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The dynamic structure function for 4 He-4He density correlations $44(k, co) is 
calculated as a function of the wave vector k and frequency co for a simple 
model of a 3He-4He solution at various temperatures and small 3He molar 
concentration x. The inputs to the model include the measured 4He phonon 
spectrum and the zero-concentration 3He quasiparticle energy (above the 
k = 0 value), which is taken to be quadratic in k and to intersect the phonon 
spectrum at k c near the roton minimum. Taking into account the decay of a 
phonon into a quasiparticle-hole pair, which is effected in the model by a 
quantum hydrodynamic interaction, we find that the phonon spectrum is split 
into two distinct branches. At kc the splitting of the phonon branches depends on 
a coupling constant 7 and the crossover parameter e(kc)/k c. I f  in 3He-4He 
solutions 7 is large enough and e(kc)/k ~ is small enough, then the phonon 
spectrum is split into two branches. 

1. INTRODUCTION 

Although the excitation spectrum in liquid 4He has been determined 
directly by inelastic neutron scattering, 1 the excitation spectra of 3He and 
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3 H e J H e  systems have not been investigated in the same way, as the 3He 
nucleus has an extremely large cross section for neutron capture. Recent 
developments in techniques, however, have changed the situation to the 
extent that neutron scattering on 3He-4He solutions is being considered at 
Argonne National Laboratory and perhaps elsewhere. In anticipation of 
such experiments, we have performed a simple calculation of the excitation 
spectrum and the 4 H e J H e  dynamic structure function $44(k, co) as a function 
of wave vector k and frequency co in a model 3He-4He system at various 
temperatures T and small 3He molar concentration x. 

Due to the nature of inelastic neutron scattering, the region probed is 
confined to the collisionless regime, rather than the collision-dominated 
hydrodynamic regime. We take as inputs to our model the 4He phonon 
spectrum, as measured by neutron scattering, 1 and the x = 0 3He quasi- 
particle energy (above the k = 0 value), which is taken to be quadratic in 
the wave vector k even for k > 1 •-  1 and to intersect the phonon spectrum 
at k c = 1.7/~-1 and energy, e(kc) = 10 K, near the roton minimum. In the 
absence of a microscopic theory of the effective interaction between excita- 
tions in the short-wavelength (k > 1 A- l )  collisionless regime, we revert 
back to the phenomenological quantum-hydrodynamic theory of the 
effective interaction. 2-4 Although such an extrapolation of a quantum- 
hydrodynamic theory into the short-wavelength regime is not justified, we 
feel that the basic phonon-quasipartMe process included in the model 
calculation does shed some light on the qualitative features of the elementary 
excitations in 3He-4He solutions. The basic nontrivial process considered 
is the decay of a 4He phonon into a 3He quasiparticle-hole pair, which is 
incorporated into the calculation by means of the usual perturbative 
techniques. This process is important in that it allows phonons to make a 
transition into the quasiparticle-hole continuum and thus produces a 
splitting of the phonon spectrum into two branches. 

In Section 2 the qualitative features of the density response of a coupled 
system are discussed. The model and a summary of the results of the model 
calculation are presented in Section 3, which is followed in Section 4 by a 
sketch of the method and approximation used in the model calculation. 
A brief discussion of the calculation is found in the final section. 

2. QUALITATIVE FEATURES 

In a 3He-4He system, we can define the dynamic structure function for 
4He-4He density correlations as 

$44(k, co) = (l/N4) ~ I~nlp~10)12~5(co - C0n0) (1) 
t l  

where N~ is the number of 4He atoms, hco, o is the excitation energy of the 
exact energy eigenstate [n) above the ground state 10), and p£ is the 4He 
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density fluctuation operator. The other dynamic structure functions S3'*(k, co) 
and S33(k, co) can be given by relations analogous to (1) with p~ suitably 
defined, s If we include the phonon-quasiparticle coupling in the 3He-4He 
system, then there can be transitions between 4He states and 3He states. 
Thus any energy eigenstate In) is in general a superposition of 4He states 
and 3He states, i.e., the nucleon mass number is no longer a good quantum 
number. Since a 3HeJHe system is translationally invariant, the energy 
eigenstates In) of the system can be classified in accordance to the momentum 
hk. Therefore, from (1) we see that the various dynamic structure functions 
$44(k, co), $34(k, co), and $33(k, co) all have the same set of singularities as a 
function of co for a fixed k. If S~4(k, o0) has a 6 function at co(k), then so would 
534(k, co) and 533(k, co), but with in general different relative strengths. In 
other words, the dispersion relation of a well-defined excitation is uniquely 
determined by the sharp peaks found in any of the dynamic structure func- 
tions, as the sharp peaks are common to all. 

Keeping in mind this general feature of the sharing of singularities in 
the density response of a coupled system, we can illustrate the primary 
physical features of the present calculation with a simple model, which we 
shall call the neutral jellium model. Consider a system of fermions interacting 
with each other by a direct two-body short-ranged repulsion V(k) and 
linearly coupled to a phonon field via density fluctuations. [This linear 
coupling is like the first piece of our Hin t in Eq. (4). 1 In the random phase 
approximation (RPA), the equations of motion for density fluctuations 
yield a dispersion relation 

1 = H°(k, co) V(k) + o92 2,-,lT(k)l 2 (2) 
- coo~K~ J 

where y(k) is the coupling function, coo(k) is the bare phonon frequency, and 
l-I°(k, 09) is the RPA polarization propagator. If the coupling y(k) is zero, 
then, since Fi°(k, co) is positive above the fermion particle-hole continuum 
and negative below, a collective mode involving the fermions could exist 
only above the continuum. On the other hand, for nonzero coupling the 
phonon exchange can make the total effective interaction attractive and 
(coupled) collective modes can exist below the continuum. It is also clear 
from (2) that a coupled mode above (below) the continuum must also lie 
above (below) coo(k ). A familiar example of a coupled mode below the 
continuum is found in the usual (charged)jellium model, 6 namely, the 
acoustic mode in which the electrons follow the ions. Here the acoustic 
mode remains well defined right through the continuum because the small 
mass ratio (me~Mion) suppresses the decay of the mode into electron-hole 
pairs. In contrastl 3He-4He solutions with a mass ratio of the order unity 
can have no such stable branch penetrating the continuum. 
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If we let P3 be the fermion density and P4 be the phonon density in 
the neutral jellium, the linearized equations of motion give 

pa(k, co) oc k2[co 2 - co2(k)]- ly(k)p3(k , co) (3) 

From (3), we can see that the composition of the coupled modes is mainly 
P4 for co close to coo(k) and is strongly mixed for co close to the particle-hole 
continuum. As the relative fermion concentration is decreased, the interesting 
region where the modes are strongly mixed closes in on the crossover at kc, 
since rI ° in Eq. (2) is proportional to the bare fermion density of states. 
If the simplest BBP 2 interaction is used in (2), there is no static instability, 
i.e., the lower coupled mode splits off from the continuum at finite frequency. 
All these qualitative features are present in the following calculation of a 
model 3He-4He system. 

3. THE MODEL AND SUMMARY OF RESULTS 

The model 3He-4He system that we consider here has three parts. 
First there are 4He phonons with no background but with the measured 
4He spectrum coo(k) at the reduced solution density. The density dependence 
of coo(k) is estimated from the data of Henshaw and Woods. 7 Second there 
are 3He quasiparticles with energy spectrum 

~ = -I~01 + h2kZ/2m 

where m = 2.34m 3 is the effective mass, and m3 is the 3He atomic mass. 
Third, there is a phonon-quasiparticle coupling, which is taken to be given 
by the quantum-hydrodynamic expression 4 

f 1 2 Hint = d3x[TpP4P3 q-- ~JJ4" J3 + ~gpP~tP3 + ½gJJ4" J,~P3] (4) 

where the coupling constants are given by 

70 = Oao/On,~ = (1 + cOm4c~/n 4 

7s = 5m/n4 

gp = O2ao/C3n ~ = (m4c~/n4)(3c~/On4) + 2(1 + cO(m4co/n4)(C?Co/~?n4) 

- ( 1  + o:)(m4c~/n 2) (5) 

gj = - (m 36m/mn~) 

Here m 4 is the 4He atomic mass, cSrn = m - m3, c o is the ~He sound speed, 
1 + c~ = 1.28 is the average number of 4He atoms displaced by a 3He 
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atom, and n 4 is the density of pure 4He. The 4He phonon density and current 
operators in the interaction picture are 

p4(x, t) = ~ [hk2ng/Zm4coo(k)O]l/Z{bk e i[k'x-t°°(k)t] -~ b + e -i[k'x-~°°(k)t]} 
k 

(6) 
j4(x, t) = • [hcoo(k)n¢/Zrn4~j l /Zk{bk  e i[k'x-C°°(k)tl + b~ e -i[k'x-to°(k)t]} 

k 

where b k and b~- are the phonon annihilation and creation operators, and 
fl is the volume. The 3He quasiparticle density and current operators are 

p3(x, t) ---- @+(X, t)~/(X, t) 

j3(x, t) = (h/Zmi){@+(x, t)V~(x, t) - [V~+(x, t)]@(x, t)} (7) 

ffJ(X, t) ~--- ~'~- a/2 2 ak e /[k.x-~kt/h)l 
k 

where ak is the quasiparticle annihilation operator. 
The quantity of interest in a neutron scattering experiment is the 

dynamic structure function. Since $44(k, co) dominates the dynamic structure 
function for the 3He 4He system with small 3He molar concentration x, 
we focus our attention on the calculation of $44(k, co). Thus whenever there 
exists no ambiguity, we shall call (1) simply the dynamic structure function 
and suppress the superscript 44. 

We now summarize the results of our model calculation, performed by 
using the simple perturbative approximation which is discussed in the next 
section. The dynamic structure function S(k, co) is found to have three distinct 
modes at T = 0 : two "phonon"  branches given by 

S + ( k ,  co) = S+_(k)~[co - co+(k)] 

which correspond to the phonon splitting discussed in Sections 1 and 2, 
and an incoherent "particle-hole" mode Si,c(k, co), which represents the 
excitation of a virtual "phonon"  that decays into a real "quasiparticle-hole" 
pair. All these modes are, of course, coupled modes, and the identification 
of each mode with a particular 3He or  4He mode is made in the spirit of 
perturbation theory. Figures 1 and 2 display the two "phonon"  branches 
co+(k), for x = 0.001 and 0.01, respectively. At kc and e(kc), where the x = 0 
3He quasiparticle spectrum crosses the 4He phonon spectrum, the energies 
of the two "phonon"  branches are given by 

h Re co±(kc, x) = e(kc) +_ 7~/x (8a) 

provided 

kr~(k~)/k c << 7.~/x << e(kc) (8b) 
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Fig. 1. The "phonon"  spectrum at x = 0.001 and T = 0. 
~o o is the 4He phonon specirum, the cross-hatched region 
represents the 3He qnasiparticle hole continuum for 
x = 0.001, and co+ is the split phonon spectrum calcu- 
lated for x = 0.001. The cross denotes the crossing of~o o 
with the 3He quasiparticle spectrum. 
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Fig. 2. The " p h o n o n "  spectrum at x = 0.01 and T = 0. 
N o t a t i o n  is the same as in Fig. l ,  except that  now  
x = 0.01. 
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Fig. 3. Static structure function S(k) at x = 0.01 and 
T=  0. S_+ corresponds to the co_+ "phonon" mode, 
Si,~ corresponds to the "quasiparticle-hole" mode, and 
S(k) = S+ + S_ + Si, ~. To display the dependence of 
S(k) in x and T, the static structure function at x = 0 and 
T = 0 (dash line) and the static structure function at 
x = 0.01 and T = 1.25 K (dash <lot line) are also plotted. 
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where k v is the Fe rmi  wave vector, e(kc) = h2k2/2rn, and 

7 = C2o mx/~4{1 + 0( + (6m/m4)[e(kc)/2mcg] } ~ 5 0 K  (8c) 
e 

The static s t ructure funct ions  for the three modes S+_(k) and  Sinc(k ) = 

f~  do~Si,c(k, o)) are plot ted in Fig. 3. Note  that  S+(k) domina tes  for small 

k < 1.6A =~, S_(k)  domina tes  for large k > 1.6A -~, a nd  Si,c(k ) is a small  
correct ion over the entire range of k considered. 

The two sharp " p h o n o n "  branches  at T = 0 are b roadened  considerably 
at finite temperatures,  as can be seen in Fig. 4, where S(k, (~) at  x = 0,01 and  
k = 1.6 A -  1 is plot ted as a funct ion of c~ for two temperatures  T = 0.1 and  

1.25 K. Explicitly, the width of the two " p h o n o n "  branches  is given by 

h Im co+(kc, x) = - ( x / ~ / 4 ) y 2 x ~  exp [ -  y2flx/4~(kc)] (9a) 

provided 

ksTr << fl-1 = kB T << E(kc) (9b) 
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1.6 A -  1 a n d  x = 0.01 for  t w o  t e m p e r a t u r e s ,  T = 0.1 a n d  1.25 K. 

where T r is the Fermi temperature. In Fig. 5, S(k, co) at x - - 0 . 0 1  and 
T = 1.25 K is plotted as a function of co for various wave vectors near kc. 
Note the fairly sharp transition from the ( + )  to the ( - )  phonon branch as 
k is increased through k c. 
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Fig. 5. D y n a m i c  s t r u c t u r e  func t ion  S(k, co) as a 
f u n c t i o n  o f  co wi th  x =  0.01 a n d  T =  1 . 2 5 K  for  
va r i ous  wave  vec to r s  k n e a r  the  c ros s ing  k c = 1.7 A -  1. 
The  labels  a t t a c h e d  to  e a c h  cu rve  a re  the  va lues  o f  k 
per  a n g s t r o m .  
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From the above results of the model calculation, it appears almost 
certain that in 3He-4He solutions the 4He phonon spectrum would be split 
in some manner by the 3He quasiparticle-hole continuum. An obvious 
exception would arise if the x = 0 3He quasiparticle spectrum (above the 
k = 0 value) does not cross the phonon spectrum. A rigid shift of the 3He 
quasiparticle spectrum, i.e., of the k = 0 value, has no consequence since it 
does not change the particle-hole continuum at all. Instead, the quasiparticle 
spectrum would have to be sufficiently distorted that the entire intersection 
of the continuum with the phonon spectrum Coo(k ) were eliminated. Barring 
this exception, we conjecture that some splitting is bound to occur as long as 
the transition from phonon to quasiparticle-hole pair is not forbidden. 
Thus the fact that the quantum-hydrodynamic effective interaction, rather 
than a microscopic short-wavelength effective interaction, was used in the 
model calculation does not affect the existence of some splitting of the phonon 
spectrum, although it probably overestimates the magnitude. 

4. THE CALCULATION 

The T = 0 calculation proceeds by means of straightforward dia- 
grammatic perturbation techniques. 8 Each of the four terms in the above 
[Eq. (4)] interaction Hamiltonian Hin t may be represented by a vertex, as 
shown in Fig. 6--the solid circles representing 4He phonon density vertices 
and the open circles denoting 4He phonon current vertices. Any diagram 
may be constructed by joining these vertices by solid and wiggly lines 
representing quasiparticle and phonon propagators, respectively. 

We center our attention on the phonon density-density propagator 
D1 l(k, e~), defined as the four-dimensional Fourier transform of D1 l(xt, x't'), 
which at zero temperature is given by 

D1 ~(xt, x't') = - i(~olT[p(x, t)p(x', t')]l~o) (10) 

where T is the time-ordering operator,,p(x, t) is the phonon density (6) in 
the Heisenberg picture, and 1~o) is the exact normalized ground state. The 
dynamic structure function, Eq. (1), is given by 

S(k, o9) = - (1/=n4) Im D~l(k , co) (11) 

where D ~  is the retarded density-density propagator. Because of the various 
terms present in the interaction (4), it is convenient to introduce the phonon 

Fig. 6. The four vertices corresponding to the four terms 
in Hi. t, Eq. (4). Solid circles represent 4He phonon 
density vertices, and open circles denote 4He phonon 
current vertices. 
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density-current propagator D12(k, co ) and the current-current propagator 
D22(k, co). These four propagators can be conveniently grouped into a 
2 x 2 symmetric matrix D u which satisfies a matrix Dyson equation 

o (12) Dq = D °. + Dik~,klDtj 

where Z,.j is the matrix self-energy and D ° is the '~He phonon propagator, i.e., 
the propagator D u in the limit x --, 0 or when the interaction (4) is turned 
off. Note that the propagator  D °. is taken to have the form of a bare phonon 
propagator with no background Esee Eq. (13c) below]. Hence in the limit 
x ~ 0, the static structure function S(k) (see Fig. 3) is given by the Feynman 
relation 

S(k) = hk2/2mcoo(k) 

which overestimates the value of S(k) near the roton minimum. 
The calculation proceeds in the usual fashion by approximating Zu, 

which we take to be the diagrams shown in Fig. 7. Equation (12) can then be 
solved, yielding for the retarded density~tensity propagator 

D ~  = A / (Do  ~ lf, R)~ (13a) 

A = 1 + (7~co2n4/m4k 2)1-I °g - [(Tszm- 1 gj)n]x/m4~ (13b) 

Do --- Do1 = (hkZn,,/m4)(co2 _ co2)-1 (13c) 

. 2 .2 , . -4 .2]HoR h E R =  [72 + 2co2k-27pYs + CUoCU ~ Lt 

+ [gp - (?~m -1 - gs)co~k-e]n4x  (13d) 

FI °R = [Re + i sgn (co) Im]FI ° (13e) 

and where H°(k, co) has been evaluated 9 in terms of elementary functions 

Re H°a(k, co) - 2mkF --1 + I -- -- In -- 
47rZh 2 2q 1 [(v/q) (q/Z)] 

;el 1 - + 1 -  [(v/q) +(q/2) l  ' 

where v = com/hk~ and q = k /kv .  

Z .  Z,~ Z~2 

Fig. 7. The approximation to the self-energy 
matrix used in the model calculation, The 
solid lines represent quasiparticle propaga- 
tors, and the vertices are as in Fig. 6. 
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We now obta in  the m o d e  split t ing at  kc. We seek the solut ion co = co(kc) 
of  Do 1 - Z R = 0. Lett ing ~co = o~(kc) - hk2/2m = co(kc) - coo(k~), we have 
f rom (13) 

(hk2n4/m,,)Do I =- co(kc) 2 -- coo(kc) 2 

= Ok~/m)aco + O[(~co) ~] (15) 

assuming tha t  60) << hkZ/m. As we shall see f rom (17)-(19) that  a t  k c Re H °a = 
O(xl /z ) ,  we have f rom (13) 

hE R = {7p + [e(kc)/2m]?j} 2 Re I I  °a + O(x) (16) 

It  is easily shown in the regime q2 >> Ov = (v - q2)/2 >> q that  (14) reduces to 

Re I] OR ,~ (mkv/hZ3~zZ6v) i: " (17) 

Since 6v = 6com/hk 2 at  k¢, we have f rom (15)-(17) 

Do 1 - E g = (m4/mn4)6co - (ka/37r2h2)(1/6co)E?p + (1/2m)e(k~)Tj] 2 (18) 

Setting (18) equal  to zero and  ka/3~2n4 = x,  we find the square  of  the splitting 

(h&o) 2 = (n2m/m4)[?o + (1/2m)e(k¢)Tj]zx (19) 

The  above  expression m a y  be wri t ten in the fo rm h6co = +Tx /~ ,  thus 
yielding (8) with the regime of validity (Sb) arising f rom the restr ict ion on 
(17). 

i ' 

The ana logous  T > 0 calculat ion is reasonably  easily accompl ished  for 
the regime of interest  T >> T v under  the assumpt ion  that  the fermions o~bey 
Bol tzmann  statistics. The  only result ing change in the above  equat ions  is the 
expression for the re tarded FI °a, which has been expressed 1° in a form 
amenab le  to calculation. Equa t ion  (9) then easily follows. 

The  o ther  results for k # k~, which have  been summar ized  in Figs. 1-5 
in Section 3, were ob ta ined  by numer ica l  methods.  In addit ion,  we have 
verified that  the f - s u m  rule is satisfied to O(x). 

We finally m a k e  a br ief  calculat ion of the sound speed shift to O(x) at  
T = 0 to make  contac t  with Ref. 3. The  sound speed is ascertained by finding 
the poles o f D  R for small  k ; i,e., we wish to solve 

{Do[k, co(k)]} -1 = ER[k, co(k)] (20) 

in the limit k ~ 0. The  pure  4He p h o n o n  spec t rum coo(k) at  the reduced 
solut ion density,  n 4 + 6n4 = n4[1 - (1 4- 0¢)x], is given by 

coo(k) = cok[1 + (6n4/Co)(CgCo/3n4] + "'" 

= cok[1 - (1 + ~)(xn4/co)(OCo/~n4] + . . .  (21) 
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With co(k) -* c(x)k as k ~ O, we have from (13) 

{D0[k, co(k)3}-I = (2m4co/hn4){c(x)  _ coil _ (1 + c~)(xn4/Co)(~?Co/~?n4)]} (22) 

Thus, from (20) and (22) 

c(x) = c0[1 - (1 + ct)(xn4/Co)(OCo/6n4) ] + (hn4/2m,~Co)lira Y~R(k, kco) (23) 
k~0 

As it is possible to show 9 that 

lim [II°R(k, kc o)] = xn4 /mc  2 (24) 
k~0 

to first order in x, the expression (13) for 2 R yields 

limhZR(k, kco) = x(m4c~/n4){(m4/m)[1 + ~ + (6m/m4)] 2 
k---,O 

+ (1 + c~)[(2n4/Co)(OCo/On4) - 1] 

+ n4(O~/On4) - (6m/m4) } (25) 

Substituting (25) into (23), we obtain to first order in x 

c(x) = c o + ½CoX{(m4/m ) [1 + ~ + (6m/m4)] 2 - (1 + ~) 

+ n4(Oc(~?n4) - (6m/m4)} (26) 

which agrees with Ref. 3. 

5. C O N C L U D I N G  REMARKS 

We have calculated the dynamical structure function 5 

S(k, co) = (1 - x)sg~(k, co) + 2 , ,~ , , f i -  -xS34(k ,  co) + xS33(k,  co) (27) 

for small x at T _> 0 for which limit S(k, co) ~ $44(k, co). To extend the theory 
to accommodate larger and physically attainable concentrations, the last 
two terms in (27) must be taken into account, yielding corrections of the 
order of x /~  for k ,~ k c and x for k ,~ 0 to primarily the strengths of the 
coherence singularities of S(k, co). Corrections of the same order of magnitude 
to the positions in (k, co) space and strengths of these singularities arise from 
higher order contributions to S 4~ and furthermore from the direct interaction 
between 3He quasiparticles, which has been ignored. Another process 
ignored is the three-phonon process, which will give rise to a background 
in S(k, co) as well as to a lowering of the values of S(k) near the roton minimum. 
It is clear that additional analysis is required for interpretation of experiments 
at higher concentrations than we have considered, and such analysis is 
underway. 
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Light scattering depends only on S(k, co), whereas in the neutron cross 
section the dynamic structure functions S~(k, c0) are weighted by different 
combinations of the nuclear scattering lengths a3 and a4. However, since 
S~(k, co) have the same set of singularities, neutron scattering would be able 
to pick out co+(k). Lastly, it seems clear that for the 3He-4He system the 
second-order Raman spectra, as well as the neutron spectra, may show 
striking changes from that of pure 4He. 

The splitting of the phonon spectrum into two branches can be discussed 
in terms of the representative splitting at the crossover k c. In our model 
system at T = 0, the splitting at k C as given by (8a) is valid only if the inequality 
(8b) is satisfied. This inequality requires the splitting at k c to be much smaller 
than the crossover energy e(kc) z 10 K but much larger than the half-width 
of the quasiparticle-hole continuum, i.e., 2e(k~)kv/k ~ ~ 2(9 K)x 1/3. In other 
words, if the inequality (8b) is satisfied, then the splitting at k C would result in 
two distinct branches outside the quasiparticle-hole continuum. As x --* 0 
with all other parameters fixed, it is clear that the inequality (Sb) would not be 
satisfied and that the spectrum would not remain outside the continuum. 
Therefore for a fixed concentration x, there exist two physical parameters, 
the effective coupling constant 7 and the crossover parameter s(kc)/k~, that 
determine in large measure the visibility of the splitting of the phonon 
spectrum into two branches in 3He-4He solutions at T = 0. 

It is not known whether the x = 0 3He quasiparticle spectrum intersects 
the 4He phonon spectrum. To perform our model calculation, we have 
assumed for all k a quasiparticle spectrum proportional to k 2. The leading 
small-k correction to the k 2 quasiparticle spectrum is usually expressed in 
terms ofa k 4 term with a negative coefficient. The effect of such a correction if 
extrapolated beyond its range of validity is to lower the crossover parameter 
s(k~)/k c and hence to enhance the visibility of the splitting into two branches. 

The effective coupling constant 7 can be interpreted as the phonon 
absorption amplitude at k c. Since the estimate (8c) is based on an extrapola- 
tion of the quantum hydrodynamic parameters into the short wavelength 
region near kc, it is probably an overestimate of the physical value of 7. 
From the inequality (Sb), we see that there exists a value of 7 below which the 
spectrum no longer remains outside the quasiparticle-hole continuum. 
Taking the model crossover parameters, s(k~) ~ 10 K and k~ ~ 1.7 A-  1, we 
find that the physical value of y must be greater than 9 K in order that the 
spectrum consist of two branches outside the continuum. Hence we expect a 
reduction in the splitting into two branches due to a smaller physical value of 
y, whereas a smaller physical value of s(k~)/k~ leads to an enhancement of the 
visibility of the splitting. The determination of these physical parameters, 
7 and e(kc)/k~, is obviously important and awaits further experimental 
data. 
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At finite temperatures the quasipart icle-hole con t inuum broadens and 
its boundaries  become diffuse. At T >> T v a measure of  the half-width of  the 
cont inuum at k c is approximately  given by 1° 2[e(kc)kBT] 1/2. If  we use this 
estimate of  the con t inuum half-width in place of  the T = 0 half-width in (Sb), 
we see that increasing the temperature  would decrease the visibility of  the 
splitting into two branches. If  in 3He-4He solutions 7 is large enough and 
e(kc)/k c is small enough  to ensure a splitting into two branches, then the 
observat ion of  such a splitting is most  favorable at low temperatures.  

We have considered only the case in which the p h o n o n  spectrum is split 
into two distinct branches outside the quasipart ic le-hole  cont inuum. 
Calculations and discussions of  the effect of  3He on the p h o n o n  spectrum 
within the quasipar t ic le-hole  con t inuum when (8b) is not  satisfied are 
reserved for a future publication. 
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