with a Weck hemoclip applicator gap set at 1.02 mm pro-
duced a pressure differential of 46 + 12 mmHg and an
18% increase in LV dry weight by day 2 with evidence
of a plateau by day 3 (F'ig. 1). Consistent with previous
reports [29-31], aortic constriction induced a pattern of
gene expression that included rapid transient activa-
tion of c-fos and hsp70, and a delayed, more sustained
activation of ANF and B8-MHC (data not shown). Ex-
pression of cardiac a-actin was unchanged, while that of
skeletal a-actin mRNA increased. A marked decrease
in the level of «-MHC mRNA was also observed (data
not shown).

Dose-response effects of aortic constriction
on p70°%¥activity. It was reasoned that if the
mTOR/p705K  signaling pathway played an im-
portant role in hypertrophic growth, the magnitude
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Fig. 1. Time course of cardiac hypertrophy after aortic
constriction. Male Sprague-Dawley rats weighing 300 £+ 10 g
were subjected to constriction of the ascending aorta and killed
at the indicated times. LV dry weight increased 10%, 17%, 21%,
and 20% after 1, 2, 3, and 4 days of aortic constriction,
respectively. The value for the overall one-way ANOVA is inset.
LV dry weight is significantly greater than control (day 0) at
days 2 and 3 and 4 (p < 0.05, Fisher’s LSD). LV, left ventricle
mncluding septum. Values are mean £+ SE forn=29, 5, 5, 18, and
3 rats at each time point from day 0 through day 4, respectively.

of the increase in kinase activity should be related
to the intensity of the growth stimulus. To determine
the dose-response effects of aortic constriction on the
mTOR/p705°K signaling cascade, rats were subjected to
aortic constriction of several different levels of sever-
ity. To do this, the Weck hemoclip applicator gap was
set at 1.20 mm, 1.14 mm, 1.02 mm, or 0.89 mm. Activa-
tion of the mTOR p705K pathway was determined by
immunoblotting and assessing the retardation of elec-
trophoretic mobility as an index of p705¢K activity. The
more severe the constriction, the greater the activation
of p705¢K, supporting the notion of a dose-response re-
lationship between the aortic constriction growth stim-
ulus and activation of the mTOR/p705%K signaling path-
way (Fig. 2).

Effects of rapamycin treament on cardiac p705° ac-
tivation 1 vivo. To determine the effect of rapamycin
injections on growth we initially conducted pilot stud-
ies with limited numbers of rats. The pilot data in-
dicated that maximal growth inhibitory effects were
obtained with doses of rapamycin of either 0.75 and
1.5 mg/kg/day. The effects of rapamycin injections on
p7056K activity were examined by immunoblotting. Ro-
bust activation of p705K is observed 30 minutes af-
ter aortic constriction and is completely inhibited by
rapamycin (Fig. 3A). After 3 days of aortic constric-
tion, the activity of p705°K is similar in hearts of sham-
operated and aortic-constricted rats, suggesting that
the mTOR/p705K pathway has adapted to the pres-
sure overload stimulus (Fiig. 3B). The effects of the
daily rapamycin injections are still evident because
the levels of p705K activity in both sham-operated
and aortic-constricted rats are suppressed compared
to their vehicle-treated counterparts. The results of an
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Fig. 2. Dose-response effect of aortic constriction on
phosphorylation of p70 S6 kinase in rat heart. Left ventricles
were harvested 30 minutes after aortic constriction of varying
severity was imposed under pentobarbitol anesthesia. Severity
of constriction was varied by changing the gap between ends of
the hemoclip applicator with a thumbscrew to 1.20 mm, 1.14
mm, 1.02 mm, 0.89 mm. Values are mean + SE for n = 2 at each
level of severity. Inset: Representative immunoblot where
phosphorylation (P+) of p70 S6 kinase is evident as retarded
electrophoretic mobility. There was a significant correlation (R
= 0.53; p < 0.05) between severity of constriction and
phosphorylation of p70 S6 kinase (Pearson). SH:
Sham-operated; CON: control unoperated.

in vitro activity assay of immunoprecipitated p705¥
from a separate subset of LVs at 30 min (Fig. 3C) or
3 days (Fig. 3D) post-surgery support a similar con-
clusion. These data indicate that rapamycin treatment
effectively disabled the mTOR/p70%K signaling path-
way for the duration of the experiment. Therefore, any
effects of pressure-overload in hearts of rapamyecin-
treated rats are unlikely to be mediated by mTOR-
dependent signaling.

Effects of rapamycin on cardiac hypertrophy
in vivo. With evidence that the p705% pathway is
activated by AC in vivo and data demonstrating the ef-
fectiveness of rapamyecin in inhibiting the activation of
p705K by AC, it was feasible to test the hypothesis that
the mTOR/p70%K pathway is important in pressure
overload-induced hypertrophic growth of the heart.
To address this question, sham-operated and aortic-
constricted rats were injected once daily with either
vehicle or rapamycin (1.5 mg/kg/day) beginning the day
prior to surgery and continuing for the duration of the
experiment. Rapamycin treatment exerted a signifi-
cant inhibitory effect on the hypertrophic growth of the
left ventricle induced by aortic constriction (Tables 1
and 2). The effect of rapamycin appeared to be most pro-
nounced at 2 days after aortic constriction, suggesting
that inhibition of the mTOR/p705¢K pathway is crucial
to the rapid growth response, and leaving open the pos-
sibility that other mechanisms of hypertrophic growth
may eventually compensate for mTOR/p705% inhibi-
tion. There was, however, no statistically significant
difference between day 2 and day 3 results for LV dry
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Fig. 3. Inhibition of left ventricular p70 S6 kinase by rapamycin in vivo. Left ventricles were harvested either 30 minutes (A) or 3 days
(B) after aortic constriction (AC) or sham-operation (SH). Rats were treated with either 1.5 mg/kg rapamycin or vehicle beginning 1
day prior to surgery. Phosphorylation state of p70 S6 kinase is evident in the relative electrophoretic mobility of the immunoreactive
bands. Immumnoblots shown in panels A and B are single experiments (n =1). In a separate cohort of rats, an in vitro assay of p70 S6
kinase activity was performed on LV tissue harvested at 30 min (C) or 3 days (D) after aortic constriction. Values are mean + SE for n
= 2-6 samples per group. Open bars represent SH; filled bars represent AC.

weight. The LV dry weight data presented in Tables 1
and 2 is arguably the most accurate index of tissue hy-
pertrophy. Assessment of hypertrophic growth, how-
ever, is more complex when body weight and hydration
may be fluctuating. To prevent misinterpretation of hy-
pertrophic growth, body weight was monitored before
and after drug and surgical treatments. Aortic constric-
tion had a small negative effect on body weight, while

rapamycin treatment induced a much more pronounced
degree of weight loss (Tables 1 and 2). To avoid the
confounding effects of the rapamycin induced weight
loss, the issue of hypertrophy was examined using sev-
eral commonly used indices, including normalization
of LV wet and dry weights to initial and final body
weights (data not shown). Regardless of the index used
for cardiac hypertrophy, the conclusion that rapamycin

Table 1. Biometric data after 2 days of aortic constriction or sham operation

Statistics
SH-VEH AC-VEH SH-RAP AC-RAP

n 6 8 5 7 AC RAP AC*RAP
IBW (g) 298 +4 299 +5 288+ 5 286 + 3 NS P<0.01 NS
FBW (g) 302 + 2 300+ 6 272 +5 274 +4 NS P <0.001 NS
Change in BW (g) 442 1+£3 —-16+7 —12+2 P <0.05 P <0.001 NS

LV wet weight (mg) 622 + 15 758 + 16 583 +9 654 + 17 P <0.001 P<0.01 NS

LV D/W Ratio 222403 21.7+0.3 23.7+0.3 216 +04 P <0.05 NS NS

LV dry weight (mg) 138 +4 164 +2 138 +2 14145 P <0.001 NS P<0.05

Values are mean + SE. Data for all variables in Table 1 were examined using a 3-factor ANOVA procedure, that examined the effects of rapamycin, aortic
constriction, number of days after aortic constriction, and interactions between these factors. IBW: initial body weight; FBW: final body weight; LV: left
ventricle; D/W: dry weight/wet weight ratio of the LV; AC: main effect of aortic constriction; RAP: main effect of rapamycin treatment; AC*RAP: interaction

between AC and RAP.
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Table 2. Biometric data after 3 days of aortic constriction or sham operation

Statistics

SH-VEH AC-VEH SH-RAP AC-RAP
n 7 11 5 8 AC RAP AC*RAP
IBW (g) 303 +6 303 +4 2984+ 6 293 4+ 3 NS P<0.01 NS
FBW (g) 307 +6 297+ 6 289 + 6 272+ 3 NS P <0.001 NS
Change in BW (g) 443 —6+3 -944 —214+2 P <0.05 P <0.001 NS
LV wet weight (mg) 603 + 19 800 + 27 597+ 14 753 £ 37 P <0.001 P<0.01 NS
LV D/W Ratio 221407 21.6 £ 0.5 232+13 21.1+0.6 P<0.01 NS NS
LV dry weight (mg) 136 + 6 17246 138 +£ 7 158 + 8 P <0.001 NS P<0.05
n 4 8 4 7
RNA (ug/g dry wt) 3157 + 300 5097 + 327 4267 + 528 4838 + 278 P<0.01 NS NS
RNA (ng/g wet wt) 722 4+ 87 1103 £ 73 947 + 57 1006 + 35 P<0.01 NS P <0.05

Values are mean + SE. Data for all variables in Table 2 (except RNA) were examined using a 3-factor ANOVA procedure, that examined the effects of
rapamyecin, aortic constriction, number of days after aortic constriction, and interactions between these factors. RNA data were only measured from the
3-day group and were therefore analyzed using a 2-factor ANOVA procedure. IBW: initial body weight; FBW: final body weight; LV: left ventricle; D/W: dry
weight/wet weight ratio of the LV; AC: main effect of aortic constriction; RAP: main effect of rapamycin treatment; AC*RAP: interaction between AC and

RAP.

attenuated cardiac growth in response to pressure
overload is supported. Taken together the data clearly
demonstrate that a functional mTOR/p705K signal-
ing pathway is required for rapid and optimal hyper-
trophic growth of the heart in response to pressure
overload.

Effects of rapamycin on RNA yield. To determine
whether rapamycin would influence the accumulation
of ribosomal RNA in response to pressure overload,
the yield of total RNA per gram of heart tissue was
measured. In vehicle-treated rats, the concentration
of total RNA in the LV was 53% greater in the 3-
day post-aortic constriction group compared with the
sham-operated group (Table 2). In contrast, the concen-
tration of total RNA in the LV of rapamycin-treated
rats was only 6% greater than that of the correspond-
ing sham-operated group. Of note, is the observation
that rapamycin-treated sham-operated rats exhibited
a31% greater concentration of RN A than their vehicle-
treated counterparts. This finding in vehicle-treated
rats is unexpected based on the current understand-
ing of the effects of rapamycin and is not readily ex-
plicable. It should be noted that the increase in RNA
content in the SH-RAP group compared to the SH-
VEH group is not statistically significant. It is, how-
ever, intriguing, and in the opposite direction one would
predict. We have no adequate explanation for this phe-
nomenon, and know of no data that addresses it. We
speculate that given the crucial nature of heart func-
tion, a mechanism may exist to compensate for de-
creased RNA production by increased RNA stability.
This would apply specifically to ribosomal RNA stabil-
ity, since RNA content measurements reflect mostly
ribosomal RNA. Nonetheless, the significant attenua-
tion of the aortic constriction-induced increase in RNA
concentration is consistent with the conclusion that ra-
pamycin inhibits cardiac hypertrophy. Furthermore,
the data suggest that rapamycin acts, in part, by in-

hibiting the pressure overload-induced accumulation of
ribosomal RNA.

Effects of rapamycin on expression of hypertrophy-
associated genes. Previous studies of cultured neona-
tal rat cardiac myocytes treated with growth-inducing
agents demonstrated that whereas rapamyecin treat-
ment inhibited p708K activation and hypertrophic
growthintandem, it did not affect the increased expres-
sion of c-fos, atrial natriuretic factor (ANF'), skeletal
a-actin, or B-myosin heavy chain that is normally asso-
ciated with hypertrophy [9,10]. To determine whether
this apparent dissociation of transcriptional and trans-
lational regulation extended to the in vivo situation, to-
tal RN A wasisolated from hearts of each of the 4 groups
of rats and subjected to RNA blotting. Three days of
aortic constrictionincreased the expression of ANF and
skeletal a-actin mRNA by approximately 2-fold. The
aortic constriction-induced increases in ANF and skele-
tal @-actin mRNA were not significantly diminished by
rapamycin treatment (Fig. 4). Thus, a dissociation be-
tween the expression of two hypertrophy-associated
genes and hypertrophic growth was observed in the
intact heart in vivo, and is consistent with the obser-
vations made previously in cultured neonatal rat car-
diac myocytes [9,10]. In contrast, the effects of ra-
pamycin on myosin heavy chain mRNA levels were
striking. Compared to hearts of vehicle treated rats,
those of rapamycin treated rats exhibited a 3-fold in-
crease in the levels of «-MHC mRNA (Fig. 5). Whereas
the levels of x-MHC mRNA were unaffected by aortic
constriction in the hearts of vehicle-treated rats, they
were markedly decreased in the hearts of rapamycin-
treated rats. Rapamycin treatment produced a 6-fold
increase in the levels of 3-MHC mRNA relative to ve-
hicle treatment. Aortic constriction increased levels of
B-MHC mRNA in hearts of vehicle-treated rats, but
it had no effect in hearts of rapamycin-treated rats.
While rapamycin and aortic constriction both induced
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Fig. 4. Effects of rapamycin treatment and aortic constriction on expression of atrial natriuretic factor (ANF) and skeletal (SK)
a-actin mRNA. Left ventricles were harvested 3 days after aortic constriction (AC) or sham-operation (SH). Rats were treated with
rapamycin (RAP) or carboxymethylcellulose vehicle (VEH) beginning 1 day prior to surgery. Total RNA was harvested and prepared
for Northern blotting as described in Methods. Messenger RNA levels are expressed relative to 18S ribosomal RNA, and then adjusted
for the yield of total RNA per gram tissue (see Table 2), so that they represent the relative amount of RNA per gram dry tissue weight. A
significant main effect of aortic constriction was observed and there were no main or interactive effects of rapamycin (2-factor
ANOVA). Values are mean + SE for n=4, 8, 4, and 7 in SH-VEH, AC-VEH, SH-RAP, and the AC-RAP groups, respectively.
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Fig. 5. Effects of rapamycin treatment and aortic constriction on expression of a- and B-myosin heavy chain (MHC) mRNA. Left
ventricles were harvested 3 days after aortic constriction (AC) or sham-operation (SH). Rats were treated with rapamycin (RAP) or
carboxymethylcellulose vehicle (VEH) beginning 1 day prior to surgery. Total RNA was harvested and prepared for Northern blotting
as described in Methods. Messenger RNA levels are expressed relative to 18S ribosomal RNA, and then adjusted for the yield of total
RNA per gram tissue (see Table 2), so that they represent the relative amount of RNA per gram dry tissue weight. For a-MHC,
significant main effects of aortic constriction and rapamycin were observed, as well as an interaction (INT) between the effects of aortic
constriction and rapamycin (2-factor ANOVA). For B-MHC, only a significant main effect of rapamycin was observed (2-factor
ANOVA). Values are mean + SE for n=4, 8, 4, and 7 in SH-VEH, AC-VEH, SH-RAP, and the AC-RAP groups, respectively.

increases in the levels of 3-MHC, rapamycin alone had when rats were subjected to both aortic constriction
a more potent effect on f-MHC expression than did and rapamycin treatment. The effects of rapamycin on
pressure overload alone. Furthermore, the effects of expression of the myosin heavy chain mRNA levels

rapamycin on 8-MHC expression were not additive suggest a link between the mTOR/ p705¢K signaling
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Table 3. Effects of rapamycin treatment and aortic constriction on gene expression

Statistics
SH-VEH AC-VEH SH-RAP AC-RAP
n 4 8 4 7 AC RAP AC*RAP
B-Actin 1.00 + 0.18 2.83 £ 045 1.55 £ 0.23 2.37+0.27 P<0.01 NS NS
Cardiac a-Actin (CA) 1.00 £+ 0.14 1.25 + 0.26 1.09 £+ 0.28 1.02 +0.11 NS NS NS
Collagen Type I 1.00 £ 0.07 1.71 £ 0.20 1.42 £+ 0.30 1.46 +0.12 NS NS NS
Fibronectin (FN) 1.00 £+ 0.30 1.82 +£0.19 1.37+0.27 1.57 +0.13 P <0.05 NS NS
Glyceraldehyde-3-Phosphate 1.00 £+ 0.15 0.95 +0.11 1.63 £+ 0.36 0.98 £ 0.02 P <0.05 NS NS
dehydrogenase (GAPDH)

Preproenkephalin (PNK) 1.00 & 0.06 0.60 +0.14 1.07 £ 0.20 0.64 +0.11 P <0.05 NS NS
pathway and the regulation of myosin heavy chain gene Discussion
expression in the rat heart.

To determine whether other Previous studies have demonstrated that the

hypertrophy-
associated genes are influenced by rapamycin, we
performed Northern blots for fibronectin, collagen
Type I, and preproenkephalin as well as several
reference or housekeeping genes (Table 3). While each
of the above-mentioned genes exhibited changes in
expression in the expected direction in response to
pressure-overload, no significant effects of rapamycin
were observed. The lack of a rapamycin effect on the
expression of a number of genes that represent several
different gene families suggests that the effects of
rapamycin on gene expression are at least somewhat
selective.

Effect of rapamycin on B-MHC promoter activity.
To determine the possible effects of rapamycin on tran-
scription, we transfected neonatal cardiac myocytes
with a B-MHC promoter-luciferase reporter construct
and treated the cells with vehicle or rapamycin. Rel-
ative to the co-transfected CMV-renilla activity, ra-
pamycin increased the luciferase activity by approxi-
mately 2-fold (Fig. 6). We speculate that mTOR sig-
naling may mildly suppress 8-MHC promoter activity
and that inhibition of mTOR with rapamycin may re-
lieve the mTOR-mediated suppression. Alternatively,
rapamycin may stimulate 8-MHC promoter activity by
an mTOR-independent means.

mTOR/p705K signaling pathway is required for a
robust hypertrophic growth response in cardiac my-
ocytes induced by angiotensin II [9] or phenylephrine
[10]. Growth of the heart in vivo, however, is a much
more complex process, and the importance of this
pathway to hypertrophy of the intact rat heart in
vivo had not been reported when the present study
was initiated. The present study demonstrates that
the mTOR/ p705°K signaling pathway is required for
the normal growth response of the heart to pressure
overload. The data are consistent with the notion
that cardiac hypertrophy in vivo involves coordinate
upregulation of both transcriptional and translational
processes. The findings corroborate and extend pre-
vious reports in which rapamycin inhibited cardiac
hypertrophy in cultured cardiac myocytes [9,10,32,33].
Unexpectedly, the present data also suggest a novel
link between the mTOR/ p705°K signaling pathway
and the expression of the functionally critical myosin
heavy chain genes in the heart.

A growing number of upstream growth signals
have been identified that activate mTOR, including
insulin, various G-protein-coupled receptors, and nu-
trients [7,9,10,15,32,33]. Downstream, mTOR activates
the S6 kinases S6K1 and S6K2 and phosphorylates
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Fig. 6. Regulation of B-myosin heavy chain promoter activity by rapamycin. Neonatal rat cardiac myocytes were transfected with the
indicated plasmids and treated for 48 hours with vehicle (ethanol) or rapamycin. Signals were quantified with a dual luciferase assay.
LUC, luciferase; REN, renilla luciferase; VE H, vehicle; RAP, rapamycin. Values are mean + SE for n =} experiments. p < 0.05, t-test.



4E-BP1 in parallel [15]. S6K1 is primarily, but not ex-
clusively, cytosolic, phosphorylating the ribosomal S6
protein and thereby modifying translational dynam-
ics. The S6K1 homologue S6K2, on the other hand,
localizes mostly in the nucleus, with function(s) that
have yet to be clarified [34]. Phosphorylation of 4E-
BP1 relieves inhibition of the initiation factor eIF4E, a
component of the large translation initiation complex,
thereby modulating translation [15]. Rapamycin forms
a complex with the FK506 binding protein (FKBP) and
this complex in turn binds mTOR, thereby inhibiting
signals to each of the downstream signaling entities
mentioned above [15,34]. In this study, phosphoryla-
tion and/or activity of S6K1 was measured to verify
that signaling in the heart tissue via mTOR was in-
deed blocked by rapamycin administered via intraperi-
toneal injection. The present data do not elucidate rel-
ative contributions of S6K1, S6K2, or 4E-BP1, but
they support the notion that mTOR signaling is crucial
for optimal pressure overload-induced growth of the
heart.

The apparent differences between the complete
inhibition of growth at day two post-AC and the atten-
uation of growth at day three, suggest the possibility
that the rapamycin blockade of the mTOR/ p705¢K
signaling pathway may merely delay hypertrophy of
the heart in vivo. That is, if studied for a longer time, it
is possible that the growth of the heart in the presence
of rapamycin would eventually “catch up” to that in the
vehicle-treated AC rats. This is an important question
left unanswered by the present study. A recent study
of mice, however, shows that the effects of rapamycin
to attenuate aortic constriction-induced cardiac growth
are persistent for at least one week [35]. The study by
Shioi and coworkers [35] showed for the first time that,
in mice subjected to pressure overload for 1 week,
rapamycin (2 mg/kg/day) markedly attenuated cardiac
hypertrophy at the organ and cellular levels. They also
demonstrated that rapamycin blocked activation of
S6K1 and phosphorylation of its ribosomal S6 target.
LV function and expression of two fetal genes, atrial
natriuretic factor (ANF') and brain natiruretic peptide
(BNP) were unaffected by rapamycin treatment. The
present study confirms the major conclusion of Shioi
and coworkers, that rapamycin attenuates pressure
overload-induced cardiac hypertrophy, and extends
the finding to rats. In agreement with Shioi and
coworkers, it was found that rapamycin effectively
eliminated aortic constriction-related signaling via
mTOR to S6K1. Also in agreement is the present
finding that rapamycin did not influence LV expression
of ANF in either sham-operated or aortic-constricted
rats. One notable difference between the study of
Shioi and the present study is that we observed a
rather marked effect of rapamycin to induce weight
loss in rats. A novel finding of the present study is
that rapamycin had marked effects on the expression
of both the «- and the S-myosin heavy chain genes.
Taken together, the present study and the study by
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Shioi and coworkers [35], indicate that the mTOR/
p7056K sionaling pathway is required for the normal
growth response of the heart to pressure overload in
rodents.

Previous studies of cultured myocytes treated with
growth factors [9,10] and of intact mice subjected to
pressure overload iz vivo [35] demonstrated that de-
spite the inhibitory effects of rapamyecin on hyper-
trophic growth, there was no effect of rapamycin on
the induction of so-called fetal genes, such as ANF
and skeletal «-actin. Data presented here on the ex-
pression of ANF is consistent with the previous stud-
ies, and suggests that the influence of mTOR/p705K
signal transduction pathway is restricted to regula-
tion of translational events. Thus, the finding that ra-
pamycin had a potent stimulatory effect on the lev-
els of both «-MHC and g-MHC mRNAs, is both sur-
prising and intriguing. It raises important questions
about how the mTOR/p705%K pathway exerts influence
on the mRNA levels of these vitally important contrac-
tile proteins. The influence of rapamycin treatment on
the levels of MHC mRNA may be attributed to either
increased transcription, or to enhanced mRNA stabil-
ity. The data presented in Figure 6 suggest that in cul-
tured myocytes transcription of the S-MHC gene may
beincreased by rapamycin. Although not as extensively
studied as the translational effects of mMTOR/p705¢K sig-
naling, there is evidence to support interaction of ele-
ments of the mTOR/p70°¢K signaling pathway with nu-
clear processes. For example, an alternatively spliced
variant of the p70%°K gene, termed p85°°%, has an N-
terminal extension that directs it to the nucleus [36].
Moreover, nuclear localization of p85°°K has been ob-
served in cardiac myocytes undergoing load-induced
hypertrophy [11]. Whether or not the influence of
rapamycin on MHC gene expression is mediated by
p855K or another member of the mTOR/p7056K signal-
ing pathway, or is an mTOR-independent effect of ra-
pamyecin, remains to be determined. It is notable that
the effects of pressure overload and rapamycin on g-
MHC mRNA levels were not additive, yet pressure
overload completely reversed the rapamycin-induced
increaseinthelevels of c-MHC mRNA. It will be impor-
tant to determine whether these effects of rapameyin
are mediated via elements in the 5 upstream regions
of the MHC genes, such as the GATA element that con-
fers transcriptional activation of the B-MHC gene by
pressure overload in vivo [37].

Several important limitations of the present study
should be noted. First, no data were provided on
the size changes of individual myocytes, thereby
limiting the conclusions to cardiac hypertrophy at the
organ level. Second, the conclusions regarding cardiac
hypertrophy must be restricted to the rapid growth
that normally occurs in response to the first 3 days
of pressure overload. The data leave unanswered the
question of whether or not the rapamycin-mediated
inhibition of hypertrophy is transient or sustained
indefinitely. Third, this study did not examine any of
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the upstream or parallel elements of the mTOR/p705K

signal transduction pathway, such as Akt or 4EBP-1,
which are likely to be involved.

The data presented here provide evidence that the
mTOR/p705°K signal transduction pathway plays a role
in the early rapid phase of pressure overload-induced
cardiac hypertrophy. Pressure overload activated
p705K in the rat heart in a dose-dependent manner.
Injection of rapamycin into the peritoneal cavity
of rats effectively suppressed basal and pressure-
overload-induced activation of p705°K in the heart.
Cardiac hypertrophy was significantly attenuated
in rapamycin-treated rats, suggesting that an in-
tact rapamycin-sensitive mTOR signal transduction
pathway is required for a normal growth response
to pressure overload in the rat heart in vivo. While
the pressure overload-induced increase in expres-
sion of the ANF gene was unaffected by rapamycin
treatment, the levels of a- and B-MHC mRNA were
markedly influenced by rapamycin, suggesting a novel
link between the mTOR signal transduction pathway
and transcriptional activity in cardiac myocytes. Since
rapamycin is used clinically as an immunosuppressant
[38], these findings may have important implications for
transplant patients with compromised heart function.
Moreover, the potential therapeutic value of cardiac
hypertrophy inhibition by agents such as rapamycin
has recently been suggested [39].
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