Computational Aspects of the FO3DS Triangulation Algorithm

Lennart Damm
Robotics Laboratory
Department of Electrical Engineering
and Computer Science
The University of Michigan
Ann Arbor, Michigan

Abstract

Execution measurements are performed on a triangulation algorithm for a new fiber optical sensor.
Active illumination is used and each emitting fiber generates a light spot on a 3-D surface. The
objective is to identify the object via surface shape information. A set of four triangulation algorithms,
one for each emitter, is mapped onto one to four processing units. Four emitters is the minimum
number required for the sensor system.

The triangulation execution time for a minimum.sensor head configuration (four algorithms) on
the SUN is 26.7 milliseconds w1thout FPA and 1 8 rmlhsecends with FPA (excluding input and output
in both cases).

A uniprocessor NCUBE system gives the exeéﬁtiéﬂ '"e_’3é.8_. filliseconds for a single triangulation
algorithm (including algorithm input and output timé: The fnultiprocessor execution times for a
system with four triangulation algorithms are,6f.7‘:mill';._ x)ds W1th two processors, 7.7 milliseconds
with three processors, and 3.8 milliseconds wnh four_ r0cessors Message passing in the form of
algorithm inputs and outputs are mcluded i, these ﬁgures Only the three processor case involves
inter-processor message passing. This shows that‘a NCUBE hypercube type computer is not suitable
for fast execution of the tnangulauon algorlthm,. where m{ra algorithm messages are short. Only

deterministic execution cases are cons1dered WA

The results show that the triangulation algomhm cannot be implemented on a hypercube because
of the heavy penalty on setting up a channel for message passing. A SUN with FPA clearly gives
better performance. This is true at least for the low level parallelizing scheme investigated, where a
single algorithm is partitioned to run on more than one processor.

An analysis of sensitivity of triangulated data to deviations in the sensor head design parameters
is performed. The results will be used as a basis for sensor head calibration.

2N fon
WMREIEF

Contents

1 Introduction.

2.1
2.2
23

3.1
32
33

5.1
52
5.3
5.4
5.5

The triangulation algorithm.

FO3DS sensor head geometry. e
Deriving the triangulation equations. L. o
Completing the algorithm. e

23.1 Choice of z;; equation.

232 Credibility testing. R |

2.3.3 Optional triangulation algorithm output.
234 Equationconstraints..
235 Execution improvement using separation. R

2.3.6 Potential execution improvement using parallelism.

Execution time measurements.

Execution times on a sequential machine (SUN).
Execution times on a parallel machine (NCUBE).
Evaluation.
3.3.1 Execution improvement by replacing the arctan function.
332 UBIPrOCESSOT. v v vttt i e
333 TWO PIOCESSOIS. . . . o o v v v ot i et
334 Three processors. oo v i i e
335 FOUr PrOCESSOIS. o v v i v e

336 Summary.

Memory requirements.

Design parameter sensitivity.

Method.
Sensitivity of triangulated data to deviations in the cone angle.
Sensitivity of triangulated data to deviations in the lens position.
Sensitivity of triangulated data to deviations in the baseline length.

Sensitivity of triangulated data to deviations in the emitter angle.

ii

10
10
10
11

11
13
14
16
16
18
18
18
18
18

5.6 Sensitivity summary

6 References.

iii

RSD-TR-05-88
1 Introduction.

Noncontact optical 3-D sensors that can measure the range, orientation, and shape of a surface for
the purpose of identifying an object can enhance the performance of industrial robots. Potential
applications range from assembly, inspection, and seam tracking to pick-and-place tasks.

This work is based on a method using optics and a conical sensor head emitter configuration (with
no moving parts) proposed by [Kanade & Fuhrman]. Their method employed active illumination and
triangulation to calculate 3-D points from 2-D detector values. A detector value was generated as
a centroid of a light spot on the detector surface. Their sensor head contained a number of LED’s
arranged in rings. A light cone was defined by a ring of LED’s, with a unique diameter and cone
height combination. Several cones of this type were used to improve the depth of sight. The accuracy
was 0.1 mm in spatial resolution and 1 degree in surface normal resolution.

This paper describes the triangulation algorithm for a conical sensor of the type described by
[Kanade & Fuhrman]. However, a few new features have been included in this Fiber Optic 3-D
Sensor (FO3DS). Optical fibers are used as both emitting and receiving elements instead of LED’s
and a camera respectively. A set of recursive predictive filters will be used to handle the dynamics
of sensor/object intermotion. This replaces the statistical uncertainty analysis for sensor head design
and performance enhancement suggested by [Kanade & Fuhrman)].

The context of the triangulation algorithm is depicted in Figure 1. Sensor calibration is used to
calibrate camera parameters such as lens distortion and detector nonlinearity. Systematic errors in the
sensor head are modelled into the system by calibration when a new sensor head has been mounted
on the robot arm and optionally during production runs. A test surface is used as calibration medium.

Sensor
Calibration
|
I
Data Predictive p| Learning/
Acquisition Filtering Matching

Figure 1: The FO3DS triangulation context.

Data acquisition is done through sampling and digitizing the analog signals from the lateral photo
detector. For each sample the 2-D light spot value as well as amplitude information is available after
pre-amplification.

Recursive predictive filtering gives optimal, measurement-based object suiiace spot position as
well as spot velocity. As a by-product an improved signal-to-noise ratio is obtained. This is an
important factor in a noise-prone system. Each emitting fiber generates a spot on the surface of the
object and thus requires a predictive filter.

Learning/matching can be divided into an off-line object surface learning phase and a matching

FO3DS Algorithm |

RSD-TR-05-88

phase, which takes place when trying to identify an object. The model matching is the last sensor
phase before any robot motion or end-effector action can be taken. It is also the most complex phase.
Object surface modelling can be done off-line manually. Alternatively a 3-D automated learning
method can be adopted for the object surface learning task and a subset of the same learning method
be used for object surface matching.

For the investigation of triangulation algorithm execution times a SUN 3/280 workstation (under
UNIX) is used for sequential execution and a NCUBE/ten hypercube computer for sequential and
parallel execution.

In this paper execution times and the impact of parallelization are analyzed. First one triangu-
lation algorithm is run on a single processor. The division of the algorithm into separable parts
is investigated. Then four (identical) algorithms are run on two to four processors. When run on
multiprocessors the four algorithms are distributed among the available processors if this is feasible.
The number of four algorithms are chosen because this is the minimum configuration for any FO3DS
sensor system. The results are easily extrapolated to more than four algorithms and more than four
processors.

It is not the intent to give execution times in exact, absolute values. Nor is high-lighting the
performance of the computers of major interest. However, the upper bounds on execution times can
be estimated. The triangulation algorithm will eventually be derived to run on an application-specific
processor system (with parallel capability). Thus, this paper addresses the questions of execution
bottlenecks and multiprocessor parallelization.

This paper is organized in the following way. Section 2 describes the triangulation algorithm to
be used for measuring execution times. A geometric sensor head overview is followed by derivation
of the triangulation equations. Aspects of computational overhead is discussed and execution speedup
measures suggested.

The different executable entities of the triangulation algorithm are described in Section 3. This
section also gives the results from execution time measurement runs. Finally a set of Gantt charts
shows the speedup and processor utilization for the processors executing the triangulation code.

The computer memory requirements for the triangulation algorithm are briefly covered in Section 4.

Sensitivity of triangulated data as a function of design parameter deviations is presented in Sec-
tion 5.

2 The triangulatidn algorithm.

2.1 FO3DS sensor head geometry.

The sensor head contains emitting fibers, lenses and receiving fibers. Figure 2 shows the geometrical
model used for the triangulation procedure. The coordinate system has its origin on the optical axis
where the receiving fiber bundle starts. The x-y plane defines the virtual image plane. The z axis is
directed towards the receiving lens and the object.

The direction of the emitted light beam is defined by angle a. The baseline b is the distance

2 FO3DS Algorithm

From
laser
Emitting
fiber i

Baseline b

/ ¢ 2-D "virtual"
detector surface
A)

(xemit,i mit,i

Lens
Line=
of-
sight

/

Light beam

Baseline b:
origin to emit point.
Surface
Distance dt ri
center of lens to
point of reflection.

Object

RSD-TR-05-88

To 2-D
detector
Receiving
fiber
bundle
y
- X
Given: detector point
® et Y det,i !
</
V: (0, 0, Zlens)

Distance dt r

To be calculated:
point of reflection

Seei it Yeri it Zri i)

Figure 2: Geometric sensor head model overview — diffuse reflection case shown (not drawn to scale).

FO3DS Algorithm

RSD-TR-05-88

between the origin of the coordinate system and the emitter point. The line-of-sight, defined by the
reflected light beam, starts at the point (Z4e, Y4e:) and extends via the point (0,0, 2jen,) towards the
point (T4, Yeri, 2¢r;). These two lines meet at the latter point, the top of the light cone.

The reflective surface can be matte, mirror-like or something in between. These three surface
types give diffuse, specular and diffuse-specular reflected light beams respectively. An ideal surface
should be matte as far as optical properties are concemed. By being matte the surface reflects light
in all directions. Thus the problem of fore-shortening is minimized. The sensor can always pick up a
signal. On the other hand, if a surface is specular, the surface normal must be almost perpendicular
to the optical axis of the sensor (i.e. the z axis). Both diffuse and specular reflections can be handled
by the FO3DS sensor. This is an important feature for applications which require a robot end-effector
to traverse boundaries of surfaces with different reflective characteristics.

2.2 Deriving the triangulation equations.

Inputs to the triangulation algorithm are the point (zget, Yge) and the emitter number (Figures 3 and
4). The use of the emitter number is described in section 2.3. Sensor head related constants are the
total number of emitters 7m;;, the sensor head angle a, the sensor head baseline b, and the distance
Zlens from the center of the lens to the virtual image plane (the receiving fibers).

Algorithm outputs include the point (z;;, ¥sri, ztr:), the distance d;»; from the center of the lens
to this point, and a set of credibility flags, which are defined later.

The FO3DS sensor contains a set of emitting fibers, each one defining three 8 angles (Figure 3).
Each of these fibers generate a point on the surface in 3-D space. The detector spot should formally be
denoted (Tdet i nT) Ydet,i nT), Where 1 is the current emitter number and nT' (n=0,1,2,...) is the current
sampling time. The sampling period is the time between two activations of the same emitter. For
simplicity the detector (virtual image plane) spot is denoted (Z4e¢, yge:) and the triangulated (surface
Spot) point (Z¢r;, Yeri, 2¢ri) for emitter ¢ at sampling time nT in this paper.

Similar triangles (Figure 3, shaded triangle in Side view 1) give the triangulated z;,; coordinate
as a function of the detector coordinate:

Ttri ~ Tdet _ Tdet 1)

Ztpi 2lens

which can be written as

Zipi = —Zaer(—2 1) @)

lens
An equivalent equation is easily derived for y:,;. By inspecting Figure 3 (shaded triangle in Side
view 2 and Bottom view) two expressions can be derived for z,;:

2eri = (b - —2)tana 3)
$1n04et

Ziri = (b — Beri)tana 4)
c0504e¢

The 6 angles, as defined by the (active) emitter, are (Figure 3):

B4e¢ = arctan Ydet ®)
Tdet

4 FO3DS Algorithm

emit "’ X
>
Side view 1.
L &
(xtri’o’ztri)
. X 0 ¥, 0)
(Xomit Yomit’®) baseline b o det 7 det
] p x/y-plane
&

Side view 2
Center of lens (0,0,z)
p / lens
\ X4
(xtri'ytri 'Ztri)
4
Emitter i b(=radius)

vx

RSD-TR-05-88

Figure 3: Geometry for 3-D triangulation. Shaded triangle in Side view 1 is used to derive z;,; and
shaded triangle in Side view 2 is used to derive z,;.

FO3DS Algorithm

RSD-TR-05-88

Y dot Emitter #

I

nemit l
Sensor head « » Triangulation
constants b Algorithm
ZIcans_.._p
Xtri Ytri Ztri g flags

Figure 4: Triangulation algorithm variables and constants.

% 2
eemit,i = 'Z—*'—lr + econat (6)

emit

where zj.,,, = the distance from the center of the lens to the receiving fibers (the virtual image plane),
b= /23 ., +y?, is the baseline,
emitter number i = 0,1, ..., (Nemir — 1),
Nemit = Number of emitters in the ring,
Bconst = sensor head emitter fiber configuration dependent constant,
fconst = 0 gives first emitter location on positive x-axis.

In equations (2), (3), and (4) the angle 64, is used. It can be argued that the 6. ;; angleshould be used
instead, since an emitter direction is more accurate than an indirectly calculated 64, value [Kanade
& Fuhrman]. The latter angle is subjected to lens distortion and detector surface non-linearity effects
via the Z4e; and yqe¢ values.

In this paper the line-of-sight (defined by 6,,;) is used, not the emitter beam direction (defined by
femit). Uncertainties, such as lens distortion etc., are then no longer an integral part of the triangu-
lation algorithm. Also simpler and more straight forward equations for the triangulation procedure is
obtainable. The primary detector output is used directly to derive the triangulated spot position. By
combining equations (2) and (3), and (2) and (4), equations (2) through (5) give the following set of
equations:

f4et = arctan Ydet V)
Tdet

Tet(Zlens — btana)cosye,

)

Tiri =
Z2lensCO804er — Tgertana

6 FO3DS Algorithm

RSD-TR-05-88

ydet(zlens - btana)Sinedet

Yeri = - 9)
" Zlenaszngdet - ydettana (
. tana
2tri = (bszngdet = Ytri)— (10)
$inBge;
tana
Ztri = (bcosadet = Ttri) (1D)

sgdet

These equations make up the triangulation algorithm. The equations are subject to denominator
constraints as explained in section 2.3.

2.3 Completing the algorithm.

The basic triangulation algorithm is defined by equations (7) through (11). In order to model a more
production like triangulation algorithm a number of necessary features are added to the basic equations
(Figures 4 and 5). The angle 6 in Figure 5 is equal to either 84¢; or f,,;; according to section 2.3.4.

2.3.1 Choice of z; equation,

The choice of z:; equation, (10) or (11), is given by the 84 value. To avoid mathematical singu—
larltxes equauon (10) can be used to calculate z; for angles in the intervals F 7 < laet < 4 T and
4 < Bge < 4 - (or some other intervals which give a non-singular solution), while equation (11) is
used for all other 84 angles.

2.3.2 Credibility testing.

If a non-modulated light source is used in the sensor system, spurious reflections (from illegal light
sources) during sampling instances can give false alarms, i.e. irrelevant (z¢r, Ytri, 2¢ri) values. To
counteract this problem certain geometric credibility tests are performed. These tests generate a set
of credibility flags, which are passed on to other algorithms for evaluation and subsequent action.

The first credibility test compares the signs of zqe¢ and z¢;. Similar signs are geometrically
impossible since the line-of-sight goes through the center of the lens (Figure 2). Similar signs are
caused by an illegal light source which is being activated during the sampling procedure (Figure 6c).

- The same sign test is applied to yg,; and y;,; although this test may be redundant.

The second credibility test checks if the three points (Z e, Yget), (0,0,0), and (Z4pi, Yeri, 2¢r;) are
located in the same plane. If a discrepancy cannot be explained by noise, an error is assumed. The
cause again is an illegal light source.

The third credibility test is concerned with large values of z4,; or yi~;. This is simply to alert the
system if the measured surface spot is far from the optical axis. The use of this information may be
application dependent.

The last credibility test investigates the sign of 2. For distant objects the emitted light beam
and the line-of-sight could be nearly parallel in an extreme case (imagine that the point of reflection
in Figure 2 is located far to the right). System or measurement noise may then cause a negative z,;

FO3DS Algorithm 7

RSD-TR-05-88

Declarations
Initialization

l

Pre-compute
constants

Triangulation

\/

@det » ©
sin(@®), cos(©)

l

' y Z,,
tri ytri tri

l

Distance dt ri

Flags

A4

Directional
cosines

Figure 5: The triangulation algorithm.

FO3DS Algorithm

RSD-TR-05-88

Lens
Surface
Diffuse
reflection
é a Lens
‘\ ~ "
4
a. R
. "
LA
.o "
.
o
l"
.
\’ Specular
C reflection
\‘ “
« !
O b.
LY .
.
+ 8
AR}
U
+ .
t
M .
+
’\
.‘
"
Surface .
Any lilegal
reflection light source
C.

Figure 6: Diffuse, specular and illegal reflection cases.

FO3DS Algorithm

RSD-TR-05-88

to be accidentally obtained. This means that the system is made to believe that the two lines intersect
behind the sensor instead of in front of it (viz. on the surface of the object).

2.3.3 Optional triangulation algorithm output.

“Post-triangulation” computations consist of calculation of three directional cosines. These define the
dyr; direction. This direction is not considered to be vital but is included for completeness. It can be
used together with the di,; distance value by a host system for collision avoidance purposes.

2.3.4 Equation constraints.

Equation (7) must meet the constraint z4.; # 0. Therefore it is rewritten as:
Oget = a‘rctangﬁf if 240¢ #0
Odet = 5 if et =0 and yger > 0
Odet = 37" if Z4et =0 and ygee < 0
f4e¢ = not defined if zgo; = Yger = 0.

The last case is handled in the following way. If Z4e¢ = Ydet = O then Oemit ; (or shorter Gemse) is
used instead of 04 to calculate 2;.;.

Equation (8) is valid only if zj.,,c0804; — Tgeitana # 0 , equation (9) only for z.,,s5in04; —
Ydettana # 0 , equation (10) only for sinfge; # 0 , and equation (11) only for cosfge; # 0 (see also
section 2.3.1).

2.3.5 Execution improvement using separation.

Execution of the basic triangulation equations (7) to (11) can be improved by separating out pre-
computable parts. These parts are computed once at system start-up. The equations for on-line
execution are simplified by defining the two constants:

co,; = tana (12)

Cli = Zlens — b x €0, i (13)

where emitter number ¢ = (0,1,2, ..., (Nemi¢—1)). This gives the number of computations for on-line
processing as shown in Figure 7. The total number of operations per emitter (for each measuring cycle)
is four divisions, 13 multiplications, five subtractions, one arctan calculation, two sin calculations,
two cos calculations, and one square root calculation.

If emi could be used instead of 8, the possibility of separating pre-computable operations
would increase. However, this would mean that the inherent information contents of the detector
values (Z4et, Ydet) Would not be exploited.

10 FO3DS Algorithm

RSD-TR-05-88

One emitter: | Division | Multiplication | Subtraction | Addition | Other
O det 1 - - - arctan
Tiri 1 4 1 - cos (2)
Yori I 4 I - |[smQ
Ztpi | 2 1 -
dir - 3 2 2 N4

Figure 7: Computations per emitter and measuring cycle.

2.3.6 Potential execution improvement using parallelism.

The triangulation algorithm can be decomposed into concurrently executable entities (low level par-
allelizing). For low level parallelizing we need to know the execution times for simple operations
such as addition, multiplication etc. Also a set of complete triangulation algorithms can be distributed
among a number of processors (high level parallelizing).

The equations (7) to (11) together with (12) and (13) can be used as a basis for parallelizing the
triangulation algorithm. The equations can be depicted as a deterministic model [Hwang & Briggs].
Here a very low-level task structure is chosen. The tasks are defined for the computations of 8¢,
Tiriy Ytris 2tri, aDd dir; (equations (7) to (13) and Figure 7). Apart from the arctan function (task TO)
and the square root function (T24), the following operator tasks are defined: addition (tasks T19 and
T23), subtraction (TS5, T11, T15, T20, and T21), multiplication (T1-T4, T7-T10, T14, T16, T17, T18,
and T22), and division (T6, T12, and T13). Task execution times are ¢, for addition etc. (Figure 8).
The process graphs show the parallelizing potential of the different processes. Also they depict the
number of computational levels required (as horizontal rows of task circles).

3 Execution time measurements.

Different number of emitting fibers are simulated as test cases to investigate the execution performance
of the triangulation algorithm. The minimum number of emitters in a FO3DS sensor system is four.
There is no upper limit, but an even number of emitters should be used since they work in pairs.
‘Since there is a linear relation in the execution times for these cases can be extrapolated from the
four-emitter case. Figure 7 gives the following number of computations for four emitters (defining
one complete measuring cycle):

e 4 arctan functions

e 4 square root functions
e 4 sin operations

e 4 cos operations

e 16 divisions

¢ 52 multiplications

¢ 15 subtractions

FO3DS Algorithm 11

RSD-TR-05-88

Process graph for Xtri Process graph for yt .
ri

numerator denominator numerator denominator

t. tl

Process graph for © det

@ '
arctan

t.

Process graph for z tri

Figure 8: Process graphs for 8y, Z¢ri, Yiri and z; (deterministic model). T; are task numbers,
execution times are denoted t, for addition operation, t_ for subtraction, t. for multiplication, t, for
division, tgrctan for arctan function, and t,q, for square root function.

12 FO3DS Algorithm

RSD-TR-05-88

SUN execution times in C language (microseconds).
Operation Without FPA | Normalized | FPA norm. | With FPA | Normalized
Addition 232 1 7 33 1
Subtraction 26.1 1 8 33 1
Multiplication 33.0 1.5 10 34 l
Division 89.8 4 27 6.6 2
Va 113.6 5 34 28.6 9
sin(angle) 1) 29222 13 89 40.5 12
sin(angle) 603.8 26 183 19.9 6
cos(angle) 697.2 30 211 20.5 6
tan(angle) 728.9 32 221 36.0 11
arctan(angle) : 1083.8 47 328 299 9
Triangulation
algorithm:
Pre-computations 1194.8 52 362 57.5 17
Triangulation 5211.5 225 1579 338.0 102
Post-computations 272.8 12 83 61.2 19

1) Calculated as \/—(V;T—yz—), equivalent for cos.
T

Figure 9: Measured execution times on the SUN.

¢ 8 additions
¢ conditionals
o setting credibility flags.

The emitter execution time must be much faster than the measuring cycle rate. A measuring cycle is
defined by the activation of all emitters in sequence once.

3.1 Execution times on a sequential machine (SUN).

A SUN 3/280 (with FPA facility) was used to run the triangulation algorithm. The variables in the
triangulation algorithm are declared as double-precision floating point. Execution times for the basic
operations addition, subtraction, multiplication, and division are shown in Figure 9. Addition is used
as the basis for normalization.

The “setitimer” and “getitimer” C routines [SUN] were used to measure execution times. Each
test run encompassed enough iterations in a loop to make a total execution time of between 150
and 200 seconds. This was required because the SUN clock resolution time is 10 milliseconds. The
maximum error in the execution time values should therefore be less than 0.1%. Corrections were
made for loop overhead.

FO3DS Algorithm 13

RSD-TR-05-88

To improve the execution times on the SUN the C compiler in-line floating point code generation
option was used together with the object code optimization option [SUN]. Measured execution times
are given in Figure 9.

3.2 Execution times on a parallel machine (NCUBE).

The NCUBEften is a hypercube computer with a 7 MHz clock, a host processor, and 64 node
processors. Only one of the nodes was used for the triangulation algorithm.

When using a parallel processor a certain amount of processing overhead due to communication
must be taken into account. The time for an algorithm to run on a hypercube can be given by the
general expression [Mudge & Abdel-Rahman]

TN)=ri+mp+(l -). +7, (14)

where N indicates the number of processors in the cube, 7; the time to input data to the cube, Tp the
time to perform the processing at a node, a the degree of transparency, 7. the internode communication
time, and 7, the time to output data. The degree of transparency a is the internode communication
time that can be overlapped with the node processing (using cache and DMA channels).

Figure 10 shows the NCUBE execution times for some basic operations and the triangulation algo-
rithm. Replacing the arctan function with direct sin and cos calculations gives a gain of (1+24+24+24)-
(7+7) = 59 units of time. The execution times were not improved by applying the C compiler floating
point and optimization options.

Communication between NCUBE nodes is handled via message passing. Message passing time
for n bytes is 466.40+(n-1)*3.14 microseconds [Buzzard]. All non-uniprocessor NCUBE runs include
message passing between nodes . The ntime() C routine [NCUBE] was used to measure node program
execution times.

Double-precision variables are eight bytes long and integer variables two bytes long. Each message
passing session requires an additional eight bytes. Message passing for input takes 602 microseconds
for two consecutive algorithms and 547 microseconds for a single algorithm (Figure 11). Inputs are
(Zdet, Ydet) and emitno. This gives two doubles and one integer to be passed for each algorithm.
Message passing for output takes 853 microseconds for two consecutive algorithms and 672 mi-
croseconds for a single algorithm. Outputs are (z¢r;, Ytri, 2¢ri), directional cosines for (Zyni, Ysri, Zeri),
distance lens-to-(¢y;, Ytri, 2eri), and a flag word. This gives seven doubles and one integer to pass.
To summarize: input to an algorithm is 26 bytes and output from an algorithm is 66 bytes.

Figure 11 shows the execution times for a two-processor NCUBE (see also Figure 15). Message
handling amounts to about 27% and 47% of the nominal code execution times for the two cases
shown. However, it has been shown that these standard communication message passing times can
be improved more than fivefold [Buzzard].

Since the NCUBE has no clock synchronization between nodes, execution times from Figures 10
and 11 are used to derive multiprocessor execution times.

Decomposition is dependent upon the impact of message passing between nodes, see Figure 12
for NCUBE message passing values. The eight byte overhead is included in the “# Bytes” column.

14 FO3DS Algorithm

RSD-TR-05-88

NCUBE execution times in C language
Operation Microsec. | Normalized
Addition 10.1 1

Subtraction 10.1 1

Multiplication 10.5 1

Division 12.6 1
va 49.3 5

sin 1) 69.9 7

sin 245.7 24

cos 239.8 24

tan 2413 24

arctan 240.8 24

Triangulation
algorithm:

Pre-computations 288.2 29
Triangulation: 21723 215
(a) @, sin,cos 1305.5 129

) (z,y, z, d)sri 336.7 33

(c) Flags. 530.1 53

Post-computations 157.6 16

1) Calculated as ﬁ, equivalent for cos.
z2+y

Figure 10: Measured execution times on uni-processor NCUBE.

NCUBE execution times in C language,
2 processors - 4 algorithms.
Operation Microsec. | Normalized
A. SISO
Input message 602 0.11
Triangulation 5236 1.00
Output message 853 0.16
B. DIDO
Input messages 1093 | 0.21
Triangulation 5236 1.00
Output messages 1344 0.26

Figure 11: Execution times for two-processor NCUBE. SISO = Single Input Single Output message
sending, DIDO = Double Input Double Output message sending.

FO3DS Algorithm 15

RSD-TR-05-88

Execution Message passing (to next task):
Task time | # Doubles, Estimated time
[p sec] | Integers | # Bytes [u sec]
1 Input -| 2D+ 11 26 301 (SISO), 547 (DIDO)
2 Pre 289 5D 48 614
3 | @, sin, cos 1306 | 4D + 11 42 595
41 (z,y,2)iri 337 4D 40 589
5 Flags 531 11 10 495
6| - Post 158 | 7D + 11 66 427 (SISO), 672 (DIDO)

Figure 12: Intra-algorithm decomposition overview with inter-task message passing (NCUBE).

Doubles are represented by eight bytes and integers by two bytes. Some inter-task outputs are split
up to more than one receiving task. Output from task 1 is split to task 2 (one integer) and task 3 (two
doubles). Output from task 2 is divided between task 3 (two doubles) and task 4 (three doubles).
Output from task 3 is divided between task 4 (three doubles and one integer) and task 5 (one double).
In order to make use of intra-algorithm decomposition the message passing times should be an order
of magnitude less than the task execution times involved (the NCUBE may meet these demands with
extended communication [Buzzard]).

3.3 Evaluation.
3.3.1 Execution improvement by replacing the arctan function.

For simplicity all variables in the FO3DS triangulation algorithm are declared as double-precision.
The arctan function is used to calculate the angle 64 (equation 7). The arctan execution time is 47
normalized time units (i.e. comparable to 47 additions). Since the calculated 84.; values are to be
used in only these sin and cos calculations, the latter functions can be computed directly as:

Ydet

$1n(0get) = ——— (15)
V z%det + yget

cos(edet) = _T_T
\/ z&et + yaet

Using this method the execution time decreases from 47 to 13 units. The total execution time
improvement using equations (15) and (16) is (4+47+26+30)-(13+13) = 81 units of time.

The calculation of g4 (task TO) using the arctan function is replaced by (Figure 13): addition
(T27, T32), multiplication (T25, T26, T30, T31), division (T29, T34), and square root (T28, T33).

When using the SUN floating point option the arctan replacement gives a gain of only (2+9+6+6)-
(12+12) = 1 unit of time (values from Figure 9).

16 FO3DS Algorithm

RSD-TR-05-88

Process graph for sin() Process graph for cos()

Figure 13: Process graphs for sin(84.:) and cos(f4¢) computations.

FO3DS Algorithm 17

RSD-TR-05-88

3.3.2 Uniprocessor.

The sequential execution of the triangulation algorithm on a uniprocessor is shown in Gantt chart
form in Figure 14. The SUN total execution time is 289 units (6.68 msec.), or equivalently 2024 FPA
units, and with floating point accelerator 138 FPA units (0.46 msec.).

The NCUBE total execution time for one algorithm is 113 SUN units (2.62 msec.). To compute
multiprocessor speedup, the average DIDO message passing time is added. This gives the execution
time ET| = 166 SUN units (3.84 msec.).

3.3.3 Two processors.

Four algorithms are best grouped on two processors as shown in the Gantt chart in Figure 15. Here the
white fields are message passing times. The best total execution time is ET; = 289 SUN units (6.69
msec.). DIDO speedup is S; =4 * ET; / ET; = 2.30 and the mean utilization of the two-processor
system is U, = 1.00. It does not pay off to distribute any algorithm to two or more processors since
any message passing gives a substantial penalty.

3.3.4 Three processors.

With four algorithms and three processors it is necessary to distribute at least one algorithm over
the available processors (Figure 16). White fields are message passing times. Black fields denote
idle processor time. Task 4 is divided into three parts (A, B, and C). For simplicity the same input
messages are used for tasks 2 and B as for tasks 3 and A (this gives a few extra bytes to pass).
Because of the heavy impact of message passing it is hard to find a good solution. Let us assume that
messages must be passed from A to B and from B to C. From A to B five pre-computed constants
are passed. The message passing time is 614 microseconds. From B to C 84,8, sin(d), cos(6), and
a flag are passed. The message passing time is 595 microseconds.

The total execution time with three processors as shown in the example in Figure 16 is ET; =
333 SUN units (7.72 msec.). This should be compared to the non-message passing case for two
processors, see figure 15, with total execution time 6.69 msec. The speedup is S3 = 1.99 and the
average processor utilization is only Uz = 0.75.

3.3.5 Four processors.

Four processors and four algorithms is a trivial case. The total execution time is ET4 = 166 SUN
units (3.84 msec.), see Figure 16. The speedup is S4 = 4.00 and the processor utilization Ug = 1.00.

3.3.6 Summary.

Previous Gantt charts can be compiled into a bar chart for comparison, see Figure 17. The single
algorithm NCUBE case is taken as a norm. All two, three, and four processor bars include four

18 FO3DS Algorithm

P1

P1

P1

RSD-TR-05-88

Post
SUN \
Pre Triangulation (T0-T16)
5.21
I |
1 2
1.20
SUN - with FPA
Tri
I t
[msec]
1

NCUBE

Triangulation
2.17

0.29

Figure 14: Uniprocessor system Gantt charts (a) SUN and (b) NCUBE.

FO3DS Algorithm

[msec]

19

RSD-TR-05-88

NCUBE - 2 processors - 4 algorithms - SISO:

P1

P2

NCUBE - 2 processors - 4 algorithms - DIDO:

LIS
"-,.'/ , & .e‘,.z'../ s /‘.-"./
P1 / / i Iy 1/ /;’,-",.-/ s ,-" Iy

A /,~'
2 MY

,,&_&
] 2504 'I [mtseC]
0 1 2 5 7

0.55 3.17 3.84 4.39 7.01 7.68

&

Figure 15: Two-processor system Gantt charts for four algorithms (NCUBE).

20 FO3DS Algorithm

P1

P2

P3

P1

P2

P3

P4

NCUBE - 3 processors 4 algorithms:

RSD-TR-05-88

3.84 542 6.03 7.05

In Out
In A
A
In \\\\\\\\ \3\\ \\\\\\\kﬁ/
l l l t
0 \ 1 2 / / 4\ \5 6 7 /{msecl
0.60 3.22 3.51 4.11 4.78 7.72
NCUBE - 4 processors - 4 algorithms:
In
In
In
In SRR
| t
[msec]
0 1 2 3 4

3.17 3.84

Figure 16: Multiprocessor system Gantt charts for four algorithms (NCUBE). Algorithm 4 contains

parts A, B, and C.

FO3DS Algorithm

21

RSD-TR-05-88

(identical) algorithms. The white fields show message passing for input to algorithms and output
from algorithms. The three processor system is included to show the drastic impact of message
passing. Two, three, and four processors have relative execution times of approximately 2.55, 2.95,
and 1.47 respectively. The two message passing sequences introduced in the three-processor case
gives a considerable degradation from the two-processor case. Even by reducing message passing
times to a minimum, as mentioned above, a NCUBE three-processor system will not outperform
a NCUBE two-processor system for the algorithm in question. It should be pointed out that this
conclusion is based on the assumption of a deterministic execution environment. However, worst
case execution code length was sought by simulating suitable input data. Also, in all runs the slow
arctan calculation was part of the executed code.

22 FO3DS Algorithm

RSD-TR-05-88

Normalized
exec. time
3.0 + Pre
THE
Post
4 SWN g
ncuse B
2.4 + + 24
2.0 + -+ 2.0
1.6 T I 1
1.0 § % 1.0
.2 + § T 2
%
0 No. of 0
1 2 3 4 processors

Figure 17: Summary of relative execution performance for triangulation algorithm (Gantt charts).
One algorithm is used for uniprocessor cases, four identical algorithms are used for the two, three,
and four processor cases. Execution times for the SUN are without and with FPA.

FO3DS Algorithm 23

RSD-TR-05-88

4 Memory requirements.

The memory requirements for the triangulation algorithm are summarized in Figure 18. The memory
requirements are split into five parts: the program executable code, the local variables, the global
variables, the data input buffer, and the data output buffer. The values are based on output for
one triangulation algorithm from the “mapn” utility [NCUBE]. Estimated SUN memory requirements
are less than 4 kbyte program and 224 byte data (no message passing). For the NCUBE node the
memory requirements are less than 4.5 kbyte program and 380 byte data (including input/output
message passing, but not inter-processor message passing). Of the program figures more than 65%
are related to standard routines such as trigonometric functions.

Program [bytes] Data [bytes]
Triang. | Standard Local Global | Input | Output
algorithm | routines | Total | variables | variables | buffer | buffer | Total
SUN 1328 2715 | 4043 148 76 - - 224
NCUBE 1500 2849 | 4349 180 76 58 66 380

Figure 18: Triangulation algorithm memory requirements for SUN and NCUBE node.

24 FO3DS Algorithm

RSD-TR-05-88
5 Design parameter sensitivity.

5.1 Method.

The sensitivity of triangulated data to deviations in sensor head design parameters is analyzed using
design data from a prototype sensor head with four emitters. Nominal values are (definitions see
Figures 2 and 3): cone angle a =71.5° (1.2479093 radians), baseline length b = 11.0 mm, lens
position zjen, = 12.0 mm, and emitter angle f,.,;; = 45° (0.7853981 radians). As inputs are chosen
arbitrarily zge; = 2.0 mm, y4.; = 1.5 mm, and nepy;: = 0. This gives the nominal output z;,; = -9.2199
mm, yi.; = -6.9150 mm, z;,; = 67.3197 mm, and d;.; = 56.5074 mm from equations (7) to (11).

The deviation influenced z;,;(§a) is calculated, where éa is the parameter deviation (in this case
the cone angle deviation). Then éz,; = z4r; — 24;(8a) is calculated, where z,,; is the nominal value.

The z¢; calculations above for §a are repeated for §2;.,,, and §b. The computations are repeated
for yiri, 2iri, and dyp;. Plots in this section show 24, Ysri, 2¢ri, and dir; as a function of deviations
in the design parameters. For cone angle a deviations the interval (-0.2,+0.2) radians is considered
(approximately 11.5° maximum deviation). For lens position ze,,, and baseline length b the deviation
interval (-2.0,+2.0) mm is chosen.

5.2 Sensitivity of triangulated data to deviations in the cone angle.

The first two plots contain an asymptote (Figures 19 and 20). Curves are not shown (extrapolated)
around the asymptotes since these areas are of minor interest. At §a = +0.115 radians (approximately
6.6°) all triangulated values approach infinity (Figure 19). The curve for distance d;,; is similar to the
curve for z; to the left of the asymptote and therefore is not plotted. Figure 20 shows that positive
a deviations are more critical than negative a deviations.

The z;,; value is more sensitive to cone angle deviations than the z;,; and y;,; values. This is
natural since z,; is a function of one of the other two coordinates according to equation (10) or (11).
A more detailed plot (Figure 21) shows the range (-1.0,+1.0) mm. The curve with the negative slope
is z4;. It is the most sensitive coordinate and reaches the deviation +1 mm at cone angle deviations
of approximately -0.002 radians (0.15°) and +0.0015 radians (0.09°).

5.3 Sensitivity of triangulated data to deviations in the lens position.

Distance dy,; and coordinate z.; are most sensitive to lens position z,,, deviations (Figure 22). The
distance d,; reaches a deviation of +1 mm for z.,, deviations -0.085 mm and +0.09 mm (Figure 23).
5.4 Sensitivity of triangulated data to deviations in the baseline length.

Baseline length b deviations give similar sensitivities for z;,; and d;,; (Figure 24). Here z; (dir)
deviations of 1 mm are reached for the baseline length b deviations +0.17 mm (Figure 25).

FO3DS Algorithm 25

RSD-TR-05-88

3500 trj O Yy , Az

3000

2500

010103 IR

A féasymptdtfé

15004..

—

Deviation [mm]

o o
o o
.92

-.2 -.15 -1 -.05 0 .05
Cone angle deviation [radians]

Figure 19: Sensitivity of triangulated data to cone angle a deviations - overview.

100 ofxtri' ; : O i Az

VWYY vy g e W

-20

asymptote
X | | 7
E 20 g S
c i : i ;
.9 (0 8 SOOI SOURURUNTI NS S
5 :
>
®
(=]

-40
-60
-80

-100 ' ’ r i ' i

-2 -.15 -1 -.05 0 .05 A
Cone angle deviation [radians]

Figure 20: Sensitivity of triangulated data to cone angle a deviations.

26 FO3DS Algorithm

RSD-TR-05-88

—

O Xtri , [) A Ztri

Deviation [mm]

P o b oo bbb

i
?

-1 : . f T { T i T
-.015 -.01 -.005 0 .005 .01 .015
Cone angle deviation [radians]

Figure 21: Sensitivity of triangulated data to cone angle a deviations - detail.

Deviation [mm)]

-.5 0 .5
Lens position deviation [mm]

Figure 22: Sensitivity of triangulated data to lens position z,,,, deviations.

FO3DS Algorithm 27

RSD-TR-05-88

tri s Yiri i o d

Deviation [mm]

i p o RO R D m =

H

.4 -.3 -.2 -1 0 a .2
Lens position deviation [mm]

Figure 23: Sensitivity of triangulated data to lens position z;.,, deviations - detail.

204

. .
¢ : : !
i i !
158 i £ ;
; i : : :
! 3 i H
10 }
s |

]
5 ! : ?

0

Deviation [mm]

-5 ' I

-10 e] - e, O -

-15 .

-20 T T ¥ T T | T | T | T : T T

-2 -1.5 -1 -.5 0 .5 1 1.5 2
Baseline length deviation [mm]

Figure 24: Sensitivity of triangulated data to baseline length b deviations.

28 FO3DS Algorithm

RSD-TR-05-88

Deviation [mm)]

-.6 -.4 -.2 0 2
Baseline length deviation [mm]

Figure 25: Sensitivity of triangulated data to baseline length b deviations - detail.

Cone angle o deviation [radians]
-.0010 -.0004 0 .0004 .0010

E - :

E

c

.8 " .

- K

8 i

> T ¥

o 4

a . B ST S
H1L’/”T

Y T Y T T

-05 -.04 -03 -.02 -.01 0

Lens position z,g,o or baseline length b deviation [mm]

0 xtri(a) O Xtri(zlens) A xtri(b)
® 24 . Ziri (Zlens) A Ztri(b)

Figure 26: Sensitivity summary - fine detail.

FO3DS Algorithm 29

RSD-TR-05-88

5.5 Sensitivity of triangulated data to deviations in the emitter angle.

Since the emitter angle f..;; may be used instead of the angle 64, according to section 2.3.4,
the design parameter f..,;; should also be analyzed. The only case when 8., is used is when
det = Ydet = 0. But then z4,; = yr; = 0 according to equations (8) and (9). This gives an expression
for z,; which is independent of the 8,4, angle (here equal to ,,,;) as is evident from equations (10)
and (11). Thus the triangulated data are insensitive to emitter angle deviations.

5.6 Sensitivity summary.

For convenient comparison of sensitivity results sample curves are shown in Figure 26. Two curves
for each design parameter are depicted, viz. coordinates z;; and z;.;. Coordinate y;,; is less sensitive
than z;,; (see previous graphs). The distance d;.; sensitivity is either the same as for the coordinate
Z4ri, OF somewhat higher (see previous graphs).

The accuracy of the overall sensor system will be specified to be 0.1 mm. Output from the
triangulation computations should be at least an order of magnitude better in accuracy. Therefore the
curves in Figure 26 are shown for the fine detail +0.10 mm deviation range.

The results from the sensitivity analysis in this section will be used in a calibration procedure of
the FO3DS sensor head.

30 FO3DS Algorithm

RSD-TR-05-88
6 References.

[Buzzard] G. Buzzard, “High Performance Communications on Hypercube Multiprocessors,”
Ph.D. thesis in preparation, The University of Michigan, Ann Arbor, ML

(Hwang & Briggs] K. Hwang and F. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, 1985, Chapter 8.

[Kanade & Fuhrman] T. Kanade and M. Fuhrman, “A Noncontact Optical Proximity Sensor
for Measuring Surface Shape,” in Three-Dimensional Machine Vision,
Kluwer 1987, pp. 151-192.

[Mudge & Abdel-Rahman] T.N. Mudge and T.S. Abdel-Rahman, “Vision Algorithms for
Hypercube Machines,” Journal of Parallel and Distributed Computing,
Vol. 4, 1987, pp. 79-94.

[NCUBE] NCUBE Users Handbook, Version P2.1 October, 1987.

[SUN] SUN C Compiler User Command Manual, 20 August 1986.

FO3DS Algorithm 31

IVE

N

5 02844 0694

