
Distributed and Parallel Databases, 8, 399–446, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Flexible Transaction Dependencies
in Database Systems

LUIGI V. MANCINI mancini@dsi.uniroma1.it
Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”, Rome, Italy

INDRAJIT RAY indrajit@umich.edu
Department of Computer and Information Science, University of Michigan-Dearborn, Dearborn MI 48128, USA

SUSHIL JAJODIA jajodia@gmu.edu
Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030-4444, USA

ELISA BERTINO bertino@dsi.unimi.it
Dipartimento di Scienze dell’Informazione, Università di Milano, Milano, Italy

Abstract. Numerous extended transaction models have been proposed in the literature to overcome the limita-
tions of the traditional transaction model for advanced applications characterized by their long durations, cooper-
ation between activities and access to multiple databases (like CAD/CAM and office automation). However, most
of these extended models have been proposed with specific applications in mind and almost always fail to support
applications with slightly different requirements.

We propose the Multiform Transaction model to overcome this limitation. The multiform transaction model
supports a variety of other extended transaction models. A multiform transaction consists of a set of component
transactions together with a set of coordinators which specify the transaction completion dependencies among
the component transactions. A set of transaction primitives allow the programmer to define custom completion
dependencies. We show how a wide range of extended transactions can be implemented as multiform transactions,
including sagas, transactional workflows, nested transactions, and contingent transactions. We allow the program-
mers to define their own primitives—having very well-defined interfaces—so that application specific transaction
models like distributed multilevel secure transactions can also be supported.

Keywords: database management systems, transaction processing, transaction dependencies, commit protocols,
distributed systems, multilevel security

1. Introduction

The atomicity property of the classical transaction model has often been regarded as too
restrictive for advanced database applications in distributed, cooperative and heterogeneous
environments. For example long running activities when executed as atomic transactions,
significantly delay the execution of shorter activities. In the case of multidatabase systems,
the autonomy requirements of the component local databases are in direct conflict with
the atomicity property of classical transactions. Consequently, in recent years, a number of
extensions have been proposed to the traditional atomic transaction model with the goal of
supporting more flexible transaction processing [9]. Examples of such extended transaction

400 MANCINI ET AL.

models are SAGAS [11], Flex [6], Asset [5], DOMS [12] and ConTract [20]. These systems
differ from each other in the way they model cooperating transactions.

The basic idea of those approaches is to provide transaction primitives and run-time
environments, so that users can define their own transaction models. A theoretic founda-
tion of this type of approach can be found in ACTA [7]. ACTA is a formal framework
for specifying relationships among different cooperating transactions that can be used to
formalize all these different extended models. ACTA classifies these relationships into two
broad categories based on a transaction’s effect on the commit and abort of other trans-
actions (called completion dependencies) and on the transaction’s effect on the data items
it accesses (known as data dependencies). The developers of the ACTA framework have
shown that several extended transaction models can be represented by using a number of
basic dependency types. Though ACTA is open-ended, the framework as it is now does not
model significant events in a system other than commit or abort of the transactions. Events,
such as several error conditions that do not influence the commit or abort of transactions or
the secure dependencies arising among subtransactions of a multi-level secure distributed
transaction, are typical examples of dependencies that cannot be modeled within the ACTA
framework.

We limit ourselves in this work, to exploring the category of transaction dependencies
known ascompletion dependencies. Completion dependencies represent constraints on the
order of termination of transaction. We feel that completion dependencies provide a conve-
nient way to specify the behavior of concurrently executing and cooperating transactions
although we agree that they are not enough to capture all types of relations among cooper-
ating transactions. As we describe our work we will specify the assumptions we make to
capture these other types of dependencies—namely the data dependencies.

We introduce themultiform transactionmodel as a tool-kit approach to transactional
application development. With this approach the programmer can express any comple-
tion dependency as a program fragment. This is done by using the transaction processing
primitives that we propose.

The goals of this work are:

1. to present the multiform transaction model that supports a variety of extended transaction
models proposed in the literature;

2. to define a set of primitives which allows the programmer to specify various commit and
abort dependencies among transactions and to realize relaxed correctness criteria;

3. to allow the programmer to define his/her own set of primitives for a flexible transaction
coordination;

4. to reduce the programming effort to allow transaction code re-usability; and
5. to provide examples which show how the completion dependencies present in the differ-

ent extended transaction models like transactional workflows, sagas, secure transactions
etc., can be implemented as multiform transaction.

Our work focuses on managing completion dependencies at the programming language
level, and proposes a linguistic construct that separates the coding of the transaction from

FLEXIBLE TRANSACTION DEPENDENCIES 401

the definition of their dependencies. The reason behind this separation is to simplify the
work of the programmer. Transactions can be thus coded without worrying about managing
concurrent computations, communications etc.

If transactions in a group are related such that the termination of one member of the
group determines the termination of other members or is determined by them, then these
group of transactions are explicitly coordinated in our model. The programmer has the
option of specifying a coordinate block that implements such coordination requirements.
The coordinate block contains the specification of the completion dependencies in the form
of a program. The coordinate block also allows the programmer to define his/her own
primitives for further flexible coordination of transactions. A programmer defined primitive
can be used from anywhere within a transaction and causes the execution of a specified code
by the coordinator. This allows many different transaction models to be easily implemented.

The primitives, we introduce, can be used directly by the programmer as part of a pro-
gramming language to design the program for coordinating transactions. Moreover, the
compiler of a database programming language can also use those primitives to support
higher level constructs for transactions. In this case, a pre-compiler can automatically gen-
erate the appropriate code needed for coordination of a set of transactions from the high level
description of their dependencies. To demonstrate this idea we have developed a sample
high level declarative language.

The remainder of this paper is organized as follows. Section 2 gives an overview of
our approach by introducing the multiform transaction model and describing the execution
model for a system that supports multiform transactions. It also presents an example of a
multiform transaction and explains how such a transaction is executed in a distributed envi-
ronment. Section 3 introduces the transaction primitives that we use to support multiform
transactions. Section 4 discusses some of the major issues related to the multiform trans-
action model. Of particular importance is the issue of orphan transactions—transactions that
remain active upon the termination of a multiform transaction. Subsection 4.1 introduces the
notion of well-formed multiform transaction and describes how a compiler can determine
statically whether there will be orphan transactions at the completion of a multiform trans-
action. Subsection 4.2 briefly discusses some recovery issues for multiform transactions.
Section 5 deals with a particular instance of the deadlock problem that occurs when comple-
tion dependency are specified in addition to data dependencies. This problem is present in
most extended transaction models that allow completion dependencies to be specified along
with data dependencies although it has not been addressed. In particular, Section 5 gives
examples of how deadlock can occur within a multiform transaction and how the deadlock
can possibly be detected and re-solved. Section 6 gives examples of multiform transactions
which implement the completion dependencies of the many different extended transaction
models proposed in the literature—SAGAS, transactional workflows, nested transactions,
multi-level secure distributed transactions, contingent transactions etc. We also show in
Section 6 how the ACTA commit and abort dependencies can be represented in our model.
Section 7 introduces the high level declarative language we have developed for comple-
tion dependencies. Section 8 discusses some of the different extended transaction models
and compares our work with these, wherever applicable. Finally Section 9 concludes the
paper.

402 MANCINI ET AL.

2. Overview of our approach

2.1. The multiform transaction model

A transaction Ti in our model is defined as any sequence of operations on data items
(both persistent and volatile) delimited by either the begintrans(Ti) . . . end trans(Ti) pair
or the begintrans(Ti) . . . abort trans(Ti) pair. A transaction is written in a high level lan-
guage supporting persistence, concurrency and the new transaction processing primitives
that we introduce. Transactions implement the ACID properties—Atomicity, Concurrency,
Isolation and Durability [13]—which ensure that concurrent transactions execute without
interference from each other even though they operate on common database items.

A Multiform Transactionconsists of a setT of such transactions and includes the defini-
tion of a set of termination dependencies among these transactions; the set of dependencies
includes, but is not limited to, the commit or abort relationships among the component
transactions. The multiform transaction is also written in the same high level language as
its component transactions. It is organized as a set ofcoordinate blockseach of which
consists of a subset,T ′, of the set of transactionsT , such that there exists some completion
dependency among the transactions in this subset. Each coordinate block has two distinct
parts—thetransaction componentthat contains either the definitions of the transactions in
the coordinate block or a set of nested coordinate blocks, and theprotocol component, that
includes a definition of the dependencies among the transactions in the transaction com-
ponent. The protocol component of a coordinate block can either be a program fragment
in the high level language or a declarative description of the completion dependencies. A
coordinate block in execution is called acoordinator module(CM), or simplycoordinator,
of the multiform transaction.

More formally a multiform transaction is defined as follows:

Definition 1(Multiform Transaction). A multiform transaction is the pair〈T,C〉 where

• T is a set of transactions on which two partial orders,RandS, are defined.Rspecifies the
execution order among the transactions inT , andSspecifies the completion dependencies
in T .
• C is a sequence of coordinate blocks, each of which can be either a sequence of nested

coordinate blocks or a flat coordinate block with the constraint that nested coordinate
blocks cannot be concurrent.
• A coordinate block has two components—a transaction component and a protocol com-

ponent. The transaction component groups a set of transactionsT ′ ⊆ T and/or a set
of coordinate blocksC′ ⊂ C. It implements the execution order of the transactions in
T ′ as specified inR. The protocol component implements the completion dependencies
among (a subset of) the transactions inT ′ specified byS.
• Every transactionTi ∈ T must belong to at least one coordinate block inC.

Note that we have defined two partial ordersR andS on the set of transactionsT . The
partial orderR is implicit within the structure of the program for the multiform trans-
action. Thus the transactions execute in the order they are listed within the multiform

FLEXIBLE TRANSACTION DEPENDENCIES 403

transaction—sequentially or concurrently as the programmer specifies. Once a transaction
has been executed, its termination (that is commit or abort) relative to other transactions
within the multiform transaction, is determined by its position in the partial orderS. Sep-
arating the execution orderR from the completion dependencyS has many advantages
including:

1. more expressive power to the model with respect to specifying completion dependencies
only, since the actual dependencies enforced by the system are obtained as a combination
of R andS.

2. a simple implementation of complex dependencies as two separate components—trans-
action component and the protocol component.

A coordinate block can express different properties of transactions which are defined
within its transaction component. For example if the type of a transaction (compensatable,
retriable etc.) is known, then a coordinate block can be developed which will enforce this
type specification. If some definitionD for the successful or unsuccessful termination of
the set of transactionsT is given,C can be appropriately constructed so as to ensure that if
the multiform transaction terminates in a state satisfyingD, then success/failure is returned.
Similarly if precedence/preference relations between the transaction inT are provided, then
these can be enforced by the coordinate blocks. As shown later, a multiform transaction can
specify the different commit or abort relationships among a set of transactions, or among
different subsets of this set by defining one or more coordinators. To prevent conflicting
decisions for the same transaction we do not allow coordinators to be concurrent. This is
not a limitation because it does not prevent transactions from being concurrent.

2.2. Execution model

Basic transaction processing is achieved at a site by the cooperation of the Transaction
Manager, the Log Manager, the Lock Manager and the Resource Manager. These compo-
nents together form what is known as the Transaction Processing (TP) subsystem at the
particular site and ensures the atomicity, consistency, isolation and durability (ACID) prop-
erties of the transactions executing at that site. The TP subsystem implements the basic
transaction control operations like commit, abort, savework, rollback, begin-transaction,
lock data items etc.

On top of the TP subsystem at every site, we assume that there is aTransaction Man-
agement Adapter(TMA) module that enhances the functionality of the underlying TP
subsystem by implementing an extended interface of the TP system for our new transaction
processing primitives. The notion of Transaction Management Adapter is borrowed from
[2] where the authors propose also a lock adapter and a conflict adapter as add-on modules
on top of an existing TP system to enhance the TP system’s functionality. A discussion on
these other adapters is beyond the scope of this work as we focus mostly on transaction
termination dependencies. However we allow these other adapters in our architecture thus
obtaining the same functionalities that the authors in [2] achieve.

Finally we assume that there is a TP Monitor at every site that is responsible for services
such as support for multithreaded processes, interprocess communications, scheduling,

404 MANCINI ET AL.

context management, resource administration etc. The TP Monitor gets requests for some
functions to be executed and provides the run-time support needed to start and control the
execution. Note that most of these services are provided by the operating system at the site
the transaction is executing. Indeed the TP Monitor can very well be the operating system
itself. However unlike conventional operating systems, the TP monitor needs to implement
context management in a persistent manner. We do not discuss anything about the TP
Monitor any further. In the subsequent discussions we will assume that the TP monitor is
an integral part of the transaction processing subsystem and use the term TMA-TP module
to indicate the extended transaction processing subsystem that include the various adapters.

A transactionTi executing at some site interacts with the TMA-TP module at that site via
acoordinator module(CM). This coordinator module acts as a transaction event handler and
is implemented by the executable module corresponding to the coordinate block of which
Ti is a part. Before transactionTi gets executed its CM is started by the TP-Monitor as a set
of concurrently executing threads (a daemon process). Execution of a transaction primitive
by a transactionTi is the transaction event that causes the CM corresponding toTi to react
and handle the event.1 If a thread with the same name as the event is defined within the
CM then the thread gets activated otherwise the CM lets the underlying TMA-TP module
handle the event as appropriate. The executing threads can in turn invoke other primitives
that are part of the TMA-TP module or other threads defined by the programmer, in order
to actually handle the event. The coordinator module can be viewed as an extended form of
the notion ofmetatransactionof [2] to include executing codes and a mechanism to specify
and handle inter-transaction communication and synchronization.

Functionally a CM can be divided into two distinct parts: A required set of compiler-
generatedevent interceptorsand an optional set of programmer definedevent handlers. The
latter is essentially the programmer defined protocol component of the coordinate block.
The set of event interceptors includes: (1) the mechanism to pass on relevant parameters
from the run-time environment to the other system modules and vice versa, and (2) the
information as to how a particular event is to be handled, i.e. whether by a programmer
defined event handler or by the underlying TMA-TP module. In particular, the set of event
interceptors contains mechanism to communicate with other CMs of the same multiform
transaction and to pass on parameters to these CMs. An event interceptor is awakened by
the occurrence of an event and then either invokes one of the threads in the CM or invokes
an action exported by the TMA-TP module. Finally, the CM may contain a set of invariants
for each component transaction. These invariants constitute the predicates that need to be
satisfied before and after a transaction execution.

In a distributed setup the CM at the originating (coordinating) site of a multiform trans-
action is of the form just described. At remote sites where component transactions get
executed, lightweight CMs are created. The lightweight CMs contain only the compiler
generated event interceptors. Their function is to invoke the relevant threads executing at
the CM of the coordinating site or at the TMA-TP module at the local site. They act as
the interface between the TMA-TP at the remote site and the CM at the coordinating site.
If the programmer does not explicitly specify any coordinate block (i.e. the programmer
has not defined any thread to handle transaction events) then such lightweight CMs get
loaded at every site and act as forwarding agents for transaction events to the TMA-TP

FLEXIBLE TRANSACTION DEPENDENCIES 405

module at each site. The CM at the coordinating site executes the programmer defined code
to perform the coordinating operations, commit some components of the coordinate block
while aborting other components or taking some other action. If no component transaction
of the coordinate block is executing at the coordinating site, the TMA-TP subsystem at this
site is responsible only for the housekeeping functions (e.g., writing log records etc.) for
the coordinate block as a whole and for its components, while the TMA-TP subsystems at
the remote sites execute the component transactions as well as perform housekeeping (only
for the component transaction executing at that site).

A multiform transaction submitted by the user to the transaction processing system at a
particular site (the coordinating site) is executed as follows:

1. If the programmer has specified one or more coordinate blocks with the multiform
transaction then

(A) The transaction processing subsystem at the coordinating site executes one coordi-
nate block after the other.

(B) A coordinator module (CM) is created corresponding to a coordinate block. If there
are nested coordinate blocks within this coordinate block, then the coordinator
module spawns children coordinators at the same site. Such spawning can go to any
depth as allowed by the resources available at the originating site.

(C) A CM starts up its two components—the event interceptor and the event handler.
It then loads a table—theevent mapper—in the event interceptor that maps events
to the respective handlers located in either the local TMA-TP system or in the
programmer defined primitives.

(D) If the coordinate block consists of component transactions that are to be executed
at remote sites then the coordinator spawns a lightweight CM at each of these sites;
these lightweight CMs contain only the mechanism to communicate with other
sibling lightweight CMs and the parent CM, and also copy of the event mapper
table.

2. If the programmer has not specified any coordinate block then

(A) The transaction processing subsystem creates a lightweight CM at the coordinating
site to pass on the event that has occurred to the underlying TMA-TP module.

(B) If it is a distributed setup, the newly created CM spawns similar lightweight CMs
at the remote sites.

3. When a transaction event occurs for some transactionTi (that is Ti executed some
transaction primitive), the event interceptor in the CM associated withTi is awakened.

(A) If the event has been the execution of some transaction primitive defined by the pro-
grammer then the event interceptor first checks the invariants, if any, that constitute
the precondition for the primitive.

If the precondition check fails the event handler part of the CM can do one of
several things in order: (i) it checks if an error handling routine has been defined by
the programmer and, if so, invokes it; (Note that if such an error handling routine
has been defined by the programmer it will be part of the protocol component of the

406 MANCINI ET AL.

multiform transaction and will be executing as one of the concurrently executing
threads at the CM at the coordinating site) (ii) if no error handler has been defined
by the programmer, then the event handler invokes an appropriate system defined
error handler (on the assumption that one is available); (iii) it takes no action cor-
responding to the transaction event, just returns control to the TMA-TP subsystem
for the execution of the next statement in the body of the transaction.

(B) If the precondition is satisfied then the thread with the same name at the coordinating
site’s CM gets activated, performs the actions defined by its code and returns control
to the event interceptor of the CM associated withTi . Note that prior to or along
with invoking a thread at the coordinating site’s CM, the event interceptor may also
invoke actions at the local TMA-TP subsystems.

(C) When the initiating CM receives the result, it checks for postcondition satisfaction
and, if the test is successful, returns the result of the thread execution to the trans-
action as if for a normal transaction primitive call. If the test is unsuccessful, a null
value is returned. Note that before any result is returned, the CM may invoke any
function at the local TMA-TP subsystem.

(D) If the event has been the execution of some primitive not defined by the programmer,
then the event interceptor allows the local TMA-TP subsystem to handle the event
appropriately.

4. The decision to end an executing coordinate block comes from the CM at the coordinat-
ing site. When this happens the different lightweight CMs at the various site all terminate
and control gets returned to the TMA-TP subsystem at the coordinating site. If all coor-
dinate blocks in the multiform transaction have been executed the multiform transaction
terminates. Otherwise the next coordinate block is executed by the transaction processing
subsystem as detailed in step 1 above.

Figure 1 gives a schematic diagram on how transaction events at a remote transaction
are handled by the cooperation of the lightweight CM at the remote site, the CM at the
coordinating site and the TMA-TP subsystems at both the sites. In the figure the begintrans
event is handled as a local TP system call by the TMA-TP subsystem at the remote site;
the endtrans event is intercepted by the lightweight CM at the remote site and forwarded
to the CM at the coordinating site. The latter in turn invokes a TP system call at its local
TMA-TP subsystem.

Our model allows the programmer to define not only application specific transaction
events (an example of this will be given later on in Section 6.3), but also to redefine
the semantics of ordinary transaction events such as transaction completion or transaction
begin, commit and abort. The programmer defined behavior get precedence over the default
behavior and can thus be imposed on the latter.

In the following we give an example to illustrate the execution of a multiform transaction.

2.3. A multiform transaction implementing two sets of completion dependencies

We offer the programmer two methods for specifying completion dependencies. With the
first approach the programmer directly uses the high level language and our new transaction

FLEXIBLE TRANSACTION DEPENDENCIES 407

Figure 1. Event handling sequence for transaction events.

processing primitives to specify the dependencies. With the second approach the program-
mer uses a declarative language in a notation we have proposed to specify the dependencies
among transactions. A pre-compiler then translates this higher level description into a corre-
sponding code in the high level language we use to specify transactions. The first approach
gives more expressive power to the programmer than the second one and hence we will
concentrate mostly on this approach; on the other hand the second approach is easier to use.
In the following we show by an example, how the programmer can express these depen-
dencies in our model to define coordinate blocks for a group of transactions using the high
level language.

We assume that the programmer wants to design a multiform transaction consisting of
four component transactionsT1, T2, T3 andT4, each of which will be executed at different
sites. The application requires that at most one ofT1 or T2 commits withT1 being preferred
to T2 and either bothT3 andT4 commit or none of them do so. In short, one and only one
of the following sets of transactions commits:{ }, {T1}, {T2}, {T3, T4}, {T1, T3, T4} or {T2,
T3, T4}. Moreover, transactionsT3 andT4 can commence execution only afterT1 andT2

completes.
For this scenario, the programmer will develop the program fragment shown in figure 2.

Note that although we use some of our new language primitives before they have been
presented in the paper, a detailed understanding of the primitives is not required at this
stage.

From the program fragment, we find that the multiform transaction consists of two coor-
dinate blocks specified by the twocoordinate. . .usingdelimiters. Each block contains the

408 MANCINI ET AL.

Figure 2. Program in the high level language for a multiform transaction consisting of four transactions.

code that implements the dependencies between those transactions that are defined within
the blocks. In the figure, the coordinate blockcoordinate. . . using. . . endimplements the
dependency between transactionsT1 andT2 (namely only one ofT1 or T2 can commit with
T1 being preferred) while the blockcoordinate. . . using defaultimplements the dependency
amongT3 andT4 (namely either both commit or none do). Note that the latter commit de-
pendency is the standard commit dependency implemented in the various commit protocols
(like Early Prepare). We assume that each transaction processing system implements a de-
fault commit protocol. The second coordinate block in the example in figure 2 specifies
“default” as the coordinator module for transactionsT3 andT4. Also note that the order of
the two coordinate blocks ensures thatT3 andT4 can commence execution only after both
T1 andT2 completes.

Of interest to this discussion is the coordinate block for transactionsT1 andT2 specified
by the programmer in the form of a program fragment within the sub-blockusing. . . end.
This program fragment contains definitions of some of the primitives that the programmer
uses within the transactions.

FLEXIBLE TRANSACTION DEPENDENCIES 409

The transactionsT1 andT2 are defined sequentially within the multiform transaction (and
not within acobegin. . . coendblock which would have implied concurrent execution) with
T1 being defined beforeT2. This sequential definition of transactions naturally entails a
precedence relation between these two transactions. Each transaction must be initiated by
the initiate primitive before being able to start its execution. After a transaction is initiated,
it is assigned a transaction identifier in the system and an environment is set up for its
execution.

After the multiform transaction in figure 2 is submitted to the system, the TMA-TP module
at the coordinating site assigns local transaction identifiers to the multiform transaction as
well as to its components and then loads the main CM. Lightweight CMs forT1 andT2 are
spawned by this CM at the remote sites. At the time these lightweight CMs are started up,
the TMA-TP modules at these sites are asked to assign local transaction identifiers forT1

andT2. The TMA-TP module at the coordinating site then submits transactionT1 to the
remote site’s TMA-TP which in turn begins to executeT1. Note that the three CMs as a
unit represent the interface to the three cooperating TMA-TP systems for the multiform
transaction.

SupposeT1 executes an endtrans; the CM atT1’s site sends a prepare-to-commitT1

message to its underlying TMA-TP module and then invokes endtrans at the coordinating
site’s CM. (In figure 2 endtrans has been defined by the programmer in the coordinate
block.) The CM at the coordinating site asks the CM forT1 to invoke commit(T1) and asks
the CM for T2 to invoke abort(T2) at the respective underlying TMA-TP. The respective
TMA-TP modules consequently force a commit log record forT1 and an abort log record for
T2 and acknowledge the corresponding CMs. Also the TMA-TP module at the coordinating
site forces appropriate log records forT1 andT2. This causesT1 andT2 to terminate. Note that
the TMA-TP module can force an abort log record forT2 althoughT2 was never submitted to
a remote site for execution. This is because when the lightweight CM forT2 was established
at the remote site ofT2, the TMA-TP subsystem there established a local identifier forT2.

T1 may alternatively execute an aborttrans command during its execution. This abort
trans command may have been invoked explicitly byT1 or it may have been invoked by
the TMA-TP becauseT1 could not successfully complete. If the TMA-TP module at the
remote site abortsT1, the CM at the remote site informs the CM at the coordinating site by
sending an aborttrans message to the CM at the coordinating site thatT1 has aborted. On
the other hand ifT1 invokes aborttrans, the CM at the remote site forwards the invocation
of abort trans byT1 to the CM of the coordinating site. The CM at the coordinating site
executes aborttrans according to the implementation specified by the programmer in the
thread aborttrans. The thread returns without executing any explicit abort (or commit)
command and the coordinating CM does not send any specific instructions back to the CM
at the remote site (it merely returns). As a resultT1 stops its execution but remains alive in
the system until an explicit abort comes from the coordinator module to terminate it.2 The
TMA-TP module at the coordinating site now submitsT2 for execution at the remote site.
Subsequently invocation of endtrans or aborttrans byT2 will be trapped by the CM at the
remote site and forwarded to the CM at the coordinating site for execution. IfT2 executes
end trans, the corresponding thread will commitT2 and abortT1. If, on the other hand,T2

executes aborttrans, bothT1 andT2 will be aborted. This will terminate the CMs forT1

andT2.

410 MANCINI ET AL.

Once the CM forT1 andT2 terminates, the control gets transferred to the runtime support
at the coordinating site which in turn initiates the default coordinator in the system (i.e. the
default commit protocol) forT3 andT4. T3 andT4 proceed concurrently in the system as
they are within acobegin. . . coendblock. WhenT3 andT4 commit or abort the execution
of the multiform transaction is over.

Note that in any coordinate block, we can refer to only those transaction identifiers that
are in the scope of the block. In figure 2, transactionsT1 andT2 are scoped in the coordinate
block defined by the programmer but notT3 andT4. Consequently we can define endtrans
and aborttrans only forT1 andT2 within this block.

The above execution is represented pictorially in figures 3(a) and (b). Note that for the
description of the implementation of the coordinator forT1 and T2 in figure 2 we have
assumed that CMu in figure 3(a) submitsT1 andT2 sequentially to each of the respective
TMAs. Moreover CMu does not submitT2 if T1 commits.

3. Primitives for flexible commit

We now describe our transaction processing primitives. These primitives are essentially
control primitives which modify the state of the transaction and are broadly classified
into two types: basic primitives and new primitives. The basic primitives have been so
named because quite frequently some kind of semantic counterparts to these are found in
conventional transaction processing systems and even if these semantic counterparts do
not match exactly with the definitions given here, they can be easily modified to support
the functionality we desire here. The new primitives are the ones we define and that lend
expressive power and flexibility to our model. Their default interface is provided by the
transaction management adapters.

3.1. Basic primitives

initiate(T1, . . . ,Tn) This primitive initiates the transactionsT1, . . . , Tn. It returns new
transaction identifiers in the variablesT1, . . . Tn and sets up the environment necessary for
the execution of the transactions. The transactions are started by calling the begintrans()
primitive. The scope of the variablesTi used in an initiate primitive is the program block
containing this initiate primitive. The initiate(Ti) primitive must precede all use of the
variableTi within a multiform transaction.

begin trans(Ti) This primitive starts the execution of the transaction whose transaction
identifier isTi . This primitive can be redefined by the programmer.

sid= savework() The savework() primitive is used to establish a savepoint in the trans-
action execution. The invocation of this primitive causes the system to save the current
state of processing. Each transaction manager writes a savepoint record on the local
transaction log, while the current values of any local variables are saved on the stable
storage. The savework call returns a handle which is assigned to the identifier sid (called
a savepoint identifier). This identifier can be used subsequently to refer to that save-
point, and in particular to the state of the system when this savepoint was established.
The scope of the binding between the savepoint and the identifier sid is the block in

Figure 3. Execution of a multiform transaction. (a) Execution of the programmer defined coordinator; (b)
Execution of the default coordinator.

412 MANCINI ET AL.

which the “sid= savework()” is executed. Control can jump from inside of a block to a
savepoint within an encompassing block, but not the other way round.

rollback(sid) This primitive takes as a parameter the identifier of a previously established
savepoint and reestablishes (or returns to) the savepoint. More precisely, when the roll-
back(sid) function is invoked, it restores the state of the system to the state that existed
when the savepoint denoted by the savepoint identifier sid, was established; the execu-
tion of the transaction then continues from the statements that follow the savepoint sid.
The successful termination of the rollback primitive is indicated by the restoration of the
savepoint denoted by sid. This primitive can only be invoked within a transaction code.

restart(Ti) This primitive is a part of the coordinator module and cannot be invoked by
a transaction. When called, this primitive starts the execution of the transaction whose
identifier isTi . If the transactionTi was previously executed (partially or fully) but not yet
committed, then all changes effected byTi are discarded before the transaction execution
is restarted.

commit(T1, . . . ,Tn) This primitive is implemented in the TMA-TP module and is part of
the commit protocol. It cannot be invoked directly by a component transaction. Rather,
it has to be invoked by the coordinator module. This primitive commits the operations
of the transactions which are its parameters, by first writing the log records and then
communicating the commit decision to the transaction managers of these transactions.
In other words, this command forms the final phase of any commit protocol between the
coordinator and the transactionsT1, . . . , Tn.

abort(T1, . . . ,Tn) This primitive aborts the transactions specified as parameters. If the
primitive abort(Ti) is invoked beforeTi has started its execution, thenTi never starts its
execution and is discarded from the system. Like the commit primitive, abort is a part of
the TMA-TP module and can be invoked only by the coordinator module.

cobegin. . . coend These two primitives act as bracketing constructs for specifying con-
currently executing transactions. Control flow does not proceed beyond the cobegin. . .

coend block until all of the transactions created by the block complete. Cobegin. . . coend
can be nested.

3.2. New primitives

end trans(Ti)〈supportcode〉 The endtrans is a system defined primitive which can be
redefined by the programmer as a coordinator module thread. Its execution signifies
the successful completion of the transactionTi , specified by a previous matching be-
gin trans(Ti), and indicates a willingness to commit the work ofTi . The programmer’s
definition of endtrans gets precedence over the default definition for the primitive.

If the programmer has not redefined the endtrans primitive, the default execution takes
place. In this case the CM forTi notes the completion ofTi ; it asks the relevant TMA-TP
module to force a prepare log record and sends vote messages relevant to the default
commit protocol to the coordinator for the multiform transaction. The control flow does
not proceed beyond the endtrans call, until the transaction manager forTi receives either
a commit or an abort decision. If the primitive is invoked without any parameter, then it
commits the transaction within which it has been invoked.

FLEXIBLE TRANSACTION DEPENDENCIES 413

As mentioned earlier, it is possible to overload this primitive to have a more flexible
programmer-defined commit protocol. From transactionTi ’s point of view the execution
of the programmer-defined endtrans is the same as the default execution. That is the
completion of the transactionTi is recorded by a prepare log record and control is
passed to the thread of the same name being executed at the coordinator. If the thread
for end trans does not contain an explicit invocation of the commit or abort primitives,
the control proceeds beyond the transactionTi after the thread completes execution and
returns. However, the transactionTi remains unterminated until an explicit invocation of
commit or abort is eventually performed by the coordinator module forTi .

Note that this primitive has two parts: endtrans(Ti) andsupportcode. The second
part is an optional piece of program code which can be included by the programmer.
This program code is not executed when the endtrans primitive is invoked. Rather, the
coordinator module can direct the TMA-TP module forTi to execute this program code
by invoking the callsupport primitive (explained next).

call support(T j , . . . ,Tm) This primitive can be invoked only as part of the programmer
defined coordinator. With this primitive the coordinator module can direct the transaction
managers of the transactionsTj , . . . , Tm to execute the supportcodes specified as part of
the corresponding endtrans primitives in these transactions. The program fragment for
supportcode of eachTk runs within the scope ofTk. If a supportcode is invoked while the
corresponding transaction is running, then the execution of the supportcode is deferred
until the transaction completes. The callsupport returns to the invoking thread, when all
the executing supportcodes finish. This primitive along with the programmer specified
supportcode are useful in cases where the coordinator module wants to perform some
task beyond merely committing/aborting after the transaction has executed an endtrans
primitive. An example is shown later in Section 6.3.

abort trans(Ti) The aborttrans is a system defined primitive which can also be rede-
fined by the programmer as a coordinator module thread. In both cases, it signifies the
unsuccessful completion of the transactionTi , specified by a previous begintrans(Ti),
and indicates a decision to abort the work. However, the aborttrans does not actually
abort the transaction. Rather the actual abort is performed by the abort primitive which is
invoked by default and will always abortTi . In case the aborttrans primitive is redefined
by the programmer, the new definition gets preference over the default definition. If the
thread for aborttrans does not contain an explicit invocation of the abort primitive, status
of the transactionTi remains unterminated until an explicit invocation of abort is even-
tually performed by the coordinator forTi . The termination of the aborttrans primitive
itself is similar to the endtrans primitive as explained above.

coordinate 〈transaction〉 using 〈protocol〉 This primitive defines thecoordinate block
whose partial syntax is described in Table 1. (Note that only the enhancements required
in a standard programming language to support such a syntax is shown in the table.
Anything not been defined is assumed to follow the syntax of the host language.) The
coordinate block consists of two components: thetransactioncomponent and theprotocol
component. The protocol component defines the dependencies for the set of transactions
specified in the transaction component. The protocol component can be the keyword
default, in which case one of the traditional commit protocols like two-phase commit
or early prepare is used. Or it can be a programmer specified dependency among the

414 MANCINI ET AL.

Table 1. Partial syntax for a coordinate block.

Keyword Syntax

coordinate-block ::= coordinate transactionusingprotocol
| coordinatecoordinate-blockusingprotocol

transaction ::= begin trans(trans-id) trans-commandend trans(trans-id)
| initiate (trans-id)
| cobegintransactioncoend
| transaction ; transaction

trans-command ::= abort trans(trans-id)
| host-language-command

protocol ::= default | declarativecodeend | protocolcodeend

declarativecode ::= dependency{dependency expression}
dependency expression ::= general dependency from Table 3

protocolcode ::= protocol-command
| protocolcode ; protocol-command

protocol-command ::= thread begin trans(parameter) thread-command
| thread end trans(parameter) thread-command
| thread abort trans(parameter) thread-command
| thread identifier(formal-par-sequence) thread-command

thread-command ::= commit(trans-ids) | abort(trans-ids) | restart(trans-ids)
| call support(trans-ids) | exit
| thread-command;thread-command
| host-language-command

transactions in the high level declarative language; or it can be a programmer defined
code in which case it contains the code for each of the primitives that the programmer
wants to define or redefine, including begintrans(t), endtrans(t) and aborttrans(t). The
scope of the redefined primitives is limited to the corresponding transaction component.

Within the coordinate block the programmer can define persistent variables which can
live across the boundaries of transactions involved in the coordinate block. Persistent
variables can also span multiple coordinate blocks of the same multiform transaction.
However, the scope of such persistent variables is limited to the multiform transaction
in which these have been defined. If the multiform transaction aborts or crashes, the
persistent variables are no longer recovered. If the coordinate block, within which the
persistent variable has been defined, crashes, then the persistent variable is not restored.
Suppose that a persistent variablex is defined in some coordinate blockC1; it was
modified inC1, then in some subsequent coordinate blockC2 and currently is being used
in a third coordinate blockC3. If now C3 crashes then the persistent variablex will be
restored to the state after the completion ofC2. These persistent variables are useful for
flow control.

The control flow does not proceed beyond the coordinate block until either the trans-
action component completes or the coordinator module is terminated in a manner ex-
plained below.

FLEXIBLE TRANSACTION DEPENDENCIES 415

thread identifier For efficiency and ease of implementation as daemons, the protocol
component is programmed as a set of concurrently executing threads. The thread primi-
tive allows the programmer to define a coordinator module thread which is activated by
a transaction event. The identifier specifies the event which activates the thread. When
a coordinate block is encountered, the coordinator module is created. It waits for any of
the events named in its threads. When such an event occurs the corresponding thread is
activated. If the thread encounters anexit command, the coordinator module terminates
thereby causing the entire coordinate block to end. This is true even if there are transac-
tions in the transaction component which are either yet to be executed or are currently
executing concurrently. These transactions have to be taken care of by a subsequent
coordinate block otherwise may lead to the problem oforphan transactions.3

On the other hand if an exit command is not encountered, the thread does not cause the
coordinator module to terminate. Instead when the thread completes, it returns control
to the transaction component. If an exit command is never encountered, the coordinator
module terminates when all transactions have completed their execution and the coordi-
nate block has terminated.

The execution of a thread is considered to be atomic.
exit Invocation of this command causes the termination of the coordinator module.

Table 2 summarizes the transaction primitives in our model. The first column of Table 2
lists the different primitives. The primitives have been grouped into three categories—(i)
primitives that allow the structuring of the multiform transaction (ii) primitives that can be
invoked from within the transaction component of a coordinate block and (iii) primitives
that can be invoked from only within the protocol component of a coordinate block. The
second column specifies where the programmer can use each primitive from viz., inside or
outside a protocol component. The third column gives the system component that provides
the interface to a particular primitive. When a primitive is invoked, this system component
executes the primitive first. It in turn may invoke other system components in order to carry
on the execution of the primitive.

The fourth column specifies which primitives provide a bracketing construct to specify
nesting from the syntactic point of view. Finally the fifth column indicates whether a prim-
itive can be redefined by the programmer in the coordinate block. Note that we allow only
begin trans, endtrans and aborttrans to be redefined in the current model of multiform
transactions.

Of particular interest among the primitives in Table 2 are the eight primitives—initiate,
begin trans, endtrans, aborttrans, commit, abort, restart and callsupport—all of which
cause state transitions for a transaction. Figure 4 gives the state transition diagram for a
transaction with respect to the above eight primitives.

When a multiform transaction is submitted by the user each component transaction enters
thedeclaredstate. A declared transaction enters theinitiatedstate when the initiate primitive
is executed for the transaction. The transaction while executing its code, is in therunning
state. After it has executed all its code (either successfully or unsuccessfully), the transaction
moves to thecompletedstate. From the completed state, the transaction terminates by either
moving to thecommittedstate or to theabortedstate.

416 MANCINI ET AL.

Table 2. Summary of transaction primitives.

Invocation relative to Nested
Primitive name protocol component Interface exported by definition Redefinition

coordinate. . . using Outside Language support Yes No

cobegin. . . coend Outside Language support Yes No

initiate Outside TMA-TP – No

sid= savework Outside TMA-TP – No

rollback Outside TMA-TP – No

begin trans Outside CM or TMA-TP Yes Yes

end trans Outside CM or TMA-TP Yes Yes

abort trans Outside CM or TMA-TP – Yes

thread Inside CM – No

commit Inside TMA-TP – No

abort Inside TMA-TP – No

restart Inside TMA-TP – No

call support Inside TMA-TP – No

exit Inside TMA-TP – No

Figure 4. State transition diagram for a transaction.

FLEXIBLE TRANSACTION DEPENDENCIES 417

Besides these six states there is anerror state for a transaction. When the transaction
manager detects that a transaction has moved into this state after invoking a primitive, the
transaction manager ignores the primitive, and returns an error code to the transaction. The
transaction can execute a particular error handler if provided by the programmer. Otherwise
it can ignore the error code and continue the execution from the next instruction. Note that
the circumstance behind a declared transactionTi having to move to the error state can be
detected at compile time by ensuring that the initiate primitive precedes the invocation of
any other primitives byTi .

4. Discussion

4.1. Orphan transactions

In our model, a transactionTi , invoking a programmer defined endtrans or aborttrans
thread at the coordinator, may not be terminated when the thread returns. This happens
when the particular thread invoked byTi does not in turn, invoke a commit or abort for
Ti . Consequently, when the thread terminates its execution,Ti may remain active. Later
on a second coordinator may execute a commit or abort command forTi and terminate
the transaction. Note that the second coordinator must be defined within the scope of the
variableTi to be able to commit or abort the transactionTi and that only one coordinator
can actually cause the termination ofTi .

The scope of every thread in a coordinator is limited to the corresponding transaction
component. However, if the same thread is also defined in a nested coordinate block, the new
binding overrides the previous binding. This scoping rule for the coordinate blocks ensures
that every time a thread is invoked by a transaction, the definition of the thread closest to the
invocation takes effect. For example, if a thread is defined twice—once within a coordinate
block C and a second time within another coordinate blockC′ which is nested withinC,
then when the thread is invoked from withinC′, the definition of the thread withinC′ is in
effect. After an endtrans or aborttrans has been executed forTi , the very next coordinator
that invokes a commit(Ti) or abort(Ti) will be able to commit or abortTi (provided of course,
that this invoking coordinator is within the scope ofTi). Moreover afterTi has terminated
any subsequent invocation of commit or abort forTi will result in an error condition. As
part of the error handling, the relevant error handler will perform a null operation on the
database and generate warning messages.

Assume now that a multiform transaction is not properly designed. Then a possibility
remains that the transactionTi is never explicitly terminated by any coordinator within the
multiform transaction and thus remains active at the end of the multiform transaction. Such a
transaction is calledorphan transaction. When a transactionTi is orphan the locks acquired
by Ti are not released and the updates made byTi are not made permanent. This may cause a
number of problems like deadlock or unsatisfiable dependencies. For this reason a strategy
is usually adopted in which all orphan transactions are aborted as soon as detected. However
this strategy is not completely satisfactory as the work of the orphan transaction is wasted.
This is more of a problem because often an orphan transaction is the result of a program
error which could have been avoided by some compile time check.

418 MANCINI ET AL.

In order to avoid the problem of orphan transactions we introduce the notion of awell-
formedmultiform transaction. A compiler can check a multiform transaction for well-
formedness and can ensure that orphans do not result from a program error. Intuitively, a
well-formed multiform transaction is one that does not leave any orphan transactions after
its execution.

To introduce the notion of well-formed multiform transaction we use the concept of a
control flow graph of a coordinate block. The control flow graph is a graph whose nodes
represent events of the following types:

• Initiation—This node represents the fact that a begintrans(Ti) is encountered in the code
of the coordinate block and is labeled byTi Begin;
• Thread invocation—This node represents a thread named in the transaction code and is

labeled by the name of the thread followed by the transaction invoking the thread; for
e.g. endtrans(Ti), abort trans(Ti) etc.;
• Decision—This node represents the decisions taken by a particular thread and is labeled

by the set of decisions taken viz., commit(Tj) or abort(Tj);
• Termination—This node represents the end of the coordinate blockC. The end ofC is

specified either by the execution of an exit command in a thread defined in the protocol
component or by the end of the last thread invoked by the last transaction in the transaction
component ofC. The node is labeled correspondingly, either by exit or by done.

There is an edge from one nodeNi to another nodeNj in the control flow graph ifNi

may potentially causeNj . For example if a transactionTi contains conditional invocations
of abort trans(Ti) and endtrans(Ti) then the corresponding control flow graph contains
one initiation nodeTi Begin, with two children labeled endtrans(Ti) and aborttrans(Ti).
Moreover, when a cobegin command is encountered after an eventε in the code of the
coordinate block, a subgraph is appended toε. This subgraph represents all the possible
interleavings of the concurrent transactions within the corresponding cobegin. . . coend
block. This is sufficient to model concurrency among transactions that invoke the same
coordinator. The reason for this is that the control flow graph does not describe the execution
of the transactions but rather the coordinator’s flow. Since concurrent transactions specified
within a cobegin. . . coend block invoke the same threads at the same coordinator, these
invocations must be interleaved in some fashion.

Let acontrol flow pathbe any path in a control flow graph starting from a node of type
initiation. Then atermination pathis defined as follows:

Definition 2(Termination Path). Atermination pathof a coordinate blockC is one of the
possible control flow paths ending in a termination node. Such a path describes a possible
termination of the coordinatorC.

Figure 5 is a control flow graph for the coordinate block involving transactionsT1 and
T2 of figure 2. It shows the three termination paths for the programmer defined coordinator
for transactionT1 andT2.

Definition 3 (Cover). LetT and T ′ be two sets of transactions such thatT ⊆ T ′. A
coordinate blockC in the scope of the set of transactionsT ′, covers T(alternatively covers

FLEXIBLE TRANSACTION DEPENDENCIES 419

Figure 5. Control flow graph of coordinator for transactionsT1 andT2 in figure 2.

all transactions inT) if every termination path ofC contains either a commit command or
an abort command for eachTi ∈ T . The set of transactionsT covered byC is denoted by
TC.

At compilation time it is possible to determine whether a particular coordinate block
covers a set of transactionsT by performing a static analysis [18] of the coordinate block.
Referring to figure 2 a compiler can generate a control flow graph of the coordinate block
for transactionsT1 and T2 similar to that shown in figure 5. Then the compiler can find
out that the programmer defined coordinator covers transactionsT1 andT2. This is because
there are three termination paths ending with the exit command, each of which contains
either a commit or an abort for bothT1 andT2.

Note that all transactionsTi ∈ T need not be defined within the transaction component
of the coordinatorC. C can cover transactions defined in the transaction component of
another coordinatorC′. C need only to be in the scope of the variableTi in order to be able
to cover the transactionTi . Further a set of transactions may be covered by the system default
coordinators. For example in figure 2 the system default coordinator covers transactionT3

andT4. Note that if a transaction is defined within a coordinate block but is not covered by
any programmer’s coordinator code, then it is not covered by the system default coordinator
also.

Definition 4(Branch). Abranchof a multiform transaction is one of the possible execu-
tion sequences of the multiform transaction which ends with the multiform transaction’s
termination and along which the control flows in the multiform transaction.

Definition 5 (Well-formed Multiform Transaction). A multiform transaction iswell-
formedif in every branchB of the multiform transaction one or more coordinator blocks

420 MANCINI ET AL.

C1, . . . ,Cq are encountered such thatTC1 ∪ TC2 · · · ∪ TCq contains all the transactions
defined in the blocks encountered inB.

Note that if a coordinatorC does not cover a transactionTi defined in the transaction
component ofC, then the multiform transaction can still be well-formed provided there is
a second coordinatorC′ that coversTi . Moreover, multiple invocation of commit or abort
for a transactionTi can be specified in the multiform transaction. Usually this occurs ifTi

is to be conditionally aborted or committed. In such cases, the first execution at runtime of
either primitive takes effect while the others, if executed subsequently, perform only null
operations and generate warning messages.

It can be determined at compile time whether a multiform transaction is well-formed or
not. To do this, the compiler can statically analyze a multiform transaction and determine
whether the set of coordinators defined in the multiform transaction covers the full set of
transactions defined in it. Referring to figure 2 we find that the multiform transaction is
well-formed.T1 andT2 are covered by the programmer defined coordinator as shown in
figure 5, whileT3 andT4 are covered by the system default coordinator.

The multiform transaction shown in figure 6(a) is not well-formed as it results in the
control flow graph shown in figure 6(b). In this control flow graph there is a termination path
that does not contain abort(T1) or commit(T1) viz., T1Begin→ abort trans(T1)→ T2Begin
→ end trans(T2)→ commit(T2)→ done.

4.2. Recovery for a multiform transaction

Recovery of a multiform transaction is different from that of a conventional transaction.
In the classical transaction processing system if a crash destroys the code of a running
transaction, the system log is sufficient to undo the effects of the transaction. However, in
the case of multiform transactions, it is necessary to complete the remaining transactions
including the one (if any) that was executing at the time of the crash. This requires the code
of the multiform transaction to survive the crash.

Note that there is a distinction between the failure of the multiform transaction and the
failure of one of its component transactions. In case of the failure of one of the component
transactionsTi (which is the same as the transaction executing an aborttrans primitive), the
corresponding coordinator performs the necessary recovery operations forTi . Our concern
is more with the failure of the multiform transaction in which the coordinator modules
crash. This requires the code of the multiform transaction to be stored in the database.

To achieve this recovery process, we assume that the database system can store code as
any other data item. When a multiform transactionT is submitted by the user an initiating
transactionIT enters into the database the code of all the component transactions and the
coordinators specified in the multiform transaction and then commits. AfterIT commits
the rest of the multiform transaction is ready to start. When the multiform transaction ends
its execution the system does not right away forget aboutT . At this point a terminating
transactionET is initiated to remove the different codes ofT that were entered earlier by
IT , from the database. IfIT aborts it is recovered using conventional recovery techniques.
Since the multiform transaction does not start until afterIT commits, semantically the abort

FLEXIBLE TRANSACTION DEPENDENCIES 421

Figure 6. Example of (a) a not well-formed transaction; (b) its control flow graph.

of IT is equivalent to the abort of the multiform transaction. The user gets a response similar
to failure to start the multiform transaction and has to resubmit the multiform transaction
if it is to be executed. On the other hand, ifET gets aborted, there is no need to abort
the multiform transactionT . However the system does not forget aboutT until after ET

commits.ET is recovered and automatically restarted when the system comes up.

422 MANCINI ET AL.

If there is a failure of the multiform transactionT , the recovery subsystem determines
which of the component transactions have committed and which coordinator was running
at the time of the crash. It undoes the transactions that were not committed at the time of
the crash. All persistent variables defined within a coordinate block are also restored by the
recovery subsystem. Since the code ofT is stored in the database, the multiform transaction
can then continue from the committed state just before the crash.

4.3. Multiple saveworks

In the course of a transaction execution, a sid= savework() primitive may be executed more
than once. In such cases it is preferable to assign the new handle generated by the system,
to different savepoint identifiers every time a savework primitive is invoked. Otherwise the
transaction looses the ability to refer to the savepoints previously established but associated
to the same sid.4 For example suppose the programmer wants to undo the effects of a loop
based on certain conditions established during the execution of the loop. If a savepoint is
established within the loop and the same savepoint identifier is employed, the programmer
can undo only the latest iteration of the loop. This is due to the fact that while re-using
the same identifier for different handles, the programmer looses reference to the previous
savepoint handles. If the programmer establishes a savepoint immediately before the loop,
the effects of all the iterations of the loop can be fully undone. Recall that the scoping rules
of the savepoint identifier is the whole block in which the sid= savework() primitive is
executed and hence a rollback command within the loop can refer to a savepoint identifier
outside the loop.

4.4. Restart and rollback

Semantically the restart(Ti) command is equivalent to executing a rollback to the beginning
of the transaction. This rollback can be achieved by establishing a savepoint corresponding
to the execution of the begintrans(Ti). However, there is one important difference between
the restart primitive and the rollback to the beginning of a transaction. The restart primitive
can be executed only by the coordinator; a transaction cannot restart itself. The rollback
primitive, on the other hand is invoked by the transaction itself. The coordinator does not
have any idea about savepoints established by a transaction and hence is not allowed to
execute a rollback primitive.

4.5. Other issues

In the multiform transaction model, a coordinator for a transactionTi can multiply invoke
commit or abort primitives forTi . Usually this occurs ifTi is to be conditionally aborted
or committed. In such cases, the first execution at runtime of either primitive takes effect
while the others, if executed subsequently, performs only null operations and generates
warning messages. Further, the initiate command can be invoked from both outside or
inside a coordinate block. If it is invoked from outside a coordinate block then the scope

FLEXIBLE TRANSACTION DEPENDENCIES 423

of the identifierTi specified in the invocation of initiate is the entire program code for the
multiform transaction; else the scope is limited only to the particular coordinate block from
which initiate is invoked. In the former case we can have a number of coordinate blocks
for a single transactionTi defined within the scope of the identifierTi ; however, at most
two coordinators can actually be involved for terminatingTi . The scoping rules ensure that
every time an endtrans or an aborttrans is invoked, it gets bound to only one thread, viz. to
the thread which is defined at point closest to the invocation. Hence, the closest coordinator
will execute endtrans (or aborttrans) without committing or abortingTi and a second will
perform the actual commit or abort operation.

5. Deadlock detection within a multiform transaction

Deadlock can occur among the component transactions of a single multiform transaction,
for a variety of reasons:

1. When the component transactions are concurrent and they share common data, the
concurrency control mechanism used to synchronize access to the shared data can cause
deadlock. For example strict two phase locking can cause deadlock.

2. If conflicting completion dependencies have been specified for a set of transactions, it
can lead to deadlock. For example, for a set of transactions{T1, T2}, the completion
dependency—T1 can commit only ifT2 commits andT2 can start execution only after
T1 commits—will cause a deadlock.

3. Deadlock can occur among the component transactions by the interplay of data depen-
dency and completion dependency among these transactions.

Note that in the following discussion we are interested only with deadlock that can
occur within a multiform transaction. Since there are no completion dependencies among
component transactions of different multiform transactions, the only way deadlock can
occur among different multiform transactions is by way of sharing data. We do not consider
this issue since there are adequate techniques that take care of this matter. This is true for
the deadlock that occurs by way of the method (1) above. Also deadlock as outlined in
method (2) can be avoided by a simple static analysis of the control flow in the multiform
transaction. Of greater concern is the deadlock occurring by method (3) which is more
difficult to analyze and resolve.

Consider a well-formed multiform transaction composed of two concurrent transactions
T1 andT2 such that

• there is a data dependency betweenT1 andT2 on a shared data itemx such thatT1 writes
x which is later on read byT2 and
• there is the following completion dependency betweenT1 andT2—T1 commits only if

T2 is committed.

If T1 andT2 are concurrent then the following deadlock situation may arise:

424 MANCINI ET AL.

Figure 7. Example in which a deadlock occurs.

1. T1 receives write lock onx beforeT2 and completes its execution (butT1 is not committed
and hence does not release its locks);

2. T2 waits for T1 to release the write lock onx before being able to proceed with its
execution;

3. T1 cannot commit and release its write lock onx asT2 has not yet committed or aborted.

Conventional deadlock detection algorithms will fail to detect the deadlock. This is
because the conventional algorithms consider only the data dependency and cannot cope
with the interaction between data dependency and completion dependency. Moreover, the
dependencies in a multiform transaction may be more complex than the one given in this
example. Dependencies can exist not only between two transactions but also between two
sets of transactions. This is shown in the example in figure 7.

The example in figure 7 illustrates a different completion dependency among three com-
ponent transactionsT1, T2 and T3 which results in a deadlock. In this example,T1 and
T2 share a common data itemx while T3 does not share any data item with any of these
transactions.T1 can terminate only after bothT2 andT3 have committed.

This causes a deadlock. However, if the protocol component of this multiform transaction
is modified to give a different completion dependency as that shown in figure 8, then we
no longer have a deadlock. In figure 8 transactionT1 can terminate after eitherT2 or T3 has
committed. In those transaction examples and some other subsequent examples, a boolean
function subseteq(a, b) has been used. This function takes two setsa andb as parameters
and returns true ifa ⊆ b. Moreover, the persistent variable completeSet has been declared
within the protocol component; in the subsequent examples of multiform transaction all

FLEXIBLE TRANSACTION DEPENDENCIES 425

Figure 8. No deadlock.

variables used in a protocol component will be assumed to be persistent and not explicitly
declared.

The reason for giving these examples is to emphasize the point that it is more difficult
to detect deadlock when completion dependencies are also involved besides ordinary data
dependencies. Moreover, completion dependencies are not specified explicitly in our model
but in the form of program code.

Once a deadlock is detected, the usual strategy to break it is to abort any one of the involved
transactions. With completion dependencies, a good strategy is to abort and restart the
transaction which was supposed to commit last as this will allow the multiform transaction
to terminate with success. For the example involving onlyT1 andT2, we can abortT1 so
thatT2 will be able to commit, then restart and completeT1.

In the following, we address this problem of deadlock detection within a multiform
transaction and show how the conventional waits-for-graph can be extended to detect a
deadlock.

To detect possible deadlocks within a multiform transaction we extend the notion of a
waits-for-graph to include completion dependencies. This extended waits-for-graph is an
instance of what is known as an AND-OR graph. We assume that the completion depen-
dencies among the components of the multiform transaction can be obtained by a static
analysis of the coordinate blocks and the dependencies so obtained are specified in the form
of an AND-OR graph. The exact description of how such a static analysis can be derived, is
beyond the scope of this paper. For work related to program analysis the reader is referred to
[18]. The AND-OR graph generated by the static analysis of the coordinate blocks forming
the multiform transactionT , has the following characteristics:

• Each node of an AND-OR graph represents a component transactionTi of T .
• If D, a subset of the set of transactions composingT , is such thatTi commits or aborts

only after allTj ∈ D are committed or aborted, then there is an AND edge in the graph
from Ti to everyTj ∈ D.
• If D′, a subset of the set of transactions composingT , is such thatTi can commit or abort

after anyTj ∈ D′ commits or aborts, then there is an OR edge in the graph fromTi to
everyTj ∈ D.

426 MANCINI ET AL.

An AND edge fromTi to every transactionTj in D implies thatTi can commit or abort
after allTj ∈ D have terminated. Alternatively, an OR edge fromTi to everyTj in D′ implies
thatTi can commit or abort after anyTj ∈ D′ has terminated. With reference to the example
in figure 7, there is an AND edge fromT1 to T2 andT3, while in the example in figure 8
there is an OR edge fromT1 to T2 andT3.

During the execution of the multiform transactionT , the AND-OR graph is modified as
follows to give the extended waits-for-graph:

• A data dependency edge is included in the AND-OR graph from transactionTi to trans-
actionTj , if Ti is waiting forTj to release a conflicting lock on a shared data item. When
the lock is granted toTi , this data dependency edge is removed from the graph.
• If a transactionTj has terminated, then the nodeTj is removed from the AND-OR graph

together with the following edges:

– If there is an OR edge from someTi to Tj , thenall outgoing edgesof Ti are removed
except the data dependency edges ofTi .

– If there is an AND edge fromTi to Tj , thenonly this edgebetweenTi and Tj is
removed.

A cycle in a AND-OR graph does not however, represent a deadlock. In fact as reported
in [15], classical graph theory does not provide a construct to describe a deadlock situation
in an AND-OR graph. Deadlock in the AND-OR graph can be detected by the repeated
application of the deadlock detection algorithm for an OR graph (i.e. a graph with only OR
edges and no AND edges), exploiting the fact that deadlock is a stable property, i.e. it does
not go away by itself. If only OR edges are considered then a set of transactionsS⊆ T is
deadlocked if

1. all transactions inSare blocked, i.e. these transactions have outstanding OR edges and
2. the set of transactions on which every transaction inS is dependent is a subset ofS;

Deadlock in an OR graph is represented by aknot. A nodeTi is in a knot if for every node
Tj such thatTj is reachable fromTi , Ti is reachable fromTj . Although finding a knot is a
polynomial time problem, the repeated application of this algorithm to find a deadlock in
an AND-OR graph is in general not very efficient. Recently in [3] a linear time algorithm
to detect deadlock in an AND-OR graph is presented and proven correct by characterizing
the above deadlock problem in a subclass of Petri nets equivalent to AND-OR graphs.

6. Realizing various transaction completion dependencies

We now examine the expressive power of the Multiform transaction model. This section
shows how the different transaction completion dependencies in various extended trans-
action models can be specified as multiform transactions. We would like to emphasize that
in the following discussions we capture only the transaction completion dependencies. We
assume that we have transaction adapters similar to [2] that capture data dependencies. We
begin with the SAGA model which is among the simpler models.

FLEXIBLE TRANSACTION DEPENDENCIES 427

6.1. SAGAS

SAGA [11] is a transaction model that provides system support for the execution of long-
lived transactions. In saga a long-lived transaction is executed as a number of shorter
subtransactions without sacrificing the atomicity of the larger transaction.

A saga consists of a set of flat transactionsT1, T2, . . . , Tn that execute sequentially within
the context of the saga, but can interleave arbitrarily with component transactions of other
sagas. For each transactionTi (1≤ i < n) there is a compensating transaction CTi , which,
when executed, semantically undoes the effects ofTi . A compensating transaction CTi is
executed if and only if the transactionTi has committed and the saga of whichTi is a part, has
aborted. A saga commits if all the transactionsTi ’s successfully commit and aborts if any of
theTi ’s aborts. If a saga aborts, it compensates for the effects of all committed components
Tj ’s, by executing their corresponding compensating CTj ’s. The compensating transactions
are executed in the reverse order of the commits of the correspondingTi ’s. Note that there
is no compensating transaction for the last component transactionTn. This is because
if Tn commits then the entire saga commits. The final outcome of a saga is either the
sequence:

1. T1, T2, . . ., Tn−1, Tn if all Ti ’s commit or
2. T1, T2, . . . , Ti︸︷︷︸

abort

, CTi−1, . . . ,CT2,CT1 if any Ti aborts.

Other transactions may see the effects of a partial saga execution.
In figure 9 we show how the semantics of a saga can be achieved with our primitives.

The saga program consists of one coordinate block which controls the execution flow of the
transactionsT1, . . . , Tn and the corresponding compensating transactions CTn−1, . . . ,CT1.
In the transaction component of the coordinate block, theTi ’s and the CTj ’s (if so re-
quired) are executed sequentially. IfTn successfully completes, then the coordinator aborts
CTn−1, . . . ,CT1 (as no compensation is required) and the saga terminates successfully.
On the other hand, if any of theTi ’s aborts the thread aborttrans(Ti) in the coordi-
nator is executed, which aborts the transactionTi , . . . , Tn as well as the compensating
transactions CTn−1, . . . ,CTi . In this way the transactions remaining to be executed, viz.,
CTi−1, . . . ,CT1 become exactly those required to compensate the effects of the already com-
mitted transactionsT1, . . . , Ti−1. If any of these CTk’s aborts, the thread aborttrans(CTk)
in the coordinator is executed, which in turn restarts the compensating transaction CTk.
In this way the effects of all the committed transactions are compensated for and the saga
aborts.

Note that in this example the transaction execution order is very simple—being just a
sequence of transactions and their corresponding compensating transactions. The specifi-
cation of the completion dependency in the protocol component implements the actual saga
model. This example illustrates the usefulness of separating the coding of the transactions
from the definition of the transaction dependency. The programmers work can be simplified
because transactions can be coded without worrying about managing dependencies among
them.

428 MANCINI ET AL.

Figure 9. Implementation of a saga.

6.2. Workflows and long lived activities

The atomicity property of transactions prevents any internal structure to be perceived and
referred to from outside of the transaction. Consequently if there is an activity that consists
of multiple steps of processing with an explicit flow of control among these steps, it is next
to impossible to model it as a transaction. Note that modeling any action as a transaction
facilitates data sharing, persistence and failure recovery.

Workflows have been suggested as a way of implementing long-lived activities which
have some kind of an internal structure, in terms of shorter transaction like components

FLEXIBLE TRANSACTION DEPENDENCIES 429

[8, 20]. Workflows allow dependencies among transactions to be expressed and also allows
correctness requirements among the component transactions that are less stringent than
serializability or atomicity.

We show by an example how a workflow can be expressed by our primitives. The example
workflow involves planning for a trip by John Doe. He plans to leave on the 3rd of June by
either Delta or United or American in that preference order, stay at the hotel Ambassador
from the 3rd till the 6th of June and rent a car from either National or Avis with no preference.
If any of the reservations (i.e. flight, hotel or car) is unavailable, John Doe would like to
cancel his trip.

In the example in figure 10 the different componentsflightReservation, hotelReserva-
tion, carReservation, cancelFlightReservation andcancelHotelReservation perform the
actual reservation or cancelation operations. The single coordinate block for the workflow
contains the transactionsT1, . . . , T6 and the compensating transactions CT1, CT2. CT1 com-
pensates for any committed flight reservation achieved by eitherT1 or T2 or T3 in case either
the hotel reservation or both of the car reservation do not fall through. CT2 compensates
for a committed hotel reservation if neither of the car reservation is successful.

Every time a transaction completes, it invokes the endtrans thread at the coordinator
which then enforces the control flow of the activity. The successful completion of the
workflow is indicated by the commit of eitherT5 or T6. In this case the coordinator ensures
that CT1 or CT2 are aborted.

If any transaction decides to abort, it invokes the aborttrans thread at the coordinator.
The execution of the aborttrans thread for a transactionTi , aborts all transactionsTj that
follow Ti in the workflow and compensates for the committedTk’s precedingTi in the
workflow. In case any compensating transaction CTi is aborted, it has to be re-executed
until it successfully completes.

6.2.1. Semiatomicity. A formalization of the workflow model is provided in [22]. In this
paper a workflow is synonymous to aflexible transaction. The structure of a flexible trans-
actionT , is viewed as a set of the so calledrepresentative partial orderof subtransactions.
The subtransactions within a representative partial order are related by theprecedencerela-
tion. Each representative partial order gives an alternative for the execution of the flexible
transaction. There is also apreferencerelation which defines the preferred order of the
alternatives. Each subtransaction is categorized as eitherretriable, compensatableor pivot.

The execution of a flexible transactionT preserves the property ofsemiatomicityif one
of the following conditions is satisfied:

1. All its subtransactions in one representative partial order commit and all attempted
subtransactions not in the committed representative partial order are either aborted or
have their effects undone.

2. No partial effects of its subtransactions remain permanent in local database.

In [22] the authors provide a commit protocol which dynamically commits subtrans-
actions as soon as possible. An alternative representative partial order is executed if an
attempted subtransaction aborts. In this case subtransactions which have already been com-
mitted in the failed representative partial order are compensated for.

430 MANCINI ET AL.

Figure 10. Workflows: reservations.

Given an instance of a flexible transaction we can implement a coordinator for this flexible
transaction in a manner similar to implementing a workflow, shown previously. In fact a
compiler can be developed to generate the codes for such a coordinator, given an appropriate
description of the flexible transaction with the different precedence and preference relations.

FLEXIBLE TRANSACTION DEPENDENCIES 431

6.3. Secure distributed transactions

The classical Early Prepare commit protocol (EP), used in many commercial systems, is
not suitable for use in multilevel secure distributed databases systems (MLS) that employ
a locking protocol for concurrency control. A major problem of the locking protocols in
MLS systems is that in order to prevent illegal information flow through a timing covert
channel, any read locks acquired by a high level transaction on lower level data, must be
released whenever a low transaction attempts to acquire write locks on the same data items.
This may lead to a transaction no longer remaining two phased. A secure two phase locking
protocol has been proposed in the literature [4] to cope up with this problem. However
even when using a secure locking protocol, serializability can still be violated during early
prepare commit of distributed MLS transactions. During EP commit read locks may have
to be released within a transaction’swindow of uncertainty—the period after a participant
has voted yes to commit, but before it receives the commit or abort decision from the
coordinator—possibly resulting in nonserializable executions [14].

A solution to the above problem has been suggested in [1]. In this work, a secure EP
commit protocol (SEP) has been proposed which implements the followingsecure com-
mit dependency in addition to the conventional commit/abort dependencies for distributed
systems.

Definition 6(Secure Commit Dependency). Given a multilevel secure distributed trans-
actionT , the secure commit dependency among all possible pairs〈Ti , Tj 〉of subtransactions
of T , is defined as follows:

1. if eitherTi or Tj releases any of its low read locks within its window of uncertainty and
before the other subtransaction completes, then bothTi andTj abort.

The secure dependency between subtransactionsTi andTj is denoted byTi
s→ Tj .

In other words, to prevent nonserializable executions, a secure early prepare commit
protocol aborts the distributed higher level transaction when any of the lower reading parti-
cipants is compelled to release its lower level read-locks within its window of uncertainty
before the other subtransactions complete. Further, either all the subtransactions abort or
all of them commit.

The secure dependency,Ti
s→ Tj , between transactionsTi and Tj , is an example of a

transaction dependency that cannot be implemented by any of the extended transaction
models proposed in the literature. The reason for this is that these models do not have the
expressive power to model significant events in the system other than the commit or abort
of transactions.

The SEP protocol can be implemented as a multiform transaction by incorporating the
primitive getSignal described in [19]. In that work, the authors introduce the notion of
signalswhich are raised by the lock manager when it allows a write lock (requested by a
low level transaction) to be placed on a low level data item even though the item is already
locked in read mode by a higher level transaction. The getSignal primitive is used by the

432 MANCINI ET AL.

programmer to specify how signals from lower level transactions are to be serviced by the
higher level transaction. The default invocation for the getSignal primitive is:

getSignal[→ handler].

The handler represents a piece of code which is to be executed if there is any signal to be
serviced.

By using the getSignal primitive it is possible to implement a commit protocol which
enforces the secure dependency among subtransactions of a multilevel secure distributed
transactionT . Figure 11 shows a multiform transaction that implements the SEP protocol
for committing three concurrent subtransactionsT1, T2 andT3. These three subtransactions
are related to each other by the secure dependencyTi

s→ Tj (1 ≤ i, j ≤ 3, i 6= j). In the
example, transactionsT1 andT3 read data at lower security levels, whereasT2 does not.
We assume there is a secure two phase locking protocol that provides concurrency control
among the transactions.

Figure 11. A secure distributed commit protocol.

FLEXIBLE TRANSACTION DEPENDENCIES 433

As each of the subtransactionsT1, T2 andT3 completes, it invokes the endtrans thread
at the programmer’s coordinator code. When the last transaction has invoked the endtrans
thread, it chains the callsupport primitive for transactionsT1 andT3. Note that callsupport
is not invoked forT2 as this subtransaction does not read down. The callsupport primitive
in turn causes the support codes defined inT1 andT3 and containing the default invocation
of the getSignal primitive, to be executed. Each of these support codes contains the default
invocation of the getSignal primitive having aborttrans(Ti) as the handler:

getSignal[→ abort trans(Ti)].

Consequently if any of the two subtransactions have a signal to be serviced, the aborttrans
thread is invoked at the programmer’s coordinator code. This results in all the three sub-
transactions to be aborted (which should be the case according to the definition of secure
dependency). On the other hand if none of the subtransactionsT1 and T3 is required to
service signals (indicating that neitherT1 nor T3 has released its low read locks prema-
turely), then the support codes cause the programmer-defined thread noSignalServiced to
be invoked at the coordinator. At this point it is assured that the multiform transactionT is
two phased and hence all the three subtransactions are committed.

In the following, we describe a multiform transaction that implements the advanced
secure early prepare commit protocol (ASEP) presented in [19]. ASEP performs partial
rollback of subtransactions that have read lower data instead of aborting them, when signals
are to be serviced. Though the ASEP protocol is more complex than the secure protocol we
have presented above, it can still be modeled by a multiform transaction and is one more
evidence of the flexibility of our multiform transaction model.

6.3.1. Multiform transaction implementing ASEP.To implement the ASEP protocol
we require the complete semantics of the getSignal primitive together with the notion of
signals and signal labels. As stated in Section 6.3, signals are raised by the lock manager
when it allows a write lock to be placed on a data item even though a conflicting lock
is already in place over the same data item. The transaction manager for the higher level
transaction associates each of these signals with the savepoint identifier (also called signal
label) immediately preceding the affected low read operation in the transaction body. The
getSignal primitive is then used by the programmer to specify how signals from lower level
transactions are to be serviced by the higher level transaction.

The syntax of the getSignal primitive is as follows.

getSignal[sl1→ handler1; . . . ; sln→ handlern]

Each signal labelsli represents a savepoint established by the transaction and corresponds
to our notion of a savepoint identifier. Thehandleri represents a piece of program code that
is to be executed when the signalsli is to be serviced. If the handler is a RollBack(sid)
command then it rolls back the transaction to the savepoint sid.

By using this getSignal primitive it is possible to implement the ASEP protocol in a multi-
form transaction. This protocol iterates until it can guarantee that none of the low reading
participants has released any of their low read locks within their window of uncertainty. The
programmer can specify the maximum number of allowable iterations of the protocol, in
order to prevent starvation. The ASEP protocol is implemented by the multiform transaction

434 MANCINI ET AL.

Figure 12. Multiform transaction implementing ASEP.

shown in figure 12. The protocol proceeds as follows:

1. SubtransactionsT1, T2, andT3 are generated and distributed to the participating sites.
2. The transaction manager TMi at each participant site executes the subtransactionTi . If

the subtransaction is able to complete successfully, TMi forces a prepare log record, and
executes an endtrans command. This causes the execution of the thread endtrans(Ti)

FLEXIBLE TRANSACTION DEPENDENCIES 435

in the programmer defined code of the coordinator. The thread records the transaction
identifierTi in the persistent variable “completedSet” as this the first timeTi has caused
this thread to be executed. If on the other hand the transaction is unable to complete
successfully, the thread aborttrans(Ti) is executed which aborts all the three transactions
T1, T2 andT3 and terminates the program.

3. If each of the TMi ’s is able to execute an endtrans command, the programmer defined
code of the coordinator executes the callsupport(T1, T3) command. Note thatT1 and
T3 are the transactions that have read lower level data and thus may have released the
lower read locks, prematurely. From now onwards onlyT1 andT3 needs to be checked
for reaching the commit decision.

4. As a result of the callsupport primitive, control once again returns to TM1 and TM3.
TM2 on the other hand waits for a response from the coordinator. TM1 and TM3 executes
the supportcode associated with the endtrans primitive inT1 andT3 respectively.

(A) Consider transactionT1. If the low read lock for data itemq was released prema-
turely, then the lock manager had issued a signal for this data item. TM1 associated
this signal with the savepoint sl3 in T1. Similarly if low read lock on data itemy was
released prematurely, the signal generated by the lock manager would be associated
with savepoint sl2. When the handler is executed, the getSignal primitive services
any signal that is there. The semantics of the getSignal primitive is such that if
low data itemq is signaled, sl3→RollBack(sl3) is executed, if eithery or bothq
and y are signaled, sl2 → RollBack(sl2) is executed. IfT1 executes a RollBack,
it will eventually terminate at which point TM1 will again execute the endtrans
primitive. This will cause as before, the execution of the thread endtrans(T1) in the
coordinator.

(B) If none of the low data items is signaled, then NoSignalServiced is executed. In this
caseT1 executes a NoSignalServiced primitive, and the thread with the same name
is invoked at the coordinator.

(C) The actions ofT3 corresponding to the callsupport command is the same as those
of T1.

5. If both T1 and T3 have executed NoSignalServiced primitives, the persistent variable
“commitSet” containsT1 andT3 and consequently the thread noSignalServiced in the
coordinator executes the system primitive commit which commits the three transactions.
The program then ends.

6. If any of T1 or T3 or both executes endtrans and neither executes an aborttrans, the
thread endtrans(Ti) in the coordinator is executed. It increments the persistent variable
“redone” and then the steps from (4) above are re-executed. This goes on until all the
transactions are either committed or aborted or the variable redone is more than five.
The use of the persistent variable “redone” prevents the indefinite delay in the commit
decision.

6.4. Contingent transactions

A contingent transaction [9] is a set of two or more component transactionsT1, T2, . . . , Tn

with the property that at most one of the transactions,Ti , commits. A contingent transaction

436 MANCINI ET AL.

Figure 13. Example of a contingent transaction.

T = {T1, T2, . . . , Tn} is executed as follows:T1 is executed first. If it commits, then the
transactionT commits and ends. IfT1 aborts,T2 is executed and if commits, the entire
contingent transactionT commits and ends and so on.

The program fragment in figure 13 shows how a contingent transaction can be imple-
mented within our framework. In the example the contingent transaction consists of three
component transactionsT1, T2 andT3.

6.5. Nested transactions

A nested transaction is a transaction that is executed from inside the dynamic scope of
another transaction. Nested transactions can further create nested transactions and the nest-
ing can proceed to arbitrary depths. The transaction at the root of this tree of transactions
is called the root transaction and the transactions at the interior nodes (called parents) or
leaves of this tree are jointly called subtransactions. Subtransactions execute atomically
with respect to their siblings.

Each of the parent transactions is suspended until all its nested transactions terminates
(i.e. commits or aborts). However, the semantics of commit for the nested transactions
are different from that for the root transaction. When a nested transaction (parent or leaf)
commits, the changes that it made to the database are made accessible to its parent, but
are not made permanent. Instead the changes are made permanent only when the root

FLEXIBLE TRANSACTION DEPENDENCIES 437

Figure 14. Nested transactions.

transaction commits. Abort semantics for both root and subtransactions are similar to the
abort semantics for the classical transaction. Furthermore, a subtransaction can access any
data item that is currently accessed by one of its ancestors without forming a conflict.

We illustrate the implementation of a nested transaction in our model by an example.
The example shown in figure 14 involves a nested transaction with two nesting levels,
which makes travel arrangements. If at any stage a reservation cannot be made, the trip
is canceled. At any stage thus, if the trip is to be canceled, any previous reservation has
to be canceled. Note that unlike in the workflow model where previous reservations are
canceled by explicitly executing compensating transactions, in the nested transaction we
do not require any compensating transaction. This is because of the fact that the effects of
subtransactions are made permanent only at the commit of the root transaction.

6.6. The ACTA framework

ACTA identifies two broad classes of dependencies—viz. direct dependency among a pair
of transactions and indirect dependency between a pair of transactions arising from their
actions on common data items. These two classes can be studied separately. As we are
interested only in allowing flexible direct dependency to transactions, we examine just
this class here. For this discusssion we assume that the only indirect dependency within the

438 MANCINI ET AL.

multiform transaction model is the conflict dependency arising from component transactions
manipulating shared data items.

The ACTA framework defines two major types of direct dependencies among pairs of
transactions [7]. These are:

1. Commit dependency—If a transactionT1 develops a commit dependency on transaction
T2, thenT1 cannot commit untilT2 either commits or aborts. This does not imply that if
T2 aborts thenT1 should abort.

2. Abort dependency—If a transactionT1 develops an abort dependency on another trans-
actionT2 andT2 aborts, thenT1 should also abort. This neither implies that if transaction
T2 commits,T1 should commit, nor that ifT1 aborts,T2 should abort.

Note that the abort dependency implies the commit dependency. IfT1 develops an abort
dependency onT2 thenT1 must wait for the commit decision ofT2; henceT1 cannot commit
beforeT2 i.e. there is a commit dependency betweenT1 andT2. In figure 15 we provide a
multiform transaction that implements a commit dependency and in figure 16 we give an
example of a multiform transaction which implements an abort dependency.

Refer to figure 15. Suppose thatT1 wants to commit. It executes an endtrans primitive
which causes the endtrans thread at the coordinator to be executed. SinceT2 has not yet
executed the endtrans (or aborttrans) primitive the variable doneT2 is false. Consequently,
the endtrans thread sets the variable completedT1 to true and returns. As no commit or
abort decision has been taken forT2 by the coordinator,T1 cannot terminate at this time
by committing. On the other hand ifT1 had decided to abort, it would have executed the

Figure 15. ACTA commit dependency.

FLEXIBLE TRANSACTION DEPENDENCIES 439

Figure 16. ACTA abort dependency.

abort trans primitive, which in turn would have caused the aborttrans thread to be executed
at the coordinator. This would abortT1 irrespective of whetherT2 commits or aborts.

WhenT2 decides to commit or abort, the variable doneT2 will be set to true by one of the
threads endtrans or aborttrans. IfT2 executes an aborttrans primitive, the corresponding
thread abortsT2. The aborttrans thread then finds that the variable completedT1 is set to
true (which indicates thatT1 is waiting to commit) and hence commitsT1. If, on the other
hand,T2 executes the endtrans primitive (indicating that it wants to commit), the endtrans
thread commitsT2 first and then, noticing that completedT1 is set to true, commitsT1. At
this point the program terminates.

From the above discussion it is clear that the program in figure 15 implements the
ACTA commit dependency betweenT1 andT2. The next figure (figure 16) implements an
abortdependency betweenT1 andT2. The discussion for this program fragment is similar
to the above with the only difference being that ifT2 executes an aborttrans primitive,
the corresponding aborttrans thread in the coordinator aborts bothT2 andT1, even if T1

has previously decided to commit. Moreover, ifT1 is yet to reach a decision whenT2 has
decided to abort,T1 is aborted.

7. A high level declarative language for specifying transaction dependencies

The following definitions establish the declarative language used to specify completion de-
pendencies within a multiform transaction. Commit and abort dependencies can be specified
and we permit a transaction to depend on a set of transactions for commit or abort.

Definition 7. Let Ti , Tj be two transactions. The commit and abort dependencies among
Ti andTj defined in Section 6.6 are expressed in our declarative language as follows:

440 MANCINI ET AL.

Commit dependency If transactionTi develops a commit dependency on transactionTj

then this is denoted byTi → Tj .
Abort dependency If transactionTi develops an abort dependency on transactionTj then

this is denoted byTi ; Tj .

Recall from Section 6.6 that the enforcement of these dependencies requires that the
transaction on the left-hand side of the dependency (that is,Ti in the above definition) wait
for the termination of the transaction of the right-hand side of the dependency (that is,Tj

in the above definition). Indeed, the outcome ofTj (abort vs. commit) may determine the
outcome ofTi . For example, the abort dependencyTi ; Tj specifies that the abort ofTj is
a sufficient condition for the abort ofTi . ThereforeTi must still wait for the outcome ofTj

upon completing its normal execution.
We consider a more general form of completion dependencies and assume that depen-

dencies can exist not only between two transactions but also between a transaction and a set
of transactions. In addition, completion dependencies can be combined using the AND, OR
and NOT logical operators. Therefore, an expression obtained as a Boolean combination of
transactions may appear on the right-hand side of a dependency. We make the assumption
that logical expressions are given in some minimal form.

Definition 8. Let T be a set of transactions and letT be a transaction inT . Let alsoT D
be a subset ofT not includingT . A General DependencybetweenT and transaction set
T D is defined as a commit or abort dependency betweenT and elements ofT D obeying
the rules given is Table 3.

Here 〈gendep〉, 〈cdep〉 and 〈adep〉 indicates general, commit and abort dependencies
respectively. We assume that the AND composition specified by rule R5 takes precedence
over the OR composition specified by rule R6.2. The reverse precedence can be enforced

Table 3. Syntax for declarative language for general dependencies.

R1 〈gendep〉 ::= 〈cdep〉 〈adep〉
R2.1 〈cdep〉 ::= empty

R2.2 〈cdep〉 ::= T→ 〈term〉
R2.3 〈cdep〉 ::= T→ NOT〈term〉
R3.1 〈adep〉 ::= empty

R3.2 〈adep〉 ::= T; 〈term〉
R3.3 〈adep〉 ::= T; NOT〈term〉
R4.1 〈term〉 ::= T ′ : T ′ ∈ T D
R4.2 〈term〉 ::= 〈andterm〉
R4.3 〈term〉 ::= (〈orterm〉)
R5 〈andterm〉 ::= T ′ : T ′ ∈ T D AND 〈term〉
R6.1 〈orterm〉 ::= T ′ : T ′ ∈ T D OR 〈orterm〉
R6.2 〈orterm〉 ::= T ′ : T ′ ∈ T D OR 〈term〉 2

FLEXIBLE TRANSACTION DEPENDENCIES 441

by the use of parenthesized OR expression, as specified by rule R4.3. There are two basic
predicates:

Terminate(T) = true if T commits or aborts, false otherwise;

Abort(T) = true if T aborts, false otherwise.

The semantics of the notation in Table 3 is defined in terms of the basic predicates: A
generalized commit dependency specifies that transactionT cannot commit until the right
hand side Boolean expression evaluates to true when each transactionT ′ ∈ T D is substituted
by its correspondingTerminate(T ′) predicate. Thus a generalized abort dependency forces
transactionT to wait until the Boolean expression, evaluates to true when each transaction
T ′ is substituted by its correspondingTerminate(T ′) predicate. At that point, transaction
T is forced to abort if the Boolean expression specified by the right-hand side of the
dependency evaluates to true with each transactionT ′ substituted by its corresponding
Abort(T ′) predicate.

Pairwise commit or abort dependencies are obtained as a special case of our general
notion of dependencies.

Figure 17 shows the specification, in this high level declarative language, of the example
dependency given earlier in figure 2. Recall that in figure 2 the dependency was either

Figure 17. High level description of dependency from figure 2.

442 MANCINI ET AL.

transactionT1 commits orT2 commits, but not both, withT1 getting precedence overT2.
Both T1 andT2 may abort. For transactionsT3 andT4 the dependency was that either both
commit or none do so. FurtherT3 andT4 can commence execution only afterT1 andT2

terminates.
As in figure 2, the sequential structuring of the coordinate blocks forT1 andT2 and for

T3 andT4 ensures thatT3 andT4 gets executed only afterT1 andT2 terminates. The cycle
in the dependency expressions forT3 andT4 (viz. (T3→ T4) AND (T4→ T3)) ensures that
either both commit or none do so.

For transactionsT1 andT2, their sequential definitions ensure thatT1 gets precedence
over T2 (just as in figure 2). The termination ofT1 is not dependent on anything but that
of T2 is. Hence we have a dependency expression forT2. The term (T2 ; NOT(Abort(T1))
ensures that ifT1 commits (in which case NOT(Abort(T1)) evaluates to true), thenT2 aborts.

8. Related work

The work in the area of extended transaction models can be broadly classified into two
categories. The first category (which incidentally happens to be the earlier models) re-
quires rigid organizational structures of related transactions. Examples of such categories
are nested transactions (transaction organized in a tree-like structure) and SAGAS (a linear
structure). The second category allows more flexible transaction structuring such as the
workflow model. A number of extended transaction models of the second category provide
system primitives that allow the user to specify different order of commit for cooperating
transactions. Examples of such models are ASSET [5], Flex [6], DOMS [12]. In the fol-
lowing we discuss some of the extended transaction models described in the literature. For
a comprehensive discussion on extended transaction models, the reader is referred to [9].

The nested transaction model [17] organizes transactions in a tree-like hierarchy to local-
ize failures within a transaction and to exploit parallelism within transactions. Argus [16]
supports this model and is one of the earliest efforts at providing linguistic support for ex-
tended transactions. Camelot [10] also implements the nested transaction model. It allows
the programmer to choose from a set of three predefined commit protocols—two-phase
commit, non-blocking commit and lazy commit. However, the programmer does not have
the option of extending these protocols to provide more flexibility in transaction completion.

The SAGAS model [11] offers a linear structure for organizing a set of transactional
activities. It is useful only when the subtransactions in a Saga are relatively independent of
each other and each subtransaction can be successfully compensated. Moreover due to the
strict linear structure, a Saga is not as flexible as the multiform transaction model.

The Flex transaction model [6] is based on the nested transaction model. It allows re-
laxation of the atomicity and isolation requirements of transactions. A Flex transaction is
resilient to failure in the sense that it may proceed and commit even if some of its subtrans-
actions fail. The model allows the user to control the isolation granularity of a transaction
through the use of compensating subtransactions. The model offers flexibility in transaction
processing by providing primitives that allow the specification of dependencies between
subtransactions of a Flex transaction. The specifiable dependencies can be broadly cate-
gorized into two types: those that define the execution order on the subtransactions of a

FLEXIBLE TRANSACTION DEPENDENCIES 443

Flex transaction—calledfailure-dependenciesandsuccess-dependencies—and those that
define the dependencies of subtransactions on events that do not belong to the transaction—
calledexternal-dependencies. The ability to express external dependencies makes the Flex
transaction model more powerful than the previous models; however the unique feature of
the Multiform transaction model, namely the ability of programmers to redefine existing
transaction primitives, makes this model more flexible than the Flex model.

The DOMS transaction model [12] was developed for the Distributed Object Management
project at the GTE Laboratories. The goal of this project was to support application develop-
ment in a distributed environment that integrates various component systems. DOMS allows
both classical nested transactions [17] and open nested transactions—an extension of the
classical nested transactions that do not enforce the atomicity of the root level transaction—
as well as a combination of the two. DOMS provides a specification language similar to
ACTA, to express the properties of extended transactions and dependencies among them. It
provides a mechanism that configure the run-time transaction facility to realize the extended
transaction. The programmer can constructcertainextended transactions using expressions
in the specification language, which are then mapped to certainpre-built configurations in
the transaction management mechanism. The primitives of DOMS are limited to the specifi-
cation level, while the primitives in the multiform transaction model are at the programming
language level. Moreover the specification language suffers from similar shortcomings as
ACTA.

ConTract [20] is a programming model that provides a basis for defining and controlling
long-lived complex computations, composed of transaction-like components. In ConTract,
the coding of the steps of the components is kept separated from managing asynchronous
or parallel components, communications and synchronization between these components
and failure recovery. These latter aspects are implemented by a separate flow control script
which allows different dependencies among transactions to be specified. ConTract provides
a database environment for specifying and executing workflows whereas the multiform
transaction model embeds the specification of flexible transaction dependencies at the pro-
gramming language level. ConTract scripts introduce their own control flow syntax while
we use the control flow syntax of the host language.

ASSET provides language primitives for specifying the cooperation and dependency
between a set of related transactions. This is achieved by intermingling within the same
program, both the coding of the transactions and the transaction’s control flow. Unfortu-
nately, this approach appears to reduce the transaction code re-usability since the application
program has to deal with both the transaction code and the transaction cooperation and de-
pendencies. Furthermore, Asset does not allow proper coordination among concurrently
running but cooperating transactions. The synchronization primitive proposed is too weak
and difficult to use to provide flexible coordination among concurrent transactions.

The Reflective Transaction Framework of [2] is different from all these models and is
the closest to the multiform transaction model. Indeed our model incorporates some of the
ideas of [2]. The reflective transaction framework, is a practical modular method to imple-
ment extended transaction models and is able to support more than one model in the same
framework. The framework builds on top of an existing commercial transaction processing
monitor—the Encina toolkit [21]. The transaction processing monitor provides the general

444 MANCINI ET AL.

framework that binds together the many software components of a transaction processing
system through services like multithreaded processes, interprocess communication, queue
management etc. The authors propose the notion of transaction adapters that are add on
modules over the TP monitor to extend its basic services. The framework provides both—the
flexibility of language primitives, enabling a developer to construct extended transactions
from scratch, and the high level interface and functionality of a specialized transaction
facility, enabling an application programmer to construct extended transactions from ex-
isting component. The multiform transaction model is an improvement of the reflective
transaction framework in that it allows application specific completion dependencies that
do not fit into any general model and also allows dependencies arising out of any type of
events—not necessarily internal to the transaction. Also the multiform transaction is suit-
able for distributed transaction processing unlike the reflective framework which essentially
is a centralized system.

Summarizing, the Multiform transaction model incorporates all the powerful features of
the majority of the exisiting extended transaction models. We can have a single system that
implements the multiform model and use it for many different applications, each with its
own set of requirements. This feature we cannot have from a system that implements, for
example, only the SAGAS model or the Nested transaction model or the DOMS model.

9. Conclusions and future work

This paper presents themultiform transactionmodel that allows the programmer to specify
various transaction completion dependencies including, in particular, those proposed in the
most well-known extended transaction models.

A multiform transaction consists of a set of cooperating transactions together with a
sequence of coordinators implementing the completion dependencies. The programmer is
provided with a small set of transaction primitives by which he/she can develop application
specific coordinators. Additionally, the programmer can redefine some of these primitives
for additional flexibility by providing code for the implementation of the new definitions.
Moreover, the compiler of a database programming language can also use these primitives to
support higher level constructs for transactions. In this case, the compiler can automatically
generate the appropriate codes needed for coordination of a set of transactions from a high
level description of their dependencies.

Not only can the programmer re-define some of the existing primitives, he/she can also
define additional primitives to satisfy his/her own requirement. These new primitives can
be defined as new threads of a coordinator. An example of such a new application specific
primitive has been shown in Section 6.3, where it has been used to support the secure
dependencies among transactions. This feature seems useful for supporting some other
extended transaction models not discussed in this work, like the split-join transaction model.
For example in the case of split-join transactions, the programmer can define two new threads
split and delegatein the protocol component. The split thread starts a new transaction and the
delegate thread delegates a set of data from one transaction to another. When a transactionTi

is to be split,Ti first invokes delegate to transfer a subset of its data items to another initiated
transactionTj and then invokes the split thread. The latter thread starts the execution ofTj .

FLEXIBLE TRANSACTION DEPENDENCIES 445

WhenTj needs to be joined withTi , Tj invokes delegate to transfer back the data items to
Ti and then terminates.

As we mentioned in the introduction, we have limited ourselves to exploring the category
of transaction completion dependencies. This has been done to simplify the presentation
of the basic ideas behind the multiform transaction model. Nevertheless data dependency
can be incorporated in our model by defining a new set of primitives that allow flexible
concurrency control. The getSignal primitive introduced in Section 6.3 appears to be a good
candidate.

It appears that the multiform transaction model is a practical way to implement extended
transaction models in a distributed setup following the approaches chosen by [2] for a
centralized system. In [2] the authors extend Transarc’s Encina TP system [13, 21] by
developing transaction management adapters on top of Encina. Our transaction management
adapters offer the same functionality as that in [2], while the notion of coordinator module
can be viewed as an extension ofmeta-transactionsof [2] to include executing codes and
communication mechanisms. Thus it seems that the multiform transaction model is an
elegant way to support distributed extended transaction models on conventional transaction
processing systems.

We plan to incorporate these ideas within the framework of an ongoing project on multi-
level secure transaction processing system. As part of future work we plan to comple-
ment this current set of primitives with another set for flexible concurrency control so as
to have a complete flexible transaction processing system that supports both classes of
dependencies—viz. completion dependency and data dependency between a pair of trans-
actions arising from their actions on common data items.

Acknowledgments

The work of S. Jajodia was partially supported by National Science Foundation under
grants IRI-9303416, IRI-9633541, and INT-9412507 and by National Security Agency
under grants MDA904-96-1-0103 and MDA904-96-1-0104. The work of Luigi V. Mancini
was partially supported by the Italian M.U.R.S.T. and the Italian C.N.R.

Notes

1. Note that a process can be made to react to an event in many different ways: The event can generate an interrupt
to the process; the event can send a message to a port at which the process listens or the event can invoke a RPC
at the process. We choose not to specify the exact mechanism so as to keep the model as much implementation
independent as possible.

2. In most commit protocols, if any subtransaction aborts, the coordinator always sends an abort decision to all
participants. However, in our protocol the coordinator may not send an abort decision. Instead the coordinator
can ask the uncommitted transaction to restart its execution. This can be useful in many situations. For example,
suppose the subtransaction could not complete because of a site crash. Then when the site comes up, the
subtransaction can be restarted instead of being aborted.

3. A transactionTi is an orphan if it is never explicitly terminated by any coordinator module within the multiform
transaction. When a transactionTi is orphan the locks acquired byTi are not released and the updates made by
Ti are not made permanent. This may cause a number of problems like deadlock or unsatisfiable dependencies.
A complete discussion is outside the scope of this paper.

4. We assume here that the programmer does not save the contents of the savepoint identifier before re-using it.

446 MANCINI ET AL.

References

1. V. Atluri, E. Bertino, and S. Jajodia, “Degrees of isolation, concurrency control protocols and commit proto-
cols,” in Database Security, VIII: Status and Prospects, J. Biskup, M. Morgenstern and C. Landwehr (Eds.),
North-Holland: Amsterdam, 1994, pp. 259–274.

2. R. Barga and C. Pu, “A practical and modular method to implement extended transaction models,” in Proceed-
ings of the 21st International Conference on Very Large Data Bases, Z¨urich, Switzerland, 1995, pp. 206–217.

3. E. Bertino, G. Chiola, and L.V. Mancini, “Deadlock detection in the face of transaction and data dependencies
in advanced transaction models,” in Proceedings of the 19th International Conference on Application and
Theory of Petri Nets, Lisbon, Portugal, June 1998, pp. 266–285.

4. E. Bertino, S. Jajodia, L.V. Mancini, and I. Ray, “Advanced transaction processing in multilevel secure file
stores,” IEEE Transactions on Knowledge and Data Engineering, vol. 10, no. 1, 1998, pp. 120–135.

5. A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham, “ASSET: A system for supporting ex-
tended transactions,” in Proceedings of the ACM SIGMOD International Conference on Management of Data,
Minneapolis, Minnesota, May 1994, pp. 44–54.

6. O. Bukhres, A. Elmagarmid, and E. Kuhn, “Implementation of the flex transaction model,” Bulletin of the
IEEE Technical Committee on Data Engineering, vol. 12, no. 2, pp. 28–32, 1993.

7. P.K. Chrysanthis and K. Ramamritham, “Synthesis of extended transaction models using ACTA,” ACM
Transactions on Database Systems, vol. 19, no. 3, pp. 450–491, 1994.

8. U. Dayal, M. Hsu, and R. Ladin, “Organizing long-running activities with triggers and transactions,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data, Atlantic City, May
1990, pp. 204–214.

9. A.K. Elmagarmid, (Ed.), Database Transaction Models for Advanced Applications, Morgan Kaufmann
Publishers, Inc.: San Mateo, CA, 1991.

10. J.L. Eppinger, L.B. Mummert, and A.Z. Spector (Eds.), Camelot and Avalon. A Distributed Transaction
Facility, Morgan Kaufmann Publishers, Inc.: San Mateo, CA, 1991.

11. H. Garcia-Molina and K. Salem, “SAGAS,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, May 1987, pp. 249–259.

12. D. Georgakopoulos, M. Hornick, P. Krychniak, and F. Manola, “Specification and management of extended
transactions in a programmable transaction environment,” in Proceedings of the IEEE 10th International
Conference on Data Engineering, 1994, pp. 462–477.

13. J. Gray and A. Reuter, Transaction Processing: Concept and Techniques, Morgan Kaufmann Publishers: San
Mateo, CA, 1993.

14. S. Jajodia, C.D. McCollum, and B.T. Blaustein, “Integrating concurrency control and commit algorithms in
distributed multilevel secure databases,” in Database Security, VII: Status and Prospects, T.F. Keefe and C.E.
Landwehr (Eds.), North-Holland: Amsterdam, 1994, pp. 109–121.

15. E. Knapp, “Deadlock detection in distributed databases,” ACM Computing Surveys, vol. 19, no. 4, pp. 303–
328, 1987.

16. B. Liskov and R. Scheifler, “Guardians and actions,” ACM Transactions on Programming Languages and
Systems, vol. 8. no. 4, pp. 484–502, 1983.

17. J. Eliot B. Moss, “Nested transactions: An approach to reliable distributed computing,” PhD Thesis, EECS
Department, M.I.T., 1981.

18. S.S. Muchnick and N.D. Jones (Eds.), Program Flow Analysis: Theory and Applications, Prentice Hall:
Englewood Cliffs, N.J., 1981.

19. I. Ray, S. Jajodia, E. Bertino, and L. Mancini, “An advanced commit protocol for MLS distributed database
systems,” in Proceedings of the 3rd ACM Conference on Computer And Communications Security, New
Delhi, India, March 1996, pp. 119–128.

20. A. Reuter, “ConTracts: A means for extending control beyond transaction boundaries,” in Proceedings of the
3rd International Workshop on High Performance Transaction Systems, Asilomar, September 1989.

21. Transarc Corporation, Encina Toolkit Server Core Programmer’s Reference, Pittsburgh, PA 15219, 1993.
22. A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, “Ensuring relaxed atomicity for flexible transactions in

multidatabase systems,” in Proceedings of the ACM SIGMOD International Conference on Management of
Data, May 1994, pp. 67–78.

