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Introduction

In the fabrication of parts by plastically bending sheets
or bars of a given material, it is necessary to know to what
radius 'R' a piece of thickness 't'! may be bent without fracture
occurring during the bending process. This has always been done
experimentally in sheet metal shops using various tables of '%'
values for commonly used materials. However, with the advent of
high-temperature resistant materials it is becoming increasingly
important to treat the subject analytically.,

About five years ago several researchers in the aircraft
industries reported very good correlation between the true strain
at the time that the maximum load was applied to a tensile speci-
men and the “%“ ratio to which the same material could be bent.
One of the more complete reports of this type is by Paulson,
Anderson, and Roberts [1] . Fig. 1 of the present paper shows
one of their experimentally determined curves which indicates
good correlation between V%" and EE;, However, repeated tegts
conducted in the University's Mechanical Engineering Materials
and Processes Laboratory for the past two years could not sub-

stantiate these published data and, therefore, that relationship
is not believed to be very reliable,

This past year a new theory was developed by the authors
and has been substantiated by many laboratory tests. This
theory states that 'failure will occur in the outer fiber of a

material being bent when the true-strain in the outer fiber is



equal to the true-strain at the ingtant of fracture of a tensile
test specimen of the same material'!. Inasmuch as the true-strain
at fracture can be very easily determined from the conventional
percentage reduction of area, the application of this theory is

greatly simplified as will be shown.

Analzsis

The following assumptions were made:

1. The fracture strain in the outer fiber of bending

specimen equals that in tensile test specimen.

2. The material is homogeneous and isotropic.

3. The bar bends in plain strain,

In the tensile specimen, see Fig. lj, the maximum true strain
that the specimen can endure is the true strain in the reduced
section at the instant prior to the fracture. This strain may

be very accurately and very easily obtained from the relationshipt

-9 ( 100 1
Er n _lOO_-——Ar> (1)

where Ar is percentage reduction in area.

This 1s apparent from the definition of true strain, which
is, "the summation of changes in length divided by the length
from which each change was produced". In mathematical form this

‘is expressed as?
g- A, 4k ALy + - - ete. (2)
Xo X% +AR1 Qo +“)?l ﬁdég | .

By letting 4 { become vanishingly small, the expression for

true strain then reduces to:

E= n -ﬁi (3)



where ,Qn.is the natural logarithm, 4} is the final length, and
’Qo is the original length.

Also, if the volume of the material is assumed to remain
constant with only its shape being changed, then the ratio of
AO/Af must equal the ratio of 4}/%% and then equation (3) may

be expressed as?

= wt \ _

E-Qn(;t ={n (a_/a;) (4)
£t
Ay - Ap
Since, by definition, Ar = —f— x 100, which may be

A o

rewritten as — = 00 . If this latter expression is sub-
Af 100 - Ar

stituted in equation (l4), and the strain & is defined as the true
strain at fracture, Ef, then equation (1) results,

Consider next a flat sheet or specimen that is subjected to
a bending moment as illustrated in Fig. 2, the outer fiber is
strained in tension and the inner fiber is strained in compression.
Inasmuch as failure will not occur on the compressive side, it is

sufficient to consider only the strain in the outer fiber.
1

Case I, Neutral axis lies in the middle fiber ti =5 t.
The arc-length along the neutral axis subtended by the
angle © is (R + % t) @ and arc-length of the outer fiber is

(R+ t) @. Therefore, the true strain in the outer fiber is

‘given bys
" B g
0 X, (R+35) o (R + %) (5)

This is based on the assumption that the neutral axis does
not deviate appreciably from the half-thickness of the sheet,
which is very valid for R/t ratios greater than 1-1/2. By

equating £ in equation (5) to € ¢ in equation (1), it is
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Figure 1. R/t vs. Critical Strain (True Strain) at
the Maximum Load of a Tensile Test as
reported by D. L., Paulson, W. E. Anderson
and E. C.Roperts.,

Figure 2. Simple Bending of a Plate.



apparent that

100 _ R + or
R +

100 - Ar
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=201 (6)
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From the authors' experience it was found that this relationship
is valid for materials having a percentage reduction in area (Ar)
of less than 20. For materials having a percentage reduction

in area greater than 20, the displacement of the neutral axis in
bending is significant and will be discussed next.

Case II, Neutral axis is not at the mid layer.
R
= -
50 - 'Qn (R ) (7)
n
, one has:
) t(k+l)\
R = kt (8)
t

‘sz + K/( === from Sachs and

Hoffman [2].

If k¥ 1s defined as

|0
o
i}

=u)
I

Substituting equation (8) into equation (7) gives:

- k+ 1
€= A
or E,= dn1+ < (9)

From equation (8) R
k:..te..l (10)

Combining equations (9) and (10), one obtains:

R
-2 =
t

+ 1 and%" 1

1
62§‘= 1 e?éb -1
100

From equation (l), ego = 100 - A ° where 5‘_0 = Ef,
r

By substituting eeo:nlequation (11), the following equation

resultss
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R (100 - A )2
— r

200 A_ - A

r r

The plotting of equations (6) and (12) are shown in Fig. 3.

It is seen that both curves look hyperbolic and are
asymtotic to the % axis. In general for the same percentage
reduction of area the solid curve gives lower value of % than
the dotted curve and the difference becomes smaller as Ar be-
comes smaller in value and vice versa. When Ar is less than l,
the two curves practically coincide,

Also, from laboratory experience, it has been found that the
=§-§-1 (13)
is a very satisfactory relationship for the ductile materials

empirical relationship %

that do have a shift in the position of the neutral axis.

Experimental Technique and Results

Flat tensile specimens were cut from bar stock of the
following materialss magnesium, aluminum, brass, 1018 steel,
titanium, cast iron and plastics. In nearly all cases, three
specimens were tested and since the range of values obtained for
each material was not large, only the averages are reported. The
composition and code of each are shown in the 3rd column of
Table 1, and the dimensions of the flat tensile specimens are
shown in Fig. lj. To determine the agreement between the tensile
properties obtained from flat and round tensile specimens of the
same material, round tensile specimens for some metals were also
tested, and the percentage reduction of area is also shown in
Table 1.

The corresponding bending specimens were cut from the same

bar stock to the dimensions shown in Fig. 5.
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Dimensions of a Bending Specimen,



A 30 ton universal tensile testing machine was used to pull
the tensile specimens until they fractured. The cross-sectional
area of the specimens before testing and after fracture were
measured on & tool-maker's microscope with an accuracy of
0.0001". The percentage reduction of area for each specimen was
calculated and the results are listed in column 7 of Table 1.

In the bending test two methods were tried. In the first
method the specimen was simply supported on two rolls and the
load was applied through a third roll to deflect the flat speci-
men as shown in Fig. 6(a). The set of bottom rolls was selected
such that d = D + 2t (refer to Fig. 6(a)). Ten sets of such
rolls ranging from 1/8" dia. to 1-1/2" dia. were prepared for
the test. During the test it was necessary to stop loading and
search for the small cracks on the outer fiber of the beam.,
Whenever the cracks appeared, the test was stopped and the inner
radius of the bent beam was measured by means of a set of radius
gages.

The second, more expedient, method of bending was founds
namely, to clamp the flat bar in a vise vertically on one end as
a cantilever beam and to apply a bending moment manually on the
other end, The moment should be applied carefully so that the
beam will be subjected to bending only and no shear forces
exerted onto the bar. Fig, 6(b) shows this method schematically.
During the process of bending, careful observation is also
required to see the initiation of small cracks. Once the small
crack appears, the loading should be stopped and the inner radius
of the specimen measured as in the first method.

From the authors' experience, the two methods give very
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Figure 6(b). Bending Fixtures used for Testing.
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similar results. However, the second method is much simpler to
use and time-saving., Therefore, the second method was adopted

in the tests and results obtained thereby were listed as shown

in Table 1.

The results of “%“ from bending tests are plotted against
percentage reduction of area from corresponding tensile testsas
shown in Fig. 7. The circled points are plotted from the
experimental data and are superimposed on two curves calculated
from the theoretical analysis which were also shown previously
in Fig. 3.

It is at once apparent that the experimental data points
fall along the theoretical curves, with the only material not
giving close agreement being RC 130B titanium alloy and will be
explained later, The most brittle material tested was a gray
cast iron. With a percentage reduction of area of slightly less
than one and a ?%V ratio of 55, cast iron falls right on the
theoretical curve. Polystyrene, a thermoplastic material, with
a percentage reduction of area of 3 and a '%' of 16 fits the
curve equally well, However, at this point it is well to point
out the need, when working with a very elastic material that has
no plasticity, to consider the elastic spring-back. For example,
CR39 is a plastic that is commonly used in photoelasticity
studies and as normally tested has a zero percentage reduction
- of area. Nevertheless, a 1/8" thick sheet can be bent to a 2"
radius before it fractures. However, after breaking, the bend
specimen is perfectly flat or straight indicating complete spring-
back. But when a tensile specimen is tested and the actual area

measured just prior to fracture, it is found to be nearly 3% less

-11-
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than the initlal area and with this correction CR39 also agrees
with the theoretical curves.

Normally, aluminum is considered to be quite ductile and
thoriated magnesium quite brittle. However, by comparing points
E-F to C=D it 1s apparent that 2011 ST 6 aluminum can be bent to
an '%‘ of 9 or 10 while the magnesium alloy can be bent to a '%'
of only 3 to l.

For the soft brasses, aluminum and steel, the percentage
reduction of area is greater than 50 and these materials can be
bent to a "%' ratio approaching 0. This 1s predicted from the
theoretical equations and is substantiated in practice. Actually,
these soft ductile materials can be bent over double with one
face in contact with itself without any cracks appearing.

The experimental data of the 3/16" RC 130B titanium alloy
is off the theoretical curve by an appreciable amount, much
more so than the one piece of 1/4" thick titanium that was bent. It
is believed by the authors that this is due to residual tensile
stresses set up during the machining of the 3/16" thick specimens,
These very shallow tensile stresses would be much more detrimental
in the bend test than they would be in the determination of the
percentage reduction of area in a tensile test. Before all of
the titanium specimens were machined from 1/2" thick bars, one
specimen was machined to a thickness of 1/4" to determine whether
it would be feasible or possible to bend such a thick piece with
the existing tooling. This piece was tested and is plotted as
point 'L' in Figure 7 and fits the curve quite well. However,
since considerable difficulty was encountered in bending this one
trial piece, the standard size selected for the titanium alloy

was 3/16". The 3 tensile and 3 bend specimens of this thickness

-13-



are averaged as point 'K' which is somewhat above the curve. In
talking to the machinist about this later in an attempt to find
an explanation, it was learned that the first 1/4" thick piece
was machined with light cuts whereas all of the 3/16" thick
specimens were machined with just one heavier cut taken from
each side, which could account for the presence of residual

stresses in these latter specimens,
Conclusions

From the experimental data plotted in Fig. 7, it 1is obvious
that there is definitely a correlation in theory and experiment

between the '%“ ratio in bending and a percentage reduction of

area in a corresponding tension test. From the plotted data, ig
R _ 50 R (1oo-A§
may be concluded that the equations TS - 1, T = —>
r 200 A_- A
r “r
or % = %9 - 1 can be used for the prediction of a minimum bend

radius wiih respect to a particular plate thickness. Usually
this property of a material is given in a handbook., Even if the
data 1s not available in publications, it is quite simple to
obtain from a tensile test.

In the derived equation of % = Eg - 1 the only property
which affects the bend radius of a maierial is 'Ar' and nothing
else., Therefore, this equation is valid for all materials,
metal or non-metal, This is confirmed by the experimental data
of two plastics which fall right onto the theoretical curve,
However, the authors have some reservation for generalizing this
theory because of the limited data for non-metals tested.

It is understood that £ (strain in outer fiber) and €4

(strain in inner fiber) during bending are equal in magnitude

-1h4-



only when the neutral axis is at the half thickness of the plate.
If the beam is bent in the plastic region, the neutral axis is
not at mid-fiber any more and, therefore, &  and Ei are not
the same, However, it can be proved that for the same %—, Eo is
much higher than E:i. In fact, from practice it is found that
compressive regions in bending hardly ever cause failure, Under
such circumstances it 1is justified to use the extreme fiber in
tension side to correlate with the tensile property.

Since plane strain is assumed in the analysis, the proposed

equation % EQ- - 1, would give even closer results with experi-
r
ment when the width to thickness ratio of the plate becomes large,

which 1is usually the case in sheet metal work.
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Table 1.
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% R, A, R
Specimen # Material Round __FI&at ¢t % R, A,

A 1-3 1/L" Mg, Tooling Plate - 9.9 3.5 9.9
B L -6 1/8" Mg. Tooling Plate - 11 3 11

C 7-9 ,050 AZ 31 BH 24 Mg. Alloy == 19 3.7 19

D 10 - 12 .032 HK 31 X1 H2) Mg. Alloy ~-- 25 3 25

E 13 = 15 1/l 2011 ST 6 Al -- 6.2 10 6.2
F 16 - 18 1/8 2011 ST 6 Al - 6. 9 6.4
G 19 - 21 1/l - 70-30 Brass (CR 10%) == 37 0.5 37

H 22 - 24 1/8 - 70-30 Brass (CR 10%) == Lo 0.55 4o

I 26 - 28 1/l - 1018 Steel (CR 25%) - 53 0.2 53

J 29 - 31 1/8 - 1018 Steel (CR 25%) - 52 0.2 52

K 32 - 33 3/16 - 130 B Ti -- 32 L. 32
L 34 1/l - 130 B T -- 32 2 32
M 35 - 37 1/2" D. Mg. Tooling Plate 10.2 - -- --

N 38 - L0 1/2" D, 2011 ST 6 Al 8 -- -- -

0 41 - 43 1/2" D, 70-30 Brass 50 -- - --

P oLl - U6 1/2" D, 1018 Steel 57 - - --

Q 47 - L9 1/2" Drill Rod (C.T.S.) 60 -- - -

R 50 - 52 1/2" D, L340 Steel 35 -- -- -

S 53 -55 1/2" - 130 B Ti 39 - - -

T 56 1/2" D. 70-30 Brass (50% CW) L1 -- -- --
U 57 - 58 1/8" - B, & S. Tool Steel - 60 A 60

vV 59 1/4" - 70-30 Brass (50% CW) == 19 2.0 19
W 60 - 61 1/4" - B. & S. Tool Steel - L1 1.0 L1

X 62 - 6L 1/L4" - 2 SH Al - 52 0.06 52
Y 65 1/8" - Polystyrene - - 16 3

Z 66 9/6L" = Cast Iron -- -- 55 3/
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